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An approximately linear relationship between the fraction of ribosomal proteins in the proteome
(φR) and the growth rate (µ) holds in proliferating cells when the nutrient quality changes, often
referred to as a growth law. While a simple model assuming a constant translation speed of ribo-
somes without protein degradation can rationalize this growth law, real protein synthesis processes
are more complex. This work proposes a general theoretical framework of protein synthesis, taking
account of heterogeneous translation speeds among proteins and finite protein degradation. We
introduce ribosome allocations as the fraction of active ribosomes producing certain proteins, with
two correlation coefficients respectively quantifying the correlation between translation speeds and
ribosome allocations, and between protein degradation rates and mass fractions. We prove that the
growth law curve generally follows φR = (µ + c1)/(c2µ + c3) where c1, c2, and c3 are constants
depending on the above correlation coefficients and the translation speed of ribosomal proteins.
Our theoretical predictions of φR agree with existing data of Saccharomyces cerevisiae. We demon-
strate that when different environments share similar correlation coefficients, the growth law curve
is universal and up-bent relative to a linear line in slow-growth conditions, which appears valid for
Escherichia coli. However, the growth law curve is non-universal and environmental-specific when
the environments have significantly different correlation coefficients. Our theories allow us to es-
timate the translation speeds of ribosomal and non-ribosomal proteins based on the experimental
growth law curves.

Cells can adapt to different environments and alter the6

expression levels of multiple genes correspondingly. The7

genome-wide gene expression profile can change signif-8

icantly as cells switch between different environments.9

However, proliferating cells, including bacteria and uni-10

cellular eukaryotes, exhibit a simple growth law as the nu-11

trient quality changes: an approximately linear relation12

exists between the fraction of ribosomal proteins in the13

proteome (φR) and the growth rates (µ), φR = µ/κ+ φ014

[1–6]. This growth law can be rationalized by a sim-15

ple translation model (STM): ribosomes are engaged in16

translation with a constant translation speed that is pro-17

portional to κ [2, 4]. φ0 represents the fraction of inactive18

ribosomes that are not producing proteins, independent19

of environments in the STM. While the STM is simple20

and intuitive, it appears to break down in slow-growth21

conditions of Escherichia coli (doubling time longer than22

60 mins at 37°C) in which more ribosomes are produced23

than the expectation from the STM [7].24

We note that there are two important biological fea-25

tures (if not all) beyond the STM, which, as we show in26

this work, are crucial to interpret the experimental data27

of φR versus µ (the growth law curve). The first is the28

heterogeneous translation speeds of ribosomes produc-29

ing different proteins. Recent studies demonstrated that30

the translation speeds are highly heterogeneous among31

different proteins due to multiple mechanisms, including32

codon usages [8] and amino acid compositions [9]. Be-33

cause of the universalities of these mechanisms, one ex-34

pects that heterogeneous translation speeds among pro-35

teins are universal across different organisms. In par-36

ticular, the translation speeds of ribosomal proteins are37

significantly slower than the average translation speed38

over non-ribosomal proteins due to the abundance of39

positively charged amino acids on ribosomal proteins [9].40

Nowadays, the ribosome profiling technique allows us to41

quantify the allocation of ribosomes towards the produc-42

tion of different proteins. These experimental techniques43

enable us to rethink the growth law in the presence of44

heterogeneity in translation speeds [9].45

The second feature is finite protein degradation rates.46

The STM neglects protein degradation and predicts that47

at zero growth rate, φR = φ0 so that all ribosomes are48

inactive. However, this contradicts with experiments of49

nongrowing bacteria in which significant translation ac-50

tivities are observed [10]. Protein degradation must be51

considered at zero growth rate to balance protein pro-52

duction to ensure a constant protein mass. Therefore,53

protein degradation should be important to the growth54

law, at least in slow-growth conditions.55

In this work, we show that the heterogeneous transla-56

tion speeds and finite protein degradations significantly57

influence the growth law connecting the fraction of ri-58

bosomal proteins and the growth rate when the nutrient59

quality changes. The fractions of ribosomal proteins φR60

are generally different in different environments, even if61

they lead to the same growth rates. Besides the growth62

rate, φR depends on two correlation coefficients among63

proteins. One is between the translation speeds and ribo-64

some allocations, and the other is between the correlation65

coefficient between protein degradation rates and mass66

fractions. We compute the above correlation coefficients67

using proteomics and ribosomal profiling datasets of S.68

cerevisiae [11]. Interestingly, we find that the correlation69
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FIG. 1. Given a constant environment, cells actively allocate different fractions of active ribosomes (χi) to translate mRNAs
corresponding to different proteins. In general, the translation speeds ki are heterogeneous among proteins. αi is the degradation
rate of protein i. χi, ki and αi together determine the mass fraction of protein i. The ribosome allocation strategies reflect the
adaption of cells to different environments. In this schematic, we show three proteins for simplicity.

