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Abstract  13 

Insect pollinators shape rapid phenotypic evolution of traits related to floral attractiveness and 14 

plant reproductive success. However, the underlying genomic changes and their impact on standing 15 

genetic variation remain largely unknown despite their importance in predicting adaptive responses in 16 

nature or in crop’s artificial selection. Here, based on a previous, nine generation experimental 17 

evolution study with fast cycling Brassica rapa plants adapting to bumblebees, we document genomic 18 

evolution associated to the adaptive process. We performed a genomic scan of the allele frequency 19 

changes along the genome and estimated the nucleotide diversity and genomic variance changes. We 20 

detected signature of selection associated with rapid changes in allelic frequencies on multiple loci. 21 

During experimental evolution, we detected an increase in overall genomic variance, whereas for loci 22 

under selection, a reduced variance was apparent in both replicates suggesting a parallel evolution. 23 

Our study highlights the polygenic nature of short-term pollinator adaptation and the importance of a 24 

such genetic architecture in the maintenance of genomic variance during strong natural selection by 25 

biotic factors.   26 
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Introduction  27 

Pollinator insects are important selective agents for wild- and crop plant species due to their 28 

essential role in the reproduction of most flowering plants [1]. While a decline of insect pollinators has 29 

been detected in different geographical regions and insect families [2, 3, 4], the understanding of the 30 

adaptive potential of plants to such changes in their biotic environment remains in its infancy. Plant 31 

adaptation to pollinators typically involves traits associated to flower attractiveness such as (1) flower 32 

morphology [5, 6, 7], flower colour [8, 9], flower scent [10, 11, 12], and (2) traits associated to mating 33 

system like herkogamy [13, 14] or selfing [15, 16]. While most of the studies assessed the result of 34 

long-term evolutionary adaptation to pollinators, tracking the adaptive processes across generations 35 

remains poorly described. Both a resurrection approach in natural populations, growing seeds from 36 

different generations together, or experimental evolution studies, applying the same selective 37 

pressure for multiple generations, can bridge this gap. For instance, using a resurrection approach, 38 

Thomann et al. [17] observed phenological and reproductive trait changes over 18 years in Adonis 39 

annua plants in response to the loss of wild bees. While this approach benefits from ecological realism 40 

in natural populations, it makes it difficult to differentiate the effect of the factor of interest from other 41 

factors such as climate, also shaping plant evolution. Gervasi and Schiestl [10] performed experimental 42 

evolution with fast-cycling Brassica rapa plants evolving with different pollinators and under controlled 43 

conditions, to identify the evolutionary response to pollinator-mediated selection. They showed, 44 

within nine generations of experimental evolution, rapid plant adaptation to bumblebee pollination in 45 

phenotypic traits, such as floral volatiles, UV reflection and plant height. However, while the evolved 46 

traits are known to be heritable [18, 19], the genomic changes underlying these rapid plant phenotypic 47 

changes are still unknown. 48 

In the current context of pollinator decline and the associated changes in pollinator communities, 49 

analyzing the genetic architecture of adaptation to pollinators and its association to standing genetic 50 
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variation is essential to understand the adaptative potential of plants in changing environments [20, 51 

21, 22]. Molecular genetic studies have uncovered the molecular and genetic bases of several traits 52 

involved in pollination and pollinator attractiveness such as selfing [23], pollination syndromes [24, 8, 53 

25, 26, 27], nectar [28, 29] and volatiles [30, 31, 32, 33, 34]. However, insects use a combination of 54 

signals (shape, colour, scent) and rewards for identifying suitable flowers leading to plant adaptation 55 

based on multiple traits [35]. For instance, honest signals (signals associated with reward) and 56 

pollination syndromes (convergent evolution of specific signal combinations selected by pollinators) 57 

are good examples of evolution of multiple traits. In a context of rapid changes, genetic correlation 58 

among traits may allow the synchronous response of different phenotypic traits to varying patterns of 59 

selection [36, 37, 19]. However, we are still in the infancy of understanding the genetic basis involved 60 

in the rapid evolutionary response of plants to pollinator changes. Identification of genomic regions 61 

involved in plant adaptation to pollinators is essential to predict the adaptive potential of plants to 62 

pollinator changes and enable breeding of more attractive crop plants. In addition, an important aspect 63 

in conservation is to understand the mechanisms maintaining genetic diversity within populations. In 64 

fact, standing genetic variation is an important resource for rapid response to environmental changes 65 

[38, 39], and strong directional selection is considered to lead to the loss of genetic diversity resulting 66 

in a loss of adaptive potential in populations [40].  67 

Here, based on previous experimental evolution performed by Gervasi and Schiestl [10] with 68 

outcrossing fast-cycling Brassica rapa plants, we tracked the genomic changes involved in the 69 

adaptative response of plants to bumblebee selection compared to hand pollinated control plants. We 70 

dissected the main changes observed in the genetic architecture during selection via bumblebee-71 

pollination compared to hand-pollination. Finally, we documented the changes in genetic diversity 72 

observed in the context of strong selection by estimating the average nucleotide diversity and genomic 73 

variance before and after experimental evolution. 74 
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Results  75 

