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Abstract:
Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic
surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic
analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all
data are collected before any analysis is performed and the phylogeny is inferred once from scratch.
SARS-CoV-2 datasets do not fit this mould. There are currently over 5 million sequenced SARS-CoV-2
genomes in public databases, with tens of thousands of new genomes added every day. Continuous data
collection, combined with the public health relevance of SARS-CoV-2, invites an "online" approach to
phylogenetics, in which new samples are added to existing phylogenetic trees every day. The extremely dense
sampling of SARS-CoV-2 genomes also invites a comparison between Likelihood and Parsimony approaches
to phylogenetic inference. Maximum Likelihood (ML) methods are more accurate when there are multiple
changes at a single site on a single branch, but this accuracy comes at a large computational cost, and the
dense sampling of SARS-CoV-2 genomes means that these instances will be extremely rare. Therefore, it may
be that approaches based on Maximum Parsimony (MP) are sufficiently accurate for reconstructing
phylogenies of SARS-CoV-2, and their simplicity means that they can be applied to much larger datasets.
Here, we evaluate the performance of de novo and online phylogenetic approaches, and ML and MP
frameworks, for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that online phylogenetics
produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that MP optimizations produce
more accurate SARS-CoV-2 phylogenies than do ML optimizations. Since MP is thousands of times faster than
presently available implementations of ML and online phylogenetics is faster than de novo, we therefore
propose that, in the context of comprehensive genomic epidemiology of SARS-CoV-2, MP online phylogenetics
approaches should be favored.
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Main Text:

The widespread availability and extreme abundance of pathogen genome sequencing has made
phylogenetics central to combatting the pandemic. Communities worldwide have begun implementing genomic
surveillance, the systematic genetic sequencing of a percentage of local cases (Deng et al. 2020; Lu et al.
2020a; Meredith et al. 2020; Park et al. 2021). This has been invaluable in tracing local transmission chains
(Bluhm et al. 2020; Lam 2020), understanding the genetic makeup of viral populations within local communities
(Gonzalez-Reiche et al. 2020; Franceschi et al. 2021; Thornlow et al. 2021a), uncovering the means by which
viral lineages have been introduced to new areas (Castillo et al. 2020), and measuring the relative spread of
specific variants (Skidmore et al. 2021; Umair et al. 2021). Phylogenetic approaches for better understanding
the proximate evolutionary origins of the virus (Li et al.), as well as to identify recombination events (Jackson et
al. 2021; Turakhia et al. 2021b) and instances of convergent evolution (Kalantar et al. 2020; Peng et al. 2021)
have greatly informed our understanding of the virus. Phylogenetic visualization software including Auspice
(Hadfield et al. 2018) and Taxonium (Sanderson) have also become widely used for public health purposes.

A comprehensive, up-to-date phylogenetic tree of SARS-CoV-2 is important for public health officials
and researchers. A tree containing all available sequences can facilitate identification of epidemiological links
between samples that might otherwise be obscured in subsampled phylogenies. Such information can also
help to identify the likely sources of new viral strains in a given area (Moreno et al. 2020; Tang et al. 2021).
Additionally, using up-to-date information enables us to find and track quickly growing clades and novel
variants of concern (Annavajhala et al. 2021; Tegally et al. 2021), as well as to measure the spread of known
variants at both global and community scales. This also facilitates naming lineages of interest, which has been
especially important in tracking variants of concern during the pandemic (e.g. B.1.1.7 or "Alpha" and B.1.617.2
or "Delta") (Rambaut et al. 2020). Having all available mutational, geographic, and temporal information about
SARS-CoV-2 also enables more comprehensive research to be done regarding the prevalence of
recombination (Turakhia et al. 2021b) and the effects of specific mutations on viral phenotype (Khan et al.
2021; Tian et al. 2021), furthering our collective understanding of the virus.

