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Abstract 20 

The fall armyworm Spodoptera frugiperda is an important polyphagous agricultural pest in the Western 21 

Hemisphere and currently invasive to countries of the Eastern Hemisphere. This species has two host-22 

adapted strains named “rice” and “corn” strains. Our goal was to identify the occurrence of core members 23 

in the gut bacterial community of Fall armyworm larvae from distinct geographical distribution and/or 24 

host strain. We used next-generation sequencing to identify the microbial communities of S. frugiperda 25 

from corn fields in Brazil, Colombia, Mexico, Panama, Paraguay, and Peru, and rice fields from Panama. 26 

The larval gut microbiota of S. frugiperda larvae did not differ between the host strains neither was it 27 

affected by the geographical distribution of the populations investigated. Our findings provide additional 28 

support for Enterococcus and Pseudomonas as core members of the bacterial community associated with 29 

the larval gut of S. frugiperda, regardless of the site of collection or strain, suggesting that these bacteria 30 

may maintain true symbiotic relationships with the fall armyworm. Further investigations are required for 31 

a deeper understanding of the nature of this relationship. 32 
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Introduction 69 

The complexity and wide variety of host-microbe interactions are increasingly evident through new 70 

molecular techniques and the improvement of bioinformatic analysis tools. The advancement of 71 

understanding of this topic has brought support to some hypotheses, and challenged others. An example is 72 

the discussion on whether the gut microbiota is relevant for all animals [1]. The gut is a rich environment 73 

for holding a variety of host – microorganism associations, and the gut microbiota has been shown to play 74 

crucial roles in a wide range of aspects of host physiology, morphology and ecology. The insect gut 75 

microbiota can influence intra and interspecific interactions, such as sexual behavior [2, 3] and the 76 

relationship between host plants and natural enemies [4]. It also plays a key role in insect adaptation to their 77 

environment by providing essential nutrients [5, 6] and/or boosting the host immune response to parasites 78 

and pathogens [7, 8]. In addition, microbial symbionts can contribute to hosts by detoxifying xenobiotics 79 

as insecticides [9-12].  80 

Such range of beneficial contributions has led to the establishment of true mutualistic associations in several 81 

groups of hemipterans, dipterans, blattids, and coleopterans, among others [9, 13-17]. Lepidopteran larvae, 82 

however, have been thought not to have established mutualistic associations with their gut-associated 83 

bacteria. Some studies demonstrated the survival, development time, and weight gain were not affected in 84 

antibiotic-fed larvae [18]. Additionally, the lack of special regions in the gut to house microorganisms has 85 

been argued as a strong limitation for the establishment of true associations with free-living microbes [19]. 86 

The harshness of the extremely alkaline conditions of the gut to most microorganisms also represents an 87 

unfavorable condition for establishing microbial associations [20]. Finally, the high variation in the 88 

composition of the microbial community driven by host plants would difficult the occurrence of 89 

associations that could hold through the required evolutionary time in order to allow the selection and 90 

establishment of true gut residents [21]. Nevertheless, other studies have shown that even in hostile 91 

environments as the midgut of lepidopteran larvae, there are evidence of gut colonization by certain 92 

bacterial groups [22-24]. In addition, gut-resident bacteria of lepidopteran larvae were demonstrated to play 93 
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important physiological roles for their hosts [25, 26]; besides, the continuous association with their hosts 94 

for some of these microbes has been proved as they are horizontally transmitted [27].  95 

Controversial topics in the scientific literature are always an invitation to new studies aiming at better 96 

understanding and clarification of the topic. The debated existence of true gut-associates in lepidoptera is a 97 

subject that needs further clarification due to two important contexts it is placed in. First, its remarkable 98 

relevance to the understanding of how microbial associations can influence host phenotypes [28], and 99 

insects have provided simple models for the clarification of fundamental principles in host-microbe 100 

interactions [29, 30], with a great potential to assist in unravelling complex systems such as in mammalians. 101 

Second, lepidopterans are yet the major group of agricultural pests, causing severe losses in food 102 

production, posing serious threats to food security [31-33]. Understanding the diversity and function of gut 103 

- microbes associations can lead to the development of new strategies for herbivore control.   104 

