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Abstract

The archicortical hippocampus differs, like the neocortex, in its folding patterns between
individuals. Here, we present an automated and robust BIDS-App, HippUnfold, for defining and
indexing subject-specific hippocampal folding in MRI, analogous to popular tools used in
neocortical reconstruction. This is critical for inter-individual alignment, with topology as the
basis for homology. This topological framework enables qualitatively new analyses of
morphological and laminar structure in the hippocampus or hippocampal subfields, and is critical
for the advancement of neuroimaging analyses at a meso- or micro-scale. HippUnfold uses
state-of-the-art deep learning combined with previously developed topological constraints on
hippocampal tissue. It is designed to work with commonly employed sub-millimetric MRI
acquisitions, with extensibility to microscopic resolutions as well. In this paper we illustrate the
power of HippUnfold in feature extraction, and its construct validity compared to several extant
hippocampal subfield analysis methods.

Introduction

Most neurological or psychiatric diseases with widespread effects on the brain show
strong and early impact on the hippocampus (e.g. [1]). This highly plastic grey matter (GM)
structure is also critical in the fast formation of episodic and spatial memories (e.g. [2]).
Examination of this structure with non-invasive neuroimaging, such as MRI, provides great
promise for furthering our understanding, diagnosis, and subtyping of these diseases and
cognitive processes in the hippocampus and its component subfields [3].

In current neuroimaging analyses the hippocampus is typically modelled as a subcortical
volume, but it is actually made up of a folded archicortical mantle, or ‘ribbon’ [4]. Representing
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the hippocampus as such can be leveraged to enable qualitatively new analyses, such as
registration, despite inter-individual differences in gyrification or folding structure, through
topological alignment. Additionally, representation as a ribbon allows the hippocampus to be
factorized into surface area and thickness, which can be further subdivided for laminar
analyses. These methods are thus critical in advancing MRI research from the macroscopic
scale to the subfield, cortical column, and laminar scales. Similar approaches have already
yielded a paradigm shift in neocortical analysis methods [5,6].

Denoting the hippocampal archicortex or ribbon is challenging because it is thin
(0.5-2mm), its folding pattern varies considerably between individuals [7,8], and this folding may
even continue to change from early development through adulthood [9]. We present here a set
of tools to overcome these challenges using a highly sensitive and generalizable “U-Net’ deep
learning architecture [10], combined with previous work that enforces topological constraints on
hippocampal tissue [11].

In previous work [11], we developed a method to computationally unfold the
hippocampus along its geodesic anterior-posterior (AP) and proximal-distal (PD, i.e., proximal to
the neocortex, with the dentate gyrus being most distal) axes. We demonstrated for the first time
several qualitative properties using in vivo MRI, such as the contiguity of all subfields along the
curvature of the hippocampal head (anterior) and tail (posterior), previously described only in
histology. This pioneering work relied heavily on detailed manual tissue segmentations including
the high-myelinated stratum radiatum, lacunosum, and moleculaire (SRLM), a commonly used
landmark that separates hippocampal folds along the inward ‘curl’ of the hippocampus. In this
work we also considered curvature and digitations along the AP axis of the hippocampus, most
prominently occurring in the hippocampal head [4,7,8,11]. Each of these features are highly
variable between individuals, making them difficult to capture using automated volumetric
atlas-based methods and time-consuming to detect manually.

The current work automates the detailed tissue segmentation required for hippocampal
unfolding using a state-of-the-art ‘U-Net’ deep convolutional neural network [10]. In particular,
we aimed to capture morphological variability between hippocampi which are not seen using
existing automated methods which employ either a single atlas or multi-atlas fusion (eg.
[12—-14]). U-Net architectures have been shown to be generalizable and sensitive to anatomical
variations in many medical image processing tasks [15], making them ideal to overcome this
challenge.

