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35, 16147, Genoa, Italy

bCNR-SPIN, Corso Perrone 24, 16152, Genoa, Italy
cDipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze
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Abstract

A classic approach to estimate the individual theta-to-alpha transition frequency

requires two electroencephalographic (EEG) recordings, one acquired in resting-

state condition and one showing an alpha de-synchronisation due e.g. to task

execution. This translates into longer recording sessions that my be cumbersome

in studies involving patients. Moreover, incomplete de-synchronisation of the

alpha rhythm may compromise the final estimation of the transition frequency.

Here we present transfreq, a Python library that allows the computation of the

transition frequency from resting-state data by clustering the spectral profiles

at different EEG channels based on their content in the alpha and theta bands.

We first provide an overview of the transfreq core algorithm and of the software

architecture. Then we demonstrate its feasibility and robustness across differ-

ent experimental setups on a publicly available EEG data set and on in-house

recordings. A detailed documentation of transfreq and the codes for reproducing

the analysis of the paper with the open-source data set are available online at

https://elisabettavallarino.github.io/transfreq/
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1. Introduction

The analysis of resting state EEG power spectra is a reliable and cheap tool

for studying both normal aging (Soininen et al., 1982; Babiloni et al., 2006)

and neurodegenerative brain diseases (Malek et al., 2017; Moretti et al., 2004;

Klassen et al., 2011). For example, there is evidence that the EEG power in5

the alpha band and in the slow-wave frequency bands (e.g. theta and delta)

shows a direct and an inverse correlation with cognitive performances, respec-

tively. This result has been exploited to support the discrimination of patients

affected by the most common neurodegenerative brain diseases from healthy

controls (Klimesch, 1999; Jaramillo-Jimenez et al., 2021; Özbek et al., 2021).10

However, such harmonic behaviors often present significant individual differ-

ences (Donoghue et al., 2020) and, moreover, alpha and theta bands, whose

power expresses opposite pathophysiological meanings, are contiguous. There-

fore, at the individual level the risk is consistent that part of the alpha power

band is included in the range of the theta power (i.e., 4-8 Hz), thus implying15

a wrong interpretation of its (patho)physiological meaning. Establishing the

theta-to-alpha transition frequency (TF) at an individual level is therefore of

paramount importance in order to avoid misinterpretation of quantitative EEG

(qEEG) data. The availability of a computational tool for the determination of

TF represents a crucial prerequisite for a meaningful usability of frequency-band20

power analysis for both research and clinical purposes.

The current standard for TF determination is represented by a more than

twenty years old study performed by Klimesch (1999). This approach relies on

the fact that event-related de-synchronisation induces a decrease of the alpha

power and an increase of the theta power of the event-related power spectrum,25

with respect to the power spectrum measured during resting state (Klimesch

et al., 1997). It immediately follows that theta-to-alpha TF can be determined

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.03.471064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471064
http://creativecommons.org/licenses/by-nc-nd/4.0/


by comparison between the task-related and the resting state power spectra.

The Klimesch’s approach has been successfully used in a number of papers

(Singh et al., 2015; Moretti et al., 2004, 2007; Saad et al., 2018). However, its30

main drawbacks are that (i) it needs the acquisition of two data sets, i.e. a

resting state and a event-related time series; and (ii) the task utilised for event-

related recording must induce changes in the power spectrum significant enough

to allow the identification of variations in the alpha and theta power.

The present study introduces transfreq, a publicly-available Python pack-35

age implementing a novel algorithm for the automated computation of TF from

theta to alpha band that works even when just resting-state EEG time series are

available. This computational approach relies on the determination of appropri-

ate features associated to the power spectrum measured at each channel, and on

the application of an unsupervised algorithm that automatically identifies two40

clusters of EEG sensors associated to the alpha and theta bands, respectively. In

transfreq we implemented four different strategies for selecting the sensor-level

features and the corresponding clustering algorithms (Saxena et al., 2017). The

workflow of these approaches is illustrated in the case of a test-bed example and

validated on both an open-source data set and time series recorded during an45

experiment performed in our lab. For most subjects in both data sets transfreq

estimate a value of TF close to that obtained by using the Klimesch’s method.