In the present study we have chosen a lepidopteran species that is important both in the ecological and in 105 

the economic context to investigate the existence of true gut associates of lepidopteran larvae.  Spodoptera 106 

frugiperda is an important agricultural pest in the Western Hemisphere and is currently invasive to countries 107 

in Africa, Asia, and Oceania [34-38]. Spodoptera frugiperda is highly polyphagous, feeding on more than 108 

300 host plants [39]. This species is actually a complex composed of two distinct strains known as the rice 109 

(RS) and corn (CS) strains. The two strains are morphologically identical, with clear differences in host 110 

preference, susceptibility to insecticides and transgenic crops (Bacillus thuringiensis), composition of sex 111 

pheromone and mating behavior [40-47]. Genomic analysis of the host-adapted strains of S. frugiperda 112 

identified several genes involved in the chemodetection of non-volatile molecules and detoxification of 113 

xenobiotics showing signatures of positive selection, suggesting their contribution to S. frugiperda host 114 

plant preferences [48].  Some of these genomic variations between host strains of S. frugiperda were also 115 

detected at the transcriptional level, including those involved in xenobiotic metabolism [49].  116 

Genetic studies suggest that population structure of S. frugiperda in the Western Hemisphere shows more 117 

variation within S. frugiperda populations than between populations of different locations, indicating a 118 
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significant gene flow [50, 51]. The Mexican populations, on the other hand, have proven to be the most 119 

different, suggesting limited migratory interactions with foreign populations [52, 53]. The population 120 

genetic structure of Brazilian populations of S. frugiperda is partially based on host plants, with rice 121 

populations, which are basically represent by rice strain individuals, having a strong effect on the overall 122 

genetic structure of fall armyworm populations in Brazil [54]. 123 

Therefore, in this study we aim to verify the existence of bacterial groups that remain associated with the 124 

gut microbial community of S. frugiperda larvae regardless of the geographical region or host plant used. 125 

So, we sampled and sequenced the gut microbiota of fall armyworm larvae from corn and rice fields across 126 

the American continent. Larvae were genotyped as rice or corn strain, and the structure of the bacterial gut 127 

community was checked based on the geographical origin of the larvae, host-adapted strain and/or host 128 

plant used. Despite the variation expected due to uncontrolled and unforeseen environmental factors, the 129 

field conditions may provide essential information on potential symbionts that could be ecologically 130 

important to their hosts in their natural habitats.  131 

 132 

Material and Methods 133 

Sampling and strains identification 134 

Larvae of Spodoptera frugiperda with 2.5-3.0 cm in length were collected from corn and/or rice fields 135 

during 2016-17 in Brazil (13.8224° S, 56.0835° W), Colombia (4.5709° N, 74.2973° W), Mexico 136 

(23.6345° N, 102.5528° W), Panama (8.5380° N, 80.7821° W), Paraguay (23.4425° S, 58.4438° W), and 137 

Peru (9.1900° S, 75.0152° W), and stored in absolute ethanol. Once in the laboratory, larvae had the width 138 

of the head capsule measured, and only those larvae with head capsule width within the limits of size of 139 

5th and 6th instars [55] were further dissected for gut collection. Dissections were carried after surface 140 

sterilization under aseptic conditions in a laminar flow hood. The larval digestive tract was carefully 141 
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removed, washed in sterile saline and further used in metabarcoding analysis of the gut microbiota. The 142 

remaining carcass was used for host strain identification. 143 

Spodoptera frugiperda were genotyped for strain identification using the mitochondrial cytochrome 144 

oxidase I (COI) gene as a marker. DNA was extracted using the genomic DNA preparation protocol from 145 

RNALater™, with modifications. The carcass obtained from dissected larvae was placed in 2 mL tubes 146 

with 750 μL digestion buffer (60 mM Tris pH 8.0, 100 mM EDTA, 0.5% SDS) and proteinase K (500 147 

μg/mL), macerated using pestle, and mixed well by inversion. Samples were incubated overnight at 55°C. 148 