Genomic changes during bumblebee selection. In our study, we observed allele frequency changes 76 

(Δh) over nine generations in both bumblebee and control treatments. For instance, 214 alleles (4.5% 77 

of all SNPs) were monomorphic after nine generations in the control treatment, against 344 alleles 78 

(7.3% of total SNPs) in the bumblebee treatment. Overall, larger genomic changes were observed in 79 

the bumblebee treatment compared to the control treatment (Figure 1A). Controlling for random 80 

genetic drift, we observed significant changes (pvalue < 0.05) for 195 SNPs (4.1% of the 4’713 SNPs) in 81 

the control treatment (Figure 1C), and for 353 SNPs (7.5% of the 4’713 SNPs) in the bumblebee 82 

treatment (Figure 1D). The most important changes (pvalue < 0.05 and Δh > 0.5) were observed to be 83 

3.2-times higher under bumblebee selection (76 SNPs) than in the control group (24 SNPs, Figure 84 

1BCD). The most significant allele frequency change (pvalue < 0.01) was absolute(Δh) = 0.70 with a 85 

mean of 0.41 ± 0.12 SD in the control treatment, while it was absolute(Δh) = 0.80 with a mean of 0.52 86 

± 0.2 SD in the bumblebee treatment (Figure 2, Figure S3).  87 

As expected, the selective process is associated with an increase of linkage disequilibrium in 88 

the bumblebee treatment, but also in the control treatment. In fact, while the median linkage 89 

disequilibrium decay was slower in the first generation (r2~0.2), this decay increased during selection 90 

in both control (r2~0.3) and the bumblebee treatment (r2~0.35) in the ninth and the inter-replicate 91 

crossing generation (Figure 3A). For instance, in the two genomic regions most under bumblebee 92 

selection, we observed an important increase of the LD in the bumblebee treatment, stronger than in 93 

the control treatment (Figure 2B & C). As expected with the increase of LD, we observed a decrease of 94 

the number of LD blocks over nine generations (from 949 LD blocks in first generation, to 818 LD block 95 

in the control treatment and 791 in the bumblebee treatment) and an increase of their length (Figure 96 

3B, Table S1).  97 
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Identity of candidate genes underlying genomic evolution to bumblebees. After retrieving the 98 

annotated genes around 4.2kb (2.1kb upstream, 2.1kb downstream) of the 76 SNPs with allele 99 

frequency changes for the bumblebee treatment (pvalue < 0.05, Δh > 0.5), we obtained a list of 32 100 

candidate genes (Table S2). Briefly, most of these genes are involved in encoding receptor kinases 101 

(LRR_3, RIOK2), transporters (ABGG35, ABCG38, SLAH1) and signalling (PTI1, PP2C16, PEX3, PSMA7, 102 

LOG1, LOG3). ABC transporters may play a role in floral scent production in Brassica, as recently shown 103 

for Petunia [41], a trait under strong selection in the study of Gervasi and Schiestl [10]. Interestingly, 104 

the cytokinins encoded by LONELY GUY (like LOG1 and LOG3 in our results) are known for their 105 

importance in reproductive development in Arabidopsis [42]. Some candidate genes are also involved 106 

in pectin synthesis and pollen tube growth (GALT6, 43). However, in view of the low number of markers 107 

used in our study, complementary analyses are needed to validate the implication of these genes or 108 

biological processes in plant response to bumblebee selection.  109 

Genetic diversity and overall genomic variance. In order to assess the changes in genetic diversity 110 

during experimental evolution, we estimated the nucleotide diversity across the genome for the 256 111 

individuals in a sliding window of 4.2kb (median LD block length in ninth generation after bumblebee 112 

selection). We did not observe any shift of the nucleotide diversity over nine generation of selection 113 

(Figure 3B). The average nucleotide diversity (π) in the first generation (mean π = 15.8.10-5, ± 11.10-5 114 

SD) is similar to the ninth generations (mean π = 15.7.10-5, ± 11.5.10-5 SD for control treatment, mean 115 

π = 15.6.10-5, ± 11.2.10-5 SD for bumblebee treatment). The average nucleotide diversity remained 116 

similar after the inter-replicate crossing (mean π = 16.10-5, ± 11.8.10-5 SD for control treatment, mean 117 

π = 15.8.10-5, ± 11.5.10-5 SD for bumblebee treatment).  118 

Using all SNPs in a genomic principal component analysis (PCA), we observed a structuring of 119 

our samples determined by generations, treatments, and replicates (Figure 4A and figures S4). Along 120 

the two first principal components (PCs), explaining 24.5% of the total genomic variance, all individuals 121 
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from the two replicates of generation one were well grouped together, and individuals from the latest 122 

generations were clearly separated from the first generation, but they were also separated between 123 

treatments (Figure 4A). We observed the same pattern in the principal components 3 and 4, explaining 124 

17% of the total genomic variance (cumulative variance of the first four axes is 41%, Figures S4A).  125 

For plants of generation nine, the pattern of genomic evolution was different between the 126 

selection treatments (control vs bumblebee). Interestingly, the individuals from the bumblebee 127 

treatment were more dispersed in genomic space represented by principal components PC1, PC2 and 128 

