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The ability to align individual cellular information from mul-1

tiple experimental sources, techniques and systems is funda-2

mental for a true systems-level understanding of biological pro-3

cesses. While single-cell transcriptomic studies have trans-4

formed our appreciation for the complexities and contributions5

of diverse cell types to disease, they can be limited in their abil-6

ity to assess protein-level phenotypic information and beyond.7

Therefore, matching and integrating single-cell datasets which8

utilize robust protein measurements across multiple modali-9

ties is critical for a deeper understanding of cell states, and10

signaling pathways particularly within their native tissue con-11

text. Current available tools are mainly designed for single-12

cell transcriptomics matching and integration, and generally13

rely upon a large number of shared features across datasets14

for mutual Nearest Neighbor (mNN) matching. This approach15

is unsuitable when applied to single-cell proteomic datasets,16

due to the limited number of parameters simultaneously ac-17

cessed, and lack of shared markers across these experiments.18

Here, we introduce a novel cell matching algorithm, Match-19

ing with pARtIal Overlap (MARIO), that takes into account20

both shared and distinct features, while consisting of vital fil-21

tering steps to avoid sub-optimal matching. MARIO accurately22

matches and integrates data from different single-cell proteomic23

and multi-modal methods, including spatial techniques, and24

has cross-species capabilities. MARIO robustly matched tis-25

sue macrophages identified from COVID-19 lung autopsies via26

CODEX imaging to macrophages recovered from COVID-1927

bronchoalveolar lavage fluid via CITE-seq. This cross-platform28

integrative analysis enabled the identification of unique or-29

chestrated immune responses within the lung of complement-30

expressing macrophages and their impact on the local tissue31

microenvironment. MARIO thus provides an analytical frame-32

work for unified analysis of single-cell data for a comprehensive33

understanding of the underlying biological system.34
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Introduction39

The rapid developments of single-cell technologies have fun-40

damentally transformed our approaches to the investigation41

of complex biological systems, while potentially influencing42

clinical decisions. The ability to individually measure the ge-43

nomic (1), epigenomic (2), transcriptomic (3) and proteomic44

(4) states at the single-cell level marks an exciting era in biol-45

ogy. Single-cell transcriptomics and targeted-proteomics are46

the two major approaches commonly used to delineate cell47

populations and infer functionality or disease states. Single-48

cell transcriptomics is theoretically able to assess the entire49

transcriptome of a target cell, with 5-10k unique gene tran-50

scripts captured on average for each cell. A key drawback51

of this method is the relative sparseness of the data gen-52

erated, particularly for less abundant genes. On the other53

hand, antibody-based single-cell proteomics has gradually54

progressed over the years, from the initial detection of a55

handful of protein targets (5, 6), to about 40 targets via mass56

cytometry (7), over 100 protein targets via sequencing (8, 9)57

and most recently, more than 40 protein targets spatially re-58

solved in their native tissue context (10–13). The targeted na-59

ture of such approaches requires a careful design, selection,60

validation and titration of an antibody panel for confident and61

robust results. Importantly, the features being captured in the62

biological samples are limited to the antibodies available. Al-63

though these factors may limit the number of features that64

can be measured using targeted single-cell proteomics at any65

one time, proteomics experiments capture a different spec-66

trum of information than transcriptomics experiments, with67

following key advantages: first, proteins exert cellular func-68

tions, such as signaling cascades, that often define cellular69

identity, thus allowing a more accurate depiction of the bio-70

logical state and function, including post-translational events71

(14, 15); second, although RNA and protein expression can72

be correlated, RNA counts often do not faithfully represent73

the final protein machinery expression level in single-cells74

(16–20); third, due to the limitation of sequencing depth per75
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cell, important but rare transcripts may not be captured in76

a cell, thus greatly hindering confident cell type annotation77

(21, 22). In contrast, well-validated antibodies allow robust78

signal measurements with high dynamic ranges, thus reduc-79

ing the uncertainties of measurement and chances of false80

negative or positive events.81

Single-cell antibody-based techniques have been widely82

used, particularly in settings that require robust cell pheno-83

type information or when a specific protein functional read-84

out is necessary. A wide range of single-cell antibody pro-85

teomic modalities have now been implemented, including86

methods like flow cytometry and CyTOF that utilize fluores-87

cent or metal-tagged antibodies to probe large numbers of88

dissociated suspension cells in a relatively short time (500-89

10000 cells per second). The parameters assessed include90

cell surface proteins and intracellular signaling molecules,91

and samples from different patients or experimental pertur-92

bations can be bar-coded and run in the same batch, mini-93

mizing variability. Additional methods have recently been94

developed that allows analysis of proteins in their native spa-95

tial contexts (e.g., CODEX, MIBI, IMC), opening a new field96

of high-parameter tissue biology examination. Sequencing-97

based approaches such as CITE-seq and REAP-seq can si-98

multaneously probe the RNA and protein levels for each sin-99

gle cell, albeit with the tradeoff of dissociating cells from100

their original spatial location. Recent methodology develop-101

ments now allow robust measurements of both nucleic acid102

and protein information in tissues, although these are cur-103

rently hindered by either a low number of parameters or poor104

resolution (23–26).105

Given the frequent overlap in proteins measured across dis-106

sociated single-cells via sequencing, and intact tissues via107

antibody-imaging, an orthogonal approach would leverage108

information from one modality to inform the other. Such an109

effort would use biological measurements obtained on one110

modality (e.g. CITE-seq) to inform cells measured using an-111

other modality (e.g. CODEX) for a comprehensive assess-112

ment of the localization of both proteins and RNAs within tis-113

sue samples. Such an approach would be key in inferring ei-114

ther the spatial geolocations of dissociation-based CITE-seq115

experiments, or the RNA localization of spatial-proteomic116

CODEX experiments, to enable a better understanding of the117

complex systems of biological entities.118

Several computational approaches for integrative analysis of119

single-cell data across multiple modalities currently exist120

(27–30). However, the majority of these methods are tai-121

lored toward single-cell sequencing-based analysis, such as122

scRNA-seq and scATAC-seq, and are not directly compatible123

with protein-based assays due to differences in the number of124

parameters and the level of sparsity of the data. The general125

steps of these methods are the following: Step 1. Project the126

shared features of the datasets onto a common latent space,127

from which a cross-dataset distance matrix is constructed;128

Step 2. Align individual cells greedily via mutual nearest129

neighbors (mNN); Step 3. Joint embedding of the data and130

subsequent clustering. Unfortunately, application of this ap-131

proach to single-cell proteomic datasets can lead to subopti-132

mal results because the number of shared features across pro-133

teomic datasets are orders of magnitude smaller than those in134

single-cell sequencing datasets, and the signals within these135

limited shared features alone are typically not sufficient to136

produce high-quality and interpretable pairwise cell match-137

ing results. In addition, the intrinsically greedy (and thus138

at most locally optimal) nature of the mNN matching algo-139

rithm limits the ability to fully utilize the correlation structure140

within the distinct protein features. The first limitation illus-141

trates the necessity of mining the hidden correlations among142

distinct features, whereas the second roadblock demonstrates143

the need to optimize the matching objective function to its144

global optimum. Thus, there is an urgent need for a new145

strategy specifically designed for matching and integrating146

single-cell datasets based on limited but robust proteomic pa-147

rameters.148

To meet this need, we have developed Matching with pAR-149

tIal Overlap (MARIO), a novel algorithm that can robustly150

match and integrate single-cell datasets based on proteomic151

measurements. The matching process leverages both shared152

and distinct features between datasets, and is non-greedy and153

globally optimized. We additionally developed two qual-154

ity control steps, the Matchability Test and Joint Regular-155

ized Filtering, to avoid sub-optimal matching and prevent156

over-integration. Benchmarking of MARIO across various157

single-cell proteomic data generated from different modal-158

ities (CyTOF, CITE-seq and CODEX) and are of cross-159

species origin (human and non-human primates) demon-160

strated consistent outperformance of cell-cell matching ac-161

curacy over available mNN-based methods. Finally, by ap-162

plying MARIO, we matched a total of 38,125 macrophages163

from a CODEX multiplex immunofluorescence lung autopsy164

dataset to CITE-seq bronchoalveolar lavage fluid (BALF)165

macrophage cells, and uncovered a spatially orchestrated im-166

mune conditioning by complement-expressing macrophages167

in COVID-19. To make MARIO freely available to the168

public, we implemented the algorithm in a Python package169

MARIO, along with a R version available online at https:170

//github.com/shuxiaoc/mario-py.171

Results172

Matching and integration of single-cells individually173

using partially shared features in protein space. There174

are unique challenges in the implementation of a cell match-175

ing algorithm using proteomic information. First, each study176

is unique and rarely shares identical antibody panels, al-177

though a portion of the proteins measured is generally the178

same. Thus, the matching process must be able to achieve179

stable pairing of cells with this limited number of features;180

this is in contrast to transcriptomics data where often several181

hundred to thousand shared features are available for match-182

ing (29, 30). Second, underlying correlations between shared183

and distinct protein features often exist within and between184

datasets as a result of panel design and fundamental biolog-185

ical principles. It is therefore pertinent to incorporate infor-186

mation from both shared and distinct protein features. Third,187

the matching problem should be solved to attain the global188
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Figure 1: Schematic of the MARIO Analysis Pipeline (A) Single-cell proteomic datasets can be acquired using various modalities, including CyTOF, CITE-seq and CODEX,
on different biological samples or species (e.g. human/ non-human primate) with shared underlying biological information. Protein markers are divided into two classes: 1)
features captured within both datasets (Shared Features), and 2)markers not shared between the datasets (Distinct Features). Both classes of protein expression matrices
serve as inputs to the MARIO algorithm detailed in (B). After the MARIO pipeline, further downstream analysis can be conducted using the combined information integrated
across multiple individual experiments. (B) A schematic of MARIO algorithm: 1) Individual cells are first subject to matching using the distance matrix constructed using
the Shared Features described in (A), before further match refinement using the distance matrix constructed from the Distinct Features such that all features are included.
Thereafter, a best interpolation of initial and refined matching will be performed. The dataset then undergoes a matchability test, where random sign flipping is used to validate
the statistical rigorosity of MARIO integration using the Canonical Correlation distribution. Subsequently, we perform a cell-cell matching quality control step coined Joint
Regularized Filtering, removing spurious cell pairs. Lastly, the matched cells across datasets are jointly embedded into a Canonical Correlation Analysis (CCA) subspace.

optimum rather than a local optimum that is produced by the189

greedy mNN matching commonly used to align scRNA-seq190

datasets. Finally, quality control steps are crucial to ensure191

the accuracy and interpretability of the postulated cell-cell192

matching results.193

To address these challenges, we developed MARIO, a ro-194

bust framework that accurately matches cells across single-195

cell proteomic datasets for downstream analysis (Figure 1).196

MARIO first performs a pairwise cell matching using shared197

features. To do this, we employ singular value decomposition198

on shared features to construct a cross-data distance matrix199

based on the Pearson correlation coefficients of the reduced200

matrix. An initial cell-cell pairing is then obtained by solving201

a minimum-weight bipartite matching problem that searches202

for a distance-minimizing injective map between the two col-203

lections of cells. The two datasets are next aligned using this204

initial matching, and both shared and distinct features of the205

aligned datasets are projected onto a common subspace using206

Canonical Correlation Analysis (CCA) (31). This projection207

is the crux of this methodology as it incorporates the hidden208

correlations between different proteomic features not shared209

between the datasets. A cross-dataset distance is then ob-210

tained using the canonical scores, and the refined matching is211

obtained via minimum-weight bipartite matching. By taking212

the means of the top 10 sample canonical correlations (CCs)213

as a proxy of matching quality, MARIO then finds the best214

convex combination weight to interpolate the initial and re-215

fined matchings, thus achieving a data-adaptive balancing of216

the two sources of information.217

After achieving the balanced matching between the two218

datasets, MARIO next performs a matchability test to de-219

termine whether or not the datasets being integrated by the220

user are suitable for such a joint analysis. It is pertinent that221

datasets with poor quality or limited underlying correlations222

are not forcefully paired. The matchability test is performed223

by flipping the sign of each row of the two datasets with some224

flipping probability, so that the majorty of underlying corre-225

lations (if exists) between the two datasets is abrogated. This226

process is repeated a number of times to build a distribution227

of the background CCs of the samples with low underlying228

correlation. Comparison of the deviation of the sample CCs229

from the background distribution reveals whether strong un-230

derlying information exists to connect the datasets.231

Although datasets passing the matchability test are highly232
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correlated, the matching at the individual cell level could still233

