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Abstract 

Protein prenylation by farnesyltransferase (FTase) is often described as the targeting of a 

cysteine-containing motif (CaaX) that is enriched for aliphatic amino acids at the a1 and a2 

positions, while quite flexible at the X position.  Prenylation prediction methods often rely on 

these features despite emerging evidence that FTase has broader target specificity than 

previously considered.  Using a machine learning approach and training sets based on 

canonical (prenylated, proteolyzed, and carboxymethylated) and recently identified shunted 

motifs (prenylation only), this study aims to improve prenylation predictions with the goal of 

determining the full scope of prenylation potential among the 8000 possible Cxxx sequence 

combinations. Further, this study aims to subdivide the prenylated sequences as either shunted 

(i.e., uncleaved) or cleaved (i.e., canonical).  Predictions were determined for Saccharomyces 

cerevisiae FTase and compared to results derived using currently available prenylation 

prediction methods. In silico predictions were further evaluated using in vivo methods coupled to 

two yeast reporters, the yeast mating pheromone a-factor and Hsp40 Ydj1p, that represent 

proteins with canonical and shunted CaaX motifs, respectively.  Our machine learning based 

approach expands the repertoire of predicted FTase targets and provides a framework for 

functional classification. 
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Introduction 

CaaX-type protein prenylation refers to the covalent linkage of a farnesyl or geranylgeranyl 

isoprenoid group (C15 and C20, respectively) to proteins containing a COOH-terminal CaaX 

motif, where C is an invariant cysteine, a1 and a2 are typically aliphatic residues, and X is one of 

many amino acids (1). Farnesyltransferase (FTase) and geranylgeranyltransferase-I (GGTase-I) 

facilitate the isoprenoid addition to the CaaX cysteine thiol, with GGTase-I targeting the subset 

of CaaX sequences having Leu, Phe or Met at the X position (2-4).  For many CaaX proteins, 

initial isoprenylation is followed by proteolysis that removes the aaX tripeptide, mediated by 

Rce1p or Ste24p, and carboxymethylation of the isoprenylated cysteine, mediated by 

isoprenylcysteine carboxyl methyltransferase (ICMT; Ste14p in yeast) (5). These modifications 

increase the overall COOH-terminal hydrophobicity of modified proteins and often occur to 

CaaX proteins well-known to be membrane associated (e.g., Ras GTPases). 

 

Despite FTase arguably being the most well characterized enzyme in the CaaX modification 

pathway, its specificity still remains unclear.  Early primary sequence comparisons of known 

FTase targets often outlined the standard, aliphatic-enriched consensus motif termed CaaX.  

One of the first methods to predict FTase substrates was developed into the Prenylation 

Prediction Suite (PrePS) (6).  This method evaluated the last 15 amino acids of known 

prenylated targets, including many Ras and Ras-related GTPases and a few non-canonical 

sequences for which evidence of prenylation was previously established, to determine a 

consensus of physio-biochemical properties important for prenylation, which was then used to 

predict prenylation.  PrePS was then applied to create a database of all prenylation predictions 

across all known proteins, regardless of species (7). The prenylation potential of nearly all 8000 

possible CaaX sequences has also been investigated using genetics and high throughput 

NextGen Sequencing (NGS) in the context of a mutated form of H-Ras (Ras61) that was 

heterologously expressed in yeast (8).  The identified target sequences were consistent with the 
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initially described consensus CaaX motif.  Parallel in vitro and in silico studies have suggested, 

however, that FTase may be able to accommodate substantially broader substrates than initially 

proposed (9-13).  A broader consensus for human FTase was also proposed using FlexPepBind 

(FPB), an approach involving structure-based molecular docking and energy minimization 

constraints (12). This approach identified several sequences that were not initially expected to 

be prenylated but subsequently biochemically validated as FTase targets. Despite these new 

experimental observations and advancements in prenylation prediction methods, many 

prenylated sequences still fail to be accurately predicted as FTase substrates.  Past approaches 

involving in vitro peptide libraries and metabolic labeling with farnesyl analogs suitable for click-

chemistry have been able to identify additional non-canonical sequences as FTase targets, 

however, peptide libraries are often costly and can be labor intensive and metabolic labeling is 

limited to cell specific sequences (9, 10, 14-17). Thus, limitations still prevent exploration of the 

full scope of prenylation for all 8000 Cxxx sequences. 

 

While the specificity of FTase is emerging to be more flexible than anticipated, the CaaX 

proteases that mediate subsequent cleavage of the aaX tripeptide appear more stringent, 

requiring aliphatic residues at a1 and/or a2 positions (18).  This observation identifies an inherent 

bias in many FTase assays due to the use of canonical reporters such as Ras and a-factor 

where the specificity of the downstream proteases may limit the prenylatable sequences that 

can be identified.  To overcome this bias, we recently developed S. cerevisiae Hsp40 Ydj1p into 

a novel in vivo reporter for yeast FTase activity (19).  Unlike canonical reporters previously used 

in vivo, the non-canonical CaaX sequence of Ydj1p (CASQ) is farnesylated, then “shunted” out 

of the canonical CaaX pathway without being further proteolyzed and carboxymethylated.  

