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Abstract 17 

Fractal scaling governs the complex behavior of various animal species and, in humans, can be altered 18 

by neurodegenerative diseases and aging1. However, the mechanism underlying fractal scaling remains 19 

unknown. Here, we videorecorded C. elegans that had been cultured in a microfluidic device for 3 20 

days and analyzed temporal patterns of C. elegans actions by fractal analyses. The residence-time 21 

distribution of C. elegans shared a common feature with those of human and mice2–4. Specifically, the 22 

residence-time power-law distribution of the active state changed to an exponential-like decline at a 23 

longer time scale, whereas this change did not occur in the inactive state. The exponential-like decline 24 

disappeared in starved C. elegans but was restored by culturing animals with glucose. The exponential-25 

like decline similarly disappeared in insulin-signaling daf-2 and daf-16 mutants. Therefore, we 26 

conclude that insulin signaling regulates fractal scaling of C. elegans behavior. Our findings indicate 27 

that neurosensory modulation of C. elegans behavior by insulin signaling is achieved by regulation of 28 

fractal scaling. In humans, diabetes mellitus is associated with depression, bipolar disorder, and 29 

anxiety disorder5, which affect daily behavioral activities. We hypothesize that comorbid behavioral 30 

defects in patients with diabetes may be attributed to altered fractal scaling of human behavior.  31 

 32 
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Main 33 

In humans, ordinary daily activities2 and social behaviors, such as sports and communication4, tend to 34 

occur consecutively as a burst, and then suddenly cease for several days to months. These episodic 35 

bouts of behavior have also been observed in other vertebrates (mice3) and invertebrates (C. elegans6, 36 

flies7, and ants8). Activity time series of episodic behavioral bouts have non-periodic and intermittent 37 

patterns that appear repeatedly across a broad range of time scales. Such self-similar geometrical 38 

patterns across time scales are called fractal patterns; therefore, activity time series of animal behavior 39 

are characterized by fractal geometry. Neurodegenerative disorders (e.g., Alzheimer and Parkinson 40 

diseases) and aging1 have been shown to alter the fractal scaling of human behavior. These findings 41 

suggest that fractal scaling of animal behavior is regulated by neurophysiological mechanisms that are 42 

conserved among various animal species. 43 

 Daily and social-behavioral activities are affected by a broad range of neurophysiological states 44 

in the human brain. Among them, mood, an unconscious disposition to respond emotionally to objects 45 

or events encountered in life5, and a reward evaluation for each object or event9 are thought to play 46 

important roles. Insulin signaling has been shown to affect mood and the reward system in mouse and 47 

human brains10. Mice with a brain neuron-specific knockout of the insulin receptor gene (NIRKO 48 

mice) did not show defects in neuron proliferation or death during brain development; however, they 49 

did show age-related anxiety and depressive-like behaviors11. In humans, mood is improved by nasal 50 

administration of insulin in both healthy individuals and patients with diabetes, suggesting that insulin 51 

signaling is involved in mood control12. Insulin signaling, which has evolved in relation to the mood 52 

and reward systems in brain in higher animals, modulates the relation between olfactory stimuli and 53 

behavior in nematodes and flies10. Thus, insulin signaling is an evolutionarily conserved signaling 54 

system that coordinates external stimulation and animal behavior. However, how insulin signaling 55 

affects the fractal scaling of animal behavior remains uninvestigated.  56 

 In the present study, we applied a genetic analysis of the fractal scaling of animal behavior by 57 

studying C. elegans behavior. Alternative switching between an actively moving state (“active state”) 58 

and an inactive state in episodic behavior is a common feature of various animal species. Therefore, 59 

we dissected the fractal scaling of C. elegans behavior on a two-state transition model6. Generally, 60 

kinetics that governs the state transition can be inferred from statistical properties, such as the 61 

frequency distribution and temporal correlation of experimentally measured residence times in each 62 

state. Inferred kinetics provides insights into the underlying mechanisms that drive the state transition. 63 

Through longitudinal videorecording of C. elegans swimming behavior, we found that state transitions 64 

between active and inactive states in C. elegans episodic behavior are driven by kinetics that 65 
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determines residence times by following frequency distributions and temporal correlations with fractal 66 

properties. Therefore, we refer to the kinetics as “fractal kinetics”6.  67 

 Next, we extended the function of the microfluidic device for culturing C. elegans with food 68 

bacteria. Our observations revealed that the fractal kinetics of C. elegans behavior is regulated by 69 

insulin signaling. Based on recent neuronal network modelling and molecular biological studies, we 70 

discuss the possibility that insulin signaling regulates neural activity in the brain to modulate fractal 71 

scaling of C. elegans behavior. We also discuss the applicability of this mechanism for mood disorders 72 

that are comorbid with diabetes mellitus in humans. We propose that fractal behavioral analysis can 73 

provide a more integrated clinical view of psychiatric symptoms in patients with diabetes, which may 74 

contribute to the development of new diagnostic indices and improvement of clinical treatment. 75 