Additionally, we show some typical scenarios in which the classic Klimesch’s

method fails in capturing the correct TF while transfreq still returns plausible

estimates.50

2. Materials and methods

2.1. Klimesch’s method

A classic approach to compute theta-to-alpha TF is that proposed by Klimesch

and colleagues (Klimesch, 1999) and schematically depicted in Figure 1A. In de-

tail, the Kilmesch’s method requires two EEG recordings as input, one acquired

during a resting-state condition and one acquired while the subject is perform-
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ing a task. For both recordings and for each one of the N EEG sensors, the

power spectrum (Vallarino et al., 2020; Bendat and Piersol, 2011) of the corre-

sponding time series is computed and normalised by dividing for the norm over

all frequencies, i.e., we computed

P̃ taski (f) =
P taski (f)∑
f P

task
i (f)

and P̃ resti (f) =
P resti (f)∑
f P

rest
i (f)

, (1)

where P taski (f) and P resti (f) are the power spectra at frequency f of the signal

recorded by the i-th sensor during the task and the resting–state conditions,

respectively. Then, the mean over all the EEG channels of the normalised

power spectra in (1) is computed to obtain two spectral profiles, namely

Stask(f) =
1

N

N∑
i=1

P̃ taski (f) and Srest(f) =
1

N

N∑
i=1

P̃ resti (f) . (2)

The Klimesch’s method relies on the fact that Srest usually presents a peak

in the alpha band while, due to task-related alpha de-synchronisation, Stask

presents a lower intensity in the alpha band and a higher intensity in the theta55

band with respect to Srest (Klimesch, 1996; Klimesch et al., 1998; Schacter,

1977). TF is thus defined as the highest frequency before the individual alpha

peak (IAP) at which Stask and Srest intersect. Here, the IAP is defined as the

frequency in the range [7, 13] Hz at which Srest peaks (Babiloni et al., 2004).

2.2. Transfreq algorithm60

In this paper we introduce transfreq, a method to automatically compute the

TF from theta to alpha band when only resting-state EEG data are available.

Transfreq relies on a rationale similar to that of Klimesch’s method. Namely, TF

is defined as the intersection between two spectral profiles differing in their con-

tent within the alpha and theta bands. However, with respect to the Klimesch’s65

method, such profiles are computed by exploiting the fact that alpha and theta

activities are not uniformly expressed across the different EEG channels. In fact,

some channels present high alpha activity (typically, channels above the occipi-

tal lobe), whereas others show lower alpha and higher theta activities (typically,
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channels corresponding to temporal and frontal brain areas) (Klimesch, 1996;70

Nunez et al., 2001). Consequently, two groups of channels can be identified:

the first group includes channels characterized by a preponderant alpha activity

(this group plays a role analogous to the one of EEG data measured at rest

in Klimesch’s method); the second group includes channels showing preponder-

ant theta activity and limited alpha activity (this second group plays a role75

analogous to the one of the task-evoked EEG recordings in Klimesch’s method).

The transfreq pipeline is schematically illustrated by Figure 1B and Algo-

rithm 1. In detail, for each EEG channel the normalised power spectrum is

computed as in equation (1), that is

P̃i(f) =
Pi(f)∑
f Pi(f)

, ∀i ∈ {1, . . . , N}. (3)

TF is determined through the following iterative procedure.

(i) Set an initial value for the alpha and theta frequency-bands. Specifically,

the alpha frequency-band is identified as a 2 Hz range centred on the IAP,

which is defined as the frequency where the power spectrum averaged over80

all sensors peaks; the theta frequency-band is set equal to [5, 7] Hz, or to

[IAP − 3, IAP − 1] Hz if the previous interval overlaps with the alpha

frequency-band.

(ii) Compute, for each channel, the alpha and theta coefficients by averaging

the normalised power spectrum P̃i over the corresponding frequency band.85

(iii) Apply a clustering algorithm to identify two groups of channels based on

the alpha and theta coefficients. The channels in the first group, denoted

as Gθ, will be characterised by low alpha and high theta activities, while

the channels in the second group, Gα, will be characterised by high alpha

and low theta activities. Two spectral profiles are thus obtained through

a weighted average of the power spectra over the two groups, that is

Sθ(f) =
1∑

i∈Gθ
wθi

∑
i∈Gθ

wθi P̃i(f) and Sα(f) =
1∑

i∈Gα
wαi

∑
i∈Gα

wαi P̃i(f),

(4)
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where wθi and wαi are the theta and alpha coefficients for channel i, re-

spectively.