between the translation speed and ribosome allocations70

become stronger when the growth rate decreases; namely,71

cells tend to produce more proteins with higher transla-72

tion speeds in poor nutrient. In contrast, the correlation73

between the protein degradation rates and mass fractions74

is almost independent of growth rates.75

We derive the general form of growth law involving76

the above correlations. We demonstrate that for envi-77

ronments with similar correlation coefficients, the growth78

law curve is universal and has the following form, φR =79

(µ + c1)/(c2µ + c3) where c1, c2, and c3 are constants80

depending on the above correlation coefficients and the81

translation speed of ribosomal proteins. We prove that82

the growth law curve must be monotonically increasing83

and convex, which justifies the upward bending of the84

growth law curve of E. coli observed in slow-growth con-85

ditions relative to a linear line [7]. However, if the exper-86

iments are implemented in multiple environments with87

dramatically different correlation coefficients, the growth88

law curve is generally non-universal and environmental-89

specific. Our analysis of experimental data suggests that90

this scenario may apply to S. cerevisiae. Our theories al-91

low us to fit the experimentally measured growth law92

curves by our model predictions, from which we can93

estimate the translation speed of ribosomal and non-94

ribosomal proteins. Consistent with direct experimen-95

tal measurements [9], the estimated translation speed96

of ribosomal proteins is indeed much slower than non-97

ribosomal proteins.98

RESULTS99

Model of protein synthesis100

Given a constant environment, we consider a popula-101

tion of cells with a constant growth rate, and the protein102

synthesis processes are in a steady state. Ribosome pro-103

filing allows us to quantify the fraction of ribosomes in104

the pool of total active ribosomes producing protein i,105

which we call ribosome allocation χi. Here the index106

i represents one particular protein i. Mass spectrome-107

try also allows us to measure the mass fractions φi of108

all proteins in the proteome [12]. The elongation rate109

of ribosomes on the corresponding mRNAs is vi, which110

is the number of translated amino acids per unit time.111

Note that vi is the averaged elongation rate over the se-112

quence of the corresponding mRNA so that each protein113

has one vi. We also assume that protein i degrades with114

a constant rate αi. The mass production rate of protein115

i becomes116

dMi

dt
= viaiχi(R−R0)− αiMi. (1)

Here R is the number of ribosomes, and R0 is the number117

of inactive ribosomes. ai is the averaged mass of amino118

acids over the sequence of protein i. In the following anal-119

ysis, we define ki = viai as the amino acid mass-weighted120

translation speed and denote it as the translation speed121

for simplicity. Our model is summarized in Figure 1.122

Recently, Dai et al. showed that for E. coli the trans-123

lation speeds of many proteins decrease as the growth124

rate decreases, but maintain finite values at zero growth125
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rate [7]. They proposed a model in which the translation126

speeds are the same for all proteins and depend on the127

ribosomal fraction φR in a Michaelis-Menten way, consis-128

tent with their experimental data. However, their model129

predicts a downward bending of the growth law curve130

in slow-growth conditions relative to a linear line, in con-131

trast to the upward bending observed experimentally. To132

reconcile the conflict, they proposed that the fraction of133

inactive ribosomes φ0 increases as the growth rate de-134

creases, generating the upward bending of the growth135

law curve. However, as far as we know, there is no di-136

rect experimental evidence supporting a larger fraction of137

inactive ribosomes φ0 in slow-growth conditions than in138

fast-growth conditions. Interestingly, no noticeable bend-139

ing is observed in the growth law curve of S. cerevisiae140

[6], suggesting that the upward bending of the growth141

law curve in slow-growth conditions may not be universal142

across organisms, consistent with our theoretical predic-143

tions as we show later.144

We remark that a growth-rate dependent translation145

speed is undoubtedly a mechanism that the STM breaks146

down. However, in this work, we focus on the effects of147

heterogeneous translation speeds ki and finite degrada-148

tion rates αi. Therefore, we assume them to be invariant149

of environments. We also mainly consider the effects of150

nutrient quality and do not consider the impact of an-151

tibiotics in this work, which can decrease the overall ef-152

fective translation speed and increase φR as the growth153

rate decreases [4]. Thanks to the simplicity of our pro-154

tein synthesis model, it can be analytically solved, and155

the predictions are intriguing as we show later.156

We define the total protein mass M =
∑
iMi, and the157

protein mass fraction φi = Mi/M . Using Eq. (1), we158

find the values of φi in the steady state as (see detailed159

derivations in Appendix A)160

φi =
kiχi(φR − φ0)

mR(µ+ αi)
. (2)

Here µ is the growth rate of the total protein mass161

µ = Ṁ/M , and mR is the total amino acid mass of a162

single ribosome. Since all proteins grow in the same rate163

in the steady-state, the growth rates of protein i defined164

as µi = Ṁi/Mi = kiχi(φR − φ0)/(mRφi) − αi must be165

equal to µ, which can be easily verified using Eq. (2). In166

the following, i = 1 is reserved for ribosomal proteins so167

that φ1 = φR and µ1 = µR = kRχR(1−φ0/φR)/mR−αR.168

Here, kR and αR are the effective translation speed, and169

degradation rate of the coarse-grained ribosomal protein170

averaged over all ribosomal proteins. They are approxi-171

mately independent of environments due to the tight reg-172

ulation of relative doses of different ribosomal proteins173

[13] and their generally low degradation rates.174

Given the ribosome allocations χi, the protein degra-175

dation rates αi and the translation speeds ki, one obtains176

a unique solution of φi and µ. We can express the growth177

rate as µ =
∑
i φiµi and rewrite Eq. (2) to obtain the178

expression of φR as (see detailed derivations in Appendix179

B)180

φR =
mR(µ+

∑
i αiφi)∑

i kiχi
+ φ0. (3)

