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ABSTRACT 24 

Transposable elements (TEs) are interspersed repeats that contribute to more than half of the 25 

human genome, and TE-embedded regulatory sequences are increasingly recognized as 26 

major components of the human regulome. Perturbations of this system can contribute to 27 

tumorigenesis, but the impact of TEs on gene expression in cancer cells remains to be fully 28 

assessed. Here, we analyzed 275 normal colon and 276 colorectal cancer (CRC) samples 29 

from the SYSCOL colorectal cancer cohort and discovered 10,111 and 5,152 TE expression 30 

quantitative trait loci (eQTLs) in normal and tumor tissues, respectively. Amongst the latter, 31 

376 were exclusive to CRC, likely driven by changes in methylation patterns. We identified 32 

that transcription factors are more enriched in tumor-specific TE-eQTLs than shared TE-33 

eQTLs, indicating that TEs are more specifically regulated in tumor than normal. Using 34 

Bayesian Networks to assess the causal relationship between eQTL variants, TEs and genes, 35 

we identified that 1,758 TEs are mediators of genetic effect, altering the expression of 1,626 36 

nearby genes significantly more in tumor compared to normal, of which 51 are cancer driver 37 

genes. We show that tumor-specific TE-eQTLs trigger the driver capability of TEs 38 

subsequently impacting expression of nearby genes. Collectively, our results highlight a global 39 

profile of a new class of cancer drivers, thereby enhancing our understanding of tumorigenesis 40 

and providing potential new candidate mechanisms for therapeutic target development.  41 
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INTRODUCTION 44 

Understanding the mechanisms underlying tumorigenesis has been one of the main research 45 

questions in cancer biology. While somatic mutations, chromosomal rearrangements and 46 

gene amplification are the three main hallmarks driving cancer progression, they are unable 47 

to provide a complete explanation of tumorigenesis. Recent discoveries have demonstrated 48 

that transposable elements (TEs) have contributed to the evolution of gene regulation and can 49 

alter the landscape of gene expression in development and disease [1-5]. Transposable 50 

elements (TEs) are interspersed repeats that contribute more than half of the human genome. 51 

TEs, more specifically TE-embedded regulatory sequences (TEeRS) are broadly active during 52 

the phases of genome reprogramming that occur in the germline and the early embryo, and 53 

then controlled by epigenetic mechanisms that still allow their finely orchestrated participation 54 

in biological events as diverse as brain development, immune responses, and metabolic 55 

control. The aberrant re-activation of TEeRSs is observed under certain conditions and 56 

disease states, notably cancer [6-8]. Transcription is defined by the coordinated activity of 57 

regulatory elements which are modulated by genetic variation. Thus, we speculate that 58 

transposable element expression is influenced by regulatory non-coding variants, also called 59 

expression Quantitative Trait Loci (eQTLs), known to contribute to the onset and progression 60 

of complex diseases like cancer [9, 10]. To build on this concept, we set out to analyze the 61 

interplay between regulatory variants (eQTLs), transposable elements and gene expression 62 

to characterize the genetic perturbation of TE and gene expression in cancer. To this end, we 63 

integrated genome-wide genotyping data (genotype array) and transcriptomic profiles (bulk 64 

RNA-sequencing) from the Systems Biology of Colorectal Cancer (SYSCOL) cohort 65 

comprising of 275 and 276 normal and tumor samples, respectively.  66 
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RESULTS 69 

Quantifying transposable elements (TEs) and gene expression 70 

 71 

To measure the expression of TEs in CRC, we examined transcriptomes obtained by RNA-72 

seq from 275 normal and 276 CRC samples from the SYSCOL cohort [11]. We quantified TE 73 

and gene expression using an in-house curated TE annotation list originating from the 74 

RepBase database [12] that contains approximately 4.6 million individual TE loci. These 75 

annotations were merged with gene annotation from ensembl (v19). Filtering for uniquely 76 

mapped reads (Methods) to obtain robust estimates of TE expression resulted in 51,320 TEs 77 

and 17,360 genes (protein coding and lincRNAs). We observed that the majority of expressed 78 

TEs present in our dataset are SINEs (Alu and MIR), LINEs (L1 and L2) as well as different 79 

subfamilies of Long Terminal Repeats (LTRs) and DNA transposons. However, when we 80 

looked at the proportion of expressed TEs per subfamily, SVA and ERVK were most prominent 81 

(Figure 1A, Supplementary figure 1). Additionally, we used available data from Encode [13] 82 

and miRbase [14] to generate a list of regulatory regions and discovered that 13,656 83 

expressed TEs overlapped with at least one previously identified regulatory element. We also 84 

discovered that expressed TEs are significantly enriched for most regulatory regions, except 85 

for enhancers, compared to non-expressed TEs (Supplementary table 1; Figure 1B, 86 

Supplementary figure 2) highlighting their potential role in gene expression regulation.  87 