be erroneous if certain rare cell types only exist in one of234

the dataset or data quality related to specific cell types is in-235

ferior. To address these problems, we developed a process236

termed jointly regularized filtering to automatically filter out237

low-quality matches without a priori biological knowledge.238

The filtering process is carried out by optimizing a regular-239

ized k-means objective. This objective is a superposition of240

two parts, where the first part contains individual k-mean241

clustering objectives for both datasets, and the second part242

penalizes the Hamming distance between the two individual243

cluster label vectors and a hypothesized “global” label vec-244

tor. Use of such a strategy stems from our hypothesis that245

although the populations being measured in two different ex-246

periments may contain modality-specific characteristics (thus247

the existence of “individual” cluster labels), both originate248

from a biologically analogous population (thus the existence249

of a “global” cluster label that is close to the two individ-250

ual cluster labels). If for a matched pair of cells, the indi-251

vidual labels obtained by joint regularized clustering are not252

the same, this matched pair is likely spurious and thus dis-253

regarded. After this filtering step, the resulting individually254

matched cells are subject to CCA, and the canonical scores255

are used as the reduced components for calculating the final256

embeddings. We implemented generalized Canonical Corre-257

lation Analysis (gCCA) to achieve joint embedding of more258

than two datasets, and subsequently utilized the gCCA sam-259

ple canonical scores as dimensional-reduced components for260

calculating and visualizing the final embeddings. Readers are261

referred to the Materials and Methods section for further de-262

scriptions and mathematical details.263

Robust matching and integration of multi-platform and264

multi-modal single-cell protein measurements with265

MARIO. We first evaluated the performance of MARIO on266

two distinctive datasets generated using individual cells iso-267

lated from healthy human bone marrow. The first is a268

sequencing-based CITE-seq dataset consisting of 29,007269

cells, stained with an antibody panel of 29 markers (30) and270

the second is a mass cytometry-based CyTOF dataset con-271

sisting of 102,977 cells, stained with an antibody panel of272

32 markers (32). Twelve markers (CD11c, CD123, CD14,273

CD16, CD19, CD3, CD34, CD38, CD4, CD45RA, CD8, and274

HLA-DR) were common to both datasets. MARIO success-275

fully matched and aligned these two datasets as shown by276

visual inspection (Figure 2A). The intricate data structures277

were preserved post-MARIO integration, with clear separa-278

tion of cells belonging to phenotypically distinctive popula-279

tions in dimension-reduced t-distributed stochastic neighbor280

embedding (t-SNE) plots (Figure 2B). The original cell-type281

annotations based upon the shared low-level annotation (Fig-282

ure 2B; top left), and on pre-existing annotations from each283

dataset (Figure 2B; top right and bottom left) were highly284

conserved after MARIO integration. Subsequent joint clus-285

tering of the post-MARIO integrated data using the canonical286

scores also corroborated in highly accurate cell-type delin-287

eation (Figure 2B, bottom right).288

We next designed three different scenarios to further charac-289

terize the integration performance of MARIO and to compare290

its performance against the single-cell integration methods291

Seurat (30), fastMNN (27), and Scanorama (28). In the first292

case, shared protein markers were removed from each dataset293

individually (in an accumulative fashion and in alphabeti-294

cal order) to simulate the distinctive antibody panel designs295

across potential datasets. MARIO consistently outperformed296

other methods in terms of matching accuracy, independently297

of the excluded protein targets (Figure 2C). Thus, MARIO298

outperformed other methods when used with the plethora299

of variable experiment-specific antibody panel configurations300

(full 12-shared panel total accuracy: MARIO, 96.01%; Seu-301

rat, 90.29%; fastMNN, 90.22%; Scanorama, 91.46%; drop-302

ping 8 shared antibodies: MARIO, 91.45%; Seurat, 70.56%;303

fastMNN, 69.94%; Scanorama, 71.22%). We additionally304

evaluated the integration quality among these methods, using305

metrics including Structure alignment score, Silhouette F1306

score, Adjusted Rand Index F1, and Cluster Mixing score,307

in addition to t-SNE visualizations, based on each method’s308

post-integration latent space scores (Figure S1A,B).309

In the second test, random noise was gradually spiked into the310

datasets to simulate the variability of intrinsic signal-noise311

in real world data. The matchability test implemented in312

MARIO was able to detect and alert the user when data qual-313

ity was insufficient for confident matching (Figures 2D). In314

contrast, the elevated noise resulted in an increase in the num-315

ber of cells being forcefully paired in other tested methods316

(reaching close to 100%), albeit with low accuracy (ranging317

from 50% to 80% in accuracy). Given that the other meth-318

ods are primarily mNN-based and only locally optimized, the319

higher noise resulted in more erroneous pairs.320

In the third scenario, an entire group of cell types was321

removed from the destination dataset (i.e., the set being322

matched to) to mimic fluctuations of cell type composi-323

tion between potential datasets. MARIO outperformed all324

other tested methods by successfully suppressing the incor-325

rect matching of these missing cell types (Figure 2E; error326

avoidance scores where larger value indicates better perfor-327

mance for plasmacytoid dendritic cells (pDCs): MARIO,328

1.65; mNN methods, 0.42-1.12; natural killer (NK) cells:329

MARIO, 3.83; mNN methods, 0.40-1.21; B cells: MARIO,330

6.18; mNN methods, 0.49-1.15; CD8 T cells: MARIO,331

12.67; mNN methods, 0.61-1.57; CD4 T cells: MARIO,332

18.89; mNN methods, 0.77-1.99; monocytes: MARIO, 2.60;333

mNN methods, 0.59-1.39). Given the greedy matching nature334

of other methods tested, it appears that many of the missing335

cell types were repeatedly and incorrectly matched with cells336

from other cell types. This confounding situation is circum-337

vented by the built-in cell-pair filtering function in MARIO.338

The precise matching accuracy for CyTOF to CITE-seq339

cell pairs amongst all the major cell types with MARIO340

matching was high (Figure S2A): pDCs, 94.57%; NK cells,341

98.07%; monocytes, 98.10%; hematopoietic stem and pro-342

genitor cells (HSPCs), 76.43%; CD8 T cells, 99.35%; CD4343

T cells, 99.64%, and B cells, 98.98%. There was minimal344

cross-matching, indicative of high accuracy on the single-345

cell matching level across cell types. Robust matching across346
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Figure 2: Matching and Integration of CyTOF and CITE-seq Bone Marrow Data using MARIO. (A) t-SNE plots of individual cells colored by assay modality, either
pre-integration or MARIO integration. (B) t-SNE plots of MARIO integrated cells colored by clustering results from (top left to bottom right): High concordance in shared cell
types based on annotations from both original datasets; Annotation from Levine et al.; Annotation from Stuart et al.; Clustering result based on CCA scores from MARIO high
cell type resolution using information from both assays. (C-E) Benchmarking results of MARIO against other mNN-based methods (Purple: MARIO, Blue: Seurat, Green:
Scanorama, Red: FastMNN). (C) The matching accuracy (left) and the proportion of cells being matched (right) are tested by sequentially dropping protein features. (D) The
matching accuracy (left) and the proportions of cells being matched (right) are measured with increasingly spiked-in noise. (E) The error avoidance score (higher is better) is
calculated after dropping each cell type sequentially from the dataset. (F) Heatmap of cross modality protein expression levels for the matched cells. (G) t-SNE plots of the
matched cells with protein/RNA expression levels overlaid based on each of the assays.
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two experimental platforms allows the evaluation of differ-347

ential expression patterns of proteins both shared and unique348

to these separate experiments. This matching also allows the349

transcriptome of the single-cells measured using CyTOF to350

be inferred through the matched CITE-seq pairs. We con-351

firmed that the expression patterns of cell type-specific mark-352

ers were in good agreement between CyTOF proteins, CITE-353

seq proteins, and CITE-seq RNA transcripts (Figure 2F, G354

and Figure S2B, C). Moreover, the expression pattern of355

CD45RO protein and S100A4 and CCR7 RNAs from CITE-356

seq assisted the delineation of memory and naive CD4 T cell357

subtypes in the integrated dataset, which was individually un-358

available for manual annotation in the CyTOF dataset alone.359

Therefore, this integrated analysis better defines cell states360

than do these modalities individually.361

We subsequently evaluated the performance of MARIO362

on two healthy human peripheral blood mononuclear cell363

(PBMC) datasets measured by CITE-seq and CyTOF. Fif-364

teen proteins (CD11b, CD127, CD14, CD16, CD19, CD25,365

CD27, CD3, CD4, CD45RA, CD45RO, CD56, CD8a, HLA-366

DR and PD-1) were common across these two datasets.367

MARIO successfully integrated the two datasets (Figure368

S3A) and resulted in accurate cell type matching (Figure369

S3B; NK cells, 89.93%; naive CD4 T cells, 94.33%; memory370

CD4 T cells, 90.25%; dendritic cells (DCs), 79.66%; CD8 T371

cells, 98.69%; monocytes, 96.46%; and B cells, 97.94%).372

Our results reveal that the expression of key genes on both373

protein (CyTOF and CITE-seq) and RNA (CITE-seq) levels374

are in high agreement with their corresponding phenotypic375

cell-of-origin assignments (Figure S3C). Further benchmark-376

ing using the three cases described above showed similar su-377

perior matching accuracy for MARIO regardless of antibody378

panel setup (Figure S4A; full 15-antibody shared panel to-379

tal accuracy: MARIO, 90.62%; Seurat, 87.55%; fastMNN,380

87.27%; Scanorama, 87.39%; dropping 8 shared antibodies381

total accuracy: MARIO, 86.34%; Seurat, 80.10%; fastMNN,382

80.04%; Scanorama, 81.03%). In evaluation of suppression383

of over-integration due to poor quality data, mNN methods384

force matched almost all cells with accuracy below 70%,385

whereas MARIO alerted the user of poor data quality (Figure386

S4B). Thirdly, integration with MARIO, but not with mNN387

methods, was robust even with extensive cell type composi-388

tion changes (Figure S4C; error avoidance scores for mono-389

cytes: MARIO, 1.94; mNN methods, 0.53-1.37; B cells:390

MARIO, 4.53; mNN methods, 0.56-1.37; DCs: MARIO,391

1.13; mNN methods, 0.31-0.93; NK cells: MARIO, 2.54;392

mNN methods, 0.43-1.17; CD8 T cells: MARIO, 4.83; mNN393

methods, 0.46-1.01; memory CD4 T cells: MARIO, 3.97;394

mNN methods, 0.38-0.85).395

Cross-species integrative analysis reveals species396

and stimuli-specific immunological responses. Non-397

human primates (NHP) are a cornerstone of biomedical re-398

search, enabling the rapid investigation of diseases and host399

responses in a system highly analogous to humans as demon-400

strated for rapid disease modeling and vaccine development401

during the recent COVID-19 pandemic (33). Nonetheless,402

animal models do not fully recapitulate all host responses in403

humans (34, 35). Given the increasing amount of single-404

cell proteomic studies in NHP models of disease (36–39),405

the ability to identify common and different responses to406

diseases is essential to appreciate host immune response407

at scale. Given the major commonalities of host immune408

compositions across NHPs and humans, we postulated that409

MARIO would be able to effectively integrate human and410

NHP datasets to reveal underlying common immune coor-411

dination and differential responses.412

We performed MARIO matching of four CyTOF datasets413

from studies in which 1) human whole blood cells were414

isolated from individuals challenged with H1N1 virus (40),415

consisting of 102,147 cells, 2) human whole blood cells416

were stimulated with IFNγ (37), consisting of 114,175 cells,417

3) rhesus macaque whole blood cells were stimulated with418

IFNγ, consisting of 112,218 cells, and 4) cynomolgus mon-419

key whole blood cells were stimulated with IFNγ, consisting420

of 91,409 cells (Figure 3A, B). Dataset 1 was generated using421

42 markers, and datasets 2, 3, and 4 were generated using 39422

markers. We observed a high degree of concordance between423

cell types when visualizing the human-human and human-424

NHP datasets via t-SNE using MARIO integrated canoni-425

cal scores (Figures 3A, B). MARIO cell-type assignment ac-426

curacies were high (Figure 3C). For dataset 1 to dataset 2,427

accuracies were as follows: B cells, 96.96%; CD4 T cells,428

98.80%; CD8 T cells, 98.22%; monocytes, 99.66%; neu-429

trophils, 99.51%; NK cells, 98.39%. For dataset 1 to dataset430

3, accuracies were as follows: B cells, 86.76%; CD4 T cells,431

97.22%; CD8 T cells, 91.75%; monocytes, 97.85%, neu-432

trophils, 97.99%; NK cells, 86.42%. For dataset 1 to dataset433

4, accuracies were as follows: 1 to 4: B cells, 91.90%; CD4434

T cells, 96.49%; CD8 T cells, 92.53%; monocytes, 95.14%,435

neutrophils, 96.10%; NK cells, 80.78%. There were minimal436

differences, as measured using Euclidean distance, between437

paired cells calculated by canonical scores (Figure 3D).438

Successful application of MARIO for robust matching and439

integration across three species and two stimulation condi-440

tions allowed us to investigate intrinsic differences in cell441

type-specific immune responses across humans and NHPs.442

We observed an increase in proliferation of CD4 T cells in443

human blood cells after both influenza viral challenge and444

IFNγ stimulation, as marked by the upregulation of Ki-67,445

but no increase proliferation was detected after stimulation446

of NHP blood cells (Figure 3E and F). We also observed the447

upregulation of pSTAT1, particularly in monocytes, in hu-448

man and NHP samples treated with IFNγ but not after in-449

fluenza challenge (Figure 3E and F). These results are consis-450

tent with previous observations (41–43). Finally, there was an451

increased p38 expression in all cell types across all samples,452

reflective of the conserved functionality of p38 during cell in-453

flammatory and stress responses (44, 45). Our benchmarking454

results showed superior matching accuracy using MARIO re-455

gardless of antibody panel setup. When using 39 shared an-456

tibodies, the total accuracy was 93.26% for MARIO, 86.20%457

for Seurat, 84.89% for fastMNN, and 85.83% for Scanorama;458

when eight shared antibodies were dropped, the total accu-459

racy for IFNγ treatment was 86.79% for MARIO, 80.88%460
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Figure 3: Figure 3: MARIO enables Cross-species and Stimuli Integrative Analysis (A) t-SNE plots of the four datasets, pre- and post-MARIO integration, colored their
origin. (B) t-SNE of MARIO integrated plots from each individual dataset, colored by cell type. (C) Balanced accuracy for each cell type after MARIO matching, for cells from
Rahil et al. to other datasets. (D) Euclidean distance of canonical correlations for pairs of matched versus random cells between Rahil et al. to other datasets. (E) t-SNE
plots with expression levels of Ki-67, pSTAT1 and p38 across the four datasets. (F) Violin plot of the normalized expression levels of Ki-67, pSTAT1 and p38 across the four
datasets for the specified cell types: CD4 T cells and monocytes.