Afterwards, 750 μL of phenol:chloroform (1:1) was added and rapidly inverted for 2 min. Samples were 149 

centrifuged at high speed for 10 min. The aqueous layer was collected and phenol:chloroform extraction 150 

was repeated twice before a final extraction with chloroform. The aqueous layer was collected, added to 151 

0.1 volume of 3M sodium acetate (pH 5.2) and an equal volume of 95% ethanol. Samples were then mixed 152 

by inversion, incubated for 40 min at -80°C before centrifugation (27,238 g x 30 min x 4°C). The pellet 153 

obtained was washed twice with 1 mL of 85% ice-cold ethanol, centrifuged for 10 min after each wash, 154 

and dried at 60°C during 5-10 min in a SpeedVac. Finally, the pellet was resuspended in nuclease-free 155 

water. DNA concentration and quality were estimated by spectrophotometry and standard DNA agarose 156 

gel electrophoresis [56]. 157 

Polymerase chain reactions (PCR) for partial amplification of the mitochondrial COI gene was conducted 158 

using the primer set JM76 (5 ́-GAGCTGAATTAGGRACTCCAGG-3 ́) and JM77 (5 -́ 159 

ATCACCTCCWCCTGCAGGATC-3 ́), to produce an expected amplicon of 569 base pairs (bp) [57]. The 160 

PCR mixture contained 100-150 ng of gDNA, 1.5 mM of MgCl2, 1x PCR buffer, 0.2 mM of each dNTP, 161 

0.32 µM of each primer and 0.5U of GoTaq® DNA Polymerase (Promega) in a total volume of 25 µL. 162 

The thermocycling condition was 94°C x 1 min (1x), followed by 33 cycles at 92°C x 45 s, 56°C x 45 s, 163 

and 72°C x 1 min, and one cycle at 72°C x 3 min for final extension. Amplicons were then subjected to 164 

restriction analysis using the MspI (HpaII) restriction endonuclease. Samples were gently mixed, 165 

centrifuged for a few seconds and incubated overnight at 37°C. Subsequently, digestion and the resulting 166 
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products were verified using a 1.5% agarose gel electrophoresis. The corn strain (CS) was identified from 167 

restriction analyses yielding two fragments (497bp and 72bp), while restriction analyses that produced no 168 

digestion identified the rice strain (RS) [57]. 169 

 170 

DNA extraction, amplification and 16S rDNA sequencing 171 

The midgut obtained from dissected larvae were individually powdered in liquid nitrogen, and genomic 172 

DNA was extracted using the Wizard Genomic DNA Purification Kit (Promega), following the 173 

manufacturer’s recommendations. The quality, integrity and purity of the DNA obtained was measured 174 

by spectrophotometry and agarose gel electrophoresis as before. DNA samples were stored in -20°C and 175 

sent for library construction, normalization and sequencing in the Center for Functional Genomics 176 

(http://www.esalq.usp.br/genomicafuncional/), one of the multiusers laboratories of our institution. 177 

Paired-end reads were generated after amplifying the v3-v4 region of 16S rRNA gene (approximately 550 178 

bp) using the Nextera XT DNA Library Preparation Kit (Illumina) for paired-end (2x 300 bp) sequencing 179 

in the Illumina MiSeq platform. 180 

 181 

Sequences analyses 182 

Illumina adapters at the 3’ end of the reads were removed using Cutadapt [58]. The bioinformatics analyses 183 

of the gut microbiome were performed with QIIME2 v. 2020.2.0 [59]. Raw sequence data were quality 184 

filtered with q2-dada2 plugin for filtering phiX reads and chimeric sequences [60]. In order to remove low 185 

quality regions from quality filter reads, dada2 denoise-single method trimmed off the first 18 nucleotides 186 

of the forward reads and 22 nucleotides from the reverse reads. It also truncated each sequence at position 187 

290 in the forward and 220 in the reversed reads. These positions were chosen based on visual inspection 188 

of plotted quality scores from demultiplexed reads.  A phylogeny was estimated with SEPP [61] as 189 

implemented in the q2-fragment-insertion QIIME2 plugin. All amplicon sequence variants (ASVs) were 190 
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aligned with feature-classifier classify-sklearn against the SILVA-132-99 database [62] that was trained 191 

with a Naïve Bayes classifier [63] on the Illumina 16S rRNA gene primers targeting the V3–V4 region. 192 