Estimating hippocampal subfield boundaries in MRI is challenging since their histological
hallmarks are not directly available in MRI due to lower spatial resolution and lack of appropriate
contrasts, which is an ongoing hurdle in neuroimaging [16,17]. However, post-mortem studies
show that the subfields are topologically constrained according to their differentiation from a
common flat cortical mantle [4]. Thus a folded representation of hippocampal tissue provides a
powerful intermediate between a raw MRI and subfield labels [18], analogous to the
reconstruction of a 3D neocortical surface. This surface can then be parcellated into subregions
without topological breaks [5], overcoming many limitations of current subfield segmentation
methods [17]. Here, we apply surface-based subfield boundary definitions obtained via manual
segmentation of BigBrain 3D histology [19] which was additionally supported by a data-driven
parcellation [20]. We additionally demonstrate how labels used in the popular Freesurfer [21]
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and Automatic Segmentation of Hippocampal Subfields (ASHS) [12] software packages can be
applied under our topologically-constrained framework.

Altogether, we combine novel U-Net tissue classification, previously developed
hippocampal unfolding [11], and topologically-constrained subfield labelling [20] together into a
single pipeline which we refer to as ‘HippUnfold’ hereinafter. We designed this pipeline to
employ FAIR principles (findability, accessibility, interoperability, reusability) with support across
a wide range of use-cases centered around sub-millimetric MRI.

Results

Data

HippUnfold was designed and trained with the Human Connectome Project (HCP) 1200
young adult subject data release (HCP-YA) [22], and additionally tested on the HCP Aging
dataset (HCP-A) [23], and anisotropic (or thick-slice) 7T data (7T-TSE) from [24] which is
considered optimal by many hippocampal subfield researchers [17]. These data are
summarized briefly in Table 1, and for more details see Online Methods.

Table 1. MRI datasets used in training, evaluation, and comparison to extant methods. Methods employed
include those proposed here (HippUnfold), the same processing but with manual segmentation (similar to
previous work [20]) (manual unfold), Freesurfer v7.1 [21], and an atlas of manual segmentations [24] used
in ASHS [12].

Name Modalities Resolution Sample size (L+R) Methods employed
HCP-YA | T1w, T2w 0.7x0.7x0.7mm | n=590 (training) HippUnfold
Manual unfold
n=148 (testing) HippUnfold
Manual unfold
Freesurfer (v7.1)
HCP-A T1w, T2w 0.8x0.8x0.8mm | n=1312 HippUnfold
7T-TSE T2w 0.4x0.4x1.0mm | n=70 HippUnfold
Manual subfields
(ASHS atlas)

HippUnfold aligns and visualizes data on folded or unfolded surfaces

HippUnfold is presented here as a fully-automated pipeline with outputs including
hippocampal tissue and subfield segmentations, geodesic Laplace coordinates spanning over
hippocampal GM voxels, and inner, midthickness and outer hippocampal surfaces. These
surfaces have corresponding vertices, providing an implicit topological registration between

individuals.

The overall pipeline for HippUnfold is illustrated briefly in Figure 1. A comprehensive
breakdown of each step is provided in the online Methods.
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Figure 1. Overview of HippUnfold pipeline. First, input MRI images are preprocessed and cropped around
the left and right hippocampi. Second, a U-Net neural network architecture (hnnUNet [10]) is used to
segment hippocampal grey matter (GM), the high-myelinated stratum radiatum, lacunosum, and
moleculare (SRLM), and structures surrounding the hippocampus. Segmentations are post-processed via
template shape injection. Third, Laplace’s equation is solved across the anterior-posterior (AP),
proximal-distal (PD) and inner-outer (10) extent of hippocampal GM, making up a geodesic coordinate
framework. Fourth, scattered interpolants are used to determine equivalent coordinates between native
Cartesian space and unfolded space. Fifth, unfolded surfaces with template subfield labels [20] are
transformed to subjects’ native folded hippocampal configurations. Morphological features (eg. thickness)
are extracted using Connectome Workbench [25] on these folded native space surfaces. Sixth, volumetric
subfields are generated by filling the voxels between inner and outer surfaces with the corresponding
subfield labels. Additional details on this pipeline can be found in the online Methods.