 76 
Residence-time power-law distributions in active and inactive states in C. elegans episodic behavior 77 

To study the effects of diet on fractal scaling of C. elegans behavior, we constructed a new microfluidic 78 

device composed of an array of 50 chambers for culturing individual animals by perfusing M9 buffer 79 

containing food bacteria (WormFloII, Fig. 1). We recorded C. elegans swimming under controlled 80 

chemical, temperature, and light intensity conditions at 20 frames per second (fps) for 3 days6. By 81 

analyzing recorded movies using an image-processing program6, we obtained time series of behavioral 82 

activity with 105 time points (Fig. 2a-e). In the activity time series, we confirmed that fed wild-type 83 

animals cultured on the device showed repeated active and inactive episodes (Fig. 2b, c), as observed 84 

in C. elegans cultured in liquid and solid agar medium6. These findings indicate that our culture system 85 

allowed us to observe the physiological behavior of C. elegans.  86 

To analyze the fractal scaling of C. elegans behavior based on a two-state transition model, we 87 

measured the residence times of the active and inactive states, which alternatively appeared along the 88 

activity time series. Residence-time series in the active or inactive state were plotted across the round 89 

as “duration round series” (DRS) (Fig. 2f, g), analogous to “activity time series”. DRS in fed wild-90 

type animals revealed that residence times in the active state varied from sub-seconds to 10 seconds, 91 

whereas residence times in the inactive state varied from sub-seconds to 100 seconds (Fig. 2f, g). In 92 

the inactive state, residence times followed a power-law distribution in the range of sub-seconds to 93 

>10 seconds (Fig. 3b). In the active state, residence times followed a power-law distribution in a shorter 94 

range, from sub-seconds to <10 seconds (Fig. 3a). This power-law distribution indicates that the 95 

appearance frequency of the residence time decreased on the time scale in a certain ratio across a broad 96 

range of residence times. In other words, the appearance frequency decreases in a self-similar manner, 97 

which is indicative of fractal scaling in the residence time. Interestingly, at a longer time scale, the 98 

frequency distribution of residence time in the active state showed a faster decline than the power-law 99 
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distribution. Such a convex decline in the log-log plot is seen in an exponential distribution. A similar 100 

combination of frequency distributions with and without the exponential-like decline in active and 101 

inactive states, respectively, was reported in Japanese quail, mice, and humans2–4,13. Thus, the 102 

frequency distribution of C. elegans episodic swimming has a common scaling property to vertebrates.  103 

Next, we studied the behavioral activity of C. elegans that had been cultured in M9 buffer alone 104 

(starved wild-type animals) or cultured with 1 g/L glucose (glucose-fed wild-type animals) (Extended 105 

Data Fig. 1). The residence-time distribution of starved wild-type animals did not show a detectable 106 

exponential-like decline in either the active or inactive state (Extended Data Fig. 2a,b)6. In glucose-107 

fed wild-type animals, the exponential-like decline was restored in the active state (Extended Data Fig. 108 

2c, d), raising the possibility that insulin signaling is involved in regulation of fractal scaling of C. 109 

elegans behavior. To test this possibility, we studied the daf-2 (Fig. 2h-n) and daf-16 (Fig. 2t-u) 110 

insulin-signaling mutant animals. daf-2 and daf-16 are mutants of the insulin receptor gene and of the 111 

downstream forkhead transcription factor gene, respectively14. In both cases, the insulin-signaling 112 

mutants showed increased frequency of the long-lasting active state compared to wild-type animals, 113 

such that the exponential-like decline at the longer time scale disappeared in the active state (Fig. 3c-114 

3f). Additionally, through quantitative analysis of the power-law distribution, we found that the 115 

absolute value of the power-law exponent in the active state at the shorter time scale became larger in 116 

an insulin signaling-dependent manner ( 𝑝 < 0.05 , Extended Data Fig. 3 and Supplementary 117 

Discussion). Therefore, we conclude that the mechanism to determine residence-time distribution in 118 

the active but not the inactive state is controlled by insulin signaling (Supplementary Discussion).  119 

 120 
Long-range correlation in duration-round series of active and inactive states in C. elegans episodic behaviors 121 

To further study the insulin signaling-dependent control of fractal scaling of C. elegans behavior, we 122 

focused on the autocorrelation of DRSs. When the autocorrelation of one-dimensional data series 123 

declines with time lag 𝜏 in a power-law manner (𝐶(𝜏) ∼ 𝜏!"), such an autocorrelation is referred to 124 

as “long-range correlation,” due to the long tail in the power-law distribution. A power-law distribution 125 

of autocorrelation indicates that autocorrelation declines in a certain ratio across a broad range of time-126 

lags, i.e., autocorrelation declines in a self-similar manner, which is indicative of fractal scaling across 127 

the round of residence times.  128 

To study the long-range correlation in fractal scaling of C. elegans behavior, we employed 129 

higher-order detrending moving-average analysis (DMA)15. In DMA and its two-variable extension, 130 

detrending moving-average cross-correlation analysis (DMCA), when the fluctuation functions (𝐹(𝑠) 131 

or	 𝐹($,&)(𝑠), equations (1), (2)) follow a power law with scale (𝑠)	(𝐹(𝑠)~𝑠( or	 𝐹($,&)(𝑠)~𝑠(), 𝛼 132 
corresponds to the Hurst exponent (𝐻) 15,16. 𝐻  obtained by DMA and DMCA has a direct 133 
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mathematical link with other conventional indices for long-range correlation: i.e., the scaling exponent 134 