SARS-CoV-2 presents a unique set of phylogenetic challenges. First, the unprecedented pace and
scale of whole-genome sequence data has forced the phylogenetics community to place runtime and
scalability at the center of every inference strategy. More than 5 million SARS-CoV-2 genome sequences are
currently available, with tens of thousands being added each day. Prior to the pandemic, de novo
phylogenetics, or approaches that infer phylogenies from scratch, have been the standard, as there has rarely
been a need to re-infer or improve pre-existing phylogenies on a daily basis. Re-inferring a tree of more than 5
million samples daily, however, is extremely costly, and has brought a renewed focus on methods for adding
new samples to existing phylogenetic trees (Matsen et al. 2010; Berger et al. 2011; Fourment et al. 2018;
Barbera et al. 2019). This approach has been called "online phylogenetics" (Gill et al. 2020), and has important
advantages in the context of the pandemic and beyond. Online phylogenetics is appealing for the genomic
surveillance of any pathogen, because iterative optimization should decrease computational expense, allowing
good estimates of phylogenies to be made readily available. .

Second, SARS-CoV-2 genomes are much more closely related than sequences in most other
phylogenetic analyses. Because the advantages of maximum likelihood methods decrease for closely related
samples and long branches are relatively rare in the densely sampled SARS-CoV-2 phylogeny (Felsenstein
1978; Hendy and Penny 1989; Philippe et al. 2005), this suggests that phylogenetic inferences based on
maximum parsimony, a much faster and simpler phylogenetic inference method, could be better suited for
online phylogenetic analyses of SARS-CoV-2 genomes (Wertheim et al. 2021). The principle of maximum
parsimony is that the tree with the fewest mutations should be favored, and it is sometimes described as a
non-parametric phylogenetic inference method (Sullivan and Swofford 2001; Kolaczkowski and Thornton
2004). Additionally, because parsimony-based tree optimization does not require estimation of uncertainty at all
positions in the phylogeny like ML optimization does, parsimony uses much less memory.

Here, we evaluate approaches that would enable one to maintain a fully up-to-date and comprehensive
global phylogeny of SARS-CoV-2 genome sequences (McBroome et al. 2021). Specifically, we investigate
tradeoffs between online and de novo phylogenetics and between maximum parsimony and maximum
likelihood approaches. We mimic the time-course of the pandemic by introducing increasingly large numbers of
SARS-CoV-2 genome sequences proportionately to their reported sampling dates. Results from our
comparisons demonstrate that for the purposes of SARS-CoV-2 phylogenetics, in which samples are
numerous and closely related and inference speed is of high significance, parsimony-based online
phylogenetics applications are clearly most favorable and are also the only immediately available methods
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capable of producing daily phylogenetic estimates of all available SARS-CoV-2 genomes (Turakhia et al.
2021a). As similarly vast datasets containing millions of increasingly closely related samples will soon be
available for many species and pathogens, we expect that the approaches we evaluate here will become
increasingly central to phylogenetic inference.

Results and Discussion:

Online phylogenetics is an alternative to de novo phylogenetics for ongoing studies.

The vast majority of phylogenetics during the pandemic has consisted of de novo phylogenetics
approaches, in which each phylogeny is inferred using only genetic variation data, and without a guide tree
(Fig. 1). This strategy for phylogenetic inference has long been the default, as in most instances in the past,
data is collected just once for a project, and more relevant data is rarely going to be made available in the near
future. This process is well characterized and has been foundational for many phylogenetics studies (Hug et al.
2016; Parks et al. 2018; Lu et al. 2020b), and most phylogenetics software is developed with de novo
phylogenetics as the primary intended usage.

