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Abstract

A key challenge in optical microscopy is to image fast
at high-resolution. To address this problem, we pro-
pose “Physics Augmented U-Net”, which combines deep
learning and structured illumination microscopy (SIM). In
SIM, the structured illumination aliases out-of-band high-
frequencies to the passband of the microscope; thus SIM
captures some high-frequencies even when the image is
sampled at low-resolution. To utilize these features, we pro-
pose a three-element method: 1) a modified U-Net model,
2) a physics-based forward model of SIM 3) an inference
algorithm combining the two models. The modified U-Net
architecture is similar to the seminal work, but the bottle-
neck is modified by concatenating two latent vectors, one
encoding low-frequencies (LFLV), and the other encoding
high-frequencies (HFLV). LFLV is learned by U-Net con-
tracting path, and HFLV is learned by a second encoding
path. In the inference mode, the high-frequency encoder is
removed; HFLV is then optimized to fit the measured mi-
croscopy images to the output of the forward model for the
generated image by the U-Net. We validated our method
on two different datasets under different experimental con-
ditions. Since a latent vector is optimized instead of a 2D
image, the inference mode is less computationally complex.
The proposed model is also more stable compared to other
generative prior-based methods. Finally, as the forward
model is independent of the U-Net, Physics Augmented U-
Net can enhance resolution on any variation of SIM without
further retraining.

1. Introduction

High-resolution fluorescence microscopy is an essen-
tial tool in today’s biology. Many important biological
molecules can be fluorescently labelled, and their spatial
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Figure 1. Visualization of the generated images by our pro-
posed Physics Augmented U-Net on U2OS Cells and PatchMNIST
datasets. Low-frequency image is generated from the ground truth
patterned image stack. Gen-Prior is generated by the modified U-
Net, given the input of low-frequency image and random noise
vector for HFLV. Phy-Aug represents the final output image of our
proposed method.

and temporal behavior can be studied. For instance, high-
resolution fluorescence imaging can visualize DNA damage
and repair process in live cells at sub-micrometer resolution.
Moreover, genetically modified animals expressing fluores-
cence allow molecular specific in-vivo studies, such as the
dynamic signaling of neurons in the mouse brain. For many
studies requiring high-resolution, rapid image acquisition is
fundamentally important. A recent study imaged a cleared
whole mouse brain at 6.5µm3 resolution in 7 minutes [28].
Same imaging at high, diffraction-limited resolution would
take over two months. Therefore, the resolution is often
sacrificed in favor of scale and time or vice versa. A flu-
orescence microscopy technique which allows both high-
resolution and high-speed has been a vital aim for many
decades.

Structured Illumination Microscopy (SIM) is one of the
most important high-resolution microscopy techniques de-
veloped to date. In contrast to confocal techniques, SIM
allows rapid 3D wide-field imaging fully utilizing state-of-
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the-art cameras. In SIM, multiple structured illumination
patterns encode spatial frequencies of the specimen being
imaged. The set of encoded images constitute a linear sys-
tem; by solving the linear system, a depth-resolved image
can be reconstructed at high-resolution. Nevertheless, to
perform the reconstruction using such traditional solvers,
illumination structures should be resolved on the camera
according to the Nyquist criterion. When the Nyquist cri-
terion is broken, out-of-band high-frequencies aliases to
the passband of the microscope rendering the linear sys-
tem unsolvable. However, recent advances in deep learning
allow solving such under-determined systems by learning
content-dependent image priors.

The advancement of deep learning benefited a variety of
disciplines, including fluorescence microscopy. In particu-
lar, deep convolutional neural networks (DCNNs) can en-
hance image resolution. Generally, DCNNs learn a map-
ping from low-resolution images to their respective high-
resolution images. This by itself is solving an under-
determined system, but with the absence of any high-
frequency information. Undersampled SIM images, how-
ever, contain aliased high-frequency information. Thus,
DCNNs may translate low-resolution (i.e. undersampled)
SIM images to high-resolution images, better than they can
translate normal low-resolution images to high-resolution.
A DCNN can be trained to translate low-resolution SIM
images to high-resolution by acquiring paired training im-
ages. However, for each SIM system, such data need to be
collected. On the other hand, a mathematical model of the
imaging system can be used to create synthetic training data
from only a high-resolution image dataset when the model
of the system is known a priori. Such models are called for-
ward models and corresponding DCNN solvers are called
inverse models. However, when the forward model of the
system changes, the inverse model (i.e. the DCNN) has to
be retrained. Moreover, for each forward model, a special-
ized inverse model needs to be trained.