The downstream analysis was performed in the MicrobiomeAnalyst web platform 193 

(https://www.microbiomeanalyst.ca/) [64] and in R (version 4.0.4) [65]. Data were filtered keeping ASV 194 

with minimum count of four (4) per library and low count filter based on 20% prevalence across samples. 195 

Data were rarefied to the minimum library size (1155 reads), before any statistical comparisons. Rarefaction 196 

curves were based on the relationship between number of ASVs and number of sequences. Alpha diversity 197 

analysis was measured by the observed species and Shannon index. The results were plotted across samples 198 

and showed as box plots for each group. Beta diversity was investigated through principal components 199 

analysis (PCoA) using unweighted and weighted UniFrac distances, and through hierarchical clustering 200 

analysis using unweighted UniFrac distances.  201 

We used PERMANOVA to test the strength and statistical significance of sample groupings based on 202 

generalized weighted UniFrac distances. This distance contains an extra parameter α (set at α=0.5) to 203 

control the weight of abundant lineages, so the distance is not dominated by highly abundant lineages. 204 

When differences were found between samples distances, a post-hoc analysis was performed with the 205 

package pairwise.adonis to identify differences among treatments and verify the adjusted p value [66]. As 206 

PERMANOVA assumes homogeneity of variances, we used betadisper, a multivariate analogue of 207 

Levene's test, as implemented in R to verify whether differences between groups in terms of their centroids 208 

are not due to differences in variances. Analysis of similarity (ANOSIM) was used when there was 209 

heterogeneity of variance among groups. In our sample set we had basically 3 groups: (i) countries that 210 

presented both strains in corn plants, (ii) countries with only the corn strain in corn plants and (iii) Panama 211 

with both strains in corn plants and only the rice strain in the rice plant. Since our design is unbalanced, we 212 

performed separate analyses to properly grasp our data.  First, we excluded the samples that had rice as host 213 

plant, thus only the variables "strain" and "country" were considered. To test the effect of country and host 214 

plant, we excluded the corn strain from the analysis, considering only the rice strain, and performed 215 
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multilevel pairwise comparison using Adonis (PERMANOVA) from package vegan with adjusted p-216 

values. 217 

To visualize taxa abundance across the different groups, taxa plots were constructed based on phyla and 218 

genera. The core microbiome analysis was defined as the genera present in 50% or more of the samples and 219 

showing a relative abundance of 0.05% in each library. The differential abundance analysis was also 220 

analyzed using DESeq2 methods [67]. Pattern Search was used to identify which features were correlated 221 

with the core microbiome in the gut microbial community. Pearson r was the distance measure used using 222 

the MicrobiomeAnalyst tool [64].  223 

To cluster our samples groups into distinct ‘metacommunities’, we performed Dirichlet multinomial 224 

mixtures using the get.communitytype function [68] after exportation of biom ASV table from qiime2 to 225 

Mothur (v.1.44.3) and the selection of subsamples with subsample=1000, excluding low abundance 226 

samples that might be a result of artifact operational units and/or variation due to rare taxons ("singletons"). 227 

The best fitting number of metacommunities was obtained by selecting the minimum local Laplace value 228 

obtained after five iterations.  229 

 230 

Results 231 

A total of 63 S. frugiperda individuals, 8 RS and 45 CS were used in our analyses. Except for 8 specimens 232 

from Panama that were collected on rice, all other samples were collected in corn fields. Out of the 63 233 

specimens analyzed, 21 were from Brazil (CS=18; RS=3), nine from Colombia (CS=8; RS=1), eight from 234 

Mexico (CS=8), six from Paraguay (CS=3; RS=3), five from Peru (CS=3; RS=2), and 13 from Panama (6 235 

from corn fields; CS=5, RS=1; and 8 from rice fields; RS=8).  236 

Rarefaction analysis (Fig. S1) showed that sampling was adequate for an accurate characterization of the 237 

diversity and richness of the larval gut microbiota of S. frugiperda. Samples that failed to achieve adequate 238 

sampling depth were excluded from further analyses. There was no difference in alpha-diversity values 239 
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between strains or among countries (Fig. 1) measure by observed species and Shannon diversity indices. 240 