𝛾 in autocorrelation (𝛾 = 2 − 2𝛼, for 0 < 	𝛾 < 1) and the scaling exponent 𝛽 in power spectral 135 

density 𝑃(𝑓)~𝑓!) , where 𝑓  is the frequency ( 𝛽 = 2𝛼 − 1 , for 𝛽 > −1	 )17. Compared to 136 
conventional algorithms, DMA has several advantages for estimating long-range correlation for 137 

scaling exponent 𝛾 or 𝛽, due to the availability of a fast algorithm and improved trend removal 138 

process15. When 𝐻 = 0.5, the time series had no temporal correlation (i.e., like white noise), whereas 139 

when 0.5 < 𝐻 < 1, the time series had a long-range correlation. Although long-range correlation of 140 

the time series cannot be simply extended to 𝐻 > 1 due to 0 < 	𝛾 < 1, fractal scaling of the time 141 

series can be characterized by 𝐻 > 1. When 𝐻 is larger (𝐻 > 0.5), there is a stronger tendency for 142 

values in the time series to continuously increase or decrease6,18. Therefore, in our study, we classified 143 

fractal scaling of the time series as “no memory” at 𝐻 = 0.5, “weak fractal memory” for 0.5 < 𝐻 <144 

1, and “strong fractal memory” at 𝐻 > 1. Note that we used 𝐻 of the integrated time series to 145 

characterize fractal scaling of the original time series, by following a standard algorithm of DMA 146 

(Methods). 147 

The Hurst exponent of DRS of the active state (active DRS) at shorter round scale (< 100 148 

rounds, 𝐻*$ = 0.70) and that at longer round scale (> 100 rounds, 𝐻*& = 0.72) (Fig. 4a), and the 149 

Hurst exponent of DRS of the inactive state (inactive DRS)(𝐻+ = 0.68, Fig.4a) indicate that the active 150 

and inactive DRS have weak fractal memories, consistent with our previous study6. We did not find 151 

strong evidence for insulin signaling-dependent control of the mechanism to determine temporal 152 

correlations in active and inactive DRSs (Extended Data Figs. 4, 5a-f and Supplementary Discussion).  153 

 154 
Cross-correlation between duration round series of active and inactive states in C. elegans episodic behavior 155 

To study the relation between active and inactive DRSs, we estimated the cross-correlation coefficients 156 

between two DRSs at various temporal scales (multiscale cross-correlation coefficient, 𝜌($,&)(𝑠), 157 
equation (3)). Fed wild-type animals showed a remarkable negative correlation at longer round scales 158 

(Fig. 4b, Extended Data Fig. 6). The negative correlation at longer round scale (𝑙𝑜𝑔$,(𝑠) = 2.5) in fed 159 

wild-type animals  (𝜌&.. = −0.35) was significantly weakened in insulin-signaling mutant animals 160 
(𝜌&.. = −0.10 and 𝜌&.. = −0.10 in fed daf-2 and fed daf-16 mutants, respectively, Fig. 4e, h, 𝑝 <161 

0.05, Extended Data Fig. 6) and in starved wild-type animals (𝜌&.. = −0.09, Extended Data Fig. 4b, 162 

and 𝑝 < 0.05, Extended Data Fig. 6). The negative correlation in starved wild-type animals (𝜌&.. =163 

−0.09) was restored in glucose-fed wild-type animals (𝜌&.. = −0.13, Extended Data Fig. 4e, 𝑝 <164 

0.05, Extended Data Fig. 6). These results indicate that there is a lateral linking mechanism between 165 

the two fractal kinetics (to determine active and inactive DRSs) at longer round scale, whose switch is 166 

modulated by insulin signaling. 167 
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Next, to study the long-range cross-correlation between active and inactive DRSs, we 168 

employed DMCA. In fed wild-type animals, Hurst exponents of a cross-correlated component between 169 

active and inactive DRSs at a shorter round scale (𝐻/$ = 1.47) and at a longer round scale (𝐻/& =170 

0.79) (Fig. 4c) indicate that active and inactive DRSs contain a cross-correlated fractal component 171 

with strong fractal memory at a shorter round scale and weak fractal memory at a longer round scale. 172 

At a shorter round scale, 𝐻/$  in fed wild-type animals (1.47) was decreased in insulin-signaling 173 

mutants ( 1.27  and 1.28  in fed daf-2 and fed daf-16 mutants, respectively; Fig. 4f, i, 𝑝 <174 

0.05,	Extended Data Fig. 5g, h) and in starved wild-type animals (1.00) (𝑝 < 0.05,	Extended Data Fig. 175 

5g, h). Additionally, 𝐻/$ in starved wild-type animals (1.00) was restored in glucose-fed wild-type 176 

animals (1.20) (𝑝 < 0.05,	Extended Data Fig. 5g, h). These results indicate that the strength of fractal 177 

memory in the cross-correlated component, unlike the fractal memories of active and inactive DRSs, 178 

is controlled by insulin signaling.  179 

To our knowledge, there is no simple model to increase the strength of fractal memory by 180 

coupling simple models that generate time series with a weaker fractal memory19. Therefore, we 181 

consider that DRS with strong fractal memory generated by an upstream fractal kinetics is provided to 182 

both the active and inactive DRSs as a pseudo-cross-correlated component via a vertical interaction 183 

mechanism. On the other hand, at longer round scale, 𝐻/& in fed wild-type animals (0.79, Fig. 4c) 184 

was comparable to the fractal memory of the active or inactive DRSs in fed wild-type animals (0.72 185 

and 0.68, Fig. 4a). These values did change significantly in insulin-signaling mutants (0.81 and 0.87 186 

in fed daf-2 and fed daf-16 mutants, respectively; Fig. 4f, i, Extended Data Fig. 5i, j). Due to the 187 

comparable strength of fractal memory in 𝐻/& compared to those in 𝐻*& and 𝐻+, the presence of an 188 

upstream fractal kinetics for a cross-correlated component remained unclear. It is possible that the 189 