To address the aforementioned shortcomings, we pro-
pose “Physics Augmented U-Net” which combines SIM
and DCNNs as a generative prior. Our architecture involves
three main elements: 1) modified U-Net model 2) a physics-
based forward model of SIM and 3) an inference algorithm
combining aforementioned two models. Here, the U-Net
architecture is similar to the seminal work [24], but in the
bottleneck two latent vectors are concatenated, as shown in
Figure 2. The first latent vector is the feature representation
of the low-frequency image (LFLV), learned by the encoder
in the U-Net architecture. The second latent vector is used
to inject high-frequency information (HFLV) acquired by
the microscope to the network in order to generate high-
resolution images. In the inference stage, high-frequency
encoder is removed and HFLV is optimized by minimizing
the loss between the measured image by the microscope and

the output of the forward model for the generated image by
the U-Net. Compared to traditional solvers, our approach
is less computationally complex since we optimize a latent
vector, instead of optimizing every pixel of the image. Our
proposed approach is forward model agnostic to avoid re-
training of the model. The proposed model is also more
stable compared to other generative prior-based methods.

Our main contributions can be summarized as follows :
• Proposing a novel method, termed Physics Augmented

U-Net by combining deep learning and SIM for high-
resolution microscopic image generation independent of
the variation of SIM.

• High-frequency content aware modified U-Net architec-
ture, with two latent vectors in the bottleneck - LFLV
and HFLV, in which HFLV is optimized in the inference
mode.

• Inference algorithm, to further improve the generated
prior image by the modified U-Net by optimizing the
HFLV to fit the measured microscopic images.

2. Related works

Deep generative priors for super resolution1 . Deep
learning generative models are great at capturing the sta-
tistical information from large data as a prior. Such deep
generative priors can be used in solving the inverse prob-
lems such as image reconstruction. A stronger prior will
be able to reconstruct even a largely downsampled image
into a super-resolved image. Standard generative models
are designed to take a random noise vector as the input
and output the generated image. Reusing such pre-trained
models as priors is challenging. GAN inversion i.e., in-
verting the input image to a latent vector such that it can
be reconstructed by the generative model, is the common
practice to address this problem [4, 8, 16, 20]. GAN in-
version falls into two categories: 1) optimizing the latent
vector [6, 8, 15, 16, 20] z*= argminz∈Z L(G(z), x), where
Z denotes the latent vector space, G denotes the trained
deep generative model, x corresponds to the low-resolution
image and L denotes the task-specific loss function. The
super resolved image can be reconstructed from the opti-
mal latent vector; 2) training an additional encoder to cap-
ture the mapping function from image space to latent vector
space [1, 4, 21]. For instance, mGANprior [8] employs and
optimizes multiple latent vectors to improve the reconstruc-
tion performance of the model. PULSE [16] iteratively op-
timizes the latent vector to generate high-resolution realis-
tic images using StyleGAN. DGP [20] reduces the distance

1Here the term super resolution refers to high-resolution images re-
constructed from low resolution measurements. We do not refer to super-
resolution microscopy that can image beyond the diffraction limit.
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Figure 2. Architecture of the modified U-Net with high-frequency encoder during the training stage. Two latent vectors αLF and αHF are
concatenated in the bottleneck of the modified-U-Net. The encodings for the low-frequency latent vector αLF is learned by the contracting
path of the modified U-Net from XLF and the encodings for high-frequency latent vector αHF is learned by the high-frequency encoder.

between training and testing image distributions by mod-
erately fine-tuning the parameters of generator along with
the latent vector. Meanwhile, GLEAN [4] applies an en-
coder to extract both the latent vectors and multi-resolution
convolutional features, to learn significant high-level fea-
tures and to provide additional spatial guidance for recon-
struction. In contrast, Physics Augmented U-Net utilizes
two latent vectors, where the first latent vector which pro-
vides low-frequency information is learned by the modified
U-Net and the second latent vector which is used to inject
high-frequency information is optimized by the inference
algorithm. Our optimization process improves the high-
frequency content in the reconstructed image and thus, the
quality of resolution enhancement is improved.