for Seurat, 77.89% for fastMNN, and 82.23% for Scanorama461

(Figure S5A). In the analyses with spiked-in noise, mNN462

methods forced matching almost 100% of cells with accuracy463

below 70% with increased noise added, whereas MARIO464

alerted the user of insufficient information for matching (Fig-465

ure S5B). MARIO, unlike the mNN methods we tested, was466

robust in resisting cell-type composition changes (Figure467

S5C; error avoidance scores, B cells: MARIO, 1.36; mNN468

methods, 0.51-1.07; NK cells: MARIO, 2.75; mNN meth-469

ods, 0.52-1.01; neutrophils: MARIO, 2.01; mNN methods,470

0.41-1.02; CD8 T cells: MARIO, 1.52; mNN methods, 0.63-471

0.96; CD4 T cells: MARIO, 1.47; mNN methods, 0.43-0.93;472

monocytes: MARIO, 1.64; mNN methods, 0.52-1.19)473

We similarly applied this strategy to data from IL-4-474

stimulated human and NHP whole blood cells, and compared475

them to human influenza viral challenge blood cells (Figure476

S6A, B). Upon IL-4 stimulation, we saw an upregulation of477

Ki-67 in human CD4 T cells but not NHP cells, much akin478

to IFNγ stimulation (Figure S6C), and high expression of479

pSTAT1 in monocytes of IL-4-stimulated blood cells but not480

in human blood cells challenged with influenza (Figure S6C).481

In line with IFNγ stimulation, the p38 response was consis-482

tent across species and treatments. Our results consistently483

showed superior matching accuracy using MARIO regard-484
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less of antibody panel setup. When using 39 shared antibod-485

ies, the total accuracy was 89.60% for MARIO, 87.75% for486

Seurat, 88.30% for fastMNN, and 86.76% for Scanorama;487

when eight shared antibodies were dropped, the total accu-488

racy was 87.16% for MARIO, 82.72% for Seurat, 82.87%489

for fastMNN, and 82.83% for Scanorama (Figure S7A). In490

the analyses where noise is spiked-in, mNN methods forced491

matching of almost 100% of cells with accuracy below 70%492

with increasing noise, whereas MARIO alerted the user of493

insufficient information for matching (Figure S7B). MARIO494

was over most resistant to cell-type composition changes495

(Figure S7C; error avoidance scores B cells: MARIO, 1.12;496

mNN methods, 0.46-0.96; NK cells: MARIO, 2.97; mNN497

methods, 0.55-1.03; neutrophils: MARIO, 2.08; mNN meth-498

ods, 0.42-1.02; CD8 T cells: MARIO, 2.49; mNN methods,499

0.65-1.17; CD4 T cells: MARIO, 1.65; mNN methods, 0.43-500

0.97; monocytes: MARIO, 1.61; mNN methods, 0.54-1.24).501

Accurate tissue architectural reconstruction reveals502

diverse lymphocyte populations. Inferring the spatial lo-503

calization of biofeatures at the single-cell level is necessary504

for a holistic understanding of cellular processes in situ (22).505

Currently used multi-modal approaches to measure nucleic506

acids and proteins in their native tissue context are often lim-507

ited by scale or resolution (9, 23, 25). We reasoned that a508

highly accurate cell matching and integration strategy, such509

as MARIO, could infer the spatial localization of transcripts510

within individual cells. We performed MARIO on spa-511

tially resolved data from murine splenic cells collected using512

antibody-based CODEX imaging (29 protein markers)(13)513

and data from dissociated murine splenic cells assayed us-514

ing CITE-seq (206 protein markers) (46); 29 protein markers515

(all the markers in the CODEX dataset) were shared.516

We first visually verified successful MARIO matching and517

integration using dimension-reduced t-SNE plots (Figure518

4A). Cell-cell matching accuracy was high across all cell519

types: 87.69% for NK cells, 90.04% for neutrophils, 73.84%520

for macrophages, 83.72% for monocytes, 94.35% for DCs,521

95.61% for CD8 T cells, 95.70% for CD4 T cells, and522

93.99% for B cells (Figure S8A). This enabled highly ac-523

curate single-cell information transfer between cells mea-524

sured using CITE-seq and CODEX spatially resolved cells525

(Figure 4B and Figure S8B). We visually observed highly526

concordant spatial organization of cell types annotated us-527

ing CODEX or CITE-seq information and further observed528

a clear distribution pattern of transcripts corresponding to529

their expected spatial localization in the spleen (Figure 4B530

and Figure S8B). For example, Il7r is concentrated in the T531

cell zone as expected (47); Myc and Cxcr5 are localized to532

activated and proliferating T and B cells within the germinal533

center (48, 49); Ms4a1 and Bhlhe41 are highly expressed in534

the B cell zone and B cells in the red pulp region (50–53);535

and Il1b is expressed outside the B cell zone (54). t-SNE536

overlays of the matched protein and RNA expression con-537

firmed expected RNA expression profiles within given cell538

types (Figure S8C).539

We next sought to further refine cells from the B lymphocyte540

lineage by gating the B cell population from the CODEX541

dataset based on B220, CD19, IgM, IgD, CD21/35, and542

MHCII. Four sub-populations of B cells were identified:543

Transitional type 1 B cells (T1), Marginal Zone B cells (MZ),544

Mature B cells (M) and Follicular/Germinal Center B cells545

(FO/GC) (Figure S8D). Visual inspection of the spatial loca-546

tion of these four subtypes of B cells confirmed localization547

within mouse spleens consistent with previous observations548

(Figure S8E) (55, 56). MARIO-matching thus enabled a de-549

tailed examination of the differentially expressed transcripts550

within these B cell subtypes resolved by CODEX, revealing a551

distinctive transcriptional program reflective of their pheno-552

type (Figure 4C). For example, we observed signature land-553

mark genes previously shown to demarcate these B cell sub-554

types from single-cell or bulk transcriptomic analysis (Ighm,555

Arid3a, and Pafah1b3 for T1; Ighd, Fcer2a/Cd23 and Cd69556

for M; Cd9, Cr2 and Mzb1 for MZ; Zbtb38, Tmed8 and Kxd1557

for FO/GC)47 (57–59). These genes were significantly up-558

regulated (p-adjust < 0.05, Wilcoxon Test) in the correspond-559

ing gated populations of CODEX B cells.560

For this CODEX to CITE-seq matching, MARIO had match-561

ing accuracy superior to mNN methods (Figure S9A). For562

the full 28-antibody shared panel, the total accuracy for563

MARIO was 87.76%, for Seurat it was 83.64%, for fastMNN564

it was 87.40%, and for Scanorama it was 82.70%. Dropping565

eight shared antibodies in the panel resulted in total accura-566

cies of 85.31% for MARIO, 77.97% for Seurat, 82.01% for567

fastMNN, and 80.03% for Scanorama. MARIO prevented568

over-integration due to poor quality data, whereas the mNN569

methods forced matching (Figure S9B). MARIO was also ro-570

bustness in resisting changes to cell-type composition (Fig-571

ure S9C; error avoidance scores: DCs: MARIO, 1.63; mNN572

methods, 0.39-0.83; NK cells: MARIO, 1.66; mNN meth-573

ods, 0.31-0.7; monocytes: MARIO, 1.82; mNN methods,574

0.32-0.72; CD8 T cells: MARIO, 2.48; mNN methods, 0.53-575

1.23; CD4 T cells: MARIO, 2.24; mNN methods, 0.56-1.18;576

macrophages: MARIO, 1.77; mNN methods, 0.30-0.74).577

A COVID-19 lung molecular atlas reveals the role of578

complement activation in macrophages and related579

orchestrated immune responses . Single-cell profiling580

technologies have emerged as powerful tools in response to581

the ongoing COVID-19 pandemic. The deep functional char-582

acterization of clinical samples has provided critical insights583

into viral pathogenesis and tissue-specific host immune re-584

sponses (60). Understanding these responses in their native585

tissue context has implicated potential therapeutic avenues586

(61, 62), but highly coordinated efforts are needed for an inte-587

grative understanding of the biological effects in COVID-19588

(63).589

We reasoned that the ability to perform integrative and infer-590

ential analysis across biological analogous clinical cohorts,591

measured at different institutions with varying technologies,592

would further our understanding of the facets of COVID-19593

biology. We profiled 76 lung tissue regions from 23 individ-594

uals who succumbed to COVID-19 using CODEX high di-595

mensional imaging with 50 markers, and MARIO-matched596

the macrophage population identified therein against those597

from bronchoalveolar lavage fluid (BALF) samples subject598
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Figure 4: MARIO Integration of Suspension and Tissue Single-cell Measurements Enables Spatial Multi-omics (A) t-SNE plots of murine spleen CITE-seq and CODEX
cells, pre-integration and MARIO integration, colored by the dataset of origin (left and middle) or colored by cell type annotation (right). (B) A murine spleen section colored
by the cell type annotation from CODEX (top left) or the label transferred annotation from CITE-seq (middle left). Examples of RNA transcripts ((Il7r, Ms4a1, Cxcr5 and Myc)
and their tissue-specific localization are inferred through MARIO integrative analysis (middle and right columns). An enlarged view of the tissue region demarcated by the
orange box is shown in the bottom row. (C) Heatmap of differentially expressed genes (from matched CITE-seq cells) among subpopulations of CODEX B cells, gated based
on CODEX proteins.
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Figure 5: Integrative Spatial Multi-omic Analysis of Macrophages in COVID-19 patients with MARIO (A) A schematic of the experimental and MARIO analysis on BALF
and lung tissues from COVID-19 patients were measured from two independent studies via CITE-seq (from VIB/Ghent) and CODEX (University Hospital Basel/Stanford).
Macrophages from the CODEX lung data were matched to those identified from BALF using CITE-seq using MARIO for integrative analysis. (B) Heatmaps of C1Q High
and Low macrophages identified from CITE-seq, and their matched CITE-seq and CODEX expression patterns. (C) A ranked plot for macrophages from each patient in the
CODEX data, as a percentage of C1Q High proportions. (D) Proportion of Neutrophils (as a percentage of all cell types) in each patient from the CODEX data, ranked by
the same sequence as in (C). (E) A dot plot showing the relationship between C1Q High macrophages (Y axis) and Neutrophil percentage (X axis). Each dot represents
a tissue core from the tissue microarray. (F) An representative pseudo image of two tissue cores colored with the locations of C1Q High and Low macrophages. (G) The
CODEX multiplexed Images of the same two tissue cores in (F), with CD163, CD68 and CD15 antibody staining. An enlarged view of the region demarcated by the orange
box is shown on the right. (H) An experimental schematic of PANINI to validate the spatial localization of C1Q macrophages on Basel/Stanford COVID-19 tissues. Slides
were co-stained with probes detecting C1QA mRNA and antibodies targeting CD15 and CD68 proteins. (I-J) A dot plot showing the relationship between the proportion of
C1QA High Macrophages (as a percentage of all macrophages) from the PANINI validation (Y axis) versus the MARIO prediction (X axis) per patient (I) or per tissue core (J).
P-values and correlations were calculated using the Spearman-ranked test. (K) Anchor plots of Neutrophils as a function of distance from C1QA High (magenta) or C1QA
Low macrophages (green) in MARIO predicted (above) or PANINI validated (below) experiments. (L-M) A representative tissue core with MARIO predicted C1QA expression
levels in macrophages (left), and PANINI validated C1QA and CD68 signals (right). (N) Spatial-correlations between validation and prediction experiments were performed.
The tissue core was divided into 10x10 regions, the summation of C1QA signals in macrophages were calculated and plotted for Mario and PANINI validation (P-value and
correlation calculated by Spearman-ranked test).
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to CITE-seq with 250 surface markers (Figure 5A).599