 88 

Transposable elements are under strong genetic control 89 

Using TE expression quantifications and genotype data we first sought to assess the impact 90 

of inter-individual genetic variation on TE expression. We conducted cis-eQTL analysis 91 

followed by a forward backward stepwise conditional analysis (Methods) and discovered a 92 

total of 10’111 and 5’152 TE-eQTLs as well as 6’856 and 1’539 gene eQTLs in normal and 93 

tumoral tissue, respectively (Supplementary Figure 3,4; Supplementary Tables 2,3). 94 
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Similarly to gene-eQTLs, TE-eQTLs displayed stronger effects and density closer to the 95 

transcription start site (TSS) in both normal and tumor samples (spearman rho=-0.34, P<2.2e-96 

16 in normal, spearman rho=-0.27, P<2.2e-16 in tumor) (Figure 2A-B), yet were more 97 

proximal to the TSS compared to gene-eQTLs (Wilcoxon P=7.6e-11 in normal; Wilcoxon 98 

P=3.3e-05 in tumor; Supplementary Figure 5). We observed that TEs displayed fewer 99 

independent eQTLs per TE than genes (Figure 2C-D) while the minor allele frequencies of 100 

TE- and gene-eQTL variants were similar (Supplementary Figure 6). Proximal distance of 101 

TE-eQTLs to TSS and the smaller number of independent signals per TE could be due to 102 

smaller evolutionary time of TE regulatory landscapes in the human genome compared to 103 

genes, making proximal effects much more likely.  104 

Given previously established roles of tumor-specific gene-eQTLs in tumorigenesis [11], we 105 

aimed next at investigating whether tumor-specific TE-eQTLs could similarly contribute as 106 

cancer driving factors. To this end, we used linear mix models with an interaction term between 107 

variant and tissue (normal/tumor). We discovered that 376 (7.3%) of the tumor TE-eQTLs are 108 

tumor-specific and 1,685 (17%) of the normal TE-eQTLs are normal-specific, with 524 TE-109 

eQTLs shared between both settings (Figure 3A; Supplementary Table 5). For genes, we 110 

found 101 (6.5%) tumor gene-eQTLs to be tumor-specific and 897 (13%) normal gene-eQTLs 111 

to be normal-specific, of which 169 were shared (Supplementary Figure 7A; Supplementary 112 

Table 4). Shared TE- and gene-eQTLs were closer to the TSS of TEs/genes compared to 113 

tissue-specific eQTLs (Wilcoxon P<2.2e-16) (Figure 3B, Supplementary figure 7B). 114 

Additionally, we observed that shared eQTLs conserved their effect in both normal and tumor 115 

(Figure 3C, Supplementary figure 7C). These results indicate that TE expression is under 116 

strong genetic control and that non-coding germline variants act as drivers of TE expression 117 

in cancer as similarly observed for gene expression [11]. 118 

 119 
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Transcription factors regulate TE expression more specifically in 121 

tumor 122 

To corroborate the biological relevance of the discovered TE-eQTL variants we performed 123 

functional enrichment analysis of TE and gene eQTLs in normal and tumor using available 124 

ChIP-seq data from the Ensembl Regulatory Build [15] (methods). We found significant 125 

enrichment for many TF binding sites overlapping the eQTL loci highlighting the functional 126 

relevance of the variants discovered (Figure 4A-B; Supplementary Figure 8,9; 127 

Supplementary Tables 6,7). We discovered 5 TFs and 15 TFs that displayed stronger 128 

enrichment for TE eQTLs compared to gene eQTLs in normal and tumor, respectively. The 129 

TF most enriched over TE-eQTLs in normal tissues was ZNF274, a Krüppel-associated box 130 

(KRAB) domain-containing zinc-finger protein (KZFP), whereas the most enriched over tumor 131 

TE-eQTLs was TRIM28, the master corepressor that is recruited by the KRAB domain of many 132 

TE-binding KZFPs and serves as a scaffold for a heterochromatin-inducing complex capable 133 

of repressing TEs via histone H3 Lys9 trimethylation (H3K9me3), histone deacetylation and 134 

DNA methylation [16, 17]. Additionally, BDP1 and BRF1, two subunits of the RNA polymerase 135 

III transcription initiation factor, were more enriched over TE-eQTLs compared to gene eQTLs 136 

highlighting potential transcription of Alu or MIR TEs of the SINE family [18]. These results 137 

corroborate the biological relevance of TE eQTLs and point to possible transcription and 138 

repression of certain TEs. 139 

To assess the differential effects of tumor-specific versus shared eQTLs, we performed 140 

functional enrichment analyses using available ChIP-seq data from LoVo colorectal cancer 141 

cells [19] (methods). We observed that in the case of genes, all tested TFs had a stronger 142 

enrichment for shared compared to tumor-specific eQTLs, indicating that these TFs are 143 

regulating gene expression in both the normal and tumor state. (Supplementary Figure 10, 144 

Supplementary Table 8). In contrast, we found 80 TFs displaying stronger enrichment for 145 

tumor-specific versus shared TE-eQTLs, pointing to tumor-specific TE regulation (Figure 4C; 146 