PC4 than the individuals from the first generation, highlighting a considerable increase of genomic 129 

variance (filled orange and yellow dots/bars (G1) and blue dots/bars (B9 and B10), Figure 4ACD and 130 

figure S4ACD). In the control treatment, the variance of the samples of the genomic space created by 131 

the principal components (i.e. the genomic variance) was similar between the first and last generations 132 

(filled orange and yellow dots/bars (G1) and green dots/bars (C9 and C10), Figure 4ACD and figure 133 

S4ACD). The average genomic variance among individuals from the bumblebee treatment increased 134 

75-fold in PC1 and 191-fold in PC2 (2-fold in PC3 and 61-fold in PC4) over nine generations (Table S3). 135 

In the ninth generation, the average genomic variance of samples on the PC1 was 3-fold greater and 136 

140-fold for PC2 (0.04-fold for PC3 and 39-fold for PC4) in the bumblebee treatment than in the control 137 

treatment (Table S2).  138 

In the dataset with the 76 SNPs under strongest bumblebee selection (1.6% of the total SNPs), 139 

we observed a different pattern. Using this subset of SNPs, only individuals of the bumblebee 140 

treatment were clearly separated from the individuals of the first generation and the control treatment 141 

in the genomic space represented by the first two PCs axes (Figure 4B). In the bumblebee treatment, 142 

while the replicates were separated in the dataset with all SNPs (4’713 SNPs, Figure 4A), they were 143 

clustered closely together (Figure 4B) for the 76 SNPs under selection, indicating shared directional 144 
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selection and parallel evolution (this pattern appears to be unrelated to a sub-sampling of the dataset, 145 

Figure S5).  146 

In terms of overall genetic variance, in the bumblebee treatment, we observed a lower relative 147 

variance among individuals, on the PC1, PC2 and PC4, for the subset of selected SNPs (76 SNPs) 148 

compared to the all-SNPs dataset (Figure 4CD and figure S4CD). In the subset of selected SNPs, we 149 

observed no clear patterns among treatment, generation, and replicate in the variance of individuals 150 

for PC1, PC3 and PC4 (Figure 4C), while for PC2, a decrease of genomic variance was detected (Figure 151 

4D).  152 

 153 

Discussion  154 

Understanding how and how fast selection affects standing genetic variation within the 155 

genome remains an important challenge in conservation as well as in evolutionary genomics. Here, we 156 

screened for the genomic consequences of biotic selection in an experimental evolution experiment 157 

by sequencing genome-wide SNP markers in Brassica rapa plant individuals before and after nine 158 

generations of selection by bumblebees, and under random hand-pollination. As shown previously at 159 

the level of the phenotype, this primarily outcrossing plant shows rapid adaptation to specific 160 

pollinators [10]. We documented signature of directional selection driven by bumblebee pollinators, 161 

with allele frequency changes at several loci, as well as parallel genomic evolution. Interestingly, we 162 

documented a maintenance of standing genetic variation across the genome, a finding that challenges 163 

the assumption of a general loss of genetic variation in evolving small populations.  164 

In agreement with the previously demonstrated phenotypic selection and evolution in the fast-165 

cycling Brassica rapa experimental system [10] in traits known to be heritable [18, 17], we have shown 166 

genomic evolution across nine generations associated with the signature of selection. The here 167 

documented changes in allele frequencies, increasing linkage disequilibrium, as well as parallel 168 
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evolution of genomic regions the most under selection, underline the importance of pollinators in 169 

shaping plant rapid genomic evolution. Such rapid adaptive evolution is in line with previous results 170 

documented in plants responding during only few generations to environmental changes in response 171 

to climate variation [44, 45]. However, while many studies reveal the genomic architecture involved in 172 

plant adaptation to climate [46, 47, 48, 49], few studies have investigated the genomic regions involved 173 

in plant adaptation to biotic factors (pollinators, plants, microorganisms, herbivores, etc.) despite their 174 

obvious importance given their direct interaction with plants.  175 

Our study highlighted the potential involvement of multiple loci in rapid adaption to bumblebees, 176 

which agrees with studies highlighting a polygenic genetic architecture underlying floral evolution [27, 177 

37]. On the short evolutionary timescale applied in our study, the involvement of multiple loci can be 178 

explained both by the selective agent itself, selecting for combinations of different phenotypic traits, 179 

and/or by the complexity of pathways regulating them i.e., many loci underlying a single trait [50, 51]. 180 

Studies based on population divergence or reproductive isolation between closely related species have 181 

shown the importance of polygenic genetic architecture in floral- and reproductive trait evolution [52, 182 