In addition to subfield segmentation, HippUnfold extracts morphological features and can
be used to sample quantitative MRI data along a midthickness surface to minimize partial
voluming with surrounding structures. This is visualized across n=148 test subjects on an
unfolded surface and group-averaged folded surface in Figure 2. Note that the group averaging
takes place on a surface and so does not break individual subjects’ topologies. Quantitative MRI
features examined here include T1w/T2w ratio as a proxy measure for intracortical myelin [26],
mean diffusivity, and fractional anisotropy [27,28].
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Figure 2. Average hippocampal folded and unfolded surfaces showing subfields, morphometric and
quantitative MRI measures from the HCP-YA test dataset. The same topologically defined subfields were
applied in unfolded space to all subjects (left), which are also overlaid on quantitative MRI plots (black
lines). Note that many morphological and quantitative MRl measures show clear distinctions across
subfield boundaries.

Clear differences in morphological and quantitative MRI features can be seen across the
hippocampus, particularly across subfields as defined here from a histologically-derived
unfolded reference atlas [20]. This highlights the advantages of the present method. These
folded and unfolded representations of hippocampal characteristics are broadly in line with
previous work examining differences in such morphological and quantitative MRI features
across hippocampal subfields or along the hippocampal AP extent (eg. [29,30]). However, in
previous work these features differed between predefined subfields on average, but did not
necessarily follow subfield contours as seen here. Some advantages of the current pipeline that
likely contribute to this clarity include i) the detail of the hippocampal GM segmentation, ii)
sampling along a midthickness surface to minimize partial voluming with surrounding structures,
and iii) the fact that subjects are topologically aligned leading to less blurring of features after
group-averaging.

Extant methods do not respect the topological continuity of hippocampal
subfields

Several automatic methods for labelling hippocampal subfields in MRI exist, of which
Freesurfer [21] (FS, v7.1) and Automatic Segmentation of Hippocampal Subfields [12] (ASHS)
are among the most widely adopted. These methods rely on volumetric registrations between a
target hippocampus and a reference or atlas. Specifically, ASHS makes use of multi-atlas
registration, wherein multiple gold standard manual hippocampal subfield segmentations are
registered to a target sample. Typically the multi-atlas consists of roughly a dozen samples
which are then fused together to generate a reliable yet oftentimes smooth or simplified final
product. FS uses a combination of voxel-wise classification and, bijectively, volumetric
registration between a target hippocampus and a probabilistic reference atlas, which is
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generated via combined in vivo MRI and 9.4T ex vivo hippocampal subfield segmentations [21].
When hippocampi take on different folding configurations, such registrations can become
ill-posed. HippUnfold overcomes these limitations in two ways: with extensive training (in this
case n=590), U-Net can capture detailed inter-individual differences in folding and, secondly, our
unfolding technique ensures that subfield labelling is topologically constrained [18].

We applied Freesurfer’s (v7.1) hippocampal subfields pipeline as well as ASHS using a
recent manual subfield multi-atlas [24] to the HCP-YA test set. We then compared resulting
subfield segmentations to those generated via HippUnfold in native and unfolded space, which
is shown in Figure 3 in one representative subject. For comparison, we additionally mapped FS
and ASHS subfield boundaries in folded and unfolded space.
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Figure 3. Comparison of HippUnfold, ASHS, and Freesurfer subfield segmentations in native and
unfolded space. Sagittal and coronal slices and 3D models are shown for one representative subject.
Note that for HippUnfold hippocampal subfields are the same for all individuals in unfolded space, but for
ASHS and FS we mapped all subjects’ subfield boundaries which are shown in the black lines in column
4 rows 2 and 4. We then took the mode subfield label from ASHS and FS in unfolded space and projected
it back to native space, which is shown in rows 3 and 5.