A challenging aspect of pandemic phylogenetics is the need to keep up with the pace of data
generation as genome sequences continuously become available. To evaluate phylogenetics applications in
the pandemic (Fig. 1), we split 233,326 samples dated from December 23, 2019 through January 11, 2021 into
50 batches according to their date of collection. Each batch contains roughly 5,000 samples. Samples in each
batch were collected within a few days of each other, except in the first months of the pandemic when sample
collection was more sparse. We also constructed a dataset of otherwise similar data simulated from a known
phylogeny (see Methods). The intent of this scheme is to roughly approximate the data generation and
deposition that occurred during the pandemic. All datasets are available from the repository associated with
this project (Thornlow et al. 2021b), for reproducibility and so that future methods developers can directly
compare their outputs to our results. We performed online and de novo phylogenetics using a range of
inference and optimization approaches. Since thousands of new sequences are added to public sequence
repositories each day, we terminated any phylogenetic inference approaches that took more than 24 hours,
because such phylogenies would be somewhat obsolete by the time they were inferred.
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Figure 1: Phylogenies may be optimized from scratch using de novo phylogenetics or iteratively using
online phylogenetics. In de novo phylogenetics (top), trees are repeatedly re-inferred from scratch.
Conversely, online phylogenetics (bottom) involves placement of new samples as they are collected along with
repeated re-optimization of the tree. Online phylogenetics is also much faster and requires less memory than
de novo phylogenetics due to its starting from an already partially optimized tree.

Analyses using simulated data suggest that online phylogenetics is more accurate.

We first compared matOptimize (commit 66ca5ff) (Turakhia et al. 2021a), IQ-TREE 2 (Minh et al. 2020),
and FastTree 2 (Price et al. 2010) using both online and de novo phylogenetics strategies using simulated data
that we designed to closely mimic real SARS-CoV-2 datasets. All online phylogenomics workflows used
UShER (Turakhia et al. 2021a) to add new sequences to the previous tree (see Methods) as to our knowledge
it is the only software package that is fast enough to perform under real time constraints. We chose these three
tools based on their widespread usage among SARS-CoV-2 phylogenetics applications (e.g. matOptimize is
part of the UShER suite (Turakhia et al. 2021a), IQ-TREE 2 is used by (COVID-19 Genomics UK (COG-UK)
Consortium 2020; Lanfear and Mansfield 2020) and FastTree 2 is used by (Hadfield et al. 2018)) as well as to
cover several different methodologies. matOptimize uses subtree pruning and regrafting (SPR) moves to find
the tree with the fewest total mutations. IQ-TREE 2 uses nearest neighbor interchange (NNI) and stochastic
moves to find the tree with the greatest likelihood given an alignment and substitution model. FastTree 2 uses
a pseudo-likelihood approach involving minimum-evolution SPR moves and maximum likelihood NNIs.

Simulating an alignment based on a known tree ensures that there is a ground truth for comparison to
definitively assess each optimization method. We used an inferred global phylogeny as a template to simulate
a complete multiple sequence alignment using phastSim (De Maio et al. 2021b). We subsampled this
simulated alignment into 50 progressively larger sets of samples, ranging in number of samples from 4,676 to
233,326 (see Methods), to examine each of the three optimization methods in both online and de novo
phylogenetics. We then computed the Robinson-Foulds distance for unrooted trees of each iteration, after
condensing identical samples and collapsing very short branches, to the global mutation-annotated tree on
which the simulation was based, pruned to contain only the relevant samples, and normalized by the maximum
possible Robinson-Foulds distance between the trees (Fig. 2) (Steel and Penny 1993).

All online phylogenetics methods noticeably outperformed their de novo counterparts. Overall, online
matOptimize produced phylogenies with the lowest Robinson-Foulds distance to the ground truth for the
majority of iterations (Fig. 2). Online IQ-TREE 2 performed similarly, but was able to complete only 25 of the 50
iterations due to its extreme computational resource requirements. For example, for the 14th phylogeny, which
was the last phylogeny produced using under 200 GB of RAM in under 24 hours by all six methods, we found
Robinson-Foulds distances of 1696, 2590, and 2130 for de novo matOptimize, FastTree 2, and IQ-TREE 2
respectively, and distances of 1557, 2111, and 1618 for online matOptimize, FastTree 2, and IQ-TREE 2,
respectively.