DRS generated by fractal kinetics to generate active or inactive DRS was provided to the other DRS 190 

as a cross-correlated component via a lateral linking mechanism, which may be the same as the lateral 191 

linking mechanism found by the multiscale cross-correlation coefficient above. How insulin signaling-192 

dependent behavioral control detected by DRS-based analyses alter the temporal activity patterns of 193 

C. elegans behavior are discussed in the Supplementary Discussion (Extended Data Figs. 7, 8). 194 

 195 

Discussion 196 
Fractal scaling of C. elegans behavior and insulin signaling-dependent control of neural activity in brain 197 

Based on our fractal analyses, we dissected the fractal scaling of C. elegans behavior using a two-state 198 

transition model between active and inactive states (Fig. 5). State transition from the active to inactive 199 

state is driven by kinetics that determine residence time in the active state by following power-law and 200 

exponential-like distributions at shorter and longer time scales (Fig. 3a). The temporal correlation of 201 
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residence times across the round is determined by following weak fractal memories with distinct 202 

strengths at shorter and longer round scales (𝐻*$ and 𝐻*&; Fig. 4a). We refer to such kinetics as 203 

Fractal Kinetics A1 and A2, respectively. The temporal correlation determined by Fractal Kinetics A1 204 

is affected by Fractal Kinetics C, which determines the temporal correlation by following strong fractal 205 

memory, via the vertical linking mechanism (𝐻/$;	Fig. 4c). The temporal correlation determined by 206 

Fractal Kinetics A2 is affected by Fractal Kinetics I via the lateral linking mechanism (𝜌&..; Fig. 4). 207 

On the other hand, the state transition from the inactive to active state is driven by kinetics that 208 

determines the residence time in the inactive state by following power-law distributions (Fig. 3b). The 209 

temporal correlation of residence times across the round is determined by following weak fractal 210 

memory (𝐻+ ; Fig. 4a). We refer to such kinetics as Fractal Kinetics I. The temporal correlation 211 

determined by Fractal Kinetics I is affected by Fractal Kinetics C via the vertical linking mechanism 212 

at shorter round scale (𝐻/$;	Fig. 4c) and by Fractal Kinetics A2 via the lateral linking mechanism at 213 

longer round scale (𝜌&.. ; Fig. 4). Insulin signaling modulates the mechanism for determining the 214 

residence-time distribution in Fractal Kinetics A1 and A2 (Fig. 3), and the mechanism for determining 215 

fractal memory in Fractal Kinetics C (𝐻/$;	Fig. 4c, f, i). Insulin signaling also targets the switch for 216 

the lateral linking mechanism between Fractal Kinetics A2 and I (𝜌&..; Fig. 4b, e, h) to shape fractal 217 

scaling of C. elegans behavior. 218 

The generator of fractal kinetics may reside in the neural network in C. elegans brains. Power-219 

law distributions have been observed in the duration of the sequential firing of neurons, called a 220 

“neuronal avalanche”, on cultured rat brain slices20 and in cat, monkey, and human brains in vitro and 221 

in vivo21. The power-law exponent of neuronal avalanche dynamics in the brain varies depending on 222 

the resting or task-performing behavioral state22 and on a wide range of neurogenic or psychiatric 223 

diseases in humans23. Exponents of the power-law distribution of neuronal avalanche are commonly 224 

distributed around -2, which approximately coincides with the power-law exponents determined by 225 

behavioral fractal kinetics A1 and A2 in C. elegans (Extended Data Fig. 3). A power law with a slope 226 

of -2 (second power law) in behavioral fractal kinetics is widely observed in invertebrates and 227 

vertebrates, including Drosophila7, Japanese quail13, mouse3, and human2,4. These observations 228 

strongly suggest that the power-law distribution in brain neuronal avalanche underlies the power-law 229 

distribution in behavioral fractal kinetics. Moreover, the second power law of neuronal avalanche has 230 

been reproduced by various theoretical neural network (NN) models21, including: stochastic NN 231 

models based on second-order phase transition (referred to as “criticality”)24, a deterministic model 232 

based on a feed forward-type NN model25,26, and another deterministic model based on the “edge of 233 

chaos” model27. Together, these findings suggest that behavioral fractal kinetics are derived from the 234 

conserved property of collective neural dynamics in animal brains among a wide variety of species. 235 
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Previous theoretical model analyses and subsequent experiments consistently explain the 236 

altered power-law residence-time distribution in fractal kinetics A1/A2 in insulin-signaling mutants 237 