Here, φ0 is the mass fraction of inactive ribosomes, which181

we assume to be constant in the following. It is easy to182

find that if all proteins have the same translation speed183

(ki = k for all i) and protein degradations are negligible184

(αi = 0), Eq. (3) is reduced to the STM result.185

Effects of heterogeneous translation speeds186

To better understand the effects of heterogeneous187

translation speeds and degradation rates, we choose to188

study them separately. Therefore, we first simplify the189

model by taking αi = 0 for all proteins and only con-190

sider the effects of heterogeneous translation speeds ki.191

We rewrite
∑
i kiχi = kRχR + (1 − χR)

∑N
i=2 kiχ̃i in192

Eq. (3). Here, N is the number of genes and χi =193

(1 − χR)χ̃i so that
∑N
i=2 χ̃i = 1. kR is the translation194

speed of ribosomal proteins. In the following, we define195

〈k〉χ =
∑N
i=2 kiχ̃i as the χ-weighted average translation196

speed over all non-ribosomal proteins. As we derive in197

Appendix C, the fraction of ribosomal proteins can be198

written exactly as a Hill function of the growth rate:199

φR =
µ

aµ+ b
+ φ0, (4)

where

a =
kR − 〈k〉χ

kR(1− φ0) + 〈k〉χφ0
, (5)

b =
kR〈k〉χ

mR[kR(1− φ0) + 〈k〉χφ0)]
. (6)

We are particularly interested in the sign of a because it200

determines the shape of the φR(µ) curve. If kR is smaller201

than 〈k〉χ, a is negative so that the second derivative of202

the φR(µ) curve is positive. In other words, the φR(µ)203

curve is upward bent in slow-growth conditions.204

〈k〉χ depends on both the elongation speeds ki and the205

ribosome allocations χi. To find its value, we further206

rewrite 〈k〉χ = 〈k〉(1 + Iχ,k). Here 〈k〉 is the arithmetic207

average of translation speeds over all non-ribosomal pro-208

teins, which is constant and independent of environ-209

ments. Iχ,k is a metric we use to quantify the correla-210

tion between the ribosome allocations and the translation211

speeds:212

Iχ,k =
〈χ̃iki〉 − 〈χ̃i〉〈k〉
〈χ̃i〉〈k〉

. (7)

Here, the bracket represents an average over all non-213

ribosomal proteins. Because the ribosomal allocations χi214
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FIG. 2. Numerical simulations of the growth law curves. (a) We simulate the case of heterogeneous translation speeds and
compare our numerical simulations with model predictions (dashed lines). Each data point has its own randomly sampled χi
and we show the results with preselected Iχ,k values. The red dash line represents the predictions of the STM in which all
proteins have the same translation speed 〈k〉. (b) Same analysis in which we simulate the case of finite protein degradation
rates.

are generally different in different environments, we use215

Iχ,k to characterize an environment. Imagine that we216

grow cells in multiple environments with equal Iχ,k. We217

find that as long as Iχ,k is not too close to −1, which we218

confirm later using experimental data, a is always nega-219

tive since the translation speed of ribosomal proteins kR220

is much lower than 〈k〉 [9]. Therefore, Eq. (4) predicts221

an upward bending of the φR(µ) curve in slow-growth222

conditions.223

We verify the above theoretical predictions by numer-224

ically simulating the model of protein synthesis (Ap-225

pendix E). The translation speeds are randomly sam-226

pled among proteins and fixed for all environments, with227

kR < 〈k〉. We randomly sample χi for each environment228

and compute the resulting growth rate µ and protein229

mass fractions φi. We show the results from environ-230

ments with preselected Iχ,k, which agree well with the231

theoretical formula Eq. (4) (Figure 2a).232

Effects of finite protein degradation rates233

We now discuss the effects of finite protein degrada-234

tion rates. For simplicity, we assume that the transla-235

tion speeds are homogeneous and equal to k for all pro-236

teins. We rewrite the
∑
i αiφi term in Eq. (3) such237

that
∑
i αiφi = αRφR + (1 − φR)

∑N
i=2 αiφ̃i. Here,238

φi = (1 − φR)φ̃i so that
∑N
i=2 φ̃i = 1. We define239

the φ−averaged degradation rates over all non-ribosomal240

proteins as 〈α〉φ =
∑N
i=2 αiφ̃i. Therefore, Eq. (3) can be241

written as242

φR =
µ+ c

k/mR + d
+ φ0. (8)

where

c = 〈α〉φ(1− φ0) + αRφ0, (9)

d = 〈α〉φ − αR. (10)

To find the sign of d, we further rewrite 〈α〉φ as 〈α〉φ =243

〈α〉(1+Iφ,α) where 〈α〉 is the arithmetic average of degra-244

dation rates over all non-ribosomal proteins. Iφ,α is a245

metric we use to characterize an environment by quanti-246

fying the correlation between the protein mass fractions247

and degradation rates:248

Iφ,α =
〈φ̃iαi〉 − 〈φ̃i〉〈α〉
〈φ̃i〉〈α〉

. (11)