Both ASHS and FS showed subfield discontinuities in unfolded space in at least some
subjects, and FS even showed discontinuities in the group-averaged unfolded subfields. That is,
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some pieces of a given label were separated from the rest of that label. ASHS does not include
an SRLM label and the SRLM produced by FS was not consistently aligned with that used in
unfolding. Thus, subfields sometimes erroneously crossed the SRLM, breaking topology and
explaining why discontinuities were sometimes observed in unfolded space. Ordering of labels
was also not consistent in ASHS and FS. For example, sometimes CA1 would border not only
CAZ2 but also CA3, CA4, and/or DG. Additionally, neither ASHS nor FS extends all subfields to
the full anterior and posterior extent of the hippocampus. Instead, both methods simplify most of
the anterior hippocampus as being CA1 and opt not to label subfields in the posterior
hippocampus at all. These qualities are not in line with the anatomical ground truth shown in
both classic and contemporary ex-vivo histological studies [4,8], which were indeed well
captured by HippUnfold. FS also over-labelled hippocampal tissue, which can be seen reaching
laterally into the ventricles in the coronal view. Similar errors have been documented for FS in
other recent work [31,32].

Trained U-Net performance is similar to manual segmentation

From the HCP-YA dataset, a set of 738 (left and right from 369 subjects) gold standard
hippocampal tissue (that is, hippocampal GM and surrounding structures) segmentations were
generated according to the manual protocol defined in [20]. Automated tissue segmentation was
performed using nnUNet, a recent and highly generalizable implementation of a U-Net
architecture [10] wrapped into a Snakemake workflow [DOI]. This software was trained on 80%
(n=590) of the gold standard segmentation data described above, with the remaining 20%
(n=148) making up a test set. Left and right hippocampi from the same participant were never
split across training and testing sets due to their high symmetry. Note that all input images were
preprocessed, resampled, and cropped (see Figure 1 and Online Methods) prior to training.
Within the training set, 5-fold cross-validation was performed as implemented in the nnUNet
code. Training took place on an NVIDIA T4 Turing GPU over 72 hours. This process was carried
out using either T1w or T2w input data with the same training/testing data split. All default
nnUNet data augmentation and hyperparameters were used.
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Figure 4. Test set performance in Dice overlaps between HippUnfold and manually unfolded subfields. All
values are compared to ground truth manually defined tissues followed by unfolded subfield definition
(manual unfold). Two models were trained in parallel using the same labels but different input MRI data
modalities consisting of T1w or T2w data. Dotted black lines indicate corresponding values from [12], who
include SRLM in all labels and combine CA4 and DG into one label.
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Dice overlap depends heavily on the size of the label in question, being lower for smaller
labels. Typically a score of >0.7 is considered good, and many fully manual protocols show dice
scores of >0.8 for the larger subfields like CA1 or the subiculum, and 0.6-0.8 for smaller
subfields like CA2 or CA3 (see [17] for overview). Within the HCP-YA test set, performance was
similar or better than most fully manual protocols for T1w and T2w data. Performance on T1w
images was only marginally poorer than T2w images which typically better show the SRLM and
are popular in manual subfield segmentation protocols [17].

Generalizability to unseen datasets and populations

We aimed to determine whether our pipeline would generalize to unseen datasets with
different acquisition protocols and sample populations. Hippocampal morphometry, integrity, and
subfields are often of interest in disease states where atrophy or other structural abnormalities
are observed [1,33-35]. For this reason, we examined the HCP-A datasets in which we
anticipated cases of severe atrophy would be present in some older subjects. Figure 5A shows
results from one representative individual (an 80 y.o. female with signs of age-related atrophy
but good scan quality). Another common use-case for hippocampal subfield segmentation is on
anisotropic T2w data which is considered optimal for performing manual segmentation in most
protocols [17], but may impose challenges for our method due to the difference in resolution. We
thus applied HippUnfold to 7T-TSE data and also illustrate one representative subfield
segmentation result in Figure 5A.
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Figure 5. Examination of HippUnfold performance on additional datasets HCP-A (T1w and T2w) and
anisotropic 7T-TSE data. A) Sample subjects’ HippUnfold subfield segmentation in native resolution. The
first two rows come from the same subjects but using different input data modalities. B) Subjects flagged
for Quality Assurance from each dataset based on Dice overlap with a reference mask approximated via
deformable registration. C) Failed subject example illustrating missed tissue (red arrows) at the nnUNet
pipeline stage.