We were able to stratify the macrophages into two popula-600

tions based on their transcriptional signatures of complement601

pathway activity (Figure 5B; C1Q Low and C1Q High). In-602

terestingly, we observed a positive correlation between the603

abundance of C1Q Low macrophages and patient body mass604

index (BMI; Figure S10D). Given that low serum C1Q lev-605

els have been reported in patients with severe COVID-19606

(64), future studies should explore whether C1Q dysregula-607

tion can explain the positive association between obesity and608

risk for COVID-19-related hospitalization and death (65).609

The protein expression of these two classes of macrophages610

also partly corresponded to a M1 phenotype for C1Q Low611

macrophages, and an immunosuppressive M2 phenotype for612

C1Q High macrophages (Figure 5B). We further observed613

that the C1Q High transcriptional program was enriched614

in antigen processing and presentation, whereas that of the615

C1Q Low population consisted of several immune chemo-616

taxis and migration pathways, including that of neutrophil617

chemoattractants (Figure S10A). The top differentially ex-618

pressed transcripts included CXCL8, CCL7 and TMEM176B,619

with previously described roles in regulating neutrophil re-620

cruitment and migration (66–68). The roles of proteins en-621

coded by IL1B, S100A8 and CCL2 in the recruitment of aber-622

rant neutrophils has been recently eluded in NHP and mice623

models of SARS-CoV-2 lung pathology (69), and are also re-624

flected by elevated transcript levels in C1Q Low macrophages625

(Figure S10B).626

In the five previously established functional clusters of in-627

terferon stimulated genes (ISG) (70, 71), we observed dis-628

tinctive ISG transcriptional programs in C1Q Low and High629

macrophages (Figure S10C; p-adjust < 0.05, Wilcoxon Test)630

across all clusters (C1 & C2: RNA Process, C3: IFN Reg-631

ulators - Antiviral effectors, C4: Metabolic Regulation, C5:632

Inflammation). Of particular interest is the C3 (Antiviral Ac-633

tivities) and C5 (Inflammation) clusters (Figure S10C; Green634

and Gold clusters). Our results suggest that in C1Q Low635

macrophages several previously described genes (including636

SERPIN89, MX1, LGAPS3BP, SIGLEC1, CKAP4, CCL2637

and SPHK1) that encode proteins reported to directly inhibit638

SARS-CoV-2 replication and entry are upregulated, but the639

failure to regulate and dampen this innate response paves the640

way to unchecked host immune responses and collateral tis-641

sue damage (72–76) (Figures S10C).642

In line with the transcriptional signatures for aberrant neu-643

trophil infiltration (Figure S10A), we noted a correlation be-644

tween the presence of C1Q Low macrophages and increased645

infiltrating neutrophils (Figure 5C-E; Rho = -0.453, p <646

0.0001). This elevated neutrophil presence was also con-647

firmed visually (Figures 5F-G and S10E). Spatial cell-cell in-648

teraction analysis showed striking differences in these two649

subclasses of macrophages and their proximity with other650

cell types, such as high frequency of C1Q High macrophages651

to be proximal to CD4 and CD8 T cells, B cells, myeloid cells652

and other macrophages (Figure S10F). We next anchored653

C1Q High and Low macrophages for an anchor analysis (25)654

to understand the microenvironment as a function of distance655

around these two groups of macrophages. Our analysis con-656

firmed the distinctive microenvironments and differences in657

immune orchestration around these macrophages, as evident658

from the differential organization of macrophages, plasma659

cells, vasculature and CD8 T cells (Figure S10G).660

We finally performed Protein And Nucleic acid IN situ661

Imaging (PANINI)(25) to visualize the mRNA of a com-662

plement marker, C1QA, the neutrophil marker CD15 and663

the macrophage marker CD68 on COVID-19 tissue mi-664

croarray sections to experimentally validate the spatially re-665

solved gene expression patterns predicted by MARIO (Fig-666

ure 5H). We confirmed the robust expression patterns of667

C1QA mRNA, CD68 and CD15 proteins in the tissue sections668

(Figure S10H). We observed a robust and significant corre-669

lation between the percentages of experimentally validated670

C1Q High macrophages and MARIO-predicted C1Q High671

macrophages percentage, both at the patient level (p = 0.019,672

Rho = 0.574) and at the per tissue core level (p = 0.000068,673

Rho = 0.521, Spearman Ranked test, Figures 5I and J). In line674

with anchor analysis from MARIO-inferred data, we con-675

firmed a significantly decreased neutrophil density around676

C1Q High macrophages in the PANINI validation experi-677

ment (Figure 5K). The RNA spatial pattern from our PANINI678

experiment, performed on a separate, non-adjacent section679

of the same patient tissue core, recapitulated the prediction680

from the MARIO-matched data (Figure 5L and M). The681

spatial correlation between MARIO-predicted and PANINI-682

validated expression levels of C1QA in macrophages was683

highly consistent even between non-adjacent sections of the684

same tissue core (C1QA signal per region: p < 0.00001, Rho685

= 0.597, Spearman ranked test, Figure 5N). This rho value686

was close to the maximum possible spatial correlation of the687

tissue structure as determined using cell density per region (p688

< 0.00001, Rho = 0.602, Figure S10I), validating the highly689

accurate inferential capabilities of MARIO.690

Discussion691

MARIO is a powerful matching and integration framework692

for single-cells that allows the retention of distinct features.693

It is thus particularly suitable for the integration of single-cell694

proteomic datasets with limited antibody panel overlap. We695

demonstrated that MARIO robustly and accurately matched696

cells across multiple sample types, assays, and species.697

Unlike current methodologies, MARIO performs pairwise698

matching of individual cells utilizing both shared and distinct699

features and is coupled with rigorous quality control steps.700

We benchmarked our algorithm across multiple datasets, and701

MARIO consistently outperformed other methods that were702

primarily designed for single-cell sequencing data and that703

are reliant upon the mNN matching algorithm. Importantly,704

MARIO inferential results allowed novel biologically inter-705

pretable insights. First, we demonstrated how CITE-seq data706

for human bone marrow cells could be leveraged to accu-707

rately delineate memory and naive T cell subtypes measured708

with a CyTOF panel lacking these naive/memory functional709

antibody markers. Second we showed that conserved and dif-710

ferential responses of human and NHP blood samples could711
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be identified in data from different CyTOF experiments when712

matched using MARIO. Third, RNA transcripts could be spa-713

tially located within the murine spleen through the integration714

of CODEX and CITE-seq. Finally, two classes of comple-715

ment pathway C1Q High and C1Q Low macrophages from716

COVID-19 BALF suspension cells analyzed by CITE-seq717

matched with COVID-19 lung autopsy CODEX data using718

MARIO delineated of the roles that these cell populations719

play in orchestrating immune responses to SARS-CoV-2 in-720

fection.721

This MARIO analysis pipeline builds upon several novel and722

consolidated mathematical advances. First, the matching is723

constructed by globally (rather than locally) optimizing over724

a novel distance matrix that incorporates both the explicit725

correlations in shared features and the hidden correlations726

among distinct features. Second, the accuracy and robust-727

ness of the matching is ensured by two theoretically princi-728

pled quality control processes, the Matchability Test and the729

Jointly Regularized Filtering (77). Third, the integrated em-730

beddings are obtained via CCA or gCCA which incorporates731

the information in both the shared and distinct features.732

In spite of the clear advantages of MARIO, it has some tech-733

nical limitations. First, the accuracy and robustness come at734

the cost of longer analysis times compared to mNN-based735

approaches. Given the globally optimal nature of the core736

matching algorithm implemented in MARIO, the time re-737

quired to run the MARIO pipeline is cubically related to the738

number of cells; in contrast, time required for mNN-based739

methods is quadratically related to the number of cells. To740

circumvent this, we developed a sparsification technique that741

reduces the search space, which accelerates the matching pro-742

cess. Empirically, we found that MARIO can be run on743

datasets with moderate sample sizes within reasonable time744

frames: The execution time for 50,000 cells took 10 minutes,745

with a peak memory usage of approximately 7 GB (Figure746

S11). Second, although MARIO out performs mNN-based747

methods in the scarce shared feature regime, its success re-748

lies on the existence of shared features. This may not be the749

case in certain scenarios such as when integrating RNA-only750

and protein-only data. Future work incorporating methods751

that enable inference of protein levels from transcript levels752

will no doubt allow methods such as MARIO to have even753

broader applicability.754

The need to study biological processes within their tissue755

context is increasingly evident, with direct relevance to the756

physiological context of health and disease. Simultaneous757

single-cell measurement of nucleic acids and proteins in their758

spatial context remains challenging, despite recent advance-759

ments (25, 26, 78), and it remains limited by factors including760

resolution and requirements for tissue fixation. The ability to761

match similar biological samples measured using distinctive762

single-cell assays will be paramount for hypothesis genera-763

tion and guidance for experimental design. We are confident764

that MARIO will serve as a useful methodology and resource765

for the community with direct applications to a plethora of766

experimental platforms and biological contexts.767

Materials & Methods768

Cell matching. Suppose we have two datasets X and Y ,
whereX ∈Rnx×(pshare+px) consists of nx cells and (pshare +
px) features and Y ∈Rny×(pshare+py) consists of ny cells and
(pshare +py) features. Without loss of generality, we assume
nx ≤ ny. Among all the features, nshare features are shared
across both datasets, whereas the rest of the features are dis-
tinct to either X or Y . Thus, we can write both datasets as
horizontal concatenations of a shared part and a distinct part:

X =
(
Xshare Xdist

)
, Y =

(
Yshare Ydist

)
.

The cell matching betweenX and Y is defined as an injective769

map Π, represented as a binary matrix of dimension nx×ny,770

such that Πi,i′ = 1 if and only if the i-th cell in X share a771

similar biological state with the i′-th cell in Y .772

Initial matching with shared features. We first construct an
initial estimator of Π using shared features alone. The pro-
cedure starts by denoising the shared parts via thresholding
their singular values. Consider the singular value decompo-
sition of the vertical concatenation of Xshare and Yshare:(

Xshare
Yshare

)
=
(
Ûshare
Ũshare

)
D̂shareV̂

>
share,

where the vertical concatenation of Ûshare ∈ Rnx×pshare

and Ũshare ∈ Rny×pshare collects the left singular vectors,
D̂share ∈ Rpshare×pshare is a diagonal matrix that collects the
singular values in descending order, and V̂share collects the
right singular vectors. Let r̂share ≤ pshare be the number
of components to keep. In the MARIO package, we denote
r̂share = n_components_ovlp. We then compute the de-
noised version of Xshare and Yshare by

X̂share = (Ûshare)•,1:r̂share(D̂share)1:r̂share(V̂share)>•,1:r̂share
,

Ŷshare = (Ũshare)•,1:r̂share(D̂share)1:r̂share(V̂share)>•,1:r̂share
,

respectively, where for a matrix A, we let A•,1:r denote its
first r columns and for a diagonal matrix D, we let D1:r
denote the submatrix formed by taking its first r rows and
columns. We then construct a cross-data distance matrix
Dshare ∈ Rnx×ny , whose entries are given by

(Dshare)i,i′ = 1− cor[(X̂share)i,•,(Ŷshare)i′,•],

where cor[(X̂share)i,•,(Ŷshare)i′,•] is the Pearson correlation
coefficient between the i-th row of X̂share and the i′-th row
of Ŷshare. The initial estimator of Π is given by the solution
of the following optimization problem:

Π̂share ∈ argmin
Π
〈Π,Dshare〉

subject to Π ∈ {0,1}nx×ny , Π1ny = 1nx ,

where for two matrices A and B, we let 〈A,B〉 =773 ∑
i,i′Ai,i′Bi,i′ denote the Frobenius inner product. This op-774

timization problem is an instance of minimal weight bipartite775

matching (a.k.a. rectangular linear assignment problem) in776

the literature (79).777
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Refined matching with distinct features. Given the initial778

matching Π̂share, we can approximately align cells in X and779

Y : the rows of X and Π̂shareY correspond to pairs of cells780

with similar biological states, up to a certain level of mis-781

matches induced by the estimation error of Π̂share. Despite782

mismatches, such an approximate alignment opens up the783

possibility of estimating the latent representations of X and784

Y by CCA.785

Assuming both X and Y are standardized so that their
columns are centered and scaled to have unit standard devi-
ation. Then their empirical covariance and cross-covariance
matrices are given by

Σ̂xx = X>X

nx
, Σ̂yy = (Π̂shareY )>Π̂shareY

nx
,

Σ̂xy = X>Π̂shareY

nx
.

The first pair of sample canonical coefficient vectors is given
by

(ŵ(1)
x , ŵ

(1)
y ) ∈ argmax

a∈Rpshare+px ,b∈Rpshare+py
a>Σ̂xyb

subject to a>Σ̂xxa= b>Σ̂yyb= 1,

and the first sample canonical correlation is given by
cor(Xŵ(1)

x ,Π̂shareY ŵ
(1)
y ). Now, for 2 ≤ j ≤ pshare +

min(px,py), the j-th pair of sample canonical coefficient vec-
tors is successively defined as

(ŵ(j)
x , ŵ

(j)
y ) ∈ argmin

a∈Rpshare+px ,b∈Rpshare+py
a>Σ̂xyb

subject to a>Σxxa= b>Σyyb= 1,

a>Σ̂xxŵ
(`)
x = b>Σ̂yyŵ

(`)
y = 0,∀1≤ `≤ j−1.

In parallel, the j-th sample canonical correlation is given
by cor(Xŵ(j)

x ,Π̂shareY ŵ
(j)
y ). Let 1 ≤ r̂all ≤ pshare +

min(px,py) be the number of components to keep. In the
MARIO package, we denote rall = n_components_all.
Collecting top r̂all sample canonical vectors into matrices

Ŵx =
(
ŵ

(1)
x · · · ŵ

(r̂all)
x

)
,

Ŵy =
(
ŵ

(1)
y · · · ŵ

(r̂all)
y

)
,

the latent representation of X can be estimated by XŴx, the786

sample canonical scores of X . That is, we use Ŵx to project787

X onto the latent space. The same projection can be done788

on Y data by computing Y Ŵy, so that the resulting matrix789

approximately lies in the same latent space as XŴx.790

To this end, we compute the cross-data distance matrix Dall
directly on the latent space, whose entries are given by

(Dall)i,i′ = 1− cor[(XŴx)i,•,(Y Ŵy)i,•].

We finally solve for a refined matching by

Π̂all ∈ argmin
Π
〈Π,Dall〉

subject to Π ∈ {0,1}nx×ny , Π1ny = 1nx .

Interpolation of initial and refined matchings. The quality of791

the refined matching Π̂all is highly contingent upon the qual-792

ity of the distinct features. If the distinct features are ex-793

tremely noisy, incorporation of them may hurt the perfor-794

mance, in which case it is more desirable to revert back to the795

initial matching Π̂share. We develop an data-adaptive way of796

deciding how much distinct information shall be incorporated797

when we estimate the matching from the data.798

To start with, we cut the unit interval [0,1] into grids (e.g.,
{0,0.1, . . . ,0.9,1}). For each λ on the grid, we interpolate the
two kinds of distance matrices by taking their convex combi-
nation

Dλ = (1−λ)Dshare +λDall,

from which we can solve for the λ-interpolated matching

Π̂λ ∈ argmin
Π
〈Π,Dλ〉

subject to Π ∈ {0,1}nx×ny , Π1ny = 1nx .