Deep Learning based SIM. In recent years, deep learn-
ing approaches have played a major role in biomedical im-
age analysis. Microscopic imaging too has benefited from
deep learning, with deep neural networks applied to su-
per resolution [5, 11, 14, 18, 19, 23, 27, 29], image restora-
tion [33], deconvolution [25,32], de-scattering [31], pheno-
typing [17], classification and image segmentation. Exist-
ing super resolution researches include application of deep
learning for regular optical microscopes [23], PALM [19],
STORM [18], Fourier ptychographic microscopy [27] and
SIM [5,11,14]. Belthangady et al. [2] has conducted a com-
prehensive review on this line of work and presented the

promises and pitfalls deep learning pose in the microscopic
image reconstruction domain.

SIM acquires many raw images with different illumina-
tion patterns for high-resolution image generation. There-
fore, recent researches on SIM have focused on reducing the
number of raw images for image reconstruction, by which
the speed of image acquisition can be increased and the
number of times a specimen gets exposed can be reduced.
Ling et al. [14] used cycle-consistent generative adversar-
ial network (CycleGAN [37]) for image reconstruction. Jin
et al. [11] used deep neural networks for super resolution
image reconstruction from low light SIM images as well as
from reduced number of raw images. Christensen et al. [5]
used deep learning for image reconstruction from synthetic
raw SIM images. To the best of our knowledge deep gener-
ative priors have not been used for image reconstruction in
SIM.

Image super resolution 1. Most of the super resolution al-
gorithms [7,9,34,35] are based on single image super reso-
lution as they learn the mapping between low-resolution and
high-resolution images, and optimize the pixel-wise mean
squared error (MSE). The resolution enhancement achiev-
able through such super resolution algorithms are limited

1As stated before, here the term super resolution refers to high-
resolution images reconstructed from low resolution measurements, not
images beyond the diffraction limit.
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Figure 3. Illustration of our proposed Physics Augmented U-Net in the inference stage, consisting modified U-Net, physics-based forward
model of SIM and inference algorithm to optimize αHF to obtain high-resolution image. The process of obtaining low-frequency input
image is illustrated under low-frequency image generation block.

as they depend on the pixel-wise constraints which lead
to perceptually unconvincing output with blurry effects on
the edges due to their ill-posed nature [3, 13]. The gen-
erative adversarial network (GAN) based super resolution
[13,22,30] alleviates the problem since they learn the map-
ping between the distributions of low-resolution and su-
per resolution images, and approximates the natural image
manifold, which results in realistic image generation. Re-
cently, GAN-based image super resolution works focus on
achieving large upsampling factors such as ×8, ×16 [10,26]
instead of typical upsampling factors like ×2, ×4.

3. Physics Augmented U-Net

This section gives detailed introduction to our proposed
method Physics Augmented U-Net. SIM is capable of cap-
turing some high frequencies even when the image is sam-
pled at low-resolution. In order to utilize the captured high-
frequency information and to be forward model agnostic,
our method consists of three elements: 1) modified U-Net
architecture, 2) physics-based forward model of SIM and 3)
inference algorithm.

3.1. Modified U-Net Architecture

Let’s formally define our low-resolution to high-
resolution image translation task by the modified U-Net.
Given high-resolution ground truth image XHR ∈ Rm×n is
down-sampled by average pooling operation to generate the
corresponding low-resolution image XLR ∈ R

m
β ×n

β , where
m, n are the dimensions of the image and β denotes the
downsampling factor.

XLR = D ⊛XHR (1)

Here, D is the kernel used for average pooling and ⊛ de-
notes the convolution operation. Then, 2D bilinear upsam-
pling operation with scaling factor of β is applied to XLR

to generate the corresponding low-frequency image XLF ∈
Rm×n. We generate a high-frequency image XHF ∈Rm×n

corresponding to XHR by subtracting XLF from XHR.