(Fig. 3c, e). In previous stochastic and deterministic NN models, the power-law distribution of 238 

neuronal avalanche duration changes to an exponential-like decline at longer time scale, as we found 239 

in fed wild-type animals (Fig. 2a), when the maximum number of neurons in the model is reduced or 240 

neural connectivity is weakened27–29. These models suggest that negative interventions on propagation 241 

of neuronal firing in the network cause the exponential-like decline. This prediction has been validated 242 

in experiments using cultured rat brain slices. When a brain slice was cultured with an inhibitory 243 

neuron antagonist (i.e., picrotoxin), the average neuronal avalanche duration was elongated, such that 244 

the exponential-like decline disappeared from the frequency distribution observed in a brain slice 245 

cultured without the antagonist. With an inhibitory neuron antagonist, the frequency distribution at the 246 

longer time scale was beyond the power-law distribution20,30, similar to what we observed in fed daf-247 

2 and fed daf-16 animals (Fig. 3c, e). These theoretical and experimental evidences suggest that the 248 

exponential-like decline in the residence-time distribution observed in C. elegans and other 249 

animals3,4,13,31 may be derived from some negative effects on brain neural activity by insulin signaling. 250 

Previous molecular biological analyses have shown that insulin signaling has multifaced 251 

functions in brain32,33. In mammals, insulin acts as a neuropeptide to activate the GABA inhibitory 252 

ganglia in amygdala34, a key brain region connecting emotion/mood with food intake, providing a 253 

negative effect on neural activity. In C. elegans, GABA inhibitory D type-motor neurons (D-MNs) are 254 

involved in behavioral threat-reward decision making35. Our findings, together with previous 255 

theoretical and experimental studies, raise the possibility that insulin signaling in C. elegans activates 256 

GABA inhibitory neurons and alters the power-law neuronal avalanche distribution to be exponential-257 

like, thereby changing the accompanying power-law residence-time distribution to be exponential-like.  258 

How fractal kinetics I and C are generated, and how their interactions in the kinetic regulatory 259 

pathway (Fig. 5) are achieved in the C. elegans brain, remain unknown. We assume that the mechanism 260 

to determine the power law and exponential-like distribution of residence time in the active state shared 261 

in fractal kinetics A1 and A2 is generated from the specific neuronal network containing D-MNs in C. 262 

elegans (or the neuronal network in mammalian amygdala). In that case, fractal kinetics I and C may 263 

be generated from other distinct functional units in C. elegans and mammalian brains, and these 264 

functional units for fractal kinetics may structurally interact with each other in brain, as shown in Fig. 265 

5. Considering the universality of power-law exponents of animal behavior and neuronal avalanche, 266 

the consistency of model prediction and experiments, and the evolutionary conservation of insulin 267 

signaling, the insulin-dependent control of fractal kinetics in the kinetic regulatory pathway (Fig. 5) 268 

may be conserved in fractal behavioral scaling in other animals. 269 
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 270 
Insulin signaling and fractal human behavior 271 

In humans, diabetic mellitus is associated with mood disorders, such as depression, bipolar disorder, 272 

and generalized anxiety disorder5, which affect daily behavioral activities, including food intake, sleep, 273 

communication, or social activities. These activities occur at different time scales. Our C. elegans 274 

fractal behavioral analysis raises the possibility that daily behavioral disorders in patients with diabetes 275 

at different time scales may be attributed to a disorder in fractal scaling of human behavior. This 276 

possibility could be tested through long-term measurements of human behavior in patients with 277 

diabetes and their evaluation by statistical fractal indices determined by the power-law residence-time 278 

distribution, cross-correlation coefficient (𝜌($,&)(𝑠)), and long-range cross-correlation (𝐻/$) (which, 279 
in the current study, were found to be regulated by insulin signaling). In parallel, statistical fractal 280 

indices obtained from behavioral dynamics in healthy individuals and patients with diabetes can be 281 

evaluated by a theoretical NN model representing the human brain structure36. Model analyses would 282 

provide additional multifaceted connections of multiple properties in behavioral fractal kinetics with 283 

brain neural activity. Together, the combination of long-term measurements, fractal statistical analysis, 284 

and theoretical neurodynamic modeling of fractal scaling of human behavior is expected to provide a 285 

more integrated clinical view of psychiatric symptoms in human patients with diabetes, which could 286 

contribute to the development of new diagnostic indices and the improvement of clinical treatment. 287 

 288 

Methods 289 
C. elegans strains and maintenance 290 

C. elegans strains Bristol N2 (wild-type), CB1370 daf-2 (e1370), and CF1038 daf-16 (mu86) were 291 

maintained on Nematode Growth Medium (NGM) agar plate at 15°C. Animals at the developmental 292 

stage after the last molting and before bearing eggs (“young adult stage”) were picked up and cultured 293 

at 24°C for one day, and then transferred to a microfluidic device maintained at 25°C. 294 

 295 
Fabrication of microfluidic device and culture of C. elegans in microfluidic device  296 

Two microfluidic devices, WormFloII and WormFloI6, were fabricated by combining conventional 297 

photolithography and soft lithography methods37. For WormFloII, a polydimethylsiloxane (PDMS) 298 

chip and a bottom PDMS plate with 1-mm thickness were assembled using the oxygen plasma bonding 299 

method. Food bacteria suspension (E. coli, OP50 strain with OD = 0.1 in a buffer containing 50 mM 300 

NaCl, 15 mM K2HPO4, 96 mM KH2PO4, 0.3 mM CaCl2, 0.3 mM MgSO4, 5 µg cholesterol, 1% 301 