53, 54, 55]. Whereas these studies focus on adaptation to abiotic parameters, other recent studies 183 

have also highlighted a complex genetic architecture involved in the evolution of mating system or 184 

petal colour during pollinator shifts leading to reproductive barriers between species [56, 57]. In our 185 

study, the polygenic architecture underlying adaptation to bumblebees could be explained by the 186 

observed combination of phenotypic traits involved in the increase attractiveness to bumblebees 187 

shown by Gervasi and Schiestl [10]. Among our 32 candidate genes under selection, interestingly, 188 

several are associated to transporters, signalling pathways and potential kinase receptors. The function 189 

of these genes could be associated to the production and emission of volatile organic compounds 190 

involving complex biosynthetic pathways [58], as volatiles were prominently evolving traits in Gervasi 191 

and Schiestl [10]. However, the low-density of markers used in our study, the low number of genome-192 

by-sequencing tags and the absence of phenotypic trait data do not allow us to unravel with certainty 193 
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the number and the identity of the genes under selection. Moreover, among loci under-selection, for 194 

some of them, no annotation could be found, or with unknown functions, highlighted the need to 195 

deepen our knowledge on function of genes involved in plant-pollinator interactions. Then, the relative 196 

contribution of individual loci to the phenotypic variation that matters for bumblebee attraction is still 197 

unknown and deserves more attention in the future. 198 

In genomic regions most under selection, a loss of genetic variance was observed, as expected by 199 

the selective sweep model where beneficial mutations’ frequency increases in a population until 200 

fixation [59]. It is well known that selective sweeps lead to loss of diversity in favorable alleles and in 201 

their surrounding region due to a hitchhiking effect [60]. However, in our study we also observed a 202 

maintenance of nucleotide diversity, and an increase of overall genomic variance despite the strong 203 

selection imposed by bumblebees during experimental evolution [10], and the small effective size of 204 

the populations. This increase of overall genomic variance was observed among individuals in both 205 

replicates (B9A and B9B), as well as in the inter-replicate crossing (B10). This pattern might be 206 

explained by a weaker selection acting on multiple standing variants (soft sweep) and by the multiple 207 

loci underlying individual phenotypic trait evolutionary changes. An increased number of studies 208 

demonstrate the importance of polygenic adaptation [61, 62, 50] related to the infinitesimal model 209 

(reviewed in Barton et al. [63]), where local adaptation is driven by small allele frequency changes in 210 

multiple loci. This outcome is supported by recent work observing the maintenance of standing genetic 211 

variation during long-term artificial selection on chicken weight, mainly explained by selection acting 212 

on highly polygenic architecture [64]. Multiple genes underlying phenotypic variation are widely 213 

emphasized in plants with the advances of GWAs [61], however their involvement in the maintenance 214 

of standing genetic variation is still poorly understood and deserves further studies.  215 

 216 

 217 
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Conclusion  218 

We revealed important genomic changes on multiple loci during bumblebee selection during only 219 

nine generations. We hypothesize that the observed complexity of the genetic architecture allows the 220 

maintenance of a high standing genetic variation essential for rapid adaptation to future changes. Our 221 

study is a first step in the understanding of the complex genomic mechanisms involved during rapid 222 

evolutionary adaptation to biotic factors, and we advocate further analyses to understand (1) the 223 

genetic architecture underlying phenotypic variation, (2) pleiotropic effects of quantitative-trait locus 224 

in rapid adaptation and (3) the mechanisms behind a maintenance of genetic variance. We also 225 

underline the importance of better characterizing the gene functions involved in plant-pollinator 226 

interactions. Overall, pollinators constitute complex patterns of selection which deserve more 227 

attention for predicting the adaptive responses of wild and crop plant species to their decline.  228 

 229 

Material and methods  230 

Plant material and experimental design. Brassica rapa (Brassicacea) is an outcrossing plant with 231 

genetic self-incompatibility, pollinated by diverse insects such as bumblebees, flies or butterflies [65]. 232 

Our study used rapid-cycling Brassica rapa plants (Wisconsin Fast Plants) selected for its short life cycle 233 

of approximately two months from seed to seed. The plants used in this study were grown from seeds 234 

produced by the study of Gervasi and Schiestl [10], performing experimental evolution with 235 

bumblebees and control hand pollination. We used one seed per individual from 64 plants (half of 236 

replicate A and half of replicate B) of (1) the starting generation (generation 1; here called A1 and B1); 237 

(2) the ninth generation selected by bumblebees (bumblebee treatment; here called B9A and B9B); (3) 238 

the ninth generation of control hand pollination plants (control treatment; here called C9A and C9B; 239 

Figure S1). Finally, we performed crossings between replicates A and B within each treatment, 240 

(generation 10) yielding 32 individuals from the bumblebee treatment (inter-replicate crossing in 241 
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bumblebee treatment; here called B10) and 32 individuals from the control treatment (inter-replicate 242 

crossing in control treatment; here called C10). These manual crossing are commonly used for reducing 243 

the effect of potential inbreed depression on trait changes. Pollen donors and receivers were randomly 244 

assigned in these crossing. Each combination of generation*treatment*replicate is called a population 245 

(e.g. ninth generation, treatment bumblebees, replicate A called B9A is a population). A total of 256 246 

seeds from these 8 populations (first, ninth and tenth generation) were sown out in a phytotron (first 247 

generation in 2017 and ninth generation as well as the inter-replicate crossing in 2019) and the leaf 248 

tissue of each plant was collected for DNA extraction and whole genomic sequencing.  249 

DNA extraction and genomic characterization. Because leaf tissue was collected in 2017 for the first 250 

generation and 2019 for the last generations, we adapted the collection storage (drying vs freezing). 251 