(iv) Define a first estimate of TF as the highest frequency before the IAP at

which Sθ and Sα intersect.

(v) Use the value of TF computed in (iv) to define new, more accurate, alpha90

and theta frequency bands, set equal to [max{IAP − 1, TF}, IAP + 1]

and [TF − 3, TF − 1], respectively. Such a choice guarantees the intervals

to be fully characterised by alpha and theta activation. Indeed, we chose

narrower bands with respect to the classic 4 Hz ranges defined in the

literature (Bazanova and Vernon, 2014; Klimesch, 1999) and we impose95

at least a 1 Hz separation between the intervals.

Steps (ii)-(v) are iterated until a desired level of accuracy is reached, quanti-

fied as the difference between two consecutive estimates of TF. The desired level

of accuracy is set equal to the highest value between 0.1 Hz and the frequency

resolution ∆f . The rationale behind this choice is that 0.1 Hz is an acceptable100

error when computing TF. However, if the frequency resolution is lower (i.e

∆f > 0.1 Hz), setting the desired level of accuracy to 0.1 Hz would be the same

as setting it to 0, which is a too strong requirement; therefore in such cases the

level of accuracy is set equal to the frequency resolution.

We point out that the effectiveness of transfreq depends on the clustering105

procedure used to define the two groups of channels Gθ and Gα. In transfreq we

have implemented four different algorithms, described in the next sub-sections.

2.2.1. Clustering method 1: 1D thresholding

The first clustering method implemented in transfreq is based on the ratio

between the alpha and theta coefficients computed for each channel. In fact,110

channels with a low value of such alpha-to-theta ratio are characterised by low

alpha and high theta activities, whereas channels with a high value are charac-

terised by high alpha and low theta activities. The first group of channels, Gθ,
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Figure 1: Comparison between the pipelines of the classic Kilmesch’s method (A) and of

transfreq (B).
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Algorithm 1 transfreq core algorithm

Input: Resting-state EEG data recorded by N sensors.

1: Compute and normalise sensors’ power spectra as in Eq. (3)

2: Initialise theta and alpha frequency bands

3: ε := |TFnew − TFold| = +∞

4: while ε ≥ toll do

5: Compute alpha and theta coefficients, wαi , wθi , i = 1, . . . , N .

6: Define channel groups, Gθ and Gα, through a clustering method

7: Update TF

8: Update ε

9: Update theta and alpha frequency bands.

is thus defined by the four channels showing the lowest values of the alpha-to-

theta ratio, while the second group, Gα, is defined by the four channels showing115

the highest values of the same ratio. A visual representation of this approach on

a representative data set can be seen in Figure 2A. In transfreq, the number of

channels in each group has been set equal to 4 after computing and visually in-

specting the results for different values of such a parameter. In fact, the overall

behaviour of the algorithm was similar across the different tested values.120

2.2.2. Clustering method 2: 1D mean-shift

One drawback of the previous approach is the need to heuristically set the

number of channels within the two groups Gα and Gθ. To overcome such a

limitation, we implemented a second clustering approach where the Mean Shift

algorithm (Comaniciu and Meer, 2002) is used to cluster the EEG sensors with125

respect to the ratio between the alpha and theta coefficients computed, for

each channel, as described in the previous sub-section. To this end we used the

MeanShift function available within the Python package Scikit Learn (Pedregosa

et al., 2011) that also automatically determines the number of clusters. Gθ is

then defined equal to the cluster containing the channel with the lowest value130

of the alpha-to-theta ratio, while Gα is set equal to the cluster containing the
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channel with the highest value of the same ratio. A visual representation of this

approach on a representative data set can be seen in Figure 2B.
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Figure 2: Performance illustration of the 1D clustering approaches thresholding (A) and

mean-shift (B). Both panels show the value of the ratio between alpha and theta coefficients

as function of the EEG sensors. Channels that belong to Gθ and Gα are represented as blue

and orange dots, respectively. In transfreq, the remaining channels (greed dots) are excluded

from the subsequent analysis.