Supplementary Figure 11; Supplementary Table 9). Of these, 39 were upregulated and 34 147 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2021. ; https://doi.org/10.1101/2021.12.03.471093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471093
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 7 - 

downregulated in tumors (7 were missing from our expression data and could not be tested 148 

for differential expression analysis), but we did not observe any significant correlation between 149 

the tumor-specific TE-eQTL enrichment to shared TE-eQTL enrichment ratio and fold change 150 

in the expression of the corresponding transcription factors (Pearson R = -0.18, p-value = 151 

0.083; Supplementary Figure 12). Thus, differential expression of these TFs is not driving 152 

the tumor-specific TE-eQTL effects. However, 59 of the 86 tumor-specific TE-eQTLs 153 

overlapping the binding sites of the 80 aforementioned TFs are not significantly associated 154 

(FDR = 5%) with any nearby (±1 Mb from TSS) TE or gene in normal, indicating that these 155 

regulatory regions are inactive in the normal state (Supplementary Figure 13). Additionally, 156 

we compared methylation levels between normal and tumor samples for the tumor-specific 157 

and shared eQTLs and observed significantly increased (Wilcoxon rank sum test p-value = 158 

0.017 for TEs and p-value = 0.00097 for genes) methylation over tumor-specific compared to 159 

shared eQTLs for both gene and TEs (Figure 3D; Supplementary figure 7D).  160 

Altogether these results suggest that many TFs are regulating TE expression. The inactivity 161 

of some of the TE eQTLs in normal and the significant changes in methylation between tumor-162 

specific and shared TE-eQTLs indicate that regulatory switches involving the recruitment of 163 

these TFs might underlie the effects of tumor-specific TE eQTLs. 164 

 165 

Transposable elements as mediators of genetic effects onto genes 166 

Having established that TEs are under genetic control, we next sought to assess the causal 167 

relationship between eQTL variants, TEs and genes and discover the extent to which TEs act 168 

as drivers of gene expression in tumor. To this end, we focused on regulatory variants affecting 169 

both TEs and genes and detected these in an unbiased manner by first associating TEs with 170 

genes using a similar approach to QTL mapping. Next, we quantified the identified 21,263 TE-171 

gene pairs found in normal samples and 144,289 TE-gene pairs found in tumor at 1% FDR 172 

and used this newly quantified TE-gene pairs to find all eQTL-TE-gene triplets by performing 173 

a standard eQTL analysis (Methods; Supplementary figure 14-16). At 5% FDR, we 174 
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discovered 12,379 and 9,714 triplets in normal and tumor, respectively, for which we inferred 175 

the most likely causal relationship using Bayesian networks (Methods) [20-22]. We tested 176 

three models, (i) the causal model where the eQTL variant affects TE expression and then 177 

gene expression, (ii) the reactive model where the eQTL variant affects gene expression and 178 

then TE expression and (iii) the independent model where the eQTL variant affects 179 

independently TE and gene expression (Supplementary figure 17). We observed 180 

significantly more causal models in tumor (47%) compared to normal (22%) (Fisher p-value 181 

<2e-16) indicating that TEs are causal for gene expression predominantly in tumor and to a 182 

lesser extent in normal (Figure 5A, B; Supplementary figure 18; Supplementary Table 183 

10,11). We also show that the proportion of causal models correlated with the genomic 184 

position of the TE with respect to the gene; intronic TEs tended to be reacting to gene 185 

expression whereas TEs outside the gene body tended to be causal. Interestingly, there were 186 

significantly more causal scenarios when the eQTL variant lied within the TE, rather than 187 

outside (Fisher p-value < 2e-16) pinpointing to direct regulatory effects of the TE onto gene 188 

expression (Supplementary figure 19). Altogether, these results show that TEs are 189 

significantly more causal for changes in gene expression in tumor than in normal tissue. 190 

 191 

Transposable elements are drivers of gene expression during 192 

tumorigenesis 193 

These results suggested that genetic variations in TE expression might drive tumorigenesis. 194 

To test this hypothesis, we considered the union of all triplets, i.e. the eQTL variant, TE and 195 

gene expression, discovered across tumor and normal tissue and using the same BN 196 

approach as previously mentioned, we inferred the causal relationship between the triplets in 197 

both states (methods). We similarly looked for shared triplets across the 12,379 normal and 198 

9,714 tumor triplets (eQTL-TE-gene triplets are the same in both states or the eQTL for TE-199 

gene pair is in high LD (R2 >=0.9)). In both shared and union triplets, we observed a significant 200 

increase in the causal model in tumor (Fisher Exact Test p-value < 2.2e-16 for shared and union 201 
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triplets) mainly due to independent models and to a lesser extent reactive model shifting to 202 

causal. (Supplementary figure 20; Supplementary Table 12,13). Focusing on the 9,714 203 

tumor triplets, we discovered 2,651 (28%) triplets that switched to a causal model in tumor 204 

compared to normal, highlighting regulatory changes whereby TEs impacted the expression 205 

of nearby genes (Figure 5C). These 2,651 triplets constituted of 1,758 unique TEs impacting 206 