Leaf material from the first generation was dried in vacuum at 40 °C for 20 hours, and leaf material 252 

from the ninth and tenth generation was stored in -80°C. A high molecular weight DNA extraction 253 

(average DNA concentration of 48 ng/µL, LGC extraction protocol) and library preparation for 254 

genotyping-by-sequencing (restriction enzyme MsII, insert size mean range ~215bp) was performed 255 

by the LGC Genomics group Berlin. Samples were sequenced with Illumina NextSeq 500 V2 sequencer 256 

using 150 paired-end reads; the alignment of our samples was performed with BWA version 0.7.12 257 

against the reference genome sequence of Brassica rapa FPsc v1.3, Phytozome release 12 258 

(https://phytozome.jgi.doe.gov/pz/portal.html) by the LGC Genomics group Berlin. The variant 259 

discovery and the genotyping were realized using Freebayes v1.0.2-16 with the following parameters 260 

by the LGC Genomic Group Berlin: --min-base-quality 10 --min-supporting-allele-qsum 10 --read-261 

mismatch-limit 3 --min-coverage 5 --no-indels --min-alternate-count 4 --exclude-unobserved-262 

genotypes --genotype-qualities --ploidy 2 or 3 --no-mnps --no-complex --mismatch-base-quality-263 

threshold 10. We then performed a quality trimming on chromosomes (we discarded the scaffolds) 264 

using vcftools, removing  SNPs with missing data in more than 5% of the individuals (function --max-265 

missing 0.95, i.e. genotype calls had to be present for at least 243 samples out of 256 for a SNP to be 266 
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included in the downstream analysis), and retained only bi-allelic SNPs with a minimum average Phred 267 

quality score of 15 (function --minGQ 15) and a maximum mean depth value of 100 (function --max-268 

meanDP 100, distribution in Figure S3). Finally, we discarded SNPs with a minor allele frequency (MAF) 269 

lower than 0.1 (function --maf 0.1, distribution in Figure S3).  The final dataset contained 4’713 SNPs 270 

in ~ 215Mb genome size.  271 

Allele frequency changes. The allele frequencies of the reference allele for the 4’713 SNPs were 272 

estimated within each populations using VCFtools (function --freq). To control for potential genetic 273 

drift during the nine generations of evolution, we simulated random final allele frequencies 10’000-274 

fold for different ranges of initial allele frequencies (from 0 to 1 by an interval window of 0.01). The 275 

simulations were performed using the R environment package “learnPopGen” (function 276 

“drift.selection”, 66) over eight transitions between generations (i.e. from the first generation to the 277 

ninth generation) considering 32 individuals within each population for an effective size (Ne) of 16 (i.e. 278 

individuals contributing to the next generation, see details of experimental evolution in Gervasi and 279 

Schiestl [10]), and considering an equal fitness for each individual. From these simulations, a P value 280 

was estimated for each SNP using the following equations: 281 

(1) For a decrease of reference allelic frequency i.e. (AFinitial – AFfinal) > 0, pvalue = (number of 282 

simulation with AFsimulated ≥ AFfinal)/10’000 283 

(2) For an increase of reference allelic frequency i.e. (AFinitial – AFfinal) < 0, pvalue = (number of 284 

simulation with AFsimulated ≤ AFfinal)/10’000 285 

(3) For (AFinitial – AFfinal) = 0, pvalue = 1 286 

With AFsimulated = simulated final allele frequency, AFinitial = initial allele frequency from the 287 

reference allele (first generation), and AFfinal = observed final allele frequency for the reference allele 288 

(ninth generation). Using these parameters, the minimum expected pvalue is ~ 1.10-4 (1/10’000), 289 

except for final allelic frequency completely out of the simulated range (i.e. zero simulated allele 290 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.02.470896doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.02.470896
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

frequencies are al higher or lower than the final observed allele frequency) would be associated with 291 

pvalue=0.  292 

Finally, we estimated the allele frequency changes (∆ℎ) from the reference allele according to 293 

the equation (1) for both bumblebee and control treatments: 294 

 ∆ℎ = AFfinal − AFinitial           (1) 295 

Where Δh is the allelic frequency change between the first and the ninth generation, AFinitial is the initial 296 

observed allele frequency, and AFfinal is the observed final allele frequency at the ninth generation.  297 

Estimation of linkage disequilibrium (LD) changes across rapid evolution. During selective process, 298 

an increase of the linkage disequilibrium is expected, especially in genomic regions strongly under 299 

selection. First, we calculated pairwise linkage disequilibrium (LD) among all set of SNPs using 300 