XHF = XHR −XLF (2)

The input space to our modified U-Net consists of
{XLF , XHF } pairs and the output space consists of XHR.
The goal is to learn an image-to-image translation func-
tion Gθ : {XLF , XHF } −→ XHR by minimizing the error
rate: E(L(Gθ(XLF , XHF ), XHR)). Here L denotes the
loss function, which is the mean absolute error (MAE) and
θ represents the parameters of the modified U-Net, G. Let
X̂ = Gθ(XLF , XHF ) be the generated image by the U-
Net, the loss function L:

L(X̂,XHR) = E
[
∥X̂ −XHR∥1

]
(3)

The architecture of the modified U-Net as shown in Fig-
ure 2, is similar to the seminal work [24], consists of the
contracting path to learn the encodings of LFLV from in-
put XLF and symmetric expanding path for high-resolution
image X̂ generation. We employ skipped connections be-
tween similar convolutional network blocks in the contract-
ing and expanding paths. Additionally, a second encoding
path is employed named High-Frequency Encoder with the
similar structure of the contracting path to learn the encod-
ings of HFLV from input XHF . LFLV and HFLV are con-
catenated in the bottleneck of the U-Net to enhance low-
resolution to high-resolution image translation by injecting
high-frequency information.

The contracting path consists of repeated convolutional
network blocks with two 3×3 padded convolutions, each
followed by 2D batch normalization and leaky rectified lin-
ear unit (LeakyReLU). After each convolutional network
block a 2×2 max pooling operation is employed for down-
sampling. Six convolutional network blocks followed by
max pooling operation are utilized to structure the contract-
ing path. The number of feature channels are doubled at
each downsampling step. Then an additional 2×2 unpadded
convolution followed by tanh activation unit and batch nor-
malization is applied to acquire LFLV. The tanh activation
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is applied to constraint the range of LFLV and then normal-
ized using batch normalization to smoothen its vector space.
The structure of encoding path in High-Frequency Encoder
to acquire HFLV is same as the contracting path mentioned
above without skip connections.

The expanding path consists of 2×2 transposed convo-
lution operation for upsampling followed by 2D batch nor-
malization and LeakyReLU. Then the upsampled feature
map is concatenated with the corresponding feature map in
the contracting path. Convolutional network block similar
to contracting path is applied after each upsampling step
and the number of feature channels were reduced by half.
Six upsampling steps followed by convolutional network
block are utilized to structure the expanding path. An addi-
tional 3×3 padded convolution operation followed by tanh
activation is applied in the final layer to acquire the high-
resolution image.

3.2. Physics-Based Forward Model
The task of the physics-based forward model is to simu-

late the corresponding SIM observation for a given high-
resolution image generated by the modified U-Net. For
demonstration in this paper, we use a SIM with random
structured illuminations, similar to that used in DEEP-TFM
[36]. We use a set of random binary patterns with the same
size of the image as structured illuminations. The advantage
of selecting random patterns is that they contain all frequen-
cies [36]. Let FSIM be the physics based forward model.
FSIM contains a randomized block of binary patterns H
∈ Bm×n×t, where B ∈ [0, 1]; t represents the number of
patterns. The randomized block of binary patterns are gen-
erated by creating matrices of size m×n and randomly as-
signing binary values to each of its pixels. Then the matrices
are stacked together to get the randomized block of binary
patterns. Finally, pixel-wise multiplication operation is em-
ployed between X̂ generated by the modified U-Net and
each patterns in the randomized block of binary patterns H
to acquire patterned image stack Ŷt ∈ Rm×n×t.

Ŷt = FSIM

(
X̂
)

(4)

where,
Ŷt,i = Hi ◦ X̂, i = 1, 2, ..., t (5)

Here, Ŷt,i denotes the ith structured illuminated image be-
fore undersampled detection; ◦ denotes pixel-wise multi-
plication. Then, each structured illuminated image in Ŷt is
downsampled by average pooling operation to generate Ŷ
∈ R

m
β ×n

β ×t. Ŷ is the final simulated image corresponding
to the physical observations.

3.3. Inference Algorithm

In the real application, we do not have access to the high-
frequency image XHF . The high-frequency information re-
quired by the modified U-Net to generate high-resolution

image should be injected externally. Our proposed infer-
ence algorithm as shown in Figure 3, focuses on utilizing
the high frequencies captured by the SIM by combining
both modified U-Net and physics-based forward model of
SIM. In the inference algorithm, High-Frequency Encoder
in the modified U-Net is removed. The low-frequency input
image to the modified U-Net is generated using the mea-
sured image stack captured by SIM based microscope. Let
Y ∈ R

m
β ×n

β ×t be the measured image stack from the SIM.
We generate X

′

LF ∈ Rm×n from Y . In order to have simi-
lar statistical distribution between X

′

LF and XLF (training
set), Y is first averaged along t axis to generate a 2D image
YLR ∈ R

m
β ×n

β and then upsampled using 2D bilinear up-
sampling operation to create X

′

LF (similar to Section 3.1).
Let HFLV of the modified U-Net be αHF ∈ A, where

A denotes the latent vector space. Initially, a prior image
X̂ is acquired by feeding X