Here, the bracket represents an average over all non-249

ribosomal proteins.250

Imagine that we grow cells in multiple environments251

with equal Iφ,α. We assume that the degradation rate252

of ribosomal protein αR is slower than the average of253

non-ribosomal proteins 〈α〉, which is biologically reason-254

able since ribosomal proteins are generally non-degraded.255

Therefore, as long as Iφ,α is not too close to −1, which we256

confirm later using experimental data, d is positive since257

αR is always smaller than 〈α〉φ. Therefore, our model258

predicts that the growth law curve is linear given a con-259

stant Iφ,α and finite protein degradation decreases the260

slope relative to the STM. The intercept at µ = 0 is also261
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larger than φ0. Therefore, a finite fraction of ribosomes262

are still actively translating at zero growth rate. We ver-263

ify the above theoretical predictions by numerically sim-264

ulations and randomly sample the protein degradation265

rates that are fixed for all environments, with αR < 〈α〉266

satisfied. We show the results from environments with267

preselected Iφ,α and our theoretical predictions Eq. (8)268

are nicely confirmed (Figure 2b).269

The full model270

We now consider the full model with both the hetero-271

geneities in the translation speeds and protein degrada-272

tion rates. We find that the growth law curve has the273

following general form,274

φR =
µ+ c1
c2µ+ c3

, (12)