VCFtools (function --geno-r2) for 256 samples within each population. The associated median LD was 301 

then estimated and plotted. Second, a pairwise LD among SNPs in the surrounding of SNPs highly 302 

under selection in bumblebee treatment were calculated using plink1.9 (function -r2). Finally, we 303 

calculated the LD blocks in each population using plink1.9 with the following parameters: --blocks no-304 

pheno-req --maf 0.07 --blocks-max-kb 200.  305 

Candidate genes. We identified candidate genes associated with 43 SNPs with the highest significant 306 

allele frequency changes (pvalue < 0.01 and abs(Δh) > 0.5) for the bumblebee treatment. Because the 307 

median linkage disequilibrium in bumblebee treatment is 4.2kb, we retrieved the annotated genes 308 

around 4.2kb (2.1 kb upstream and 2.1 kb downstream) for 43 SNPs and extracted the gene description 309 

using phytozome.jgi.doe.gov. Because some gene descriptions were missing or partially incorrect, we 310 

double checked the description of genes using well documented Arabidopsis thaliana (Brassicaceae) 311 

databases. The gene sequences were extracted for the different transcripts from phytozome, blasted 312 
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on TAIR (www.arabidopsis.org), and the description of gene record as well as the GO biological process 313 

available for A. thaliana was extracted. 314 

Nucleotide diversity and genome-wide variance. We estimated the genetic diversity using a marker-315 

based index i.e. the nucleotide diversity (π) over 4’713 SNPs using a 4.2kb sliding windows in VCFtools 316 

(--window-pi).  The choice of the window size was made according to the median LD in treatment B9 317 

(median LD = 4.2kb). 318 

The genomic variance among individuals per population (i.e., generations* treatment) was 319 

estimated performing a principal component analysis (PCA) on scaled and centered genotype data 320 

(pcadapt package in R environment, function pcadapt, 67). In order to unravel the changes in genomic 321 

variance over nine generations, we performed the PCA on different sub-datasets:  322 

1. On the total number of SNPs (i.e. 4’713 SNPs). 323 

2. On 76 SNPs with higher significant (pvalue<0.05 and Δh>0.5) allele frequency changes i.e. 324 

the genomic regions the most under bumblebee selection.  325 

3. 1’000 times on 76 randomly choose SNPs controlling sub-sampling effect (details and 326 

results in SI). 327 
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 491 
 492 
Legends 493 
 494 
Figure1. Allele frequency changes during experimental evolution.  (A) Comparison of the allele 495 
frequency changes (Δh) between the bumblebee treatment (x-axis) and the control treatment (y-axis). 496 
The grey dots represent the 4’713 SNPs. (B) Ven diagram for the number of SNPs with highest allele 497 
frequency changes (absolute(Δh) > 0.5) and under significant selection (pvalue < 0.05) in the control 498 
treatment (green circle) and the bumblebee treatment (blue circle). Comparison of initial (first 499 
generation) and final (ninth generation) allele frequencies in the control (C) and the bumblebee 500 
treatment (D). The grey dots represent the non-significant changes in allele frequencies between 501 
generations. The grey solid lines indicate the maximum (upper line) or minimum (lower line) of final 502 
simulated allele frequencies obtained by 10’000 simulations of random genetic drift (over nine 503 
generations, Ne=16). The green gradient dots represent significant changes (light green for a pvalue < 504 
0.05, medium green pvalue < 0.01, and dark green pvalue < 0.001) calculated from the 10’000 505 
simulations.  506 
 507 
Figure 2. Genomic scan of allele frequency changes in bumblebee treatment. The Manhattan plot 508 
shows the absolute genomic changes occurring over nine generations (absolute(Δh), y-axis) along the 509 
genome (x-axis) for bumblebee treatment (A). The chromosome numbers are indicated below the 510 
plots (from I to X), and the different shades of blue encode changes on different chromosomes. The 511 
coloured dots are the SNPs under selection (green dots for pvalue < 0.05, and red dots for pvalue < 512 
0.001). We highlighted with the arrows two genomic regions showing important changes near the SNPs 513 
5_136590 and 7_18056205. A zoom of 1Mb in the surrounding regions are plotted in (B) for the SNP 514 
in the chromosome V, and in (C) for the chromosome VII. The meaning of the dots is the same than 515 
the Manhattan plot. We added on the plot the median LD (r2) in these genomic regions using the 516 
coloured lines (legend in the bottom left corner of the plot). 517 
 518 
Figure 3. Linkage disequilibrium and nucleotide diversity. (A) Distribution of the median pairwise 519 
linkage disequilibrium (r2) for each population by distance between two SNPs (kb). The colour of the 520 
population is indicated in the plot (B) Number of LD blocks per population (more details Table S1). (C) 521 
Density plot of the nucleotide diversity (π) measuring in sliding windows of 4.2kb for each population 522 
(see legend in 3A for the line colour).  523 
 524 
Figure 4. Genomic variance among populations. (A-B) Position of the 256 individuals in the genomic 525 
space from the principal component analysis (PCA) performed on their genotypes (GT). The PCAs were 526 
performed (A) on the total set of SNPs (4’713 SNPs), and (B) on the 76 SNPs the most under selection 527 
in the bumblebee treatment (pvalue < 0.05 and absolute(Δh) > 0.5). The label of the population is 528 
shown on their centroid. The relative variance of the PC1 (C) and PC2 (D) are represented with the bar 529 
plots, where the filled bars are for the PCA performed on the 4’713 SNPs, and the dashed ones on the 530 
76 SNPs. The legend colours are indicated in the bottom right of the figure.   531 
 532 
 533 
 534 
 535 
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Abstract  

Insect pollinators shape rapid phenotypic evolution of traits related to floral attractiveness and 

plant reproductive success. However, the underlying genomic changes and their impact on standing 

genetic variation remain largely unknown despite their importance in predicting adaptive responses in 

nature or in crop’s artificial selection. Here, based on a previous, nine generation experimental 

evolution study with fast cycling Brassica rapa plants adapting to bumblebees, we document genomic 

evolution associated to the adaptive process. We performed a genomic scan of the allele frequency 

changes along the genome and estimated the nucleotide diversity and genomic variance changes. We 

detected signature of selection associated with rapid changes in allelic frequencies on multiple loci. 