′

LF to the modified U-Net and
randomly initializing αHF in the bottleneck. Here, random
values for αHF is sampled from standard normal distribu-
tion ∼ N (0, 1). Then X̂ is fed to FSIM to acquire its corre-
sponding image stack Ŷ ∈ R

m
β ×n

β ×t, which is equivalent to
SIM measurements. Iteratively, αHF is optimized by mini-
mizing the loss Linf between Y and Ŷ . Here, MSE is em-
ployed as Linf . The goal is to inject high-frequency infor-
mation captured by SIM to achieve high-resolution images
by optimizing αHF such that:

αHF = argmin
αHF∈A

[
E
(
∥Ŷ − Y ∥22

)]
(6)

We employ Adam optimizer [12] with the learning rate of
0.1 during inference.

4. Experiments

We validated our method using two datasets: 1) PatchM-
NIST dataset and 2) U2OS Cells dataset, under different
experimental setups. Details of the datasets and experimen-
tal setups used for validation are mentioned under Section
4.1 and 4.2.

4.1. Datasets
PatchMNIST Dataset.We generated a new dataset -
PatchMNIST dataset, from the publicly available MNIST
database*. MNIST database comprises of handwritten dig-
its and it is commonly used for evaluating learning tech-
niques and pattern recognition methods; it requires mini-
mal efforts for data preparation. MNIST images are of size
28×28, but our architecture takes 128×128 images as the
input. Since our model is used to generate high-resolution
images, upsampling MNIST images to the required size
is not appropriate; upsampled images will not have any
high-frequency information. As a solution, we generated

*http://yann.lecun.com/exdb/mnist/
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PatchMNIST dataset, which retains high-frequency infor-
mation and poses a more challenging evaluation task. Under
PatchMNIST data generation, MNIST images are resized
to 32×32 and 400 such images are tiled together to form
20×20 image grids. From each of the resultant 640×640
image grids, 32 patches of size 128×128 are extracted to
form the dataset. The generated dataset is then split into
train, validation and test sets of 192000, 3200 and 100 im-
ages respectively. Train and validation sets are utilized for
training and fine-tuning of the modified U-Net and high-
frequency encoder. The test set is utilized to evaluate the
performance of Physics Augmented U-Net.

U2OS (Bone Osteosarcoma) Cells Dataset. U2OS (bone
osteosarcoma) cells were fixed with 4% paraformaldehyde
and stained with DAPI. The cells were then imaged us-
ing a spinning disk confocal microscope at 63× magnifica-
tion using an objective with 1.4 numerical aperture. Image
stacks of size 60×2304×2304 were utilized for our perfor-
mance evaluation. From each image stack, the correspond-
ing maximum projection image is extracted and intensity
transformation is applied. The resultant images are further
downscaled by 63/20 and from each image 100 patches of
size 128×128 are extracted to form the U2OS Cells dataset.
The generated dataset is then split into train, validation and
test sets of 14700, 4200 and 100 images respectively.

4.2. Experimental Setup

Training of Modified U-Net: The modified U-Net with the
high-frequency encoder is trained end-to-end to perform
low-resolution to high-resolution image translation task.
The size of the latent vectors LFLV and HFLV is selected as
256. The model is trained using Adam optimizer [12] with
learning rates of 1×10−4, and 2×10−4 for modified U-Net
and high-frequency encoder respectively. Beta1 and beta2
of the Adam optimizer are set set to 0.9 and 0.999. The
batch size is experimentally chosen as 32. We used MAE
between the generated image and the ground truth as the
loss function for training and the number of epochs is set
to 500. The model is implemented in Pytorch† environment
and trained using a Nvidia Tesla V100 PCIe graphics card
with 32 GB memory.

The downsampling factor β used to create the low-
frequency image XLF is varied to evaluate the capabilities
of the proposed method to reconstruct high-resolution im-
age. The high-frequency content in XLF is reduced by in-
creasing β, so that the low-resolution to high-resolution im-
age translation becomes challenging. To evaluate the per-
formance of our proposed method with β values of 4, 8,
16 and 32, the modified U-net was trained with all said β
values.