where the expression of the constants, c1, c2 and c3 are275

shown in Appendix D. We prove that given fixed Iχ,k and276

Iφ,α (as long as they are not too close to −1), the growth277

law curve must be monotonically increasing and convex,278

which suggests an upward bending in slow-growth condi-279

tions (Appendix D). The simulation results again match280

well with the theoretical predictions (Figure 3a).281

In real situations, we remark that the actual growth282

curve shape depends on the particular environments. To283

verify this, we compute the resulting growth law curve284

with multiple environments, and the Iχ,k and Iφ,α of285

each environment are randomly sampled from Gaussian286

distributions (Figure 3b and e) (Appendix E). We find287

that when the Gaussian distributions have large standard288

deviations, the growth law curve is non-universal and de-289

pends on the particular chosen environments (Figure 3c).290

This means that if we randomly pick some environments291

from Figure 3c, the resulting growth law curves are gen-292

erally different. In contrast, when the Gaussian distri-293

butions have small standard deviations, the growth law294

curve is well captured by our theoretical predictions Eq.295

(12), because the environments share similar Iχ,k and296

Iφ,α (Figure 3f).297

To quantify the effects of heterogeneous Iχ,k and Iφ,α298

across environments, we repeatedly sample 20 random299

points from Figure 3c, f and fit them using Eq.(12) (Ap-300

pendix E). We find that when the chosen environments301

have significantly different Iχ,k and Iφ,α, the median302

root mean squared error RMSE = 1.69 × 10−2 (Figure303

3d). In contrast, in the case of similar environments,304

RMSE = 4.44 × 10−3 (Figure 3g). The above results305

suggest that we can use the fitting error as a criterion of306

the universality of the growth law curve, which we apply307

to the experimental data later.308

Experimental tests of theories309

In this section, we test our model using published310

datasets of S. cerevisiae [14] (Appendix F). For each311

strain and nutrient quality, we computed the correla-312

tion coefficients between the translation speeds and ri-313

bosome allocations Iχ,k, and the correlation coefficients314

between the protein degradation rates and protein mass315

fractions Iφ,α. Given the values of µ, Iχ,k, and Iφ,α,316

we predicted the fraction of ribosomal proteins φR using317

Eq. (12) (Figure 4a and e). We note that there is one318

parameter φ0 that is not known experimentally. Inter-319

estingly, by choosing a common φ0 = 0.048, our model320

predictions nicely match the experimental measured val-321

ues of φR (with one data point slightly above the theo-322

retical prediction). We find that regardless of the data323

processing procedures, the relative relationships between324

the predicted curves always agree with that of the exper-325

imental values (Appendix F and Supplementary Figure326

S1).327

Our model is simplified as we assume that the trans-328

lation speeds and protein degradation rates do not de-329

pend on environments. Remarkably, our model predic-330

tions still quantitatively match the experimental obser-331

vations, suggesting that our assumptions may be good332

approximations for most situations. While our model333

cannot predict the growth rate dependence of φ0, our re-334

sults show that a constant fraction of inactive ribosomes335

is consistent with existing datasets of S. cerevisiae.336

Interestingly, we found that Iφ,α ≈ −0.33 for all the337

conditions we computed. However, Iχ,k are negatively338

correlated with the growth rates, suggesting cells tend339

to allocate more ribosomes to translate mRNAs with340

higher ki in poor nutrient conditions (Figure 4b). To341

find out what genes acquire more resources when the en-342

vironment is shifted, we perform Gene Set Enrichment343

Analysis (GSEA) [15, 16] for wide type cells (Appendix344

F) and find that 8 gene sets from the Gene ontology345

(GO) [17, 18] database are enriched in both the GSEA346

where genes are ordered by ki (denoted as ki-ordered347

GSEA) and the GSEA where genes are ordered by log2348

fold change (log2FC) of χi (denoted as log2FC-ordered349

GSEA) (Figure 4d).350

We find that five gene sets related to stress response351

are enriched in the regime of higher ki and increasing352

χi when the environment is changed from 2% glucose to353

2% glycerol (Figure 4c). This is consistent with the en-354

vironmental stress response (ESR) of S. cerevisiae as an355

adaptation to the shifts of environments [19]. We propose356

that higher translation speeds of stress response genes en-357

able cells to respond rapidly to environmental changes,358

which is evolutionarily advantageous. We also find two359

gene sets related to the rRNA process are enriched in the360

regime of lower ki and decreasing χi (Figure 4c). This is361

consistent with the lower φR in slow-growth conditions362
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FIG. 3. Numerical simulations of the growth law curves with both heterogeneous translation speeds and protein degradation
rates. (a) Numerical simulations with preselected Iχ,k and Iφ,α. The red dashed line is the prediction of the STM and other
dashed lines represent our model predictions. (b) and (e) Two-dimensional Gaussian distribution of randomly sampled Iχ,k
and Iφ,α. The mean of Iχ,k is 0.5 and the mean of Iφ,α is 0. The standard deviations σ are indicated in the legends. (c) and
(f) The resulting growth law curve where each point has randomly sampled Iχ,k and Iφ,α from (b) and (e). (d) and (g) The
distributions of the fitting RMSE corresponding to randomly chosen points in (c) and (f).

(Figure 4a). We also perform GSEA for ∆Naa10 cells363

and get similar results (Supplementary Figure S2).364

Applications of theories365

An important application of our theories is that one366

can estimate the translation speeds by fitting the exper-367

imental growth law curve to our model prediction Eq.368

(12) (Appendix G). Because there are 6 unknown param-369

eters in the definition of c1, c2, and c3 (Eq. (23-25)), we370

can estimate 3 of the parameters given the values of the371

other 3. For the S. cerevisiae data from Ref. [6], we use372

the experimentally measured degradation rate of riboso-373

mal proteins αR and the mass of ribosomal proteins mR374

as given. We approximate the φ-averaged degradation375

rate 〈α〉φ by 〈α〉(1+Iφ,α) where Iφ,α = −0.33, and this is376

justified by the observations that Iφ,α is largely indepen-377

dent of environments (Figure 4a). We find that the fitted378

parameters c1, c2 and c3 having a wide range of 95% con-379

fidence intervals (Figure 5a) with RMSE = 1.35× 10−2,380

which suggests that the growth law curve is non-universal381

according to our simulations (Figure 3d). Indeed, the in-382

ferred values of φ0, kR and 〈k〉χ have very large error bars383

(Figure 5c). We also just fit the C-limiting data points in384

Figure 5a [6] and obtain similar results (Supplementary385

Figure S3).386

We also apply our theories to E. coli [7] (Figure 5b).387

Because most proteins are non-degradable in bacteria388

[20, 21], we set αR and 〈α〉φ as 0, and the mass of ribo-389

somal protein mR = 8.07× 105 Da [12]. In this case, the390

fitted parameters have much smaller range of 95% confi-391

dence intervals with RMSE = 3.60×10−3. The estimated392

kR, and 〈k〉 are consistent with previous studies [22–24]393

(Figure 5c). Our analysis of experimental data demon-394

strates that the translation speed of ribosomal proteins395

is indeed smaller than the χ−averaged translation speed,396

in agreement with experimental observations [9]. Our re-397

sults suggest that E. coli has similar values of Iχ,k and398

Iφ,α in the chosen environments of Ref. [7] so that it has399

a universal growth law curve. In contrast, S. cerevisiae400

appears to have significantly different Iχ,k and Iφ,α across401

different environments of Ref. [6] so that the growth law402

curve depends on the chosen environments and therefore403

non-universal.404

Discussion405

In this work, we go beyond the simple translation406

model and take account of the heterogeneous transla-407

tion speeds and finite protein degradation. Given the408

translation speeds and protein degradation rates, our409

model is completely general and virtually applies to any410

cells, including both proliferating cells (µ > 0) and non-411

proliferating cells (µ = 0). In this work, we mainly con-412

sider the scenario in which the growth rate changes due413

to the nutrient quality and the fraction of ribosomal pro-414

teins (φR) increases monotonically as the growth rate415

increases.416

We demonstrate that the growth law curve is, in gen-417

eral, nonlinear and has the form Eq. (12). In particu-418
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FIG. 4. Experimental analysis and theoretical predictions. (a) Experimental measured φR of S. cerevisiae along with the
predictions (dashed lines) of our model. (b) The growth rate dependence of the correlation coefficients Iχ,k and Iφ,α. (c) The
normalized enrichment score (NES) of GSEA of enriched gene sets. A positive NES of ki-ordered GSEA means that the genes
in the corresponding gene set are enriched in the regime of higher ki. A positive NES of log2FC-ordered GSEA means that
the genes in the corresponding gene set are enriched in the regime of increasing χi when the nutrient changes from glucose to
glycerol. (d) The enriched gene sets with their false discovery rate (FDR) q values of the single-sided permutation test. The
higher the − log10(FDR) value is, the more likely a gene set is enriched. (e) Summary of the multiple computed variables and
parameters in the analysis of experimental data. Note that the effective mass of ribosomal proteins mR is calculated based on
molecular weights of ribosomal proteins detected in the proteome (Appendix F). SC, synthetic complete medium. Glu, glucose.
Gly, glycerol.