1,626 unique genes. Interestingly, we observed that TEs switching to causal were significantly 207 

up-regulated compared to TEs that did not switch models between normal and tumor or that 208 

switched but not to causal (Wilcoxon p-value 2.9e-6; Supplementary Figure 21). These 209 

results suggest that upregulation of TEs could give rise to their gene expression driver 210 

capability. 211 

While expression of most TEs was positively correlated with the expression of the associated 212 

gene in tumor (n=2,639) (Figure 5D), only a few showed negative correlation (n=12). Of the 213 

significant tumor TE-gene pairs tested in normal colon, we observed that 940 maintained the 214 

same effect (in terms of size and direction) whereas 34 showed an opposite effect in tumor 215 

samples. Interestingly, of the 1,626 genes, 51 were cancer driver genes (CDG) (5 CRC 216 

specific; based on Cancer Gene Census [23]) but we did not find a significant enrichment of 217 

CDGs in triplets switching to causal compared to all other tumor triplets (Fisher exact test p-218 

value = 0.2903; odds-ratio = 1.274). For 34 out of the 51 CDGs, we did not find a significant 219 

correlation between their expression and the expression of the corresponding TEs in normal 220 

samples pinpointing that these TEs have no impact on these genes in the normal state. Taken 221 

together, these results suggest an important role of TEs as drivers of gene expression during 222 

tumorigenesis.  223 

 224 
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Non-coding germline variants activate driver TEs during 226 

tumorigenesis 227 

We investigated whether any of the 9,714 tumor triplets were constituted of any previously 228 

identified tumor-specific or shared TE-eQTLs and assess how the model likelihood changed 229 

between normal and tumor. We identified 363 and 128 tumor triplets constituted of a shared 230 

or a tumor-specific TE-eQTL, respectively (Figure 6A-B) and observed that the 128 tumor 231 

triplets constituted with a tumor-specific TE-eQTL are significantly enriched for triplets 232 

switching to causal compared to the 363 tumor triplets constituted with a shared TE-eQTL 233 

(Fisher Exact test p-value = 3.147e-05; Odds-ratio=2.4) (Figure 6B). Additionally, we 234 

observed that for 115 triplets with tumor-specific TE-eQTLs, the eQTL variant was not a 235 

significant eQTL for the corresponding gene in the triplet (Figure 6C), highlighting that the 236 

eQTLs get activated in the tumor state influencing TE expression that subsequently impact 237 

gene expression. Altogether, these results suggest that tumor-specific TE-eQTLs contribute 238 

to tumorigenesis by impacting genes through TEs, adding additional proof that germline 239 

variants can be contributing to tumorigenesis. 240 

 241 

Driver TEs act as alternative promoters for genes in cancer 242 

It has been shown that TEs could impact gene expression by acting as alternative promoters 243 

for nearby genes and creating chimeric transcripts (transpochimeric transcripts (tcGTs)) [24, 244 

25]. To assess whether any of the tumor triplets with causal TEs were affected by tcGT events, 245 

we looked for cases where transcripts started from a TE and spliced into a single or multiple 246 

nearby genes (methods). We only kept tcGTs made up of the same TE and gene as in the 247 

9,714 tumor triplets and that were significantly more abundant in tumor samples compared to 248 

normal samples using a Fisher exact test. At 5% FDR, we discovered 117 tcGTs present in 249 

138 tumor triplets. Of these, 72 were causal and 46 switched to causal from normal to tumor.  250 

Interestingly, we detected tcGT events with a known tumor suppressor gene RNF43 and two 251 
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oncogenes ETS2 and SLCO1B3 supporting the extensive contribution of TEs during 252 

tumorigenesis. 253 

DISCUSSION 254 

 255 
Transposable elements are important contributors to tumorigenesis and provide 256 

supplementary means by which gene expression can be altered in cancer. While many studies 257 

have used a hypothesis-driven approach and focused at specific TEs or their subfamilies for 258 

discovering TEs that alter the expression of nearby genes in cancer [26-28], applying a 259 

genome-wide scan could allow to obtain a better picture of the effects of TEs on gene 260 

expression during tumorigenesis.  261 

Here, we present a global profile of tumor drivers and show that TEs are highly prevalent 262 

mediators of genetic effects on genes altering their expression, specifically in tumor. By 263 

combining genome and transcriptome data together we, show that TEs are under tight genetic 264 

control and discover that transcription factors regulate TE expression much more in tumor 265 

than in normal. By looking at the interplay between eQTL variants, transposable elements, 266 

and gene expression, we are able to dissect eQTL effects and show that for several genes, 267 

the genetic effect of an eQTL is passed on genes through TEs which act as mediators and 268 

drive gene expression. We observe this to occur significantly more in cancer than in normal 269 

and show that the majority of TEs increase the expression of affected nearby genes. 270 