Tween80 (Tokyo Chemical Industry Co., Ltd., Japan)) and M9 buffer with/without 1 g/L glucose were 302 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.02.471007doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.02.471007
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

supplied to the WormFloII and WormFloI to maintain animals for observation, respectively, at 0.4 303 

ml/h with the Micro Ceram pump (MSP-001, Yamazen Corporation, Japan). 304 

 305 
Observation and quantification of C. elegans behavior  306 

Animals cultured in a microfluidic device were soaked in M9 buffer in a 15-cm-diameter glass dish 307 

installed in a temperature-controlled aluminum box6. Animals were observed under blue-light-cut 308 

illumination by a macroscope with an apochromat objective lens (1 ×) (Z16 APO, Leica, 309 

Germany) and recorded in an H264 compressed movie6. Animal swimming activity was measured by 310 

counting pixels in a bitmap image, in which animal movement was determined by comparing the image 311 

at the previous time frame (Supplemental Video 1)6. The movie compression effect on swimming 312 

activity was corrected on the activity time series by using the moving average6. 313 

 314 
Data analysis 315 

For DMA, the fluctuation function 𝐹(𝑠) is obtained by using the mean square root of the detrended 316 

noise round series, defined as 317 

 𝐹(𝑠) = 	F$
0
∑ (𝑦[𝑖] − 𝑦L1[𝑖])&0
+2$ .                           (1) 318 

𝐹(𝑠) is computed from the DRS {𝑥[𝑖]}+2$0  by the following procedure: the DRS {𝑥[𝑖]} is integrated 319 
after removing its mean value to obtain {𝑦[𝑖]}. This integrated DRS is filtered by the Savitzky-Golay 320 

(SG) filter to estimate the trend round series {𝑦L1[𝑖]}, to obtain the detrended noise round series 321 
{𝑦[𝑖] − 𝑦L1[𝑖]}. Then, the 𝐹(𝑠) vs 𝑠 plot on the log-log scale is fit with a linear function	 𝑦 = 𝑎𝑥 + 𝑏	322 

by the least squares method to estimate the Hurst exponent.  323 

For DMCA, the cross-fluctuation function 𝐹($,&) is obtained by determining the root of cross-324 
covariance between the bivariate detrended noise round series, defined as  325 

𝐹($,&)(𝑠) = 	F$
0
∑ S(𝑦($)[𝑖] − 𝑦L1

($)[𝑖])(𝑦(&)[𝑖] − 𝑦L1
(&)[𝑖])S0

+2$ .            (2) 326 

𝐹($,&)(𝑠) is computed from bivariate DRSs {(𝑥($)[𝑖], 𝑥(&)[𝑖])}+2$0  by using a procedure analogous to 327 

DMA. The linear fit to the 𝐹($,&)(𝑠) vs 𝑠 plot in the log-log scale can provide an estimate of the 328 

cross Hurst exponent. In addition, the multi-scale correlation coefficient 𝜌($,&)(𝑠), defined as 329 

𝜌($,&)(𝑠) = 	
∑ 45(")[+]!58$

(")[+]9%
&'" 45(()[+]!58$

(()[+]9

:∑ 45(")[+]!58$
(")[+]9

(%
&'" :∑ 45(()[+]!58$

(()[+]9%
&'"

(                  (3) 330 

is computed to evaluate the existence of an interaction between bivariate detrended noise round series.  331 

 332 
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Statistical analysis  333 

Due to rejection of the normality hypothesis for scaling exponents in DMA and DMCA, and the power-334 

law exponents of the residence-time distribution, the non-parametric Wilcoxon rank sum test was 335 

employed for pairwise comparisons between groups. In pairwise comparisons, the Benjamini and 336 

Hochberg method for correcting the false discovery rate (FDR) was used to deal with multiple testing 337 

problems.  338 

 339 

 340 

Data availability 341 

The C. elegans swimming activity time series and movie data reported in this paper are deposited in 342 

the Systems Science of Biological Dynamics (SSBD) database38, 343 

https://doi.org/10.24631/ssbd.repos.2021.11.001. 344 
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Figure legends 465 
Fig. 1: WormFloII microfluidic device for culturing C. elegans with food bacteria in biochemical isolation.  466 

a, WormFloII photo. Inlet and outlet portals for liquid media are shown. Yellow dashed line outlines 467 

50 chambers for individually culturing C. elegans. b, WormFloII schematic. Each chamber is directly 468 

connected to supply (orange) and drain (gray) channels to achieve biochemically independent 469 

environments. c, Chamber schematic. Chambers are caged with junctional micro-slit channels (50-μm 470 

width and height). Animals are introduced from 0.1-mm hole at chamber roof. Hole is shielded with 471 

PDMS sheet before supplying liquid media. 472 

 473 
Fig. 2: Activity time series of episodic behavior of fed C. elegans 474 

Swimming activity time series of wild-type (a-e), daf-2 (h-l), and daf-16 (o-s) fed animals for 3 days. 475 

Red-marked regions are magnified in graphs immediately below (e.g., all of b represents red region 476 

from a; all of c represents red region from b; etc.). DRSs for active (red) and inactive state (blue) in 477 

wild-type (f, g), daf-2 (m, n), and daf-16 (t, u) fed animals were obtained from activity time series for 478 

3 days (a, h, o). px: number of pixels where animals moved from previous frame. 479 