lar, the main effect of heterogeneous translation speeds419

is making the growth law curve up-bent relative to the420

STM. The main effect of protein degradation is reduc-421

ing the slope and increasing the intercept relative to the422

STM. The actual shape of the growth law curve depends423

on two correlation coefficients: one is between the ribo-424

some allocations and the translation speeds (Iχ,k); the425

other is between the protein mass fractions and protein426

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.02.471021doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.02.471021
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

a b

c

Organism

Fitting parameters Known parameters Calculated values Reference values

Data source
c1 with 95% 

confidence 

interval

(1/h)

c2 with 95% 

confidence 

interval

c3 with 95% 

confidence 

interval

(1/h)

RMSE
mR

(Da)

< >

(1/h)
R 

(1/h) 0

kR 

(Da/min)

<k>  

(Da/min)

The range 

of 0

The range 

of kR 

(Da/min)

The range 

of <k>  

(Da/min)

kR 

(Da/min)
<k>  (Da/min)
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Metzl et al., 

2017 
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-
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Order of magnitude:104-105
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FIG. 5. The full model fits different datasets. (a) The non-linear fitting to data from Ref. [6]. The shadow represents the 95%
prediction interval. (b) The non-linear fitting to data from Ref. [7]. The shadow is the same as in (a). (c) Detailed fitting
results of (a) and (b). Note that the reference value of 〈k〉χ of (a) is approximated by 〈k〉(1 + Iχ,k) where the range of Iχ,k can
be found in Figure 4c.

degradation rates (Iφ,α). By analyzing the dataset from427

[14], we found that Iφ,α is independent of growth rate,428

while Iχ,k appears to be negatively correlated with the429

growth rate. This means that cells tend to produce pro-430

teins with faster translation speeds in slow-growth con-431

ditions, which can be an economic strategy and under432

evolutionary selection. Remarkably, our theoretical pre-433

dictions of φR can reasonably match the experimentally434

measured values [14], with a common fraction of inactive435

ribosomes φ0. Our results imply that the fraction of inac-436

tive ribosomes may be constant across different nutrient437

qualities.438

We apply our model predictions to the growth law439

curves of S. cerevisiae [6] and E. coli [7]. In the for-440

mer case, the fitting of data to our model prediction is441

subject to significant uncertainty. This agrees with the442

computed Iχ,k that are variable across conditions using443

the ribosome profiling and mass spectrometry data from444

[14]. In contrast, the fitting of E. coli data exhibits a445

much smaller uncertainty, suggesting that common Iχ,k446

and Iφ,α may apply to all the nutrient qualities used in447

the experiments of Ref. [7]. This is to be tested when448

genome-wide measurements, such as translation speeds,449

of E. coli are available in the future.450

We remark that in the absence of heterogeneous trans-451

lation speeds and protein degradation, the mass fraction452

of protein i, φi must equal the ribosome allocation χi.453

Indeed, these two datasets are often highly correlated454

among proteins in E. coli [12, 25]. However, in our more455

realistic models, φi depends on the translation speed456

and protein degradation rate. Given the same χi, pro-457

teins with higher translation speeds or lower degradation458

rates should have higher mass fractions (Appendix A).459

We note that using the current genome-wide datasets of460
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S. cerevisiae, the predicted protein mass fractions φi,pre461

based on the ribosome allocations χi [14], the translation462

speeds ki [9], and the protein degradation rates αi [11]463

do not correlate strong enough with the measured φi as464

expected. We note that these datasets are from different465

references, and the deviation is likely due to the noise in466

the measurements of ki (Supplementary Table S2). We467

expect our theories to be further verified when more ac-468

curate measurements of translation speeds are available.469

For simplicity, in this work, we assume that the trans-470

lation speeds and protein degradation rates are invariant471

as the nutrient quality changes. Therefore, we can use the472

two correlation coefficients Iχ,k and Iφ,α to characterize a473

particular environment. We remark that our model can474

be generalized to more complex scenarios in which the475

translation speeds or protein degradation rates depend476

on the growth rate [7]. In this case, one just needs to in-477

clude four additional environmental-specific parameters:478

kR, 〈k〉, αR, and 〈α〉.479

APPENDIX480

A. Derivation of Equation (2)481

Based on the definition of φi, the changing rates of φi482

is483

dφi
dt

=
dMi

dt M −
dM
dt Mi

M2
=

dMi

dt

M
−

dM
dt

M

Mi

M
. (13)

In the steady state, φi doesn’t change so that Eq. (13)484

equals 0. Combined with the definition of growth rate485

and Eq. (1), we obtain486

dφi
dt

=
kiχi(φR − φ0)

mR
− αiφi − µφi = 0, (14)

which leads to Eq. (2). In the steady state, we can write487

φi using Eq. (2) as488

φi =
kiχi/(µ+ αi)∑
j kjχj/(µ+ αj)

. (15)

We can also rewrite Eq. (2) using
∑
i φi = 1 as489

1 =
φR − φ0
mR

∑
i

kiχi
(µ+ αi)

. (16)

B. Derivation of Equation (3)490

We rewrite Eq. (2) as491

mRµφi +mRαiφi = kiχi(φR − φ0). (17)

We then sum up for all proteins and obtain492

mRµ+mR

n∑
i=1

αiφi = (φR − φ0)
n∑
i=1

kiχi, (18)

which leads to Eq. (3).493

C. Derivation of Equation (4)494

In deriving Eq. (4), we neglect protein degradation495

and rewrite Eq. (3) as496

φR =
mRµ

kRχR + (1− χR)〈k〉χ
+ φ0. (19)