2.2.3. Clustering method 3: 2D k-means

Both approaches described in the previous sub-sections rely on 1-dimensional135

clustering techniques that use the ratio between the alpha and theta coefficients

as feature. In the third approach implemented in transfreq we exploited the

k-means algorithm (Lloyd, 1982) to cluster the EEG sensors by using the alpha

and theta coefficients as two distinct features. To this end, we used the KMeans

function within the Python package Scikit Learn (Pedregosa et al., 2011). The140

number of clusters to generate is set equal to 2. Then Gα is defined as the

cluster whose centroid shows the highest value of the alpha coefficient, while

the other cluster defines Gθ. As illustrated in Figure 3A, channels belonging to
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Gα (orange dots) typically present a higher alpha coefficient and a lower theta

coefficient than the other ones (blue dots).145

2.2.4. Clustering method 4: 2D adjusted k-means

The fourth clustering approach implemented in transfreq takes as input the

two sensors groups, Gα and Gθ, computed using the k-means algorithm as

described in the previous sub-section. However, the two groups are now adjusted

so that only sensors showing the highest inter-cluster difference in terms of the150

alpha and theta coefficient values are retained. To this end, as illustrated in

Figure 3B, we removed from Gα and Gθ all points laying between the two lines

that pass through the centroids and are perpendicular to the segment connecting

the two centroids.
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Figure 3: Performance illustration of the 2D clustering approaches k-means (A) and adjusted

k-means (B). Both panels show the value of the theta coefficients on the y-axis and that of the

alpha coefficients on the x-axis. Channels that belong to Gθ and Gα are represented as blue

and orange dots, respectively. In transfreq, the remaining channels (green dots) are excluded

from the subsequent analysis.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.03.471064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471064
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3. Software architecture155

The approach described in the previous section is implemented in the pub-

licly available Python library transfreq (https://elisabettavallarino.github.

io/transfreq/). As shown in Table 1, transfreq comprises two modules: a set

of three operative functions, that allow the estimation of TF either with the

classic Klimesch’s method or with our approach, and a set of six functions to160

visualise the results.

2.3.1. Module 1: operative functions

All the operative functions require in input the power spectra of the recorded

EEG data. These power spectra have to be provided as matrices of size N ×F ,

where N is the number of EEG sensors and F is the number of frequencies in165

which the power spectra are evaluated.

The function compute transfreq implements the iterative procedure described

in Algorithm 1. Customised estimation of the transition frequency may be ob-

tained through the function compute transfreq manual by providing two prede-

fined groups of channels Gα and Gθ. In this case, TF is computed by looking at170

the intersections between the corresponding spectral profiles Sα and Sθ. Both

functions return a dedicated dictionary, called tfbox in Table 1, that contains:

(i) the results of the clustering procedure, together with the alpha and theta

coefficients, wαi and wθi , associated to each one of the sensors; (ii) the name of

the employed algorithm; (iii) the estimated value of TF.175

In order to provide an exhaustive toolbox for computing the theta-to-alpha

TF we also implemented a function for the computation of TF with Klimesch’s

method. Such a function is named compute transfreq Klimesch and only returns

the estimated value of TF.

2.3.2. Module 2: visualisation functions180

As shown in Table 1, transfreq offers the users two functions to visualise

features of the data provided in input, namely the normalised EEG power spec-

trum (function plot psds) and the corresponding alpha and theta coefficients
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(function plot coefficients).

Three other functions allow the user to visualise results from each step of our185

approach, that is: (i) the alpha and theta coefficients grouped according to the

results of the clustering procedure (function plot clusters); (ii) the corresponding

channels group Gα and Gθ located on top of topographical maps (function

plot channels); (iii) the final estimated value of TF on top of the spectral profiles

Sα and Sθ (function plot transfreq). The function plot channels makes use of190

the Python package visbrain (Combrisson et al., 2019), and, in particular, we

modified its function TopoObj to optimise it to our visualisation purpose.

Eventually, the function plot transfreq klimesch is dedicated to plot the value

of TF estimated using the classic Klimesch’s method.