Gold standard manual segmentations under the protocol used for subsequent unfolding
were not available in the generalization datasets. Manually inspecting results from hundreds of
subjects is time consuming. We thus streamlined this process by flagging potential
segmentation errors by examining Dice overlap with a more conventional segmentation
approach: deformable registration. For all datasets described above, we applied deformable fast
B-spline registration [36] to the corresponding T1w or T2w template. Tissue segmentation
results (generated at the nnUNet stage) were then propagated to template space and overlap
with standard template hippocampal masks were examined, which is shown in Figure 5B. Any
subject with a Dice overlap score of less than 0.7 was flagged and manually inspected for
quality assurance. This made up 34/2126 (1.6%) samples in the HCP-YA T2w set (including
training and testing subsets), 188/1312 (14.3%) samples from the HCP-A T2w set, 37/1312
(2.8%) samples from the HCP-A T1w set, and 3/92 (3.3%) samples from the 7T-TSE set. Closer
inspection revealed that the vast majority of flagged cases were due to missed tissue in the
nnUNet segmentation, an example of which is shown in Figure 5C. It is interesting to note that
the most flagged cases were seen in the HCP-A T2w dataset even though T2w is a popular
acquisition protocol for hippocampal subfield segmentation [17], and showed the best
performance within the HCP-YA test set (Figure 4). This was likely not due to the age of
subjects since few of the HCP-A T1w were flagged as possible errors, but instead may have
been due to T2w scan quality, which was observed to be poor in some subjects, causing poor
definition of the outer hippocampal boundaries. We recommend that future users carefully
inspect results from any flagged subjects, and cases with errors can be either discarded or
manually corrected. We cannot determine whether HippUnfold will work as intended on all new
datasets, but within the generalization datasets examined here, results were excellent. Some
work has already demonstrated it is possible to synthesize or convert between MRI modalities
[37], which could be used to alleviate the dependency on any single MR contrast.

FAIR principles in development

We designed this pipeline to employ FAIR principles (findability, accessibility,
interoperability, reusability). As such, we have made use of several tools, conventions, and data
standards to make HippUnfold extensible and easy to use.

The default file input-output structure of the HippUnfold command line interface was built
in compliance with the Brain Imaging Data Standards (BIDS) [38] Applications (BIDS-Apps)
guidelines [39], and easily findable amongst the list of available BIDS Apps’. This is achieved
via Snakebids, a tool designed to interface between BIDS datasets and Snakemake [40]. All
aspects of HippUnfold use Snakemake [41], a workflow management system based on Python
which is reproducible, scalable, and seamlessly combines shell commands, Python code, and

' https://bids-apps.neuroimaging.io/apps/
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external dependencies in a human-readable workflow. There is no need to install these
dependencies, which are containerized within the Singularity or Docker versions of HippUnfold.

Altogether, this means that in a single line this pipeline can be applied intelligently to any
BIDS-complaint dataset containing a whole-brain T1w image and a T2w image (whole-brain or
limited field of view) without having to specify further details. Typical runtimes on a standard
desktop are 1 hour per subject, but this is further parallelized for faster processing when multiple
subjects and added compute resources (or cloud computing) are available. Additional flags can
be used to extend functionality to many other use-cases, including T1w only, T2w only,
diffusion-weighted imaging, cases where a manual tissue segmentation is already available, or
ex-vivo tissue samples.

Outputs of HippUnfold follow the standards for BIDS derivatives, and include
preprocessed input images, volumetric subfield segmentations, inner, midthickness, and outer
hippocampal surfaces11, vertex-wise morphometric measures of thickness, curvature, and
gyrification, and a brief quality control (QC) report. All surface-based outputs are combined into
a Connectome Workbench [42] specification file for straightforward visualization in alignment
with HCP neocortical reconstructions. Outputs can be specified to include images in the original
T1w space or in the resampled, cropped space that processing is performed in.

All code, code history, documentation, and support are offered online?.