Interestingly, we discover that TEs affecting known cancer driver genes in cancer have for 271 

most part no significant effect on these genes in normal suggesting a tumor-specific effect of 272 

these TEs. Additionally, in our study we show that alongside predisposing alleles and somatic 273 

mutations, germline variants are crucial contributors to tumorigenesis as these allow for 274 

transcriptional changes to occur at the level of TEs that in turn result in altered expression of 275 

nearby genes in cancer as shown previously [11]. 276 

While we focused on TEs impacting the expression of nearby genes in an independent 277 

manner, it is highly plausible that synergistic effects occur from both cis- and trans- acting 278 
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TEs. Performing such an analysis could give a fuller picture of the regulatory network behind 279 

the regulation of gene expression through TE effects, requiring, however, a high sample size 280 

for sufficient statistical power. Nevertheless, because of the highly repetitive nature of 281 

transposable element sequences and their evolutionary relatedness among TE families, 282 

mapping short reads originating from TEs is a real challenge [18, 29]. Our RNA-seq dataset 283 

having a read length of 49bp, it is highly possible that we did not map all expressed TEs 284 

subsequently leading to missing information, as shown previously [18, 29]. Future studies 285 

where RNA-sequencing is performed with longer read lengths could allow for better mapping 286 

of expressed TEs and give us a fuller picture of the number of these driver TEs in cancer.  287 

Altogether, we have outlined that TEs are important mediators of genetic effects onto genes 288 

that could potentially be used as risk factors or new therapeutic targets for future drug 289 

development and aid in cancer treatment. 290 

  291 
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METHODS 292 

1.1. SYSCOL dataset 293 

The Systems Biology of Colorectal cancer (SYSCOL) dataset contains data from genotypes 294 

and RNA-sequencing for matched normal-tumor samples (i.e., both tumor and normal 295 

samples originate from the same patient). Samples that had genotype data and molecular 296 

phenotype quantifications from tumor and normal (normal adjacent to tumor) tissue were 297 

analyzed, yielding 275 normal samples and 276 tumor samples. In case of multiple tumor 298 

samples from the same patient, only samples with quantifications from the most advanced 299 

tumor were kept. 300 

1.2. Genotypes 301 

We used imputed genotypes and only kept variants with a minor allele frequency (MAF) >=5%, 302 

yielding a total of 6,132,240 variants that were used for all downstream analyses.  303 

1.3. Transcriptome quantifications  304 

1.3.1. Read mapping  305 

SYSCOL samples were sequenced using 49bp, 75bp and 100bp read lengths. We first started 306 

by trimming all 75bp and 100bp reads down to 49bp to reduce any bias in downstream analysis 307 

stemming from read length. All trimmed samples were mapped to the human reference 308 

genome (hg37) using hisat2 [30] 309 

1.3.2. Transposable elements (TE) and genes quantifications 310 

Gene and transposable element counts were generated using the featureCounts software 311 

[31]. We provided a single annotation file in gtf format to featureCounts containing both genes 312 

and transposable elements. This prevents any read assignation ambiguity to occur. For 313 

transposable elements, we used an in-house curated version of the Repbase database [12] 314 

where we merged fragmented LTR and internal segments belonging to a single integrant. We 315 

only used uniquely mapped reads for gene and TE counts. Molecular phenotypes that did not 316 

have at least one sample with 20 reads and for which the sum of reads across all samples 317 
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was lower than the number of samples, were discarded. Furthermore, we normalized 318 

molecular phenotypes (TEs and genes) for sequencing depth using the TMM methodology as 319 

implemented in the limma package of Bioconductor [32] and used gene counts as library size 320 

for both TEs and genes. Finally, we removed any molecular phenotype that had more than 321 

50% of missing data (zeros) in tumor and normal samples separately and took the union of 322 

molecular phenotypes, yielding 17’360 genes and 45’717 TEs for a total of 63'077 molecular 323 

phenotypes.  324 

1.3.3. Normalization of molecular phenotypes 325 

The observed variability in molecular phenotypes from RNA-sequencing data can be of 326 

biological or technical origin. To correct for technical variability, while retaining biological 327 

variability, we residualised the molecular phenotype data for the covariates as described 328 

below: 329 

1. To correct for population stratification that is observed between the SYSCOL samples, 330 

we used Principal Component analysis (PCA) results obtained from genotypes of 331 

SYSCOL patients. We only retained the first three principal components (PCs) as 332 

covariates.  333 

2. In order to capture experimental/technical variability in the expression data, we 334 

performed PCA, centering and scaling, using pca mode from QTLtools software 335 

package [33]. To ascertain the number of PCs that capture technical variability, we 336 

used QTL mapping (see method 3.4.1 for the description of QTL mapping) to identify 337 

the best eQTL discovery power in both tumor and normal samples. To this end, we 338 

carried out multiple rounds of eQTL mapping for tumor and normal samples separately, 339 

each time using the 3 PCs from genotypes and incrementally adding 0, 1, 2, 5, 10, 20, 340 