Module 1: Operative functions

Name Description Input

compute transfreq Computation of TF rest PS

compute transfreq manual Computation of TF (customised clusters) rest PS; Gα; Gθ

compute transfreq klimesch Computation of TF (Klimesch’s method) rest PS; task PS

Module 2: Visualisation functions

Name Description Input

plot psds Normalised PS power spectrum rest/task PS

plot coefficients α and θ coefficients or their ratio rest/task PS

plot clusters Computed clusters tfbox

plot channels Gα and Gθ on scalp tfbox; channel locations

plot transfreq TF on top of Sα and Sθ rest PS; tfbox

plot transfreq klimesch TF on top of Srest and Stask rest and task PS; TF value

Table 1: Functions implemented within transfreq. The table provides the name of each func-

tion (first column), a short description of their purpose (second column), and the required

input variables (third column). Here, rest PS and task PS stand for resting state and task-

related EEG power spectrum, respectively; tfbox is a dedicated dictionary output of the

operative functions. For some of the functions, an additional set of optional arguments may

be passed by the user, such as predefined alpha and theta frequency-band, or the clustering

approach to be used for defining Gα and Gθ. The full list of these additional parameters may

be found in the package documentation.
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2.4. Data195

We validated transfreq by using two EEG data sets. The first one is an

open-source data set, while the second one is an in-house data set we recorded

in our lab. We used two different data sets to test the robustness of transfreq

across data recorded in different experimental conditions.

2.4.1. Open-source data set200

This data set contains EEG data available at OpenNeuro, a free and open

platform for sharing neurophysiological data (Gorgolewski et al., 2017), at the

accession number ds003490 (data set DOI doi:10.18112/openneuro.ds003490.

v1.1.0). Data comprise both resting state and stimulus auditory oddball EEG

recordings, sampled at 500 Hz, from 25 Parkinson’s patients and 25 matched205

controls. For Parkinson’s patients, two sessions are available, while for healthy

controls one session is available. More information about this data set can be

found in the paper by Cavanagh et al. (2018). For each subject and for each

session we selected two minutes of recording under stimulation, and one minute

resting state eyes-closed recording.210

2.4.2. In-house data set for validation

This data set included 80 traces acquired during a previous multicenter

study, namely the Innovative Medicines Initiative PharmaCog project: a Eu-

ropean ADNI study (Galluzzi et al., 2016). This study aimed at investigating

multiple biomarkers in a population with amnesic mild cognitive impairment215

(MCI), by following subjects for three years or until conversion to dementia.

EEG was repeatedly acquired every 6 months; thus the 80 traces refer to 16

subjects undergoing EEG from one to 7 times. The 16 subjects (8 males, 8

females, age range 55-82 years, mean: 70±6 years; mini-mental state examina-

tion score range at first evaluation: 23-30, mean: 26.5±2.13) included 11 who220

converted to Alzheimer disease dementia during the follow-up, 2 subjects who

convert to frontotemporal dementia, and 3 subjects who remained in an MCI

stage or even reverted to a normal condition.
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For the analysis we selected two and a half minutes of resting state eyes-closed

recording and two and a half minutes of resting-state eyes-opened recording,225

where data showed a de-synchronisation of the alpha rhythm (Gómez-Ramı́rez

et al., 2017). Both data were recorded with a sampling frequency of 512 Hz.

2.5. Data analysis

The recorded time series from both data sets were first pre-processed using

the MNE-Python analysis package (Gramfort et al., 2013). For each subject230

and for each condition, the EEG recording was filtered between 2 and 50 Hz,

while bad segments were manually removed and bad channels were interpolated.

Then, data were re-referenced using average reference (Offner, 1950) and Inde-

pentend Component Analysis (ICA) (Jutten and Herault, 1991) was applied

for artefact and noise removal. Remaining bad segments were automatically235

rejected by using the autoreject Python package (Jas et al., 2017). Finally, the

pre-processed EEG recordings were visually inspected by experts and discarded

when they did not present a visible alpha peak. In this way, in the open-source

data set we excluded the first session of four subjects and both sessions of one

subject. In the in-house data set all sessions involving four subjects were ex-240

cluded from the analysis.