There are several possible explanations for the improved performance of online phylogenetics relative
to de novo approaches. First, the radius for SPR moves when optimizing a large tree is insufficiently large to
find improvements that are more readily applied when the tree contains fewer samples as in early rounds of
online phylogenetics. In online phylogenetics, these improvements carry over to subsequent trees, while in de
novo, they do not. The radius is defined as the phylogenetic distance of the search space when moving a node
to a more optimal position. As the phylogeny increases in size, the distance from a node to its optimal position
is likely to also increase, necessitating a larger SPR move radius to make equivalent improvements in larger
trees. Second, large clades consisting primarily of samples with branch length zero might further reduce the
ability of optimization methods to find improvements by indirectly limiting search space due to the increased
number of edges when represented internally as a bifurcating tree. It may sometimes be possible to explore
moves across such tree regions during online phylogenetics in early iterations when the polytomy is relatively
small. Third, online phylogenetics facilitates tree optimization by providing an exceptionally good starting tree
that has already been heavily optimized in previous iterations. We expect that this approach will typically
outperform parsimony and neighbor-joining starting trees that are used in most de novo phylogenetic inference
approaches. Finally, it is also possible that UShER produces more optimal starting trees than the other
phylogenetics inference packages we evaluated.
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Figure 2: Online matOptimize produces phylogenies most similar to ground truth on simulated data.
For each batch of samples, we calculated the Robinson-Foulds distance between the tree produced by a given
optimization software and the ground truth tree pruned to contain only the relevant samples. We then
normalized these values by the maximum possible Robinson-Foulds distance between the two trees, which is
equal to 2n-6 where n equals the number of samples in each tree (Steel and Penny 1993). We terminated
FastTree and IQ-TREE after the first phylogeny that took more than 24 hours to optimize.

Analyses using real data suggest that online phylogenetics is more efficient than de novo and
produces similarly optimal phylogenies.

While analyses using simulated data offer the ability to compare to a known ground truth, assessing the
performance of each method on real SARS-CoV-2 data may more accurately reflect practical use of each
method. Therefore, we also tested each optimization strategy on 50 progressively larger sets of real
SARS-CoV-2 samples and calculated the parsimony score and likelihood of each optimized tree, as well as the
run-time and peak RAM usage of each software package used (Fig. 3). To accomplish this, we subsampled our
global phylogeny, which was produced using stringent quality control steps (see Methods), as before, to mimic
the continuous accumulation of samples over the course of the pandemic.

Online optimizations are generally much faster than de novo phylogenetic inference. For example,
IQ-TREE 2 achieves a roughly four-fold faster run-time for online optimizations compared to inferring the tree
de novo (Fig. 3c). The 11th iteration, which has 47,819 sequences and was the last to be completed by both
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online and de novo IQ-TREE 2, took 22 hours 50 minutes for de novo IQ-TREE 2 but only 5 hours 26 minutes
for online IQ-TREE 2. De novo UShER+matOptimize was the only de novo method to finish all trees in fewer
than 24 hours, but its speed for each daily update pales in comparison to online matOptimize. Online
matOptimize is several orders of magnitude faster than its de novo counterpart, and its optimizations for the
largest phylogenies take roughly 30 seconds, while de novo tree inference with UShER can take several hours
for trees consisting of more than 100,000 samples (Fig. 3c). However, whether a software package is used for
online or de novo phylogenetics does not strongly affect its peak memory usage.

We also found that online phylogenetics strategies produce trees very similar in both parsimony score
and likelihood to their de novo counterparts, with differences of less than 1% in all cases (Fig. 3a-b). For
example, in the 11th iteration, online IQ-TREE 2 produces a tree with a parsimony score of 32,005, whereas de
novo IQ-TREE 2 produces a tree with parsimony score 32,149. Our results suggest that in addition to the
computational savings that allow online phylogenetics approaches to continuously stay up-to-date, online
phylogenetics approaches also produce trees with similar parsimony scores and likelihoods to their de novo
counterparts.