During experimental evolution, we detected an increase in overall genomic variance, whereas for loci 

under selection, a reduced variance was apparent in both replicates suggesting a parallel evolution. 

Our study highlights the polygenic nature of short-term pollinator adaptation and the importance of a 

such genetic architecture in the maintenance of genomic variance during strong natural selection by biotic 

factors.   
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Control of subsampling effect in genomic PCA 

In order to control for a potential artefact due to a subsampling, we performed the PCA analysis 1’000-

times with 76 SNPs randomly chosen within the full dataset of 4’713 SNPs. The relative variance 

measured among those 1’000 PCAs was homogenous for the first generation and in the control 

treatment (ninth and tenth generations, Figure S4). However, the measured relative variance for the 

bumblebee treatment (ninth and tenth generations) among the 1’000 PCA was highly variable on the 

fourth PCs compared to the first generation or control treatment (Figure S4). Moreover, the genomic 

variance observed based on the 76 SNPs under bumblebee selection (Figure 5) was mostly located (not 

all significantly) in the lower tail of the PC values distribution obtained randomly, confirming that the 

observed decrease in genomic variance during bumblebee selection is probably not due to an artifact 

of sub-sampling (Figure S4).   

 
 
 
 
 
 
 
Figure S1. Design of the experimental evolution experiment.  
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Figure S2. Upper part: histogram of MAF before (5637 SNPs) and after (4713 SNPs) cutting for 

maf<0.1. Below part: histogram of average read depth (DP) over 256 samples for each 4713 SNPs.  

 

 

 

Figure S3. Plot Nucleotide replicates details
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Figure S4. Plot of the PC3 & PC4 performed on 4’713 SNPs and 145 SNPs 
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Figure S5. Jitter plots of the variance of the 256 samples on the genomic space from 1’000 PCA 

performed on 76 random SNPs. The red dots are the variance of these 256 samples on the genomic 

space from PCA performed on 76 SNPs un bumblebee selection. The significances above the jitter 

plots indicate whether the variance of the PCs from the 76 SNPs is significantly different from the 

distribution of the PCs from the 1’000 PCAs. 

 

 

 

Table S1. Linkage disequilibrium blocks. For each population, the number of LD blocks, the mean (+- 

sd) of the number of SNPs per LD block, and the length (in kb) of LD blocks. 

 

 

 

 

 

Nb. LD blocks

Mean Nb. SNPs / 

LD block

Median Nb. SNPs 

/ LD block

Mean LD block 

length (kb)

Median LD block 

length (kb)

G1 949 3.16 3 13.48 0.13

C9 818 3.85 3 36.04 0.25

B9 791 4.16 4 53.55 4.23

C10 743 3.53 3 24.86 0.15

B10 696 3.87 3 38.94 0.17
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Table S2. List of 32 candidate genes.  

 

Gene ID        

(B. rapa )
protein name Description (Phytozome)

Gene ID       

(A. thaliana )

protein name 

(A. thaliana )
GO term biological Process (A. thaliana )

Brara.B03446 LRR_3 Leucine Rich Repeat (LRR_3) AT5G51630 NA signal transduction

Brara.B03515 GRF1 GRF1 (growth regulator factor) -INTERACTING FACTOR 1 AT5G28640.3 GRF1, AN3 cell division, leaf development, regulation of gene expression

Brara.B03516 NA NA AT5G28610 LOW protein biological_process

Brara.C03679 PEX3 peroxin-3 AT3G18160 PEX3-1 peroxisome organization, protein import into peroxisome membrane

Brara.C03680 NA EamA-like transporter family AT3G18200.2 UMAMIT4 NA

Brara.C04359 PSMA7 20S proteasome subunit alpha 4 (PSMA7) AT3G51260 PAD1
proteasomal ubiquitin-independent protein catabolic process, proteasome-mediated ubiquitin-dependent protein catabolic process, ubiquitin-

dependent protein catabolic process

Brara.C04360 RIOK2 RIO kinase 2 (RIOK2) AT3G51270 NA maturation of SSU-rRNA, protein phosphorylation

Brara.D00527 NA NA AT3G53490 NA biological_process

Brara.D00530 LOG3
CYTOKININ RIBOSIDE 5'-MONOPHOSPHATE PHOSPHORIBOHYDROLASE LOG3-

RELATED
AT3G53450 LOG4 cytokinin biosynthetic process

Brara.D00531 RPL12 large subunit ribosomal protein L12e (RP-L12e, RPL12) AT3G53430 NA translation

Brara.D00706 Zein-binding Zein-binding AT4G13630 MYOB13 biological_process

Brara.D00707 NA ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR CRF5-RELATED AT4G13620.1 NA regulation of transcription, DNA-templated