Note that Π̂λ=0 = Π̂share and Π̂λ=1 = Π̂dist. After align-799

ing X and Y using Π̂λ, we compute top k sample canonical800

correlations (in the MARIO package denoted as top_k, and801

defaulted to 10), whose mean is taken to be a proxy of the802

quality of Π̂λ. We then select the best λ̂ according to this803

quality measure and use Π̂λ̂ afterwards.804

Quality control.805

Test of matchability. In extreme cases, the two datasetsX and806

Y may not have any correlation at all, and thus any attempt to807

integrate both datasets would give unreliable results. For ex-808

ample, some methods, when applied to uncorrelated datasets,809

would pick up the spurious correlations and hence resulting810

in over-integration. A robust procedure should be able to tell811

and warn the users when the resulting matching estimator812

might be of low quality. We develop a rigorous hypothesis813

test, termed matchability test, for this purpose.814

The matchability test starts by repeatedly drawing B
i.i.d. copies of nx-dimensional (potentially asymmetric)
Rademacher random vectors {ε(b)

x }Bb=1 and another B
i.i.d. copies of ny-dimensional Rademacher random vectors
{ε(b)

y }Bb=1. That is, for each 1 ≤ b ≤ B, we have ε(b)
∗ =

(ε(b)
∗,1, . . . ,ε

b
∗,n∗), and ε(b)

∗,i is +1 with probability 1− pflip
and is −1 otherwise for any 1≤ i≤ n∗, where ∗ is the place-
holder for either x or y. The parameter pflip (denoted as
flip_prob in MARIO package and defaulted to 0.2) con-
trols the “sensitivity” of the test — a lower value of pflip
means that a more accurate matching is needed to pass the
matchability test. For every b, we generate a fake pair of
datasets by flipping the signs of each row of X and Y :

X(b) = diag(ε(b)
x )X, Y (b) = diag(ε(b)

y )Y.

After such a sign-flipping procedure, the majority of the cor-815

relation (i.e., the inter-dataset covariance structure) between816

X and Y , if exists, is destroyed. On the other hand, the intra-817

dataset covariance structures of both X and Y are preserved.818
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As a result, if we run any matching algorithm with X(b) and819

Y (b) as the input, the resulting estimator Π̂(b) would be of820

low quality, in the sense that if we align X(b),Y (b) using821

Π̂(b) and run CCA, the resulting sample canonical correla-822

tions will be small. In our implementation, we calculate the823

mean of top_k, and defaulted to 10), which we denote as824

{ ˆcor(b)}Bb=1.825

The matchability test proceeds by running the same algo-826

rithm on the real datasets X,Y , aligning them using the esti-827

mator Π̂, and calculate the mean of top_k sample canonical828

correlations, which we denote as ˆcor. The final p-value for829

testing the null that X and Y are uncorrelated is given by the830

proportion of { ˆcor(b)}Bb=1 that are larger than the observed831

ˆcor.832

Jointly regularized filtering of low-quality matched pairs.833

Even if the two datasets X and Y are highly correlated (and834

thus the matchability test gives a small p-value), the esti-835

mated matching Π̂ might still be error-prone. This could hap-836

pen, for example, when certain cell types exist in X but are837

completely absent in Y . We develop an algorithm that auto-838

matically filters out the low-quality matched pairs in Π̂.839

Assume there are K cell types present in either X or Y . In
the MARIO package, we denoteK = n_clusters (default =
10). Let zx,zy ∈ {1, . . . ,K}nx be the unknown ground truth
cell type labels of X and Π̂Y , respectively. The fact that X
and Y have passed the matchability test tells that zx and zy
should agree on most coordinates. However, it is entirely pos-
sible that there exists a sparse subset of {1, . . . ,nx} on which
zx and zy disagree, and our goal is to detect this sparse subset
and disregard them in downstream analyses. To achieve this
goal, we consider the following regularized k-means objec-
tive:

(ẑ?, ẑx, ẑy) = argmin
{µk}Kk=1⊂R

pshare+px

{νk}Kk=1⊂R
nshare+ny

z?,zx,zy∈{1,...K}nx

1
2

nx∑
i=1

(
‖Xi,•−µzx,i‖

2
2 +‖Yi,•−νzy,i‖

2
2

)

+ log
(

1−ρ
ρ/(K−1)

)
·
nx∑
i=1

(
1{zx,i 6= z?,i}+1

{
zy,i 6= z?,i

})
,

where ‖ ·‖2 is the `2 norm and 1{·} is the indicator function.840

The above objective function is a superposition of two parts.841

The first part is the classical k-means objective for X and842

Y , and the second part is a regularization term that imposes843

penalties when the estimated X-label ẑx and Y -label ẑy are844

too far-away from a “global” label ẑ?.845

After solving the above objective function, if ẑx,i 6= ẑy,i, then846

there is evidence that the matched pair (Xi,•,(Π̂Y )i,•) is spu-847

rious, and is thus disregarded in the downstream analyses.848

The parameter ρ controls the strength of regularization: if849

ρ= 1−1/K, then there is no regularization at all, whereas if850

ρ= 0, we effectively require ẑ? = ẑx = ẑy . Thus, we can nat-851

urally control the “intensity” of such a filtering procedure by852

choosing a suitable ρ. In fact, under a hierarchical Bayesian853

model, the parameter ρ has a rather intuitive interpretation854

as the probability of disagreement between z?,i and zx,i (or855

between z?,i and zy,i) (77). If the model is correctly speci-856

fied, then the expected proportion that should be filtered out857

is given by bad_prop = 1− (1−ρ)2− ( ρ
K−1 )2 · (K−1).858

We solve the regularized k-means objective via a warm-859

started block coordinate descent algorithm. The algorithm860

starts by computing initial estimators ẑ(0)
x , ẑ

(0)
y of zx,zy via861

spectral clustering (80): we compute the sample canonical862

scores of X and Π̂Y , average them, and apply the classical863

k-means clustering on top K eigenvectors of the averaged864

score to get z̃ ∈ {1, . . . ,K}nx . We then let ẑ(0)
x = ẑ

(0)
y =865

z̃. The number of canonical scores to keep is denoted as866

n_components_filter in the MAIRO package (default867

= 10).868

Suppose at iteration t, the current estimators of zx,zy are869

given by ẑ(t)
x , ẑ

(t)
y , respectively. We run block coordinate de-870

scent as follows:871

1. Given ẑ(t)
x , ẑ

(t)
y , the current estimators of {µk},{νk} are

given by

µ̂
(t)
k = 1∑nx

i=11
{
ẑ

(t)
x,i = k

} nx∑
i=1

1
{
ẑ

(t)
x,i = k

}
·Xi,•,

ν̂
(t)
k = 1∑nx

i=11
{
ẑ

(t)
y,i = k

} nx∑
i=1

1
{
ẑ

(t)
y,i = k

}
·Yi,•

for any 1≤ k ≤K.872

2. Given {µ̂(t)
k },{ν̂

(t)
k }, the next estimators of z?,zx,zy are

given by

(ẑ(t+1)
?,i , ẑ

(t+1)
x,i , ẑ

(t+1)
y,i ) = argmin

z?,zx,zy∈{1,...K}nx

1
2

(
‖Xi,•− µ̂(t)

zx,i‖
2
2 +‖Yi,•− ν̂(t)

zy,i‖
2
2

)
+ log

(
1−ρ

ρ/(K−1)

)
·
(
1{zx,i 6= z?,i}+1

{
zy,i 6= z?,i

})
for any 1 ≤ i ≤ nx. The above problem is solved via a873

careful enumeration procedure. We first hypothesize that874

ẑ
(t+1)
?,i = k for some 1 ≤ k ≤K. Given this hypothesis,875

we can solve for the best ẑ(t+1)
x,i by enumerating all K876

possible choices of labels. The same thing can be done877

to solve for the best ẑ(t+1)
y,i . Hence, we can compute the878

best value of the above objective function under the hy-879

pothesis that ẑ(t+1)
?,i = k. We can then solve for the global880

optimal ẑ(t+1)
?,i by enumerating and comparing the objec-881

tive values under every possible hypothesized value of882

ẑ
(t+1)
?,i = 1, . . . ,K. Given the global optimal ẑ(t+1)

?,i , the883

global optimal ẑ(t+1)
x and ẑ(t+1)

y can be easily extracted.884

In our implementation, we run the above block coordinate885

descent procedure for 20 iterations.886
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Downstream analysis after cell matching.887

Joint embedding. After running jointly regularized filtering888

on the best interpolated estimator Π̂λ̂, we get a pair of aligned889

datasets X? ∈ Rn×(pshare+px),Y ? ∈ Rn×(pshare+py), whose890

rows correspond to cells of similar types and n is the number891

of remaining cell-cell pairs after filtering. Then, we run CCA892

on X?,Y ? and collect the first n pairs of sample canonical893

scores (scaled within dataset) as the final embeddings. Since894

the rows ofX? and Y ? are approximately aligned, other stan-895

dard methods for joint embedding (e.g., partial least squares)896

can also be applied.897

Label transfer via k-NN matching. The interpolated distance898

Dλ̂ can be used to do label transfer via k-nearest-neighbors.899

Suppose we know the cell type labels for all cells in Y but900

the corresponding labels for cells in X is missing. Then for901

the i-th cell in X , we can predict its label by finding the k-902

nearest cells (we denote k = knn in the MARIO package) in903

Y according to Dλ̂ and taking the majority vote.904

Extensions.905

Matching more than two datasets. Suppose we have L906

datasets X1 ∈ Rn1×(pshare+p1), . . . ,XL ∈ RnL×(pshare+pL).907

For 2 ≤ ` ≤ L, we run the usual two-dataset procedure to908

estimate the matching between cells in X1 and cells in X`909

by Π̂1↔`. We then run jointly regularized filtering on each910

Π̂1↔` separately and keep the cells in X1 that survive all911

L− 1 rounds of filtering. This gives us a cell-to-cell match-912

ing among the L datasets, from which we can construct913

row-wise aligned datasets X?
1 ∈ Rn×(pshare+p1), . . . ,X?

L ∈914

Rn×(pshare+pL), where n is the number cells in X1 that sur-915

vived all L−1 rounds of filtering.916

To jointly embed all the aligned datasets, we use generalized
canonical correlation analysis (gCCA) (81). It is well known
that gCCA does not admit a unique formulation (82). We
take the following formulation which best suits our goal of
obtaining joint embeddings:

{Ŵ`}L`=1 = argmin
W`∈R(pshare+p`)×r

∀1≤`≤L

∑
`6=`′
‖X?

`W`−X?
`′W`′‖2F

subject to W>` Σ̂``W` = Ir, Σ̂`` =
(X?

` )>X?
`

n
,

where ‖ ·‖F is the Frobenius norm, 1≤ r≤ pshare +min` p`917

is the number of components to keep, and X`Ŵ` is the em-918

bedding for the `-th dataset.919

To solve the above optimization problem, we take a block920

coordinate descent approach. This approach again needs pre-921

liminary estimators {Ŵ (0)
` }. To obtain those preliminary922

estimators, we first run the classical CCA on the first two923

datasets and obtain the projection matrices Ŵ (0)
1 ,Ŵ

(0)
2 , so924

that X?
1Ŵ

(0)
1 and X?

2Ŵ
(0)
2 are the sample canonical scores925

for X?
1 and X?

2 , respectively. Then, for each ` ≥ 3, we run926

least squares regression using (X?
1Ŵ

(0)
1 +X?

2Ŵ
(0)
2 )/2 as the927

response and X?
` as the feature matrix. The resulting regres-928

sion coefficient is then taken to be Ŵ (0)
` .929

Given the preliminary estimators, we are ready to enter the930

block coordinate descent iteration. We first demonstrate how931

to solve for the first columns of {Ŵ`}. Suppose at itera-932

tion t, we are given preliminary estimators {ŵ(1,t)
` }, where933

ŵ
(1,t)
` ∈ Rpshare+p` . We then proceed as follows. For ev-934

ery 1 ≤ ` ≤ m, we run a least squares regression with the935

response being the current average scores (not counting ` it-936

self), i.e., (
∑
`′<`X

?
` ŵ

(1,t+1)
`′ +

∑
`′>`X

?
` ŵ

(1,t)
`′ )/(L− 1),937

and with the feature matrix being X?
` . Denote the result-938

ing regression coefficient as w̃(1,t+1)
` . We take ŵ1,t+1

` =939

w̃
(1,t+1)
` /‖w̃(1,t+1)

` ‖2. We run the above procedure for 500940

iterations and let {ŵ(1,T )
` } be the first columns of {Ŵ`}.941

We now discuss how to solve for the j-th columns of {Ŵ`},942

where j ≥ 2. We start by running a least squares regres-943

sion with X?
` being the response and the first j − 1 scores944

of X?
` (i.e., X?