Discussion

One of the most powerful features of HippUnfold is its ability to provide topological
alignment between subjects despite differences in folding (or digitation) structure. This is a
critical element of mainstream neocortical analysis methods that until now had not been carried
out at scale in the archicortex, or hippocampus. The power of this form of topological alignment
is evident when mapping morphological or quantitative features across the hippocampus in a
large population, which we demonstrate in Figure 2.

We compare HippUnfold to other commonly used tools for hippocampal analysis,
Freesurfer v7.1 (FS) and Automated Segmentation of Hippocampal Subfields (ASHS) (Figure
3). Both of these methods rely on smooth deformation of single or multi-atlas references,
meaning they cannot easily be generalized to drastically different hippocampal folding patterns
which are often seen in the hippocampal head and tail. Both of these methods showed unfolded
subfield patterns that were inconsistent with ground truth histology literature, including breaks in
subfield topology, simplifications like the exclusion of the hippocampal tail, or inconsistent
ordering of subfields. This highlights some of the advantages of HippUnfold, which did not suffer
from these issues.

Several factors make surface-based methods difficult to implement in the hippocampus,
including its small size and the difficulty of distinguishing the hippocampal sulcus or SRLM
laminae that separate hippocampal folds. Here we have overcome these issues using a highly
generalizable and sensitive neural network ‘U-Net’ architecture, combined with our previously
developed topological unfolding framework. Together, these methods achieved similar or better
Dice overlap scores than what is typically seen between two manual raters on all subfields. We

2 https://github.com/khanlab/hippunfold
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tested performance on new datasets (‘generalization’ datasets with different characteristics than
the HCP training set) and saw good performance in nearly all cases. Specifically, we tested
other common imaging protocols including different sample age groups (HCP-A) and thick-slice
7T TSE acquisitions often used in targeted hippocampal subfield imaging [17]. Though errors
rates were low, we do show how and why such errors sometimes occur, highlighting the
importance that future users examine the brief quality control reports included for each subject.
Thus, while HippUnfold is demonstrated to work well with all datasets examined here, we expect
the widespread adoption of higher-resolution acquisition techniques will further improve
feasibility at other research institutes.

One important limitation of our method is that HippUnfold did not consistently show clear
digitation in the hippocampal head, body, and tail which was sometimes seen in manual
segmentation in the training set and in other work (see online Methods). This reflects a lack of
detail that should ideally be captured by this pipeline, and affects downstream processing. That
is, an erroneously smoothed hippocampi will appear thicker and have a smaller surface area
compared to those that shows the full extent of digitations. This smaller surface area also
results in each subfield boundary being proportionally shifted. Future work could improve this
pipeline by training and testing with higher-resolution data where digitations can more clearly be
distinguished both in labelmaps and in the underlying images.

The current work has applications beyond subfield imaging, enabling new investigations
of the hippocampus on a columnar and laminar scale. For example, rather than performing
ROI-based analyses, statistics can be performed on a per-vertex basis for vertices generated at
different depths. This is in line with state-of-the-art neocortical analysis methods, and opens up
the possibility of more precise localization of hippocampal properties. Similarly, it is worth noting
that the methods used here are not necessarily restricted to MRI, as we have used the same
surface-based unfolding in combination with manual segmentation to characterize the
hippocampus in 3D BigBrain histology [20].

Altogether, we show that the BIDS App ‘HippUnfold’ that we have developed in this work
respects the different internal hippocampal folding configurations seen between individuals, can
be applied flexibly to T1w or T2w data, sub-millimetric isotropic or thick-slice anisotropic data,
and compares favourably to other popular methods including manual segmentation, ASHS, and
Freesurfer. We believe this tool will open up many avenues for future work including
examination of variability in hippocampal morphology which may show developmental
trajectories or be linked to disease, or the examination of hippocampal properties perpendicular
or tangential to its laminar organization with diffusion-weighted imaging. Finally, it is worth noting
that the methods here stand to improve existing techniques like subfield ROI-based analyses,
quantitative or functional MRI sampling, or other techniques by providing greater anatomical
detail and, critically, topological alignment between subjects.
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