Parsimony-based optimization methods have favorable metrics compared to ML methods for
SARS-CoV-2 phylogenies.

In the case of both de novo and online phylogenetics, the parsimony-based matOptimize outperforms
both FastTree 2 and IQ-TREE 2 in runtime and peak memory usage. For the sixth iteration (26,486 samples),
which was the largest phylogeny inferred by all online methods in under 24 hours and using under 200 GB of
RAM, online FastTree 2 required nearly 24 hours and 30.3 GB of RAM, and online IQ-TREE 2 required 1 hour
45 minutes and 72 GB of RAM. By contrast, matOptimize used only 6 seconds and 0.15 GB of RAM. This
iteration contained roughly 10% as many samples as the 50th and final iteration (233,326 total samples), which
online matOptimize completed in 32 seconds using 1.41 GB of RAM at peak usage. Even this largest tree
represents only a very small fraction of the more than 5 million currently available SARS-CoV-2 genomes,
indicating that, among the approaches we evaluated, matOptimize is the only viable option for maintaining a
comprehensive SARS-CoV-2 phylogeny via online phylogenetics.

In addition to its scalability, matOptimize outperforms ML optimization methods in both the parsimony
and likelihood scores of the trees that it infers. For the sixth iteration (26,486 samples), we found parsimony
scores of 16,130, 16,179, and 16,290 for online matOptimize, IQ-TREE 2, and FastTree 2 respectively. While
all methods produce phylogenies with parsimony scores within 1% of each other, matOptimize is consistently
the lowest. However, matOptimize was developed to optimize by parsimony, while the other methods were
developed for ML optimizations. Unexpectedly, we found log-likelihood scores of -233,414.277, -233,945.528,
and -235,177.396 for matOptimize, IQ-TREE 2, and FastTree 2 respectively, indicating that matOptimize
produces preferable phylogenies based on likelihood as well. We used a Jukes-Cantor (JC) model to calculate
likelihoods due to time constraints in calculation for more complex substitution models, but a Generalised Time
Reversible (GTR) model with specified rate parameters produced strongly correlated likelihoods (Fig. S1).
Specifically, we fit a generalized linear model using a Gamma family (inverse link function) to predict the
likelihood of the tree under the JC model using the iteration of tree construction and the GTR likelihood as
predictors. We examined the six trees from the first and second iteration (12 in total). We found that the GTR
likelihood was significantly correlated with the JC likelihood (p < 2.27×10-5).
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Figure 3: In practice, optimization by parsimony is more effective for SARS-CoV-2 data than
optimization by ML. We calculated (A) the parsimony score for each tree using matUtils, (B) the log-likelihood
of each tree using IQ-TREE 2, (C) runtime and (D) peak memory usage of each optimization. (A) and (B) are
normalized by the value obtained for the UShER/matOptimize online approach such that all other methods are
expressed as a ratio. Strategies that surpassed 24 hours (C) or the allowable RAM usage (D) were terminated
prior. In most cases, with the notable exception of FastTree 2, online phylogenetics (solid lines) perform better
than de novo phylogenetics (dashed lines). We ran all matOptimize analyses using an instance with 15 CPUs
and 117.2 GB of RAM, and we ran all IQ-TREE 2 and FastTree 2 analyses on an instance with 31 CPUs and
244.1 GB of RAM, but limited each command to 15 threads for equivalence with matOptimize.