` (Ŵ`)•,1:j−1, where (Ŵ`)•,1:j−1 is the first945

j−1 columns of Ŵ`) being the feature matrix. The residual946

of this regression is denoted as X̃?
` . Now suppose at itera-947

tion t, we are given preliminary estimators {ŵ(j,t)
` }, where948

ŵ
(j,t)
` ∈ Rpshare+p` . We proceed as follows. For every949

1≤ `≤L, we run a least squares regression with the response950

being (
∑
`′<` X̃

?
` ŵ

(j,t+1)
`′ +

∑
`′>` X̃

?
` ŵ

(j,t)
`′ )/(L− 1), and951

with the feature matrix being X̃?
` . Denote the resulting re-952

gression coefficient as w̃(j,t+1)
` . We then run a least squares953

regression with the response being X̃?
` w̃

(j,t+1)
` /‖w̃(j,t+1)

` ‖2954

and the feature matrix being X?
` . The resulting regression955

coefficient is taken to be ŵj,t+1
` . We run the above proce-956

dure for 500 iterations and let {ŵ(j,T )
` } be the j-th columns957

of {Ŵ`}.958

Speeding up cell matching via distance sparsification. Stan-959

dard implementations of the one-to-one matching run in960

O((nx +ny)3) time. However, if the distance matrix D is961

sparse (i.e., a lot of entries are infinity, meaning that such962

a pair is a priori infeasible), then the time complexity can963

further be reduced. For example, if one regards the dis-964

tance matrix as a bipartite graph and let (i, j) denote an965

edge if Dij < ∞, then it is possible to solve the problem966

in Õ((nx +ny)|E|) time, where |E| is the number of edges967

and Õ hides poly-log factors (83).968

A natural attempt is to manually sparsify D so that for each969

row, only k� ny smallest entries are finite. Let D(k) be the970

sparsified matrix. In theory, there exists a critical value of971

k? such that: (1) the distance matrix D(k?) can give a valid972

matching; and (2) if one sparsifies it further (i.e., use D(k)
973

for k < k?), then there is no valid matching. We give an al-974

gorithm for computing this critical value. For any fixed k,975

we can test if D(k) can give a valid matching by comput-976

ing the maximum-cardinality matching, which can be done977

inO(knx
√
nx +ny) time using the Hopcroft–Karp algorithm978

(84). We can then use binary search to search for the critical979

value k?. In the worst case (i.e., when k? = ny), the whole980
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procedure runs in O(log(ny)nxny
√
nx +ny) time, which is981

already much faster than the O((nx +ny)3) time needed to982

compute the matching using the original distance matrix. In983

practice, since k? is usually very small compared to ny, the984

running time of the whole procedure can be even faster. This985

procedure generalizes the strategy taken by (85), which only986

works when the distance matrix is computed using a single987

feature.988

Given the knowledge of k?, we sparsify the distance matrix989

with some user-specified k ≥ k? (denoted as sparsity in990

the MARIO package) and apply the LAPJVsp algorithm (an991

algorithm specifically designed to tackle sparse inputs) (86)992

to compute the matching.993

In practice, we can further speed up the matching process994

by randomly splitting the data into n (in MARIO package995

denoted as n_batch) evenly-sized batches, computing the996

matching for each batch, and stitching the batch-wise match-997

ings together.998

Details on data pre-processing and analysis.999

Code and data availability. MARIO and related tutorials1000

are freely available to the public at GitHub: https://1001

github.com/shuxiaoc/mario-py. Data and Code to1002

regenerate the main and supplementary figures are also de-1003

posited to GitHub.1004

Preprocessing and analysis of human bone marrow1005

datasets. CyTOF data measuring 32 proteins in healthy1006

human bone marrow cells from levine et al (32)) was1007

downloaded from GitHub https://github.com/1008

lmweber/benchmark-data-Levine-32-dim.1009

Cells gated as HSPCs, CD4 T cell, CD8 T cell, B cell,1010

monocyte, NK cell and pDC from the paper were selected1011

and a total of 102,977 cells were used. CITE-seq dataset1012

measuring 25 proteins and RNA expression of healthy1013

human bone marrow cells was acquired using bmcite in1014

the R package SeuratData. Cells annotated as HSPCs,1015

CD4 T cell, CD8 T cell, B cell, monocyte, NK cell, and pDC1016

from the paper, comprising a total of 29,007 cells, were used.1017

During matching, CITE-seq cells were used to match against1018

CyTOF cells, where the input of CITE-seq cells were pre-1019

normalized counts from bmcite and the input of CyTOF1020

cells were values with arcsine transformation (cofactor = 5).1021

The MARIO parameters used are n_components_ovlp1022

= 10, n_components_all = 20, sparsity = 1000,1023

bad_prop = 0.2, and n_batch = 4.1024

t-SNE plots were generated using the scaled shared pro-1025

tein features across datasets (pre-integration) or the first 101026

components for the CCA scores (MARIO integration), us-1027

ing the Rtsne() function with default settings in R package1028

Rtsne. The heatmap was produced using heatmap.2()1029

in the R package gplots, with z-scaled CITE-seq and1030

CyTOF protein expression levels. The matched or original1031

values of protein/RNA overlaid with t-SNE plots were gen-1032

erated with the function Featureplot() in R package1033

Seurat. The detailed process of benchmarking MARIO1034

against other methods is further described in the Benchmark-1035

ing section in the Supplementary Methods section.1036

Preprocessing and analysis of cross species H1N1/IFN1037

gamma challenged datasets. CyTOF data measuring 42 pro-1038

teins in blood cells from humans challenged with H1N1 (40)1039

virus was acquired from flow repository FR-FCM-Z2NZ 39.1040

Three donors were used (id = “101”, “107”, “108”). The1041

dataset was randomly downsampled to 120,000 cells, arcsine1042

transformed with cofactor = 5, and subsequently clustered1043

via the default Seurat clustering pipeline with all avail-1044

able antibody markers. Cell types were then manually an-1045

notated based on their expression profile. A total of 102,1471046

annotated cells were used. CyTOF data measuring 39 pro-1047

teins of whole blood cells from human, rhesus macaque1048

and cynomolgus monkey challenged with Interferon gamma1049

(37) were acquired from flow repository FRFCM-Z2ZY 35.1050

Three donors of each species (human: “7826”, “7718”,1051

“2810”; rhesus macaque: “D00522”, “D06022”, “D06122”;1052

cynomolgus monkey: “D07282”, “D07292”, “D07322”)1053

were used. Cells gated as Erythrocytes, Platelets and1054

CD4+CD8+ cells in the paper were excluded from down-1055

stream analysis. Each individual dataset was randomly down-1056

sampled to 120,000 cells, arcsine transformed with cofac-1057

tor = 5, then clustered with Seurat using all the markers,1058

followed by manually annotation and then removal of cells1059

with ambiguous annotations. Total cell numbers for matching1060

were 114,175 (human); 112,218 (rhesus macaque); 91,4091061

(cynomolgus monkey). During matching, human H1N1 chal-1062

lenged cells were matched against human, rhesus macaque1063

and cynomolgus monkey IFN gamma-stimulated cells sep-1064

arately, and cells that matched across all four datasets were1065

used for downstream analysis. The MARIO parameters used1066

are n_components_ovlp = 20, n_components_all1067

= 15, sparsity = 1000, bad_prop = 0.1, and n_batch1068

= 4.1069

The t-SNE plot was produced by the scaled shared protein1070

features across the dataset (pre-integration) or the first 101071

components of the generalized CCA scores (MARIO inte-1072

gration), using the Rtsne() function with default setting in1073

R package Rtsne. For visualization purposes, cell numbers1074

were downsampled to 20,000 each dataset (80,000 cells in1075

total) for t-SNE visualization. Euclidean distances between1076

matched cells were calculated based on the integrated gen-1077

eralized CCA scores. Accuracy for MARIO matching re-1078

sults among cell types was generated by 5 repeated mea-1079

surements on a randomly subsampled 5000 matched cells,1080

and the balanced accuracy was calculated with the function1081

confusionMatrix() in the R package caret. The ex-1082

pression level of Ki-67, pSTAT1 and p38 overlaid on each in-1083

dividual dataset’s t-SNE plots was produced with the function1084

Featureplot() in R package Seurat. Violin plots were1085

produced based on normalized (scale() function, within1086

each dataset) values of Ki-67, pSTAT1, and p38 for Mono-1087

cytes, CD4 T cells subpopulations with ggplot2.1088

Preprocessing and analysis of murine spleen datasets. Tiff1089

files of CODEX multiplexed imaging data for BALBc mouse1090
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spleen, with 29 antibodies, were acquired (13) (sample1091

ID: ’balbc-1’). Segmentation was performed with a local1092

implementation of Mesmer (87) , with weights downloaded1093

from: https://deepcell-data.s3-us-west-1.1094

amazonaws.com/model-weights/Multiplex_1095

Segmentation_20200908_2_head.h5. Inputs of1096

segmentation were DRAQ5 (nuclear) and CD45 (membrane).1097

Signals from the images were capped at 99.7th percentile,1098

with prediction parameter model_mpp = 0.8. Lateral1099

spillover signals were cleaned using REDSEA (88) with the1100

whole cell compensation flag as previously described. To1101

clean out aggregated B220 signals in the dataset, B220 signal1102

inside the cytoplasm (defined by 7 pixels towards the inside1103

of the cell boundary), was removed. Afterwards, cells with1104

DRAQ5 signal value less than 80 were removed and signals1105

were scaled to 0-1, with percentile cutoffs of 0.5% (floor)1106

and 99.5% (ceiling). Cells were subsequently clustered1107

via Seurat, using CODEX markers: CD45, Ly6C, TCR,1108

Ly6G, CD19, CD169, CD3, CD8a, F480, CD11c, CD27,1109

CD31, CD4, IgM, B220, ERTR7, MHCII, CD35, CD2135,1110

NKp46, CD1632, CD90, CD5, CD79b, IgD, CD11b, CD106.1111

Another round of sub-clustering was then performed for1112

dendritic cells, and macrophage populations before manual1113

annotation of clusters. A total of 48,332 cells labeled as B1114

cell, CD4 T cell, CD8 T cell, Dendritic cell, Macrophage,1115

Monocyte, Neutrophil, and NK cells were used for MARIO1116

matching. CITE-seq data 45 of murine spleen/lymph node1117

samples from a panel of 206 antibodies were downloaded1118

from GitHub: https://github.com/YosefLab/1119

totalVI_reproducibility/tree/master/data.1120

Only B, CD4 T cell, CD8 T cell, dendritic, macrophage,1121

neutrophil, and NK cells originating from the spleen, a total1122

of 7601 cells, were used. For matching, the input of CODEX1123

cells are post-compensated, aggregation corrected values,1124

excluding the Ter119 red blood cell channel. CITE-seq1125

input were the downloaded raw counts. The CITE-seq1126

dataset was duplicated to improve the matchability, and1127

CODEX cells subsequently matched against CITE-seq1128

cells, with MARIO parameters: n_components_ovlp1129

= 20, n_components_all = 15, sparsity = 1000,1130

bad_prop = 0.05, n_batch = 32, knn = 15.1131

The t-SNE plots were produced using the scaled, shared pro-1132

tein features across datasets (pre-integration) or the first 101133

components for the CCA scores (MARIO integration), us-1134

ing the Rtsne() function with default settings in R pack-1135

age Rtsne. For visualization purposes, both datasets were1136

downsampled to 8000 matched cells from each modality1137

(16,000 cells in total) for t-SNE plotting. Pseudo-images of1138

the CODEX murine spleen were colored by their cell-type1139

annotations (Cell type based on CODEX protein annotation;1140

Label transfering from CITE-seq annotation) and matched1141

RNA expression levels. The label transfer of CITE-seq an-1142

notation shown in the figure was done using k-NN (k =1143

15) on the MARIO distance matrix, to ensure all CODEX1144

cells have an annotation. The RNA expression value for1145

pseudo-imaging plotting was capped to the 80% percentile1146

(values equal to 0 were omitted) of that gene. For gating1147

of B cell subtypes, CODEX proteins B220, CD19, IgM,1148

IgD, CD21/35 and MHCII were used, and manually gated1149

in cellengine https://cellengine.com/. Heatmaps1150

of matched RNA expression level of CODEX B cell sub-1151

populations was produced via the function DoHeatmap()1152

in the R package Seurat, with top 50 differentially ex-1153

pressed genes identified in each subpopulation, via the func-1154

tion FindAllMarkers() in Seurat.1155

COVID-19 human tissue specimen collection. Lung tissues1156

from patients who succumbed to COVID-19 were obtained1157

during autopsy at the University Hospital Basel, Switzerland.1158

Tissues were processed as previously described (89) and col-1159

lection was approved by the ethics commission of Northern1160

Switzerland (EKNZ; study ID #2020-00969). All patients or1161

their relatives consented to the use of tissue for research pur-1162

poses. Tissue microarrays were generated from these tissue1163

samples in-house at the University Hospital Basel, Switzer-1164

land.1165

Preprocessing and analysis of COVID patient macrophage1166

datasets. CODEX on COVID-19 samples from University1167

Hospital Basel: CODEX acquisition of the COVID-19 tis-1168

sue microarrays were performed, and post-processing and1169

cell type annotation executed as previously described (90,1170

91). Data from 23 COVID-19 patients (76 tissue cores;1171

manuscript in preparation) were acquired, and a total of1172

62,852 macrophages that were annotated were used for1173

MARIO matching. Processed counts of CITE-seq data ac-1174

quired with a panel of 250 antibodies from bronchoalveo-1175

lar lavage fluid washes from COVID-19 patients (VIB/Ghent1176

University Hospital) was acquired from COVID-19 Cell At-1177

las59. Cells from 7 COVID-19 patients (COV002; COV013;1178

COV015; COV024; COV034; COV036; COV037) were1179

selected, clustered, and manually annotated on a per pa-1180

tient level based on their protein features, using Seurat1181

as previously described. A total of 16,090 macrophages1182

were annotated and used for subsequent MARIO match-1183

ing. During MARIO matching, CODEX macrophages1184

were matched against CITE-seq macrophages, with the1185

MARIO running parameters: n_components_ovlp =1186

25, n_components_all = 25, sparsity = 1000,1187

bad_prop = 0.1, and n_batch = 20.1188

CODEX macrophages were clustered based on their matched1189

C1Q mRNA expression levels (C1QA, C1QB and C1QC)1190

using the function hcut() with k = 2 and stand = TRUE1191

in the R package factoextra. Heatmaps were produced1192

with the scaled values from CITE-seq or CODEX, via func-1193

tion heatmap.2() in R package gplots. Cell-cell inter-1194

action and binned anchor analysis were performed as previ-1195

ously described 25. In brief, for each individual C1Q High1196

or Low macrophage, the Delaunay triangulation for neigh-1197

boring cells (within 100µm) was calculated based on the1198

XY position with the deldir R package. To establish a1199

baseline distribution of the distances, cells were randomly1200

assigned to existing XY positions, for 1000 permutations.1201

The baseline distribution of the distance was then compared1202

to the observed distances using a Wilcoxon test. The log21203
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fold enrichment of observed mean over expected mean for1204