Meanwhile, we compute the growth rate using the auto-497

catalytic nature of ribosomal proteins,498

µ =
dMR

dt

MR
=
kRχR
mR

(
1− φ0

φR

)
. (20)

The above equation allows us to replace χR by µ in Eq.499

(19), from which we obtain Eq. (4).500

D. Derivation of the full model501

In this section we derive the full model considering502

both the heterogeneities in the translation speeds and503

protein degradation rates. We rewrite Eq. (3) in the504

main text as505

φR =
mR[µ+ αRφR + (1− φR)〈α〉φ]

kRχR + (1− χR)〈k〉χ
+ φ0. (21)

Meanwhile, the growth rate is506

µ =
kRχR
mR

(
1− φ0

φR

)
− αR. (22)

Combining Eq. (21) and Eq. (22) allows us to solve φR507

as a function of µ and we obtain Eq. (12)508

φR =
µ+ c1
c2µ+ c3

, (12)

where509

c1 =
〈k〉χφ0

mR
+ 〈α〉φ, (23)

c2 = 1− 〈k〉χkR
, (24)

c3 = 〈α〉φ − αR〈k〉χ
kR

+
〈k〉χ
mR

. (25)

It is straightforward to find that the condition for Eq.
(12) to be monotonically increasing is that c3 > c1c2.
Using the above expressions, we find that

c3 − c1c2 =
〈k〉χ(1− φ0)

mR
+

〈k〉2χφ0
kRmR

+
〈k〉χ(〈α〉φ − αR)

kR
. (26)

We find that the first two terms are always positive, and510

the last term is positive as long as Iα,φ is not too close to511

−1. Therefore, the φR(µ) curve must be monotonically512

increasing. It is straightforward to find that the second513

derivative of the φR(µ) curve is proportional to (c1c2 −514

c3)c2, which is always positive as long as Iχ,k is not too515

close to −1.516
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E. Details of the numerical simulations517