Parsimony and likelihood are strongly correlated when optimizing large SARS-CoV-2 phylogenies.
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While our comparisons of online and de novo as well as parsimony-based and ML optimizations of
cumulative pandemic-style data demonstrated practical performance, the largest trees completed by all
methods in these experiments represent only a small fraction of available SARS-CoV-2 data. It is also crucial
that we identify the optimal ways to produce a large phylogeny from already aggregated data. We therefore
evaluated phylogenetic inference methods for optimizing a tree of 364,427 SARS-CoV-2 genome sequences,
without constraining methods according to time or memory requirements. We optimized this global phylogeny
using matOptimize (Turakhia et al. 2021a), IQ-TREE 2 (Minh et al. 2020), and FastTree 2 (Price et al. 2010).
Overall, we found that matOptimize produced the tree with the lowest parsimony score across all methods in
roughly one hour (Table 1).

We found that after each of the six iterations of FastTree 2 optimization, the likelihood and parsimony
improvements are strongly linearly correlated (Fig. 4). This suggests that changes achieved by maximizing
parsimony will also optimize likelihood for SARS-CoV-2 data. That is, for extremely densely sampled
phylogenies wherein long branches are especially rare, parsimony and likelihood of phylogenies, and tree
moves to optimize either are highly correlated. However, despite the strength of this correlation, we find an
extreme disparity in practical usage when optimizing by either metric. Parsimony-based methods are far more
time- and data-efficient, and presently-available ML approaches quickly become prohibitively expensive. For
example, while the 6 iterations of FastTree did result in large improvements in both likelihood and parsimony
score, the resulting tree would be out of date long before the 10.5-day optimization had completed. Moreover,
we applied matOptimize to the tree output by the sixth iteration of FastTree, achieving a parsimony score of
293,866 (improvement of 288) in just 16 minutes, indicating that even after 10.5 days, additional optimization
was still possible. This suggests that, for the purposes of optimizing even moderately large SARS-CoV-2 trees,
parsimony-based methods should be heavily favored due to their increased efficiency.

Method Iterations Runtime (H:M:S) Final Parsimony Score (Percent Change from Starting Tree)

IQ-TREE 2 2 24:30:52 294,258 (0.67)

FastTree 2 6 252:02:49 294,154 (0.71)

matOptimize 1 1:12:03 294,022 (0.75)

Table 1: We applied each of the three optimization methods to a starting tree of 364,427 SARS-CoV-2
samples, which had an initial parsimony score of 296,247. We first ran 2 iterations of IQ-TREE 2 optimization,
using an SPR radius of 20 on the first and 100 on the second. We also used an SPR radius of 10 on one
iteration of matOptimize, and six iterations of pseudo-likelihood optimization using FastTree 2, which we
terminated after roughly 10.5 days.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.02.471004doi: bioRxiv preprint 

https://paperpile.com/c/dJ4cMg/JD0J
https://paperpile.com/c/dJ4cMg/0iqH
https://paperpile.com/c/dJ4cMg/NVml
https://doi.org/10.1101/2021.12.02.471004
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Improvement in likelihood and parsimony have a linear relationship for our optimized global
tree. We optimized our initial global tree using 6 iterations of FastTree and measured the total parsimony and
the likelihood after each, finding a linear relationship (Pearson correlation, rho = -1.0, p < 2.9×10-7).

Conclusions

The SARS-CoV-2 pandemic has made phylogenetics central to efforts to combat the spread of the
virus, but has posed challenges for many commonly used phylogenetics frameworks. A major component of
this effort relies on a comprehensive, up-to-date, global phylogeny of SARS-CoV-2 genomes. However, the
scale and continuous growth of the data have caused difficulties for standard de novo phylogenetic methods.
Here, we find that online phylogenetics methods are practical, pragmatic, and accurate for inferring daily
phylogenetic trees from a large and densely-sample virus outbreak.