 480 
Fig. 3: Power-law residence-time distributions of behavioral states of fed C. elegans  481 

Averaged normalized probability density distributions of active (red) and inactive states (blue) of fed 482 

wild-type (a, b), daf-2 (c, d), and daf-16 (e, f) animals among individual animals (grey), in log-log 483 

plot. Error bars represent standard deviations. Distributions for inactive state (b, d, f) were fit with 484 

linear function from -0.5 to 1.5 on x-axis (black line). Distributions for active state (a, c, e) were fit 485 

with linear function from -0.5 to 0.8 and were extrapolated to 1.5 on x-axis (black line). 486 

 487 
Fig. 4: Long-range auto-/cross-correlations and multiscale cross-correlation coefficients in fed C. elegans 488 

behavior 489 

Averaged noise function 𝐹(𝑠) of active (red) and averaged cross-noise function 𝐹($,&)(𝑠) (green) 490 
among individual animals (grey) were fit with linear function from 1.1 to 2.1 and from 2.1 to 3.1 across 491 

scale (𝑠) at shorter and longer round scale, respectively. Averaged noise function 𝐹(𝑠) of inactive 492 

(blue) DRSs was fit from 1.1 to 3.1. Averaged multiscale cross-correlation coefficient (MCCC; black) 493 

among individual animals (grey) were plotted against scale (𝑠) for fed wild-type (b), daf-2 (e), and 494 

daf-16 (h). Error bars are standard deviation. 495 

 496 
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Fig. 5: Two-state behavioral transition model 497 

State transition from the active to inactive state is driven by Fractal Kinetics A1 at shorter round scale 498 

(which is affected by Fractal Kinetics C) and is driven by fractal Kinetics A2 at longer round scale 499 

(which is affected by Fractal Kinetics I). State transition from the inactive to active state is driven by 500 

Fractal Kinetics I, which is affected by Fractal Kinetics C at the shorter round scale, and is affected by 501 

Fractal Kinetics A2 at the longer round scale. Insulin signaling targets Fractal Kinetics A1, A2, C, and 502 

the lateral linking mechanism. 503 

 504 

Extended Data Figure Legends 505 
Extended Data Fig. 1: Activity time series of episodic behavior of C. elegans cultured without food bacteria 506 

Swimming activity time series of starved (a-e) and glucose-fed (h-l) wild-type animals for 3 days. 507 

Red-marked regions are magnified in graphs immediately below (e.g., all of b represents red region 508 

from a; all of c represents red region from b; etc.). Active (red) and inactive (blue) DRSs in starved (e, 509 

f) and glucose-fed (k, l) wild-type animals were obtained from above activity time series for 3 days (a, 510 

h). px: number of pixels where animals moved from previous frame. 511 
 512 

Extended Data Fig. 2: Power-law residence-time distributions of behavioral states of C. elegans cultured 513 

without food bacteria  514 

Averaged normalized probability density distributions of residence time for active (red) and inactive 515 

states (blue) of starved (a, b) and glucose-fed (c, d) wild-type animals among individual animals (grey), 516 

in log-log plot. Error bars represent standard deviation. Distributions for inactive state (b, d) were fit 517 

with a linear function in a range between -0.5 and 1.5 on x-axis (black line), whereas distributions for 518 

active state (a, c) were fit with a linear function in a range between -0.5 and 0.8 and were extrapolated 519 

to 1.5 on x-axis (black line).  520 
 521 

Extended Data Fig. 3: Power-law exponents of residence-time distributions for behavioral states of C. elegans 522 

cultured with/without food bacteria 523 

Box-swarm plots showing raw values and medians with 25th and 75th percentiles of power-law 524 

exponents of residence times for active (a) and inactive (c) states. Error bars represent standard 525 

deviations. FDR-corrected P-values by pairwise Wilcoxon rank sum test for active (b) and inactive (d) 526 

states, with P-values > 0.05 shown in grey.  527 

 528 
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Extended Data Fig. 4: Long-range auto-/cross-correlations and multiscale cross-correlation coefficient of 529 

DRSs in fed C. elegans   530 

Averaged noise function 𝐹(𝑠) of active (red) and inactive (blue) DRSs, and averaged cross-noise 531 

function 𝐹($,&)(𝑠) between active and inactive DRSs (green), among individual animals (grey) were 532 
plotted against scale (𝑠) for starved (a, c) and glucose-fed (d, f) wild-type animals. 𝐹(𝑠) vs (𝑠) 533 

plots for inactive DRS (blue) were fit with a linear function from 1.1 and 3.1. 𝐹(𝑠) vs (𝑠) plots for 534 

active DRS (red) and 𝐹($,&)(𝑠) vs (𝑠) plots (green) were fit in distinct linear functions between 1.1 535 
and 2.1 and between 2.1 and 3.1. Averaged multiscale cross-correlation coefficient between active and 536 

inactive DRSs (MCCC; black) among individual animals (grey) were plotted against scale (𝑠) for 537 

starved (b) and glucose-fed (e) wild-type animals. Error bars represent standard deviations. 538 