Power spectra were computed in the 2-30 Hz range with the multitapers

method (Thomson, 1982). With such a method the frequency resolution of the

power spectra depends on the time resolution and duration of the EEG record-

ings. In order to apply the Klimesch’s method, the spectral profiles under the245

two conditions (rest and task) need to have the same frequency resolution. To

this end the length of both recordings was set equal to the length of the shortest

one. Average duration of the EEG recordings from the open source data set was

58 s, while average duration of the EEG recordings from the in-house data set

was 134 s. Afterwards, TF was computed using both the Klimesch’s method and250

transfreq. Finally, the results obtained with Klimesch’s method were visually

inspected by experts and excluded when the method did not provide reliable

results. Exclusion criteria comprised cases in which the two spectral profiles did
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not intersect as well as cases in which the two spectral profiles overlapped. This

process led to the exclusion of 19 EEG recordings from the open-source data255

set and 14 EEG recordings from the in-house data set. Therefore, the analysis

to validate transfreq was performed on a total of 50 EEG recordings from the

open-source data set and 45 from the in-house data set.

3. Results

3.1. Transfreq performances on an illustrative example.260

We first tested the performances of transfreq when applied to an illustrative

example picked up from the open-source database. Figure 4 and Figure 5 show

the results provided by the tool when the four different clustering algorithms

were applied. For all algorithms, the resulting Gα mainly contained channels

that lie over the occipital lobe and showed a higher alpha activity than the265

channels in Gθ.

When 1D thresholding is used, both Gα and Gθ contain a pre-defined number

of sensors (4 in this case). Instead, the other methods automatically estimate

the size of Gθ and Gα, and thus the two groups may contain a different number

of channels.270

While with the 2D k-means Gα and Gθ span all the EEG channels, the

2D adjusted k-means starts from the two groups defined by using k-means and

selects only the channels showing a high inter-cluster difference. Specifically,

as illustrated in Figure 5, the channels in Gα (Gθ) showed both a high alpha

(theta) activity and a low theta (alpha) activity.275

Depending on the selected clustering approach, transfreq may return differ-

ent estimates for TF, as illustrated in Figure 6. With this subject, the value of

TF estimated by the Klimesch’s method was 7.29 Hz, while transfreq returned

7.38 Hz with 1D thresholding, 7.39 Hz with 1D mean-shift, 7.22 Hz with 2D

k-means, and 7.19 Hz with 2D adjusted k-means.280
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3.2. Validation on the open-source data set

As illustrated in Figure 7, for most subjects in the open-source data set, the

difference ∆TF between the TF value estimated by transfreq and by Klimesch’s

method was in absolute value below 1 Hz. Specifically, |∆TF | was lower than 1

Hz for 82% of the subjects when 1D thresholding was employed for clustering,285

76% in the case of 1D mean-shift, 82% for 2D k-means, and 88% for 2D adjusted

k-means. Figure 7 also shows that transfreq mainly estimated a lower value of

TF than Klimesch’s method. Since the lowest values of |∆TF | were obtained

by clustering the EEG channels by means of the 2D adjusted k-means method,

this is suggested as the default approach within transfreq.290

3.3. Improvements of transfreq over the Klimesch’s method

Klimesch’s method relies on an event-related reduction of the alpha activity

that may not occur in practical scenarios due, for example, to an incorrect

execution of the task. Indeed, as shown in Figure 8, for some of the subjects in

the considered data sets the spectral profiles Stask and Srest perfectly overlapped295

and thus Klimesch’s method failed in computing TF.

On the other hand, some subjects may show an event-related modulation of

the alpha frequency (Haegens et al., 2014). As represented in Figure 9, in this

case the shift of the alpha peak in Stask prevented the use of Klimesch’s method

because the two spectral profiles Stask and Srest did not intersect in the range300

[0, 10] Hz.