Brara.D00848 PRR_2 PRR repeat family AT5G37570 NA RNA modification

Brara.D00997 GRX Glutaredoxin (GRX) family AT3G28850 NA NA

Brara.D01757 NA NAD(P)-BINDING ROSSMANN-FOLD SUPERFAMILY PROTEIN-RELATED AT2G29320.3 NAD(P)-binding Rossmann-fold superfamily proteinNA

Brara.E00146 LEA-HRGP LATE EMBRYOGENESIS ABUNDANT HYDROXYPROLINE-RICH GLYCOPROTEIN AT2G46300 NA biological_process

Brara.E00147 DUF1218 Protein of unknown function (DUF1218) AT1G05291.1 DUF1218 biological_process

Brara.E00344 POP4 ribonuclease P protein subunit POP4 (POP4, RPP29) AT2G43190 POP4 rRNA processing

Brara.E00345 PTI1 PTI1-LIKE TYROSINE-PROTEIN KINASE 1-RELATED AT2G43230 CARK6 response to abscisic acid

Brara.F01068 ABCG38
ABC TRANSPORTER G FAMILY MEMBER 38 - Monosaccharide-transporting 

ATPase
AT1G15520 ABCG40

abscisic acid transport, abscisic acid-activated signaling pathway, cellular response to water deprivation, defense response to oomycetes, 

import across plasma membrane, import into cell, intercellular transport, lead ion transport, negative regulation of post-embryonic 

development, response to abscisic acid, response to cold, response to ethylene, response to heat, response to jasmonic acid, response to ozone, 

response to salicylic acid, response to water deprivation, stomatal closure, terpenoid transport, transmembrane transport

Brara.F01236 PP2C16 PROTEIN PHOSPHATASE 2C 16-RELATED AT1G17550 ATHAB2 NA

Brara.F01237 NA large subunit ribosomal protein L14 (RP-L14, MRPL14, rplN) AT1G17560 HLL
embryo sac development, integument development, negative regulation of cell  death, plant ovule development, response to brassinosteroid, 

translation

Brara.G01361 LOG1 CYTOKININ RIBOSIDE 5'-MONOPHOSPHATE PHOSPHORIBOHYDROLASE LOG1 AT2G28305 LOG1 cytokinin biosynthetic process

Brara.G01976 GATL6 GALACTURONOSYLTRANSFERASE-LIKE 6-RELATED AT3G62660 GATL7 pectin biosynthetic process

Brara.G01977 SEC61A protein transport protein SEC61 subunit alpha AT1G29310.2 SEC61A SRP-dependent cotranslational protein targeting to membrane, translocation, posttranslational protein targeting to membrane, translocation

Brara.G02000 ABCG35 ABC TRANSPORTER G FAMILY MEMBER 35-RELATED AT1G59870 ABCG36 response to heat

Brara.G02343 LRR_3 Leucine Rich Repeat (LRR_3) AT1G72840 NA signal transduction

Brara.H01604 PAT8 PROTEIN S-ACYLTRANSFERASE 8 AT4G24630 NA peptidyl-L-cysteine S-palmitoylation, protein targeting to membrane

Brara.H01605 NA NA AT4G24590.2 RING biological_process

Brara.H01737 NA NA AT4G37820 NA biological_process

Brara.H01738 COX6A cytochrome c oxidase subunit 6a (COX6A) AT4G37830.1 COX mitochondrial electron transport, cytochrome c to oxygen

Brara.I01179 SLAH1 S-TYPE ANION CHANNEL SLAH1-RELATED AT1G62280 SLAC1 cellular ion homeostasis, chloride transport, positive regulation of anion channel activity, response to salt stress, response to water deprivation
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Figure S3. Genomic variance among populations. Variance of the 256 samples on the genomic space 

from PCA performed on the 4’713 SNPs (in e-5). 

 

 

Table S4. Genomic variance among populations. Variance of the 256 samples on the genomic space 

from PCA performed on the 76 SNPs (in e-5). 

 

 

A1 B1 G1 C9A C9B C9 B9A B9B B9 C10 B10

PC1 7.7 3.4 5.5 3.8 14.5 115.9 59.4 17.1 357.2 5.9 40.1

PC2 4.4 6.4 5.5 6.3 7.9 7.5 51.4 275.4 1050.3 7.3 363.4

PC3 20.6 15.4 19.1 26 12.3 1406.8 17 29.5 42.2 14.2 14.6

PC4 9.2 23.2 16.4 5.6 16.2 25.3 16.6 1795.1 995.3 10.7 565.4

A1 B1 G1 C9A C9B C9 B9A B9B B9 C10 B10

PC1 44.2 22.1 32.7 9.3 21.6 36.6 17.5 41.7 41.4 11.4 15.6

PC2 200.4 199.5 198.5 18.3 119.9 1127.6 24.4 22.2 23.2 104.5 21.6

PC3 185.3 132.3 157 168.8 112.2 240.6 22.1 498.2 299.4 217.4 132.1

PC4 276.7 330.2 299.2 109.7 210.2 227 235.6 450.9 690.7 198.6 221.2
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