The beta diversity measured by weighted Unifrac distances did not exhibit specific clustering based on the 241 

country of origin or S. frugiperda strains (Fig. 2).  242 

When considering samples collected in maize, no differences in the composition of the gut microbial 243 

community between strains (p=0.215) (Table 1) nor among different countries considering the adjusted p-244 

values (p-values < 0.05) were detected (Table 2). Betadisper showed that groups had the same dispersion, 245 

failing to reject the null hypothesis of homogeneous multivariate dispersions, meeting the assumption for 246 

Adonis (Table 1).  It thus provided confidence to the PERMANOVA results, meaning the values obtained 247 

were not an artifact of heterogeneity of dispersions. Likewise, no differences were found between host 248 

plants (p=0.344) or country (p=0.0709) when considering only the rice strain (Table 3). Additionally, all 249 

replicates of metacommunity analyses resulted in the same pattern (K=1), meaning that according to the 250 

Dirichlet model there is not a clear pattern of grouping ASVs across samples. 251 

At the phylum level, the midgut of S. frugiperda was composed by Proteobacteria, Firmicutes and 252 

Actinobacteria (Fig. 3). There was no significant difference at the phylum level among countries or between 253 

strains. Taxa bar plots at the genus level indicated that individuals from the same country exhibited a high 254 

degree of variability in terms of bacteria taxa abundance (Fig. 4). Klebsiella and Erysipelatoclostridium 255 

were the taxa that differed among countries (Fig. 5), and the abundance of Erysipelatoclostridium also 256 

differed between RS and CS (Fig. 6). 257 

The bacterial core of the larval midgut of S. frugiperda at the genus level was composed by Pseudomonas 258 

and Enterococcus. Correlation analysis identified 10 genera that were positively correlated and 10 genera 259 

negatively correlated with Pseudomonas. However, only three genera were positively correlated, while 18 260 

were negatively correlated with Enterococcus (Fig. 7). 261 

 262 

Discussion  263 
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Our results indicate that bacterial communities of the Fall armyworm larval midgut do not differ between 264 

strains collected from the same country nor among countries. These findings follow the pattern of the 265 

population genetic structure of S. frugiperda in the Western Hemisphere, where the majority of the genetic 266 

variability is within individual populations and not between populations, suggesting that populations of S. 267 

frugiperda functions as a panmictic population [50, 51].  268 

As expected, we detected high variations in the composition of the gut microbiota among larvae. Such 269 

differences are likely to occur due to differences in corn varieties and associated endophytes, and soil type 270 

and associated microbiota, which also interact with plants and affect the plant endophyte community, 271 

ultimately interfering with the microbial composition of herbivores [69-71]. Variation in the microbiota 272 

from individual samples within treatments is commonly reported to several organisms, including species 273 

of Lepidoptera [72-74]. In humans, interindividual variation in the populations of gut microbes can be 274 

higher than 90% [75]. 275 

Obadia and collaborators [76] exploring the colonization of bacteria in the Drosophila melanogaster gut 276 

found that several strains of different species can maintain a stable association with the fly gut under 277 

laboratory conditions. They demonstrated that the establishment of bacteria in the gut works like a lottery 278 

and that stochastic factors generate alternative, stable states of gut colonization. Moreover, the resident 279 

species that have colonized the larval gut earlier, reduced the chances of subsequent colonization. Another 280 

interesting point raised concerning our study was that the peritrophic matrix in the midgut prevents the 281 

bacteria from attaching to the epithelial cells. Therefore, the lack of tissue attachment potentially makes 282 

these luminal populations less stable within the gut.  283 

But regardless the high variation observed in the gut microbiota associated with the larval midgut of S. 284 

frugiperda, our analysis identified a core of bacteria despite the geographical origin of fall armyworm 285 

samples. The maintenance of a core independently of any interfering systemic effects points to the existence 286 

of bacterial associates with specific functions. In addition, the high variability in the composition of the 287 

midgut microbiota may allow for rapid host adaptation through rapid selection of microbiota suitable for 288 
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contributing to the host under different stress conditions, such as abiotic factors, dietary resources, and risk 289 