30, 40, 50, 60 and 70 PCs as covariates. This approach resulted in identifying 30 PCs 341 

in tumor and normal samples for maximizing eQTL discovery. 342 

In total, 33 covariates were regressed out from tumor and normal sample expression data 343 

using QTLtools correct mode [33]. We additionally rank-normalized on a per phenotype basis 344 
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across all samples such that quantifications followed normal distribution with mean 0 and 345 

standard deviation 1 N(0,1) using QTLtools --normal option [33].  346 

 347 

1.4. DNA Methylation data and differential methylation of eQTLs 348 

We used microarray based DNA methylation data from the SYSCOL project and a similar 349 

approach to a previous study to find differential methylation of eQTLs [11]. In brief, we 350 

calculated the absolute value difference of the medians of normalized methylation probe betas 351 

in normal and tumor that we call median differential methylation. We then compared the 352 

distribution of there medians in tumor-specific TE and genes eQTLs vs. the shared TE and 353 

gene eQTLs and calculated a P-value using the Mann Whitney U test. P-values were corrected 354 

for multiple testing using the R/qvalue package with a given FDR threshold of 5%.  355 

 356 

1.5. Differential TE/gene expression analysis  357 

The DESeq2 R package [34] was used in calculating differentially expressed genes and TEs. 358 

We normalized the raw TE/gene counts within the DESeq2 package using the sequencing 359 

date, GC mean and insert size as covariates. The differential expression P-values were 360 

corrected for multiple testing using an FDR threshold of 5%.  361 

 362 

1.6. Transcriptome QTL analysis  363 

All analyses were performed separately for normal and tumor samples. We used imputed 364 

genotypes with MAF >=5 %, gene expression data with normalized counts per million (CPMs) 365 

(as described above) for both eQTL and conditional eQTL mapping.  366 

1.6.1. Expression Quantitative Trait Loci (eQTL) mapping  367 

For eQTL mapping, we used cis mode of the QTLtools software package [33].  368 

For each molecular phenotype: 369 

1. We counted all genetic variants in a 1 Mb window (+/- 1 Mb) around the 370 

transcription start site (TSS) of the phenotype and tested all variants within this 371 
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window for association with the phenotype. We only retained the best hits which 372 

are defined as the ones with the smallest nominal p-value. 373 

2. Next, we used permutations to adjust the nominal p-values for the number of 374 

variants tested. More specifically, we randomly shuffled the quantifications of the 375 

phenotypes 1’000 times and retained only the most significant associations. This 376 

created a null distribution of 1’000 null p-values. Then, we fitted a beta distribution 377 

on the null distribution and used the resulting beta distribution to adjust the nominal 378 

p-value. Principally, this strategy allows to quantify the chance of getting a smaller 379 

p-value than the nominal one in random datasets.  380 

 381 

This effectively gave us the best variant in cis together with the corresponding adjusted p-382 

value of association for each molecular phenotype. Finally, to correct for the number of 383 

phenotypes being tested we used False Discovery Rate (FDR) correction approach. More 384 

specifically, we used the R/qvalue package [35] to perform genome-wide FDR correction 385 

which ultimately facilitated to extract all phenotype-variant pairs that are significant at a pre-386 

determined FDR threshold, 5% FDR in this case. 387 

 388 

1.6.2. Conditional analysis for eQTL mapping  389 

 390 

The cis mode informs us on the best phenotype-variant pair only. Given that the expression 391 

of molecular phenotypes can be affected by multiple cis eQTLs, we proceeded with conditional 392 

analysis to discover all eQTLs with independent functional effects on a given phenotype. 393 

Principally, new discoveries are made after conditioning on previous ones. Again, cis mode in 394 

the QTLtools software package was used [33]. In brief, after running permutations (method 395 

1.4.1) for each phenotype, we calculated a nominal p-value threshold of being significant. We 396 

first determined the adjusted p-value threshold that corresponds to the targeted FDR level and 397 

then used the beta quantile function to go from adjusted p-value to a specific nominal p-value 398 
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threshold. For conditional analysis, forward-backward methodology is used to discover all 399 

independent QTLs and to identify the most likely candidate variants, while at the same time 400 

controlling for a given FDR (5% FDR in this case). We only kept the top variant for each signal. 401 

 402 

1.6.3. Tissue-specific and shared eQTL analysis 403 

 404 

To discover tissue specific and shared eQTLs, we used the eQTL results obtained after 405 

running the conditional pass. In total, we tested 17’077 eQTLs to discover normal-specific 406 

eQTLs and 6’591 to discover tumor-specific eQTLs. To do that, we used linear mix models 407 

using an interaction term between dosage and tissue (i.e tumor or normal) to test whether the 408 

slopes in normal and tumor are significantly different. Linear mix models are needed here 409 

because normal and tumor samples are originating from the same patient thus genotypes will 410 

be identical. We did this for tumor and normal eQTLs separately. Then we performed multiple 411 

test correction using the R/qvalue package [35] with a given FDR threshold of 5%. Additionally, 412 

for all significant results at 5% FDR, if eQTL slopes (slopes given from conditional QTL 413 

mapping using QTLtools) in normal and tumor had the same direction, then we only kept the 414 

ones where the SNP-phenotype association in the opposite tissue was not nominally 415 

significant (P>0.05) as given by the cis nominal pass mode in the QTLtools package [33].  416 