each interaction type was plotted for interactions with a p-1205

value < 0.05. For the binned anchor analysis of C1Q High1206

or Low macrophages, all cells within a 100µm range were1207

extracted and the average percentage of specific cell types1208

in each radius bin (in 16.66um increments) were calculated1209

and plotted. Differential expression gene analysis was per-1210

formed using the function FindMarkers() in the R pack-1211

age Seurat. The violin plot of DE genes were created1212

with ggplot2, where mRNA expression values were nor-1213

malized between 0-1 for visualization purposes. GO term1214

analysis was conducted via the Gene Ontology tool (92, 93)1215

(with the biological process option activated), with the input1216

as lists of genes that were either significantly upregulated in1217

C1Q High or Low macrophages. Heatmaps of the expres-1218

sion pattern of differentially expressed ISG genes (identi-1219

fied via FindMarkers()), filtered using a list of 628 ISGs1220

with functional annotations 67 in macrophages, was plot-1221

ted with the function heatmap.2() from the R package1222

gplots. Correlations between C1QA macrophage percent-1223

ages and neutrophil percentages were calculated with the R1224

function cor() with method spearman.1225

PANINI Validation with COVID-19 Lung Tissue Samples.1226

Protease-free combined ISH + antibody validation experi-1227

ments using PANINI as previously described (25). In brief,1228

TMA cores cut onto glass coverslips were baked at 70°C for1229

1hr and then transferred to 2× 5 min xylene washes, fol-1230

lowed by deparaffinization steps 2× 100% EtOH, 2× 95%1231

EtOH, 1× 80% EtOH, 1× 70% EtOH, 3× ddH2O; 3 min1232

each. Heat induced epitope retrieval was then performed1233

at 97°C for 10 min using the pH-9 Dako Target Retrieval1234

Solution (Agilent, S236784-2) in a Lab Vision PT Module1235

(Thermo Fisher Scientific). Slides were cooled to 65°C in1236

the PT Module and then removed for equilibration to room1237

temperature. A hydrophobic barrier was drawn around the1238

tissue using the ImmEdge Hydrophobic Barrier pen (Vec-1239

tor Labs, 310018). Afterwards, endogenous peroxidase was1240

inactivated using RNAscope Hydrogen Peroxide from the1241

ACDBio RNAscope Multiplex Fluorescent Reagent Kit V21242

(Biotechne, 323110), for 15 min at 40°C, followed by 2× 21243

min ddH2O washes. Coverslips were incubated overnight1244

at 40°C ( 16 hrs) with RNAScope probes targeting human1245

C1QA mRNA (Biotechne, 485451). Branch amplification1246

was performed with Multiplex Amp 1, 2, 3 and HRP-C11247

in the V2 kit: Amp1 30 min at 40°C, Amp2 15 min at1248

40°C, Amp3 30 min at 40°C, HRP-C1 15 min at 40°C, with1249

2×2 min 0.5× RNAscope wash Buffer (Biotechne, 310091)1250

washes between each steps. Coverslips were then incubated1251

with TSA-Cy3 (Akoya Biosciences, NEL744001KT) in 1×1252

RNAscope TSA Buffer at a 1:50 dilution, for 15 min at1253

room temperature in the dark, followed by 2× 2 min 0.5×1254

RNAscope wash Buffer washing. The coverslips were then1255

washed 2×5 min with 1× TBS-T, then subsequently blocked1256

in Antibody Blocking Buffer (1× TBS-T, 5% Donkey Serum,1257

0.1% Triton X-100, 0.05% Sodium Azide) for 1 hour. Anti-1258

body staining was next performed at 4°C overnight ( 16 hrs),1259

with anti-CD15 (1:100 dilution, clone: MC480, Biolegend,1260

125602) and anti-CD68 (1:100 dilution, clone: D4B9C, Cell1261

Signaling Technology, 76437T) in Antibody Dilution Buffer1262

(1×TBS-T, 3% Donkey Serum, 0.05% Sodium Azide). Af-1263

ter staining, coverslips were washed 3× 10 min with 1×1264

TBS-T, then incubated with secondary antibodies: Anti-1265

Mouse-Cy7 (1:250, Biolegend, 405315) and Anti-Rabbit-1266

Alexa647 (1:250, Thermo Fisher Scientific, A-21245) in1267

Antibody Dilution Buffer for 30 min at room temperature.1268

Coverslips were then washed 3× 10 min with 1× TBS-T,1269

stained with Hoechst 33342 (1:10000 in 1× TBS-T, Thermo1270

Fisher Scientific, H3570) for 10 min at room temperature,1271

and mounted with ProLong™ Diamond Antifade Mountant1272

(Thermo Fisher Scientific, P36961).1273

Images were collected using a Keyence BZ-X710 inverted1274

fluorescent microscope (Keyence, Inc) configured with 41275

fluorescent filters (Hoechst, Cy3, Cy5 and Cy7), and a CFI1276

Plan Apo l 20x/0.75 objective (Nikon). The Imaging setting1277

was: 3×5 tile per tissue core, 5 Z-stacks acquired each FOV1278

(best focused plane used), with High Resolution setting. The1279

exposures were: 1/50s (Hoechst), 1/250s (Cy3), 1/8s (Cy5),1280

and 6s (Cy7). Segmentation was performed with a local1281

implementation of Mesmer (87), with weights downloaded1282

from: https://deepcell-data.s3-us-west-1.1283

amazonaws.com/model-weights/Multiplex_1284

Segmentation_20200908_2_head.h5. Inputs of1285

segmentation were Hoechst (nuclear) and C1QA + CD681286

+ CD15 (membrane). Signals from the images were1287

capped at the 99.7th percentile, with prediction parameter1288

model_mpp = 0.8. Features from single cells in segmented1289

Keyence images were extracted based on the segmentation1290

generated above, scaled by cell size, and written out as FCS1291

files. Cells were filtered out if too large (CellSize > 5001292

pixels), too small (CellSize < 45 pixels) or limited in nuclear1293

signal (Hoechst < 3500). The signal threshold of CD15,1294

CD68 and C1QA positive cells were selected for each indi-1295

vidual tissue core, and visually assessed to minimize false1296

negative and false positive cells. Cells positive for CD681297

and C1QA were annotated as C1Q High macrophages. The1298

correlation of C1Q High macrophages between PANINI and1299

CODEX experiments were calculated with the R function1300

cor() with method spearman.1301

For spatial correlation analysis of C1QA expression in1302

macrophages, the tissue core was divided into 100 sub-1303

regions (a 10×10 grid), and the number of cells or C1QA1304

signal level were summed in each individual region and plot-1305

ted. Correlation was calculated with function cor() with1306

method spearman.1307

Preprocessing and analysis of human PBMC datasets.1308

CyTOF data measuring 33 proteins of PBMC from healthy1309

human donors in Hartmann et al (94) was downloaded1310

from flow-repository (’FR-FCM-Z249, HD06_run1’). Cells1311

were downsampled to 50,000, clustered using Seurat1312

and manually annotated, and then a total of 38,866 an-1313

notated cells were used. CITE-seq data measuring 291314

proteins of health human PBMC was retrieved from 10x1315

genomics https://support.10xgenomics.com/1316

single-cell-gene-expression/datasets/1317

18 | bioRχiv Zhu & Chen et al. | MARIO

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.03.471185doi: bioRxiv preprint 

https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3?
https://doi.org/10.1101/2021.12.03.471185
http://creativecommons.org/licenses/by-nc-nd/4.0/


M
ANUSC

RIP
T

3.0.2/5k_pbmc_protein_v3?. Counts were nor-1318

malized via CLR normalization with Seurat function1319

Normalizedata(), then cells were clustered based on1320

their protein features in Seurat. A total of 5,241 cells1321

were annotated and used for matching. During match-1322

ing, CITE-seq cells were used to match against CyTOF1323

cells, where the input of CITE-seq cells were raw counts1324

and the input of CyTOF cells were arcsine transformed1325

with cofactor = 5. The MARIO parameters used were:1326

n_components_ovlp = 10, n_components_all =1327

15, sparsity = 1000, bad_prop = 0.2, and n_batch =1328

1. Analysis was performed the same as previously described.1329

Preprocessing and analysis of cross species H1N1/IL-4 chal-1330

lenged datasets. Human H1N1 virus challenged data is the1331

same as described in the previous section and the same set of1332

cells were used as input to MARIO matching.1333

IL-4 stimulation cross-species CyTOF data is the same cross-1334

species dataset as described in the previous section, using1335

the same human or animal donors as described above (hu-1336

man: “7826”, “7718”, “2810”; Rhesus macaque: “D00522”,1337

“D06022”, “D06122”; Cynomolgus monkey: “D07282”,1338

“D07292”, “D07322”), and the whole blood cells stim-1339

ulated with IL-4. Cells gated as Erythrocytes, Platelets1340

and CD4+CD8+ cells from the paper (37) were excluded1341

from downstream matching and analysis. Each individual1342

dataset was randomly downsampled to 120,000 cells, arc-1343

sine transformed with cofactor = 5, and subsequently clus-1344

tered with Seurat using all the markers, followed by man-1345

ual annotation and removal of cells with ambiguous an-1346

notations. Total cell numbers for matching were 108,5381347

(human); 110,328 (rhesus macaque); 90,302 (cynomolgus1348

monkey). During matching, human H1N1 challenged cells1349

were matched against human, rhesus macaque and cynomol-1350

gus monkey IL-4 cells separately, and cells that matched1351

to all three other datasets were used for downstream analy-1352

sis. The MARIO parameters used: n_components_ovlp1353

= 20, n_components_all = 15, sparsity = 1000,1354

bad_prop = 0.1, n_batch = 4. Analysis was performed1355

the same as previously described.1356

Datasets benchmarking metrics and other methods.1357

Benchmarking on the matching quality. Three scenarios were1358

tested during the benchmarking process:1359

1. Sequentially dropping shared features between datasets,1360

in order to test the robustness of the algorithm regardless1361

of the antibody panel design.1362

2. Stimulated poor quality data by adding increasing lev-1363

els of random noise to both datasets, in order to test the1364

robustness of the algorithm in terms of over-integration.1365

Gaussian random noise with mean 0 and standard devia-1366

tion of 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 was added to1367

the normalized values of all protein channels.1368

3. Intentionally dropping cell types in the dataset being1369

matched against, in order to test the robustness of the al-1370

gorithm regardless of the cell type composition difference1371

between datasets.1372

In all three scenarios described above, all other compared1373

methods used the exact same set of cells tested by MARIO.1374

For cross species data (related to Figure 3 and Figure S6) only1375

H1N1 challenged human and X-species cynomolgus monkey1376

were benchmarked.1377

The following metrics were used in the benchmarking pro-1378

cess:1379

• Matching accuracy. Matching accuracy was calculated1380

by the percentage of cells in X that have paired correctly1381

with the same cell type in Y , based on the individual1382

dataset’s cell type annotations.1383

• Matching proportion. Matching proportion was calcu-1384

lated by the percentage of cells in X that has a match1385

in Y after quality control steps.1386

• Structure alignment score. Structure alignment score1387

measures how much structural information is preserved1388

after data integration. Let Dfull be the matrix whose1389

(i, j)-th entry is the Euclidean distance between the i-th1390

row and the j-th row of X . Similarly, let Dpartial be1391

the matrix whose (i, j)-th entry is the Euclidean distance1392

between the i-th row and the j-th row of the embedding1393

of X . The structure alignment score for the i-th cell in1394

X is defined as the Pearson correlation between the i-th1395

row of Dfull and the i-th row of Dpartial. The structure1396

alignment score for X is then defined as the average of1397

the scores over all cells in X . The structure alignment1398

score for Y can be similarly obtained. The final structure1399

alignment score is the average of the scores for X and Y .1400

• Silhouette F1 score. Silhouette F1 score has been de-1401

scribed (31948481) and is an integrated measure of1402

the quality of dataset mixing and information preserva-1403

tion. In brief, two preliminary scores slt_mix and1404

slt_clust were obtained, and the Silhouette F1 score1405

was calculated as 2 · slt_mix · slt_clust/(slt_mix +1406

slt_clust). Here, slt_mix is a measure of dataset1407

mixing and is defined as one minus normalized Silhouette1408

width with the label being dataset index, this is a mea-1409

sure of mixing; slt_clust is a measure of information1410

preservation and is defined as the normalized Silhouette1411

width with label being cell type annotations. All Silhou-1412

ette widths were computed using the silhouette()1413

function from R package cluster.1414

• Adjusted Rand Index (ARI) F1 score. ARI F1 score1415

is an integrated measure of the quality of dataset mix-1416

ing and information preservation (95). The definition1417

is similar to that of Silhouette F1 score, except that we1418

compute Adjusted Rand Index instead of the Silhouette1419

width. All ARI scores were computed using the function1420

adjustedRandIndex() in R package mclust.1421

• Average mixing score. Average mixing score is a measure1422

of dataset mixing based on the Kolmogorov–Smirnov1423
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(KS) statistic. For each cluster, the subsets of cells cor-1424