We summarize the parameters we use in the numerical518

simulations in Supplementary Table S1. We consider a519

cell with 4000 genes. We set the elongation speed ki and520

the degradation rates αi of non-ribosomal genes to follow521

lognormal distributions. We set kR = 2.07×104 Da/min,522

〈k〉 = 4.80× 104 Da/min, αR = 4.83× 10−4 min−1, and523

〈α〉 = 1.10×10−3 min−1 as the experimentally measured524

values of S. cerevisiae [9, 11]. The coefficients of vari-525

ation (CV) of the lognormal distributions can be found526

in Supplementary Table S1. In all simulations, we set527

φ0 = 0.08. We note that in Figure 2a, we set αi = 0528

for all proteins and in Figure 2b, we set ki = 〈k〉 for all529

proteins. We note that for given Iχ,k and Iφ,α, ki and αi530

are fixed for environments with different χi.531

To simulate a random environment, we generate a ran-532

dom χR. Meanwhile, a lognormal distribution of χi of533

non-ribosomal genes is also randomly generated. The534

CV of the lognormal distribution is included in Supple-535

mentary Table S1. We then search for the φR and µ that536

simultaneously satisfy Eq. (22) and Eq. (16). φi, Iχ,k537

and Iφ,α are then calculated using Eq. (3), Eq. (7) and538

Eq. (11), respectively. For a chosen pair of Iχ,k and Iφ,α,539

the predicted φR(µ) curve is obtained using Eq. (12).540

To obtain Figure. 2d, g, we randomly sample 20 points541

from Fig. 2c, f respectively, fit them using Eq. (12),542

and calculate the resulting RMSE. We repeat the above543

process 5000 times.544

F. Details of the experimental data analysis545

For the ribosome profiling data [14], we first trim the546

adapter with Cutadapt (version 3.4) [26]. Then we use547

Bowtie2 (version 2.4.2) [27] to eliminate ribosomal RNAs548

(rRNA) as mentioned in [28]. The cleaned reads are then549

mapped to S. cerevisiae genome R64.1.1 with HISAT2550

(version 2.2.1) [29]. Read counts are then generated with551

featureCount (version 2.0.1) [30]. The ribosome alloca-552

tion χi is calculated based on the count fraction.553

For the proteomics data [14], we perform the absolute554

quantification (or the in-sample relative quantification) of555

proteins based on the intensities of peptides using xTop556

(version 1.2) [12]. The intensity ratio of 2 proteins in the557

same sample of proteomics data does not directly rep-558

resent the real abundance (either the mass or the copy559

number) ratio so that the abundance fraction can not be560

replaced with the intensity fraction [12, 31]. XTop is a561

novel software that accurately calculates the in-sample562

relative protein copy number with the maximum a pos-563

teriori probability (MAP) algorithm [12]. We then calcu-564

late all proteins’ mass fraction φi with the xTop results565

and the protein molecular mass. In [12], the authors fur-566

ther calibrated φi with ribosome profiling data assuming567

homogeneous ki. In this work, we alternatively calibrate568

φi with L−0.57 where L is the protein length, as men-569

tioned in [12]. Calibration with L−0.57 is independent of570

ribosome profiling data, although it reduces the distance571

between χi and calibrated φi [12]. We also show the572

result with calibration of L−1 or without calibration in573

Supplementary Figure S1b, c. To compute φR, we sum574

up the φi of all proteins annotated as the cytoplasmic575

ribosomal protein in Saccharomyces Genome Database576

(SGD).577

For the elongation speed ki, we first calculate vi as578

mentioned in [9]. ki is then calculated using the rela-579

tionship ki = viai. For the degradation rate αi, data is580

obtained from [11]. We calculate the experimental Iχ,k,581

Iφ,α, 〈k〉 and 〈α〉 for non-ribosomal genes that exist in582

all data sets of χi, φi, ki and αi. We also calculate the583

χ-averaged k of ribosomal proteins as kR and φ-averaged584

α of ribosomal proteins as αR.585

For the molecular mass of the ribosome, we calculate586

the effective mR. Considering the efficiency of the mass587

spectrometry (MS), not all proteins can be detected.588

Therefore, we define the effective mR as the molecular589

weights of ribosomal proteins detected in the proteome.590

Because most of the ribosomal proteins can be expressed591

by two paralogous genes in S. cerevisiae, we count the av-592

erage molecular mass when both proteins of the paralogs593

are detected in the proteome. We also show our predic-594

tions of φR using the real ribosome mass (mR = 1.40e6595

Da) in Supplementary Figure S1a.596

For the growth rate µ, it is obtained from the growth597

curve, OD600 versus time with the method mentioned in598

[32]. Briefly, the slopes of ln(OD600) versus time in 5-599

point windows are calculated. Then windows with slopes600

that are at least 95% of the maximum slope are extracted.601

The slope of points within these windows is calculated602

as the growth rate. With these results, we predict the603

corresponding φR(µ) curves and compare them with the604

experimental data points.605

We further calculate the predicted mass fraction φi,pre606

of non-ribosomal proteins with Eq. (15). Pearson corre-607

lation coefficients ρ between φi,pre and φi are calculated.608

We also compute ρ under the assumptions that αi = 0609

or ki = 〈k〉 (Supplementary Table S2).610

For GSEA analysis, we first perform the differential ex-611

pression analysis on the ribosome profiling data of WT or612

∆Naa10 cells using the package DEseq2 (version 1.24.0)613

[33] in R (version 3.6.1). The log2 fold changes of counts614

when cells changed from SC+2% glucose to SC+2% glyc-615

erol as well as the FDR q values are calculated. Riboso-616

mal genes and genes with FDR q value > 0.05 are elimi-617

nated. We then pick out genes that also exist in the data618

sets of ki. GSEA on these genes are then performed twice619

using the R package clusterProfiler (version 3.12.0) [34]620

and org.Sc.sgd.db (version 3.8.2) [35]. In the first GSEA,621

genes are ordered by the log2 fold change (denoted as622

log2FC-ordered GSEA). In the second GSEA, genes are623

ordered by ki (denoted as ki-ordered GSEA). We then624
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find the common gene sets from GO database [17, 18]625

enriched in these two GSEA. The cut-off criteria are set626

as the p value < 0.05 and the FDR q value < 0.25. The627

number of permutations used in the analysis is 1e5.628

G. Details of fitting in Figure 5629

Nonlinear fitting is performed with MATLAB (version630

R2020b). We obtain the fitting parameters c1, c2 and631

c3 with their 95% confidence intervals, and then com-632

pute φ0, kR and 〈k〉χ using Eqs. (23, 24, 25). To com-633

pute the ranges of these values, we numerically find the634

maximum and the minimum value of the multivariate635

functions φ0(c1, c2, c3), kR(c1, c2, c3) and 〈k〉χ(c1, c2, c3)636

as their upper and lower bounds, where the ranges of c1,637

c2 and c3 are their 95% confidence intervals.638

H. A summary of the variables used in this work639

Variables Meaning
N number of genes
Mi mass of protein i
M total mass of all proteins
ki the mass of translated protein i per unit time
kR the mass of translated ribosomal protein per

unit time
〈k〉 the arithmetic average mass of translated pro-

tein mass over non-ribosomal proteins per
unit time

〈k〉χ the χ−weighted average mass of translated
non-ribosomal proteins per unit time

χi the fraction of active ribosomes producing
protein i in the pool of total active ribosomes

χR the fraction of active ribosomes produc-
ing themselves in the pool of total active
ribosomes

χ̃i the fraction of active ribosomes producing
protein i in the pool of active ribosomes trans-
lating non-ribosomal proteins

R total number of ribosomes
R0 total number of inactive ribosomes
αi degradation rate of protein i
αR degradation rate of the ribosomal protein
〈α〉 the arithmetic average degradation rate over

non-ribosomal proteins
〈α〉φ the φ−weighted average degradation rate over

non-ribosomal proteins
φi the mass fraction of protein i
φR the mass fraction of ribosomes
φ0 the mass fraction of inactive ribosomes

φ̃i the mass fraction of non-ribosomal protein i
in the pool of all non-ribosomal proteins

mR molecular mass of ribosome
µ the growth rate
Iχ,k the metric quantifying the correlation be-

tween the ribosome allocations and the trans-
lation speeds of non-ribosomal proteins

Iφ,α the metric quantifying the correlation be-
tween the mass fractions and the degradation
rates of non-ribosomal proteins
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