Shared eQTLs are defined as the ones where the P-value for the interaction term is not 417 

significant but need to be significant eQTLs (5% FDR) in both normal and tumor as assessed 418 

by the conditional QTL mapping.  419 

 420 

1.6.4. Functional enrichment analysis 421 

To compare the QTL variants to a null distribution of similar variants without regulatory 422 

association, we sampled for each eQTL variant 100 random regulatory genetic variants 423 

matching for relative distance to TSS (withing 2.5kb) and minor allele frequency (within 2%) 424 

and only kept variants that are not eQTLs for any other TE or gene (nominal p-value > 0.05). 425 
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The enrichment for a given category was calculated as the proportion between the number of 426 

regulatory associations in a given category and all regulatory variants over the same 427 

proportion in the null distribution of variants. The p-value for this enrichment is calculated with 428 

the Fisher exact test. Finally, we corrected for multiple testing using an FDR threshold of 5% 429 

using the “p.adjust” function in the R programming language.  430 

We used two different datasets for the functional enrichment. For gene and TE eQTLs in 431 

normal and tumor, we used available transcription factor (TF) ChIP-seq data from Ensembl 432 

Regulatory Build [15]. For each TF, we combined all peaks from all available cell-types. 433 

Regarding the tumor-specific vs. shared TE and gene eQTLs, we used available ChIP-seq 434 

data from the colorectal cancer LoVo cell line [19]. 435 

Testing for associations between TEs and genes  436 

To discover associations between TEs and genes, we proceeded in a similar way to what we 437 

did for QTL mapping (method 1.4.1). Effectively, we used TE expression as our “genotypes” 438 

and genes as our phenotype. Then, we corrected for multiple testing using the R/qvalue 439 

package with a given FDR of 1%. We then estimated the nominal p-value thresholds for each 440 

phenotype being tested as described in (method 1.4.2) with a given FDR of 1%. Given the 441 

nominal threshold we get for each gene, we then extracted all TEs with an association P-value 442 

below this threshold which could give multiple TEs for a gene in some cases. 443 

 444 

1.7. Quantifying TE-gene pairs  445 

 446 

To quantify each of TE-gene pairs that have been found to be significant, we used a 447 

dimensionality reduction approach based on PCA as previously described [22]. Specifically, 448 

for each TE-gene pair, we aggregated gene expression together with TE expression by using 449 

the coordinates on the first PC. This effectively built a quantification matrix with rows and 450 

columns corresponding to the number of TE-Gene pairs and individuals, respectively. All 451 
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quantifications have been rank-normalized on a per phenotype basis so that the values match 452 

a normal distribution N(0,1). This prevents outlier effects in downstream association testing. 453 

This is all implemented in the clomics software package [22].TE 454 

 455 

1.8. Causal inference by Bayesian networks for QTL-TE-Gene triplets 456 

 457 

Bayesian networks (BNs) are a type of probabilistic graphical model that uses Bayesian 458 

inference to compute probabilities. BNs aim to model conditional dependencies and therefore 459 

causation by representing conditional dependencies as edges and random variables as nodes 460 

in a directed acyclic graph. The flow of information between two nodes is reflected by the 461 

direction of the edges, giving an idea of their causal relationship. BNs have been previously 462 

used in a genetic framework [20] to get insight into the most likely network from which the 463 

observed data originates.  464 

In BNs, the joint probability density can be divided into marginal probability functions and 465 

conditional probability functions for the nodes and edges, respectively. Additionally, BNs 466 

satisfy the local Markov property where each variable is conditionally independent of its non-467 

descendants given its parent variables. In the context of this study, we used BNs to learn the 468 

causal relationships between triplets of variables, each one containing a genetic variant, a 469 

transposable element and a gene. In practice, only three distinct network topologies where 470 

relevant to the hypotheses we wanted to test (Supplementary figure 12). More specifically, 471 

we looked at: 472 

1. The causal scenario where the genetic variant affects first the TE and then the gene. 473 

2. The reactive scenario where the genetic variant affects the gene first and then the TE. 474 

3. The independent scenario in which the variant affects the gene and the TE 475 

independently. 476 

Of note, we only retained network topologies that assume that the signal systematically 477 

originates from the genetic variant. In practice, we applied BNs on data that was obtained from 478 
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running an QTL mapping using the TE-gene pairs using a similar approach to QTL mapping 479 

described above (Method 1.4.1) and only kept significant results at 5% FDR which 480 

corresponds to 11’425 QTL-TE-gene triplets in normal and 9’488 QTL-TE-gene triplets in 481 

tumor.  482 

 For each triplet, we build a 275 x 3 matrix in normal and 276 x 3 matrix in tumor containing 483 

normalized quantifications and used it to compute the likelihood of the 3 BN topologies using 484 

the R/bnlearn package (Version 4.5) [36]. As a last step, we went from likelihoods to posterior 485 

probabilities by assuming a uniform prior probability on the three possible topologies. Posterior 486 

probabilities where used for all BN-related analyses. 487 

 488 

1.9. Transpochimeric transcripts analysis 489 

 490 

First, a per sample transcriptome was computed from the RNA-seq bam file using StringTie 491 