responding to that cluster were extracted from the em-1425

beddings of X and Y , respectively. For each coordinate1426

of the embeddings, one minus the KS statistic was com-1427

puted. The mixing score for that cluster was then com-1428

puted by taking the median of one minus the KS statistic1429

for each coordinate. The average mixing score is defined1430

as the average of mixing scores over all clusters.1431

• Error avoidance score. Error avoidance score measures1432

the performance of the quality control process and is spe-1433

cific to the benchmarking scenario 3 (intentionally drop-1434

ping cell types). For each cell type dropped, the corre-1435

sponding error avoidance score is defined as
√
a/b, where1436

a is the number of cells inX that are of that type and have1437

survived the quality control process (i.e., a match involv-1438

ing that cell type has occurred), and b is the total number1439

of cells of that type X . Higher value of this score indi-1440

cates that erroneous matching towards deleted cells types1441

has been avoided more.1442

During benchmarking, all datasets were downsampled. The1443

Bone marrow dataset (Figure 2) was downsampled to 40,0001444

cells (8000 and 32,000 forX and Y ); the PBMC dataset (Fig-1445

ure S3) was downsampled to 25,000 cells (5000 and 20,0001446

forX and Y ); the X-Species H1N1/IFN-gamma dataset (Fig-1447

ure 3) was downsampled to 40,000 cells (8000 and 32,000 for1448

X and Y ); the X-Species H1N1/IL-4 dataset (Figure S6) was1449

downsampled to 40,000 cells (8,000 and 32,000 for X and1450

Y ); and the Murine spleen dataset (Figure 4) downsampled1451

to 25,000 cells (5000 and 20,000 for X and Y ). All methods1452

used the same set of cells.1453

Parameters used for benchmarking are as follows. For bench-1454

marking of MARIO, we used a consistent set of parame-1455

ters across all datasets: n_components_ovlp = 10 (or1456

the maximum number available); n_components_all1457

= 20 (or the maximum available), sparsity = 5000,1458

bad_prop = 0.1 , n_batch = 1 . For other methods, the in-1459

put of data were all values normalized per feature within each1460

dataset (except Liger where their own custom normalization1461

is required). Only mNN-based methods (Scanorma, Seurat,1462

fastMNN) were included in the comparison of matching ac-1463

curacy and matching proportion. All methods used default1464

parameters, using available shared features. For computation1465

of SAM, ASW, ARI and avgMix, the first 20 (or maximum1466

available) components of MARIO CCA scores or reduced1467

values from other methods were used. For visualization, t-1468

SNE plots were produced using the first 10 components for1469

all methods.1470

Benchmarking on time and memory usage. Time and mem-1471

ory usage of MARIO on the datasets presented in Figure 2, 3,1472

4 were evaluated. The full pipeline MARIO time usage (in-1473

cluding initial and refined matching; best interpolation find-1474

ing; joint regularized filtering; CCA calculation) was mea-1475

sured with the default parameters, with increasing amount of1476

cells (50,000 cell max), and ratio of X and Y set to 1:4 (e.g.1477

at total of 20,000 cells , X has 4000 cells and Y has 16,0001478

cells). The MARIO matching time usage (only including in-1479

tial and refined matching) was measured with the same set-1480

tings, but with three different sparsity levels: (1) minimal1481

sparsity calculated by MARIO; (2) maximal sparsity (i.e.,1482

fully dense matching without sparsification); (3) “medium”1483

sparsity which is in the middle point between minimal and1484

maximum. The MARIO memory usage was measured with1485

the same settings as the time evaluation, but the maximum1486

number was set to 100,000 cells. The peak memory usage1487

was measured by the function profile in the python package1488

memory_profiler. The influence of sparsity level used1489

on MARIO matching accuracy was evaluated by inputting1490

different levels (between minimal and maximal sparsity de-1491

tected by MARIO). A total of 50,000 cells were used for each1492

dataset with a ratio between X and Y being 1:4.1493
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Supplementary Figures1822

Figure S1: Performance of matching and integration on bone marrow cells in relationship to Figure 2. Comparison of MARIO and other mNN methods, related to
Figure 2. (A) Performance of matching and integration during sequentially dropping of shared protein features. The tested parameters shown here are: average Structure
alignment score, Silhouette F1 score, Adjusted Rand Index F1 score and average Mixing score. (B) t-SNE plots visualizing pre-integation and post-integration results with
different methods. For methods other than MARIO, only shared features were used during integration.

Zhu & Chen et al. | MARIO bioRχiv | 23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.03.471185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471185
http://creativecommons.org/licenses/by-nc-nd/4.0/


M
ANUSC

RIP
T

Figure S2: Matching and integration of cross-modality CyTOF and CITE-seq bone marrow data with MARIO, related to Figure 2. (A) Confusion matrix with MARIO
cell-cell matching accuracy (balanced accuracy) across cell types. (B) Violin plots of normalized RNA counts among different MARIO matched CITE-seq and CyTOF cell
types. (C) t-SNE plots of the matched cells with protein/RNA expression levels overlaid as an extension of Figure 2G.
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Figure S3: Matching and integration of cross-modality CyTOF and CITE-seq PBMC data with MARIO. MARIO integration of human PBMCs as measured by CyTOF
and CITE-seq. (A) t-SNE plots of the PBMC CITE-seq and CODEX cells, pre-integration (left) and MARIO integrated (middle and right), colored by dataset of origin (left and
middle) or colored by cell types (right). (B) Confusion matrix with MARIO cell-cell matching accuracy (balanced accuracy) across cell types. (C) t-SNE plots of the matched
cells with protein or RNA expression levels overlaid.
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Figure S4: Performance of matching and integration on PBMCs in relationship to Figure S3. (A) Performance of matching and integration during sequentially dropping
of shared protein features. The tested parameters are: cell-cell matching accuracy, proportion of cell in X matched, average Structure alignment score, Silhouette F1 score,
Adjusted Rand Index F1 score and average Mixing score. (B) Testing algorithm stringency between different methods. Increasing amounts of random spike-in noise was
added to the data, and the matching accuracy and proportion of cells matched to X were quantified. MARIO matchability test automatically suspended forced matching
of inappropriate data due to poor quality here. (C) Testing algorithm stringency among different methods. Single-cell types in Y were deleted before matching to X. The
proportion of cells belonging to the deleted cell type in matchedX cells were used to calculate the erroneous avoidance score. (D) t-SNE plots visualizing pre-integation and
post-integration results with different methods.
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Figure S5: Performance of matching and integration on cross-species whole blood cells CyTOF data in Figure 3. (A) Performance of matching and integration during
sequentially dropping of shared protein features. The tested parameters are: cell-cell matching accuracy, proportion of cell in X matched, average Structure alignment
score, Silhouette F1 score, Adjusted Rand Index F1 score and average Mixing score. (B) Testing algorithm stringency between different methods. Increasing amounts of
random spike-in noise was added to the data, and the matching accuracy and proportion of cells matched to X were quantified. MARIO matchability test automatically
suspended forced matching of inappropriate data due to poor quality here. (C) Testing algorithm stringency among different methods. Single-cell types in Y were deleted
before matching to X. The proportion of cells belonging to the deleted cell type in matched X cells were used to calculate the erroneous avoidance score. (D) t-SNE plots
visualizing pre-integation and post-integration results with different methods.
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Figure S6: Cross-species H1N1 Challenge and IL-4 integrative analysis with MARIO. MARIO integration of human, rhesus macaque and cynomolgus monkey whole
blood cells from a H1N1 challenge study or IL-4 stimulation. (A) t-SNE plots of the four datasets, pre-integration and post MARIO-integration as colored by dataset of origin.
(B) t-SNE plots of each individual dataset, colored by cell type annotation. (C) t-SNE plots with expression levels of Ki-67, STAT1 and p38 across four datasets.
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Figure S7: Performance of matching and integration on cross-species whole blood cells CyTOF data in Figure S6. (A) Performance of matching and integration
during sequentially dropping of shared protein features. The tested parameters are: cell-cell matching accuracy, proportion of cell inX matched, average Structure alignment
score, Silhouette F1 score, Adjusted Rand Index F1 score and average Mixing score. (B) Testing algorithm stringency between different methods. Increasing amounts of
random spike-in noise was added to the data, and the matching accuracy and proportion of cells matched to X were quantified. MARIO matchability test automatically
suspended forced matching of inappropriate data due to poor quality here. (C) Testing algorithm stringency among different methods. Single-cell types in Y were deleted
before matching to X. The proportion of cells belonging to the deleted cell type in matched X cells were used to calculate the erroneous avoidance score. (D) t-SNE plots
visualizing pre-integation and post-integration results with different methods.
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Figure S8: MARIO integrative analysis of CODEX and CITE-seq for spatial multi-omics. Related to Figure 4. (A) Confusion matrix with MARIO cell-cell matching
accuracy (balanced accuracy) across cell types for matched CITE-seq or CODEX cells. (B) A pseudo-colored murine spleen section showing the localization of transcripts
(Il1b and Bhlhe41) inferred from CITE-seq. The white outline demarcates the white pulp. (C) t-SNE plots of MARIO integrated murine spleen CITE-seq and CODEX cells,
overlaid with matched CODEX protein and CITE-seq RNA expression levels. (D) Gating strategy of CODEX B cell subtypes (T1, MZ, M, FO/GC B cells) using CODEX
single-cell protein expression. (E) A pseudo-colored murine spleen section colored by the annotation of CODEX B cell subpopulations, gated as previously described in (D).
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Figure S9: Performance of matching and integration on murine spleen cells in Figure 4. (A) Performance of matching and integration during sequentially dropping of
shared protein features. The tested parameters are: cell-cell matching accuracy, proportion of cell in X matched, average Structure alignment score, Silhouette F1 score,
Adjusted Rand Index F1 score and average Mixing score. (B) Testing algorithm stringency between different methods. Increasing amounts of random spike-in noise was
added to the data, and the matching accuracy and proportion of cells matched to X were quantified. MARIO matchability test automatically suspended forced matching
of inappropriate data due to poor quality here. (C) Testing algorithm stringency among different methods. Single-cell types in Y were deleted before matching to X. The
proportion of cells belonging to the deleted cell type in matchedX cells were used to calculate the erroneous avoidance score. (D) t-SNE plots visualizing pre-integation and
post-integration results with different methods.
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Figure S10: MARIO analysis on COVID-19 lung tissue and BALF cells. Related to Figure 5, part 1. (A) A table showing MARIO predicted C1Q high macrophages as
a percentage of total macrophages in each patient, and their BMI values. P-values calculated using the student’s t-test. (B) GO term analysis for transcriptional programs
enriched in C1QA low (left) and C1QA high macrophages (right). (C) Violin plots of selected genes from the top 50 differentially expressed genes (p-adjust < 0.05) for C1Q
low (green) or C1Q high (magenta) macrophages. (D) A heatmap representation of differentially expressed ISGs among C1QA low (up) or C1QA low macrophages (down).
Genes are categorized into 5 previously described classes of biological pathways (see Materials and Methods).
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Figure S10: MARIO analysis on COVID-19 lung tissue and BALF cells. Related to Figure 5, part 2. (E) Additional representative CODEX images of COVID-19 lung tissue
cores for patients with C1Q low (green) and high (magenta) macrophage locations. CD163, CD68 and CD15 antibody staining are shown on the right of each image. (F)
The pairwise cell distances between C1Q high low (green) or (magenta) macrophages to other cell types, as an enrichment over the permutated background distribution.
Only interactions that passed a statistical test (p<0.05) for both macrophage subgroups conditions are shown. Squares that are toward the left indicate interactions that are
closer than expected, and those toward the right indicate interactions that are further apart than expected. (G) Anchor plots of average cell type fractions around C1Q low
(green) or C1Q high (magenta) macrophages. The thick colored lines represent the means, and lighter regions around these lines depict the 95% confidence interval. The
macrophages are anchored at 0 µm, and the plot ends at a 100 µm radial distance from the anchored macrophages. (H) Representative images of COVID-19 lung tissue
cores in the PANINI validation experiment, stained with C1QA, CD68, CD15 and Hoechst. (I) Spatial correlation of cell density in each 10 x 10 region of the same tissue
core between CODEX experiment and PANINI validation to determine the baseline correlation between the tissue sections for CODEX and PANINI (P-value and Correlation
calculated via Spearman Ranked Test).
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Figure S11: Figure S11 Computational complexity (A) Run time for full MARIO pipeline (Initial and refined matching; Finding the best interpolation; Joint regularized
filtering; CCA calculation) across different datasets. (B) Run time for MARIO matching steps (total time for initial and refined matchings) across different datasets. The ratio
of X and Y was set as 1:4 (eg. at a total of 20,000 cells, X has 4000 cells and Y has 16,000 cells). Three sparsity levels were shown in the figures, which are 1: ‘Minimal’
sparsity calculated by MARIO. 2: ‘Maximum’ sparsity, same as using dense data. 3: ‘Medium’ sparsity which is the level in the middle between minimal and maximum. (C)
Peak memory usage when running the full MARIO pipeline across different datasets. The ratio of X and Y was set as 1:4. (D) Matching accuracy with different levels of
sparsity for MARIO. Total of 50,000 cells were used, where the ratio of X and Y was set as 1:4.
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