†https://pytorch.org/

Inference Algorithm. During inference mode, the gener-
ated image is fed to the physics-based forward model and
the loss between the resultant output image stack and the
measured image stack from SIM is minimized. For exper-
iments, the ground truth image is fed to the forward model
and downsampled ground truth patterned image stack is
generated as the equivalent of measured image stack from
SIM. Then MSE loss between downsampled ground truth
patterned image stack and forward model output of the gen-
erated image is calculated for optimization. In the real ap-
plication, illumination patterns used for imaging are known,
thus same patterns are used in the forward model for infer-
ence. To replicate this, in the experiments, same patterns
are used in the forward model for both ground truth and
the generated images. The number of patterns used in the
forward model is varied to evaluate our method’s capacity
in high-resolution image generation as well as to avoid the
system becoming over determined. For every experiment
during inference, different patterns are used to ensure that
the proposed method is independent of the forward model.

5. Results and Discussion

We evaluate our proposed method on both U2OS Cells
and PatchMNIST datasets. The qualitative results are il-
lustrated in Figure 4. Quantitative results are illustrated
using PSNR and SSIM metrics. PSNR measures the av-
erage pixel difference between ground truth and generated
images; SSIM measures the structural similarity between

Table 1. Quantitative comparison (PSNR/SSIM) of the proposed
method on U2OS Cells dataset for different downsampling fac-
tors (β), when number of patterns (t) is set to 4.

Metrics Methods β
4 8 16 32

PSNR
X

′
LF 26.55 21.15 16.29 10.24

Gen-Prior 40.75 36.05 35.29 30.31
Phy-Aug 42.22 39.58 37.42 36.48

SSIM
X

′
LF 0.876 0.738 0.555 0.269

Gen-Prior 0.989 0.973 0.968 0.921
Phy-Aug 0.992 0.987 0.979 0.973

Table 2. Quantitative comparison (PSNR/SSIM) of the proposed
method on PatchMNIST dataset for different downsampling fac-
tors (β), when number of patterns (t) is set to 4.

Metrics Methods β
4 8 16

PSNR
X

′
LF 14.68 10.24 3.56

Gen-Prior 23.57 15.69 9.47
Phy-Aug 26.72 17.49 9.44

SSIM
X

′
LF 0.565 0.194 0.026

Gen-Prior 0.916 0.761 0.362
Phy-Aug 0.934 0.818 0.384
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Figure 4. Illustration of the results on U2OS Cells and PatchMNIST datasets by our proposed Physics Augmented U-Net for different
downsampling factors β. Number of illumination patterns (t) is set to 4. Significant improvement from the low-frequency input image
X

′
LF to Gen-Prior, and from Gen-Prior to Phy-Aug can be qualitatively observed. For additional results refer supplementary materials.

ground truth and generated images. Under performance
evaluation, downsampling factor (β) and the number of il-
lumination patterns (t) are varied, and the aforementioned
metrics are calculated between the ground truth image and
the following images:

• Low-Frequency Image (X
′

LF ), generated from the
ground truth patterned image stack as mentioned under
Section 3.3.

• Generative Prior Image (Gen-Prior), generated by
feeding X

′

LF to the modified U-Net without the high-
frequency encoder (here a random noise vector is fed as
the HFLV).

• Final Reconstructed Image (Phy-Aug), generated by
feeding X

′

LF to our proposed Physics Augmented U-
Net, comprising of modified U-Net, physics-based for-
ward model and inference algorithm.

5.1. Performance with Different Downsampling
Factors (β)

We investigated the performance of our proposed
method for different β values. On the U2OS Cells dataset,
we varied β by a factor of 2, as 4,8,16, and 32. Table 1
reports the performance of different β on the U2OS Cells
dataset in terms of PSNR and SSIM metrics, when the num-
ber of SIM illumination patterns t = 4. From Table 1, it
can be seen that Gen-Prior has significantly improved the

low-frequency image (X
′

LF ) by an average improvement of
17.04 and 0.353 in PSNR and SSIM respectively, across the
considered β values.

This improvement by Gen-Prior is solely attributed to
the modified U-Net architecture of our proposed method.
Our proposed Physics Augmented U-Net was able to further
enhance Gen-Prior by PSNR of 3.33 and SSIM of 0.020 on
average. This improvement is attributed to the inclusion of
physics-based forward model and inference algorithm for
Phy-Aug generation.