of natural enemy attack [77]. 290 

The ASVs Pseudomonas and Enterococcus identified in this study as core members of the microbiota of 291 

the fall armyworm were also identified before as part of the core taxa associated with the gut of  S. 292 

frugiperda larvae from corn fields [10, 77-80]. The high abundance of Pseudomonas in our samples 293 

suggests that this genus of bacteria could assist S. frugiperda larvae to overcome environmental stressors, 294 

particularly by aiding larvae to degrade natural and/or synthetic toxic xenobiotics. Pseudomonas capable 295 

to degrade several pesticides were recovered from the gut of laboratory-selected resistant lines (Almeida, 296 

Moraes, Trigo, Omoto, & Cônsoli, 2017), but also from field populations of S. frugiperda collected from 297 

several corn-producing areas in Brazil (Gomes, Omoto, & Cônsoli, 2020). Pseudomonas have also been 298 

demonstrated to degrade secondary metabolites in the gut of a coleopteran host [81]. Additionally, 299 

Pseudomonas abundance increased in the gut of Plutella xylostella resistant to prothiofos when compared 300 

to susceptible larvae, and was also shown to have antagonistic activity to several species of 301 

entomopathogenic fungi through siderophore production as demonstrated in culture plates [82]. 302 

It is noteworthy that Enterococcus is the most prevalent and abundant group identified in the gut microbiota 303 

of Spodoptera species [78, 79, 83], and also the most active in the gut of S. frugiperda [84]. Additionally, 304 

it has been demonstrated that Enterococcus mundtii is effective in colonizing and forming biofilm in the 305 

gut of Spodoptera littoralis [22, 27]. There is also evidence that E. mundtii can be inherited by S. littoralis 306 

through vertical transmission [23]. Some species of Enterococcus produce antimicrobial peptides with high 307 

level of inhibitory activity against potential bacterial competitors [27], which may explain its prevalence 308 

when compared to other phylotypes in S. frugiperda gut communities, but also the  high negative correlation 309 

of Enterococcus with the other bacterial species of the gut microbiota community of S. frugiperda in this 310 

study.  311 

Overall, this study provided an extended view of the fall armyworm gut microbiota and supported the 312 

hypothesis that bacterial taxonomic compositions across different localities in the Western Hemisphere are 313 
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similar to each other, presenting high inter-individual variance, and that there are no significant differences 314 

in gut microbiota composition between the host-adapted strains of S. frugiperda. Nevertheless, our findings 315 

provide further evidence that Pseudomonas and Enterococcus are true symbionts of S. frugiperda as they 316 

were identified in the gut microbiota of S. frugiperda larvae regardless the host plant and site of collection. 317 

Further investigations on the functional contribution of these species as members of the gut bacterial 318 

community of fall armyworm larvae is required for a deeper understanding of the nature of this relationship. 319 
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FIGURES CAPTIONS 584 

Fig. 1 Alpha diversity index of Shannon index (A, C) and observed taxa (B, D) obtained for samples from 585 

the gut microbiota of the corn and rice strains of Spodoptera frugiperda larvae (C, D) from different 586 

countries (A, B). The statistical values from the Test t (pairwise comparison) and ANOVA (group 587 

comparison) are shown in which box. 588 

Fig. 2 Principal coordinates analysis (PCoA) based on unweighted (A, B) and weighted (C, D) unifrac 589 

analysis of the midgut microbial community of the corn and rice strains of Spodoptera frugiperda larvae 590 

(B, D) from different countries (A, C).  The statistical values from PERMANOVA are shown in each box. 591 

Fig. 3 Taxonomic composition of the microbial community associated with the midgut of corn and rice 592 

strains of Spodoptera frugiperda larvae sampled in different countries at the phylum level. 593 

Fig. 4 Taxonomic composition of the microbial community of the larval midgut of corn and rice strains of 594 

Spodoptera frugiperda at the genus level.  595 

Fig. 5 The abundance of Klebsiella and Erysipelatoclostridium as a differential feature of the microbiota 596 

associated with the larval midgut of Spodoptera frugiperda from different countries.  597 