One counterintuitive result is that parsimony-based optimizations outperform sufficiently efficient ML
approaches regardless of whether phylogenies are evaluated using parsimony or likelihood. This might be a
consequence of the fact that parsimony scores and likelihoods are strongly correlated across phylogenies
inferred via a range of phylogenetic approaches. The extremely short branches on SARS-CoV-2 phylogenies
mean that the probability of multiple mutations occurring at the same site on a single branch is negligible.
Stated another way, SARS-CoV-2 is approaching a “limit” where parsimony and likelihood are nearly
equivalent. In turn, because of their relative efficiency, parsimony-based methods are able to search more of
the possible tree space in the same amount of time, thereby resulting in trees with better likelihoods and lower
parsimony scores than trees optimized using currently-available ML software packages. We emphasize that
this does not bear on the relative merits of the underlying principles of ML and MP, but instead reflects the
utility of methods that have been applied during the pandemic. Nevertheless, this observation does suggest
that in some cases, MP optimization may provide a fast and accurate starting point for ML optimization
methods. Indeed, many popular phylogenetics software, such as RAxML (Stamatakis 2014) and IQ-TREE
(Minh et al. 2020) already use stepwise-addition parsimony trees as starting trees for their optimization. Our
results suggest that further optimization of these starting trees using MP may provide benefits in speed and
accuracy for some datasets, even when the target is an estimate of the ML tree.

As sequencing technologies progress and become more readily available, sample sizes for
phylogenetic analyses of major pathogens and highly-studied organisms will necessarily continue to increase.
Today, SARS-CoV-2 represents an extreme with respect to the total number of samples relative to the very

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.02.471004doi: bioRxiv preprint 

https://paperpile.com/c/dJ4cMg/W7ZO
https://paperpile.com/c/dJ4cMg/0iqH
https://doi.org/10.1101/2021.12.02.471004
http://creativecommons.org/licenses/by-nc-nd/4.0/


short branch lengths on the phylogeny. However, the global sequencing effort during the pandemic suggests
that the public health sphere has a strong interest in the increased application of whole-genome sequencing to
study the genomic contents, evolution, and transmission history of major and emerging human pathogens. We
expect that million-sample datasets will become commonplace in the near future. Online phylogenetics, using
parsimony-based tree inference and optimization, or greatly accelerated likelihood approximations, will be a
fruitful avenue for future development and application to accommodate these datasets.

Methods

We first developed a "global phylogeny", from which all analyses in this study were performed. We
began by downloading .vcf and .fasta files corresponding to March 18, 2021, from our own daily-updated
database (McBroome et al. 2021). These files contain 434,063 samples. We then implemented filters, retaining
only sequences containing at least 28,000 non-N nucleotides, and fewer than two non-[ACGTN-] characters.
We used UShER to create a phylogeny from scratch using only the remaining 366,492 samples. We iteratively
pruned this tree of internal branches with parsimony scores greater than 30, then terminal branches with
parsimony scores greater than 6, until convergence, resulting in a final global phylogeny containing 364,428
samples. For full reproducibility, files used for all analyses can be found in subrepository 1 on the project
GitHub page (Thornlow et al. 2021b).

Following this, we further optimized this global phylogeny, hereafter the "starting tree", using
matOptimize, FastTree 2, and IQ-TREE 2. We used the starting tree and its corresponding alignment and ran
five iterations of IQ-TREE 2, varying the SPR radius from 20 to 100 in increments of 20. Separately, we also
optimized the starting tree using two iterations of IQ-TREE 2, the first iteration using an SPR radius of 20 and
the second using a radius of 100. We also ran one iteration of matOptimize on the starting tree using an SPR
radius of 10, and six iterations of FastTree 2 on the starting tree. We then ran matOptimize again on the tree
output by the sixth FastTree 2 iteration. Files for all analyses can be found in subrepository 2.