On PatchMNIST dataset, we varied β by a factor of 2,
from 4 to 16, i.e., β ∈ {4,8,16}. β = 32 is not consid-
ered for the experiments, because the size of each digit in
a PatchMNIST image is 32×32 and downsampling it by a
factor of 32 removes most spatial information. Table 2 re-
ports the performance of different downsampling factors β
on the PatchMNIST dataset when t = 4. From Table 2, it
can be seen that Gen-Prior has significantly improved X

′

LF

by an average improvement of 6.75 and 0.418 in PSNR
and SSIM respectively, which was further enhanced by the
Physics Augmented U-Net by PSNR of 1.64 and SSIM of
0.032 on average. Even with the downsampling factor of
16, a drop in performance can be seen from Table 2, which
can be attributed to the loss of spatial information.
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Table 3. Quantitative comparison (PSNR/SSIM) of the proposed
method on both U2OS Cells and PatchMNIST dataset for dif-
ferent number of patterns (t).

Dataset β t
Metrics

PSNR SSIM

U2OS Cells 32

32 38.171 0.9803
16 37.605 0.9777
8 36.820 0.9735
4 36.485 0.9726
2 36.491 0.9729

PatchMNIST 8

32 19.244 0.8524
16 18.783 0.8450
8 18.220 0.8334
4 17.491 0.8177
2 16.848 0.8024

5.2. Performance with Different No. of Illumination
Patterns (t)

We also investigated the performance of our proposed
method with different values for t. On both U2OS Cells
and PatchMNIST datasets, we varied t from 2 to 32 by a
factor of 2, i.e., t ∈ {2,4,8,16,32}. Table 3 reports the per-
formance of different t on U2OS Cells dataset when β =
32 and on PatchMNIST dataset when β = 8. We observed
increase in performance from our proposed Physics Aug-
mented U-Net, with the increase of t. However, we were
able to achieve good performance even with low number
of patterns (t = 2) and thus image acquisition time of the
microscope can be reduced. The forward model is inde-
pendent of the modified U-Net, and thus our method gives
similar results to any variation of random binary patterns
used in the forward model without further retraining.

5.3. Comparison with Traditional Optimization
We investigated the performance of Phy-Aug with the

output image generated from the traditional optimization
method used for resolution enhancement (Trad-Opt). For
Trad-Opt generation, a 2D image X ∈ Rm×n is randomly
initialized and fed to the forward model, to obtain the cor-
responding image stack equivalent to SIM measurements.
Then, every pixel of the 2D image X is optimized to fit
the downsampled ground truth patterned image stack to the
output of forward model as given below:

X = argmin
X∈Rm×n

[
E
(
∥Ŷ − Y ∥22

)]
(7)

PSNR : PSNR : PSNR : PSNR : 

Trad-Opt : Phy-Aug : Phy-Aug : Trad-Opt : 

Figure 5. Comparison between Trad-Opt and Phy-Aug

Adam optimizer is used for this experiment and β, t and
number of iterations are set to 32, 2048 and 100000 respec-
tively. β, t and number of iterations of Phy-Aug genera-
tion are set to 32, 4 and 2000 respectively. Figure 5 illus-
trates the comparison between Trad-opt and Phy-Aug along
with the PSNR values. The results clearly state that Physics
Augmented U-Net is capable of generating high resolution
image faster than the traditional optimization method and
requires lesser number of illumination patterns.

5.4. Comparison with Modified U-Net with High-
Frequency Encoder

We compared Phy-Aug with the output image from
the combined architecture of modified U-Net and high-
frequency encoder (M.UNet+HFE) and the corresponding
quantitative results are provided in Table 4. M.UNet+HFE
is the best possible high resolution image generated by feed-
ing all ground-truth high-frequency information and thus,
provides the best results. From Table 4, we can observe that
our proposed method converges towards the best possible
results.

Table 4. Quantitative comparison (PSNR) of Phy-Aug with
M.UNet+HFE on U2OS Cells dataset for different downsampling
factors (β), when number of patterns (t) is set to 4.