[37]  with parameters –j 1 –c 1. Each transcriptome was then crossed using BEDTools [38] to 492 

both the ensembl hg19 coding exons and curated RepBase [12] to extract TcGTs for each 493 

sample. Second, a custom python program was used to annotate and aggregate the sample 494 

level TcGTs into counts per groups (normal, tumor). In brief, for each dataset, a GTF 495 

containing all annotated TcGTs was created and TcGTs having their first exon overlapping an 496 

annotated gene or TSS not overlapping a TE were discarded. From this filtered file, TcGTs 497 

associated with the same gene and having a TSS 100bp within each other were aggregated. 498 

Finally, for each aggregate, its occurrence per group was computed.  499 

  500 
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MAIN FIGURES 605 

 606 

 607 

Figure 1: Description of quantified TEs. (A) Barplot showing the proportion of uniquely 608 

mapped and quantified TE subfamilies in our dataset. (B) Pie chart showing the proportion of 609 

TEs with different types of regulatory elements within their sequence. We uniquely mapped 610 

and quantified 51,320 TEs. The majority of them are SINEs from the Alu and MIR family, L1 611 

and L2 TEs from the LINE family and different subfamilies of LTRs as well as some DNA 612 

transposons. When we looked at the proportion of expressed TE per subfamily, we observed 613 

that SVA and ERVK are most prominent. Additionally, 13,656 out of the 51,320 TEs contain 614 

regulatory elements within sequence. 615 
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 616 

Figure 2: cis- eQTL discovery. eQTL variant distance to TSS in (A) normal and (B) in tumor. 617 

We observe stronger eQTL effect close to the transcription start site of TE and genes in both 618 

normal and tumor. Number of secondary eQTLs for TEs and genes in (C) normal and (D) 619 

tumor. Gene eQTLs have more functionally independent eQTLs per gene than TEs do.  620 
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 621 

Figure 3: Tissue specificity of TE-eQTLs. (A) Mosaic plot of tissue specificity of TE-eQTLs. 622 

(B) Tissue specificity and distance of TE-eQTL to transcription start site (TSS). The shared 623 

TE-eQTLs (black) are closer to the TSS than are the tissue specific TE-eQTLs (red) (Wilcoxon 624 

P<2.2e-16). (C) TE-eQTL slopes for the normal specific TE-eQTLs in blue, the tumor specific 625 

in red and shared in black.  (D) Boxplot of the absolute value difference of median methylation 626 

betas between normal and tumor samples for shared and tumor=specific TE-eQTLs. 627 

  628 
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 629 

 630 

Figure 4 : Functional enrichment of eQTLs. (A) The ratio between TE-eQTL enrichment 631 

and gene-eQTL enrichment in log2 scale discovered in normal. 5 TFs show stronger 632 

enrichment for TE-eQTLs in normal compared to gene-eQTLs. (B) The ratio between TE-633 

eQTL enrichment and gene-eQTL enrichment in log2 scale discovered in tumor. We observed 634 

15 TFs to have a stronger enrichment for TE-eQTLs than gene-eQTLs in normal. (C) log2 ratio 635 

between tumor-specific TE-eQTL enrichment and shared TE eQTL enrichment.  We observe 636 

80 TFs with a stronger enrichment for the tumor-specific TE-eQTLs than the shared eQTLs 637 

indicating that these TFs regulate TE expression specifically in tumor. 638 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2021. ; https://doi.org/10.1101/2021.12.03.471093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471093
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

 639 

 640 

Figure 5: Causal relationship between eQTL variants, TEs and genes.  (A) Barplot 641 

representing the mean probability for each of the three models in normal and tumor. We 642 

observe significantly more causal cases in tumor compared to normal (Wilcox P-value < 2e-643 

16) (B) Barplot representing the model substitutions for the 9,714 tumor triplets from normal 644 

to tumor. Independent models tend to shift to a causal in tumor. This is true also for the reactive 645 

models in normal but to a much smaller extent. (C) Barplot representing the number of triplets 646 

that do not switch models, that switch to a causal model or that switch to reactive/independent 647 

from normal to tumor. The majority of triplets do not switch models between normal and tumor. 648 

However, 2,651 triplets are switching to a causal model making the corresponding TEs 649 

potential drivers of gene expression 650 

 (D) Each point represents a TE-gene for each of the 2,561 tumor triplets. All points 651 

aresignificant in tumor but not in normal (grey points). We observe that in most cases, TEs 652 
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are positively correlated with genes except for a few cases. Most cancer driver genes have no 653 

significant correlation with any TE in normal indicating that for most part, TEs impact them 654 

specifically in tumor.  655 

 656 

 657 

 658 

Figure 6: Tumor-specific and shared TE-eQTLs effects. (A) The barplot represent the 659 

frequency of the causal, reactive and independent model for the triplets with shared or tumor-660 

specific TE-eQTLs (B) the barplot represents the model changes from normal to tumor for the 661 

triplets constituted of shared or tumor-specific TE-eQTLs. (C) represent the effect size of the 662 

shared and tumor-specific TE-eQTLs. (D) Barplot that represent the number of tumor-specific 663 

TE-eQTLs that are inactive eQTLs for the triplet associated gene. 664 
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