To mimic pandemic-style phylogenetics, we separated the samples in the starting tree into batches of
~5,000 by sorting according to the date of sample collection. We then set up two frameworks for each of the
three software packages (matOptimize (commit 66ca5ff), IQ-TREE 2 (multicore version 2.1.3 COVID-edition),
and FastTree 2 (Double Precision version 2.1.10)). In online phylogenetics, we began with a tree created from
scratch using UShER, optimized using the software package of choice, and added samples with UShER and
re-optimizing after each batch. In de novo phylogenetics, we supplied each software package with an
alignment corresponding to all samples in that batch and its predecessors (or .vcf for matOptimize) without a
guide tree. For both cases, each tree is larger than its predecessor by ~5,000 samples, and each tree
necessarily contains all samples in the immediately preceding tree. For FastTree 2, we used 2 rounds of
subtree-prune-regraft (SPR) moves, maximum SPR length of 1000, zero rounds of minimum evolution nearest
neighbor interchanges (NNI), and the Generalised Time Reversible + Gamma (GTR+G) substitution model. For
IQ-TREE 2, we used a branch length minimum of 0.000000001, zero rounds of stochastic tree search, and the
GTR+G substitution model. We ran all matOptimize analyses using an instance with 15 CPUs and 117.2 GB of
RAM, and we ran all IQ-TREE 2 and FastTree 2 analyses on an instance with 31 CPUs and 244.1 GB of RAM,
but we limited each command to 15 threads for equivalence with matOptimize. Files for all analyses can be
found in subrepository 3.

To generate our simulated data, we used the SARS-CoV-2 reference genome (GISAID ID:
EPI_ISL_402125; GenBank ID: MN908947.3) (Shu and McCauley 2017; Sayers et al. 2021) as the root
sequence and used phastSim (De Maio et al. 2021b) to simulate according to the global tree optimized by six
iterations of FastTree 2 and one iteration of matOptimize (after_usher_optimized_fasttree_iter6.tree available
in Subrepository 2 (Thornlow et al. 2021b)). We chose this tree as the ground truth for our simulation
experiments because it had the greatest log-likelihood and lowest parsimony of any of our optimizations of the
starting tree. Intergenic regions were evolved using phastSim (De Maio et al. 2021b) using the default neutral
mutation rates estimated in ref. (De Maio et al. 2021a), with position-specific mean mutation rates sampled
from a gamma distribution with alpha=beta=4, and with 1% of the genome having a 10-fold increase mutation
rate for one specific mutation type (SARS-CoV-2 hypermutability model described in ref. (De Maio et al.
2021b)). Evolution of coding regions was simulated with the same neutral mutational distribution, with a mean
nonsynonymous/synonymous rate ratio of omega=0.48 as estimated in (Turakhia et al. 2021a), with
codon-specific omega values sampled from a gamma distribution with alpha=0.96 and beta=2. Rates for each
intergenic and coding region were not normalized in order to have the same baseline neutral mutation rate
distribution across the genome.
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We repeated our iterative experiments using de novo and online matOptimize, IQ-TREE 2 and
FastTree 2 on this simulated alignment, using the same strategies as before. However, instead of computing
parsimony and likelihood scores, we computed the Robinson-Foulds (RF) distance (Robinson and Foulds
1981) of each optimization to the ground truth tree, pruned to contain only the samples belonging to that batch.
To calculate each RF distance, we used the -R (resolve polytomies) and -O (collapse tree) arguments in
matUtils extract (McBroome et al. 2021) and then used the dist.topo command in the ape package in R
(Paradis and Schliep 2019), comparing the collapsed optimized tree and the pruned, collapsed ground truth
tree at each iteration. In Figure 2, we expressed the RF distances as a proportion of the total possible RF
distance, which is equivalent to two times the number of samples in the trees minus six (Steel and Penny
1993).

Figure S1: Log likelihoods calculated using Generalised Time Reversible (GTR) and Jukes-Cantor (JC)
models are correlated. We calculated log likelihoods for each de novo and online method as in Figure 2B
using (A) GTR+G and (B) JC models, which suggest that relative performance of each method is consistent
across models, and significantly correlated with each other. All values are normalized by the value obtained for
the UShER/matOptimize online approach, such that other methods are expressed as a ratio.
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