Transfreq overcomes such limitations of Klimesch’s method, since it utilises

just resting state recordings, and relies on the selection of specific channels that

actually present the desired features, i.e. channels with a low (high) alpha and

a high (low) theta activity for Gθ (Gα). Indeed, as shown in Figures 8 and305

9, right panels, in both scenarios previously described transfreq estimated a

reliable value for TF. More in general, a visual inspection of the results revealed

that Klimesch’s method provided an untrustworthy value of TF for 27% of the

EEG sessions of the open-source data set, while with transfreq only 6% of the

results were unreliable.310
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3.4. Validation on the in-house data set

Figure 10 shows that the results obtained by applying transfreq on the in-

house data set are similar to those obtained on the open-source one. Specifically,

transfreq generally returned higher estimates of TF with respect to Klimesch’s

method. However, the absolute value of the difference between the values esti-315

mated with the two methods was below 1 Hz for 67% of the subject when 1D

thresholding was applied, 58% with 1D mean-shift, 73% with 2D k-means, and

62% with 2D adjusted k-means.

3.5. Proportional bias in estimating TF

We performed a Bland-Altman analysis (Bland and Altman, 1986) to assess320

proportional bias in the estimates of TF. Figure 11 shows the analysis for the

open-source (panel A) and the in-house data sets (panel B), computed on the

TF values provided by transfreq with adjusted k-means. With the open source

data set no proportional bias was present; to confirm this, we computed a

regression line and the p-value (null hypothesis: slope equal to zero). Differently,325

the results with the in-house data set showed a statistically significant (p <

0.001) proportional bias. Specifically, Figure 11B shows that transfreq tends to

overestimate TF at higher frequencies (> 8 Hz).

4. Discussion

A classic approach to compute the theta-to-alpha TF is that proposed by330

Klimesch and colleagues (Klimesch, 1999), which requires the power spectrum

of two EEG time series, one recorded while the subject is resting and one while

the subject is performing a task. However, in studies involving e.g. patients af-

fected by neurodegenerative diseases, the subject may experiment difficulties in

performing the required task and thus the corresponding event-related recording335

may imply difficult interpretation. On the contrary, transfreq uses only resting

state data, which reduces the information at disposal but increases the scenario

in which transfreq can be applied.
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By comparing with the results obtained with the classic Klimesch’s method

on two independent data sets, we demonstrated that transfreq returns reliable340

estimates of TF. Indeed, with the best combination of input parameters, the

absolute value of the difference between the value of TF estimated with transfreq

and with Klimesch’s method was below 1 Hz for 88% of the analysed data in

the open-source data set, and for 73% for our in-house data set (throughout this

paper Klimesch’s method was assumed as ground truth). The differences in the345

performance over the two data sets may be partially due to the noisier nature

of the in-house data set. Moreover, a visual inspection of the estimated values

of TF showed that the cases in which the spectral profiles, Sθ and Sα, obtained

with transfreq intersected ambiguously were considerably less than the cases in

which the hypothesis of Klimesch’s method on Stask and Srest failed.350

Among the four approaches implemented in transfreq to realise the clustering

step, the adjusted k-means showed the best performances in the open-source

data set while in the in-house data set the k-means algorithm performed the

best. This is probably due to the fact that these algorithms realise a more

accurate selection of the sensors within the two groups Gθ and Gα.355

However, all four approaches tend to overestimate the value of TF with

respect to Klimesch’s method. Specifically, the Band-Altman analysis for the

in-house data set show that this behaviour seems to be more pronounced for

higher values of TF (> 8 Hz). This difference between transfreq and Klimesch’s

method is probably related to the fact that only resting-state data are used in360

transfreq ; as a consequence also channels in Gθ may present a fingerprint of the

alpha activity.

The two data sets considered in this paper are EEG data. Future studies

may be devoted to investigate a possible extension to MEG data.

Finally, future efforts will be devoted to better compare transfreq and the365

classic Klimesch’s method, especially in those scenarios where they return dif-

ferent estimates of TF. To this end, future studies will be devoted to correlate

both Klimesch’s and transfreq ’s results with clinical variables and biomarkers.
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5. Conclusions

This paper introduces transfreq, an open-source Python tool for the com-370

putation of the individual transition frequency from theta to alpha band using

only one resting-state EEG recording. The reliability of the obtained estimates

was demonstrated by comparing the results of transfreq with those of the classic

Klimesch’s method on two different data sets, one of which is publicly available.
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A