 539 
Extended Data Fig. 5: Hurst exponents of DRS in animals cultured with/without food bacteria 540 

Raw values and medians with 25th and 75th percentiles of Hurst exponents of active DRS at shorter 541 

round scale (a), active DRS at longer round scale (c), and inactive DRS (e). Raw values and medians 542 

with 25th and 75th percentiles of Hurst exponents of a cross-correlated component between active and 543 

inactive DRSs at shorter round scale (g) and longer round scale (i), obtained from Fig. 4 and Extended 544 

Data Fig. 4, are shown in Box-swarm plot. FDR-corrected P-values from pairwise Wilcoxon rank sum 545 

test are shown in the corresponding combinations (b, d, f, h, j). P-values > 0.05 are shown in grey.  546 

 547 
Extended Data Fig. 6: Cross-correlation coefficient between active and inactive DRSs at 𝒍𝒐𝒈𝟏𝟎(𝒔) = 𝟐. 𝟓 in 548 

animals cultured with/without food bacteria 549 

(a) Box-swarm plots showing raw values and medians with 25th and 75th percentiles of cross-550 

correlation coefficients between active and inactive DRSs at 𝑙𝑜𝑔$,(𝑠) = 2.5. (b) FDR-corrected P-551 

values by pairwise Wilcoxon rank sum test, with P-values > 0.05 shown in grey.  552 

 553 
Extended Data Fig. 7: Stepwise computation of DMA and DMCA at longer round scale and the relation with 554 

activity time series  555 

(a, h, o) Active (red) and inactive (blue) DRSs in fed wild-type (a), fed daf-2 (h), and fed daf-16 556 

animals (o) at longer round scale (3,000 rounds). (b-c, i-j, p-q) Integrated DRSs, obtained by removing 557 

average durations of active (solid line; b, i, p) and inactive (solid line; c, j, q) DRSs. S-G filter was fit 558 

to integrated active and inactive DRSs, to obtain trend of integrated active (dashed line; b, i, p) and 559 

inactive (dashed line; c, j, q) DRSs. (d, k, r) Detrended noise round series (dNRS) for active (red) and 560 

inactive (blue) DRSs, obtained by removing trend from integrated DRSs. (e, l, s) Scatter plots between 561 

active dNRS (y-axis) and inactive dNRS (x-axis). (f) Activity time series for active and inactive DRSs 562 
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in fed wild-type animals at longer round scale (3,000 rounds). (m, t) Activity time series in fed daf-2 563 

(m) and fed daf-16 (t) animals, shown in the same length as fed wild-type animals (f) for comparison. 564 

(g, n, u) Magnification of 1/100th length of activity time series from (f, m, t). Blue arrows in (a) 565 

indicate rounds of very long inactive states in inactive DRS, which correspond to a sudden jump in 566 

integrated DRS and dNRS (blue arrows in c, d). Red and blue brackets in (h, o) indicate examples of 567 

very long active or inactive rounds that appear at high density, which correspond to a high amplitude 568 

of dNRS (red and blue brackets in k, r). Red and blue brackets in (f) indicate active and inactive 569 

episodes. Blue arrows in (g) indicate examples of short inactive states within an active episode. px: 570 

number of pixels where animals moved from previous frame. 571 
 572 

Extended Data Fig. 8: Stepwise computation of DMA and DMCA at shorter round scale and the relation with 573 

activity time series  574 

(a, h, o) Active (red) and inactive (blue) DRSs in fed wild-type (a), fed daf-2 (h), and fed daf-16 575 

animals (o) at shorter round scale (100 rounds). (b-c, i-j, p-q) Integrated DRSs, obtained by removing 576 

average durations of active (solid line; b, i, p) and inactive (solid line; c, j, q) DRSs. S-G filter was fit 577 

to integrated active and inactive DRSs, to obtain trend of integrated active (dashed line; b, i, p) and 578 

inactive (dashed line; c, j, q) DRSs. (d, k, r) Detrended noise round series (dNRS) for active (red) and 579 

inactive (blue) DRSs, obtained by removing the trend from the integrated DRSs. (e, l, s) Scatter plots 580 

between active dNRS (y-axis) and inactive dNRS (x-axis). (f) Activity time series for active and 581 

inactive DRSs in fed wild-type animals at shorter round scale (100 rounds). (m, t) Activity time series 582 

in fed daf-2 (m) and fed daf-16 (t) animals, shown in the same length as fed wild-type animals (f) for 583 

comparison. Red and blue brackets in DRS (a) indicate alternative appearance of consecutive rounds 584 

between longer active states/shorter inactive states (red brackets) and shorter active states/longer 585 

inactive states (blue bracket in a). Red and pink brackets in activity time series (f) indicate a time 586 

region with high swimming activity (red) or low swimming activity (pink) within a single active 587 

episode. Red brackets in (m, t) indicated active episodes. px: number of pixels where animals moved 588 

from previous frame. 589 

 590 
 591 

Additional Information 592 

Supplementary Information is available for this paper. 593 

Correspondence and requests for materials should be addressed to arata@riken.jp. 594 

 595 
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Figure 2_ Arata et al
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Figure 4_ Arata et al
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Extended Data Fig. 1_ Arata et al
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Extended Data Fig. 2_ Arata et al
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Extended Data Fig. 3_ Arata et al
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Extended Data Fig. 4_ Arata et al
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Extended Data Fig. 5_ Arata et al
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Extended Data Fig. 6_ Arata et al
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Extended Data Fig. 7_ Arata et al
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Extended Data Fig. 8_ Arata et al
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