Fig. 6 The abundance of Erysipelatoclostridium as a differential feature of the microbiota associated with 598 

the larval midgut of the corn and rice strains of Spodoptera frugiperda.  599 

Fig. 7 The core gut microbiota of Spodoptera frugiperda at the genus level identified by 600 

MicrobiomeAnalyst using the parameters sample prevalence (50 %) and relative abundance (0.5 %).  601 

Fig. 8 Pattern correlation analysis of the larval gut bacteria of Spodoptera frugiperda at the genus level. 602 

Red indicates positive correlation and blue indicates negative correlations with the presence of 603 

Enterococcus (A) or Pseudomonas (B). 604 

  605 
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Table 1. PERMANOVA and BETADISPER results from comparisons of the gut microbial communities 606 
among countries and Spodoptera frugiperda strains (corn and rice strains) excluding samples 607 

from rice plants using UniFrac (alpha 0.5) values. 608 

 609 

 PERMANOVA      ANOSIM BETADISPER 

R2 p value R p value F value Pr(>F) 

Country  0.11698   0.044 * - - 0.2444 0.9406 

Strain  0.02181 0.215 - - 3.3965 0.07093  

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 610 

 611 

 612 

               613 

 614 
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Table 2. Post-hoc analysis of comparisons of the Spodoptera frugiperda gut microbial communities among 616 

countries using UniFrac (alpha 0.5) values. 617 

 618 

Pairs Df SumsOfSqs F.Model R2 p.value p.adjusted  

Colombia vs Brazil 1 0.3806171 2.0309445 0.07245366 0.011 0.165 

Colombia vs Mexico 1 0.2728639 1.3648260 0.08882795 0.080 1.000 

Colombia vs Panama 1 0.2279787 1.1800870 0.07773915 0.196 1.000 

Colombia vs Paraguai 1 0.3238154 1.6384779 0.12013642 0.095 1.000 

Colombia vs Peru 1 0.3136700 1.6244547 0.12867524 0.060 0.900 

Brazil vs Mexico 1 0.2544575 1.2752619 0.04675526 0.147 1.000 

Brazil vs Panama 1 0.3235731 1.6516793 0.05973161 0.044 0.660 

Brazil vs Paraguai 1 0.1472816 0.7425192 0.03000985 0.722 1.000 

Brazil vs Peru 1 0.2553736 1.3015037 0.05355651 0.151 1.000 

Mexico vs Panama 1 0.2217735 1.0281323 0.06841384 0.390 1.000 

Mexico vs Paraguai 1 0.2483650 1.1092582 0.08461640 0.292 1.000 

Mexico vs Peru 1 0.2227645 1.0045716 0.08368242 0.383 1.000 

Panama vs Paraguai 1 0.2516586 1.1648641 0.08848281 0.254 1.000 

Panama vs Peru 1 0.2287484 1.0730526 0.08887998 0.328 1.000 

Paraguai vs Peru 1 0.1878847 0.8404890 0.08541130 0.553 1.000 

 619 

  620 
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Table 3. PERMANOVA, ANOSIM and BETADISPER results from comparisons of the gut microbial 600 621 

communities of the Spodoptera frugiperda rice strain among countries and host plants using UniFrac (alpha 622 

601 0.5) values. 623 

 PERMANOVA ANOSIM BETADISPER 

R2 p 

value 

R p value F 

value 

Pr(>F) 

Country  - - 0.266

4 

0.07092

9 

5.6096 0.00755 ** 

Host 

Plant  

0.0614

9 

0.344 - - 2.1328 0.1635 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 624 

           625 

 626 
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Fig 1  629 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.03.471132doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471132
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

 630 

Fig2  631 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.03.471132doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471132
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

 632 
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Fig 4  636 
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Fig 5  639 
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Fig 7  646 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.03.471132doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471132
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

 647 

 648 

 649 

Fig 8  650 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.03.471132doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471132
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

 651 

 652 

 653 

Fig. S1 Rarefaction curves showing the relationship between number of ASVs and number of sequences. 654 
The rarefaction curve for the midgut of Spodoptera frugiperda strains (RS= red and CS=blue) fed on and 655 
maize collected in different countries. 656 
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