B

Figure 4: Location on the scalp of channels in Gθ (left column) and Gα (right column) for one

representative subject from the open-source data set. Sensors have been clustered by using 1D

thresholding (upper row) or 1D mean-shift (lower row). In each panel, red dots represent the

selected channels and, in the background, the topographical map shows the value of the ratio

between alpha and theta coefficients. For the sensors in Gθ, the size of the dots is proportional

to the corresponding theta coefficient, wθi , while for those in Gα the size is proportional to

the alpha coefficient, wαi .
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A

B

Figure 5: Location on the scalp of channels in Gθ (left column) and Gα (right column) for one

representative subject from the open-source data set. Sensors have been clustered by using

2D k-means (upper row) or 2D adjusted k-means (lower row). As in Figure 4, the red dots

depict the selected channels. In the two panels on the left side, referring to Gθ, the size of the

sensors and the background topographical maps represent the theta coefficient, wθi . Instead,

the two panels on the right side, referring to, Gα, show the alpha coefficients wαi .
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Figure 6: TFs estimated with Klimesch’s method and with transfreq by means of the four

clustering methods for one representative subject from the open-source data set. In each

panel: the blue line depicts the spectral profile with low alpha and high theta activation,

namely Stask in Klimesch’s method and Sθ in transfreq; the orange line shows the spectral

profile with high alpha and low theta activation, namely Srest in Klimesch’s method and Sα

in transfreq; the red vertical line indicates the estimated value of TF.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.03.471064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471064
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 2 3 4
Clustering method

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

TF
TF

Kl
im

es
ch

TF
tr

an
sf

re
q [

Hz
]

Figure 7: Difference between TFs estimated with Klimesch’s method (TFKlimesch) and with

transfreq (TFtransfreq) over the open-source data set. Each boxplot depicts the results ob-

tained when a different clustering approach is used to define the channels group Gθ and Gα,

namely: 1D thresholding (Method 1); 1D mean-shift (Method 2); 2D k-means (Method 3);

and 2D adjusted k-means (Method 4).
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Figure 8: Example where Klimesch’s method provides unreliable estimate of TF because event-

related, Stask, and resting-state, Srest, spectral profiles overlap. (A) Results obtained with

the Klimesch’s method. (B) Results obtained with transfreq by using 2D adjusted k-means

to compute the spectral profiles Sθ and Sα
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Figure 9: Example where Klimesch’s method cannot be applied because event-related, Stask,

and resting-state, Srest, spectral profiles do not intersect in a reasonable frequency range.

(A) Results obtained with the Klimesch’s method. An event-related shift of the alpha–peak

towards higher frequency can be seen in Stask. (B) Results obtained with transfreq by using

2D adjusted k-means to compute the spectral profiles Sθ and Sα
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Figure 10: Difference between TFs estimated with Klimesch’s method (TFKlimesch) and with

transfreq (TFtransfreq) over the in-house data set. As in Figure 7 each boxplot depicts the

results obtained when a different clustering approach is used to define Gθ and Gα, namely:

1D thresholding (Method 1); 1D mean-shift (Method 2); 2D k-means (Method 3); and 2D

adjusted k-means (Method 4).

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.03.471064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471064
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 6 7 8 9 10
M (TFKlimesch + TFtransfreq)/2 [Hz]

1.5

1.0

0.5

0.0

0.5

1.0

TF
TF

Kl
im

es
ch

TF
tr

an
sf

re
q [

Hz
]

mean diff:
-0.31

-SD1.96: -1.42

+SD1.96: 0.8

y=-0.038x+-0.041
R2=0.006
pval=0.602

Open-source data set

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
M (TFKlimesch + TFtransfreq)/2 [Hz]

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

TF
TF

Kl
im

es
ch

TF
tr

an
sf

re
q [

Hz
]

mean diff:
-0.61

-SD1.96: -2.09

+SD1.96: 0.86

y=-0.657x+4.53
R2=0.485
pval<10 3

In-house data setA B

Figure 11: Bland-Altman plot between Klimesch’s method and transfreq with 2D adjusted

k-means for the open-source (A) and the in-house (B) data sets. Grey plain and dotted lines

show mean bias and corresponding 95% confidence limits, respectively. Proportional bias

regression lines are depicted as blue lines, and the corresponding equations are embedded in

the lower-left corner of each panel together with the coefficient of determination (R2) and the

p-value (pval) computed testing the null hypothesis that the slope is equal to zero.
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