Metrics Methods β
4 8 16 32

PSNR M.UNet+HFE 42.40 40.71 39.95 39.58
Phy-Aug 42.22 39.58 37.42 36.48

6. Limitations
Our modified U-Net is trained using low-frequency im-

ages. In order to utilize the trained U-Net during infer-
ence, the input image i.e., low frequency image obtained
from SIM measurements should be statistically similar to
the training image distribution. The SIM illumination pat-
terns used for measurements should have the ability to gen-
erate such low frequency images, thus the variations of SIM
patterns that can be used are limited.

Next, our method relies on the assumption that the prior
generated from the modified U-Net accurately corresponds
to the input low-frequency image. However, for some cases,
we observed good performance with priors not being ac-
curate estimates of the input low-frequency images. But,
we have not carried out an extensive sensitivity analysis to
quantify that and thus our method is limited by this con-
straint.

7. Conclusions and Future Work
In this paper we propose “Physics Augmented U-Net”,

to enhance the resolution of undersampled structured il-
lumination microscopy (SIM) images. Importantly, rather
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than learning an image translation from under-sampled low-
resolution image space to the high-resolution image space,
we train a U-Net-like architecture as a generative model.
A latent vector corresponding to high-resolution informa-
tion can then be further optimized to infer high-resolution
images from the prior, through a physics-based forward
model of SIM. In contrast to traditional SIM solvers that
optimize over the entire 2D image, Physics Augmented U-
Net optimizes a much smaller latent vector, thus resulting in
lower computational complexity. Since the forward model
is explicitly separated from the learned prior, Physics Aug-
mented U-Net also works with any variation of SIM without
further retraining. Compared to other adversarially-trained
generative models, the proposed approach is much stable.
In future work, we will implement more realistic forward
models as well as extend to different SIM variations and
datasets. Given its similarity to the seminal U-Net archi-
tecture, we anticipate that practitioners of microscopy can
easily adapt Physics Augmented U-Net for new datasets as
well as for any variation of SIM.
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Supplementary Material

Low Frequency 
Image

Gen-Prior Phy-Aug Ground Truth
Image

Low Frequency 
Image

Gen-Prior Phy-Aug Ground Truth
Image

Figure 6. Illustration of our proposed architecture - Physics Augmented U-Net’s performance on U2OS Cells dataset for downsampling
factor (β) of 32 and number of illumination patterns (t) of 4. Significant improvement from the low-frequency input image (X

′
LF ) to

Gen-Prior, and from Gen-Prior to Phy-Aug can be qualitatively observed.

1. Qualitative Comparison Between Low Frequency Im-
age, Gen-Prior, Phy-Aug and Ground Truth Images.
. We investigated the performance of Physics Augmented
U-Net on U2OS Cells dataset and the corresponding qual-
itative results are illustrated in Figure 6. Even with an
under-determined system with β = 32 and t = 4, our pro-
posed architecture was able to yield good performance. Our
modified U-Net itself was able to generate Gen-Priors with
significant qualitative improvement and the inference algo-
rithm further improved the quality by incorporating the op-
timal high-frequency information. The high frequency in-
formation of the image being captured efficiently is qualita-
tively illustrated in Figure 6.

2. Performance Analysis with Different Downsampling
Factors (β) and No of Illumination Patterns (t).
. We compared the performance of the final reconstructed
image (Phy-Aug) with the output image from the com-
bined architecture of modified U-Net and high-frequency
encoder (M.UNet+HFE) and Gen-Prior under different β

and t values. The corresponding quantitative results are
illustrated in Figure 7 and 8, using peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) met-
rics. As t is increased, we observed increase in perfor-
mance from our proposed method as well as convergence
towards M.UNet+HFE, which is the best possible high res-
olution image generated by feeding all the high frequency
information. This indicates that our method comprising of
modified U-Net, physics based forward model and infer-
ence algorithm is capable of incorporating the optimal high-
frequency information for resolution enhancement of a low
frequency input image.
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Figure 7. Quantitative comparison (PSNR) of Phy-Aug with Gen-
Prior and M.UNet+HFE on U2OS Cells dataset for different num-
ber of patterns (t) and downsampling factors (β). For better illus-
tration, y-axis range of the plot is varied.

Figure 8. Quantitative comparison (SSIM) of Phy-Aug with Gen-
Prior and M.UNet+HFE on U2OS Cells dataset for different num-
ber of patterns (t) and downsampling factors (β). For better illus-
tration, y-axis range of the plot is varied.
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