Previous studies have shown that yeast require Ydj1p prenylation for growth at high 

temperatures (i.e., thermotolerance), as evident by a reduced thermotolerant phenotype 

observed when canonical modification occurs (i.e., prenylation, proteolysis and 
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carboxymethylation), and a further reduction in thermotolerance with lack of prenylation (19, 20). 

This thermotolerant phenotype was used to identify 153 sequences that supported Ydj1p 

prenylation-dependent yeast growth at high temperatures (21). The recovered sequences were 

vastly different than standard canonical CaaX sequences, lacking characteristic aliphatic amino 

acids but consistent with specificities observed through in vitro and in silico studies.  For clarity, 

all 8000 sequences are referred to as Cxxx sequences in this study, while predicted prenylated 

sequences are referred to as CaaX motifs with qualifiers added to specify those that are 

canonically modified (i.e., cleaved) or shunted (i.e., uncleaved). 

 

In this study, we used machine learning and yeast genetic data derived from both Ras61 and 

Ydj1p in vivo reporters to develop methods for predicting the prenylation potential of all 8000 

Cxxx sequences within the yeast system.  Predictions were then compared to those derived 

using PrePS, FPB, and Freq.  The latter is a frequency-based, in-house method developed in 

our previous study of Cxxx sequences that support Ydj1p-dependent thermotolerance.  Our 

findings suggest that the use of machine learning with data derived from both canonical and 

non-canonical reporters results in improved prediction of yeast FTase targets. This approach 

was also used to develop a first-ever prediction for CaaX proteolysis, leading to effective 

predictions for establishing whether a prenylated sequence follows the canonical or shunted 

pathway (i.e., cleaved vs. uncleaved). 

 

Materials and Methods 

Training set curation 

 

Prenylation: Training sets can be found in Supplemental File S1 and were derived from 

previously published datasets. The positive set initially included 369 sequences identified 

through a Ras61 prenylation screen (enrichment score >3 at 37 °C; ≥5 occurrences) and 153 
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sequences identified through a Ydj1p prenylation screen (8, 21). The positive training set was 

curated to form a reduced set of 489 unique sequences by removing duplicate sequences that 

overlapped between the sets (n=8), sequences found naturally in the Saccharomyces 

cerevisiae proteome (n=21), and sequences that had previously been incorporated into 

reporters (n=4). The negative set initially consisted of 514 sequences that were lowest scoring 

in the Ras61 prenylation screen (enrichment score ≤0.036 at 37 °C; ≥5 occurrences at 25 °C). 

The negative set was curated to form a reduced set of 508 unique sequences by removing 6 

sequences found naturally in the Saccharomyces cerevisiae proteome. 

 

Cleavage: Training sets can be found in Supplemental File S1 and were derived from previously 

published datasets (8, 21). The positive set initially included 153 top scoring Ras61 sequences 

(enrichment score >3 at 37 °C; ≥5 occurrences). From this, the positive training set was reduced 

to a unique set of 140 by removing duplicate sequences that overlapped with the Ydj1p set 

(n=2), sequences found naturally in the Saccharomyces cerevisiae proteome (n=8), and 

sequences that had previously been incorporated into reporters (n=3). The negative set initially 

included 153 sequences recovered in theYdj1p screen.  The negative set was reduced to 136 

sequences by removing sequences that were genetically confirmed to be canonically modified 

(n=15), sequences found naturally in the Saccharomyces cerevisiae proteome (n=1), and 

sequences that had previously been incorporated into reporters (n=1). 

 

Feature generation & pre-processing 

 

Feature generation: In order to generate features for machine learning, we explored three 

different ways of representing Cxxx sequences: 1) the specific amino acid sequence 

represented by one-hot encoding, 2) the physico-biochemical features retrieved from the 
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AAindex database ( ftp://ftp.genome.jp/pub/db/community/aaindex/; downloaded 1/17/2021) 

(31), and 3) sequence embedding generated by ESM-1b 

(https://github.com/facebookresearch/esm; downloaded 2/9/2021), a state-of-the-art 

Transformer model that was pre-trained on roughly 250M protein sequences (32). Sequence 

features were represented by an array of size 60, which accounts for one-hot encoding of 20 

amino acid residues at the 3 variable “x” positions of the Cxxx sequence. AAindex features were 

represented by an array of size 1659, which accounts for all 553 physico-biochemical features 

defined by the database for each of the 3 positions. These features were normalized to a range 

of 0 to 1 in order to equalize their scales.  ESM-1b features were generated by taking advantage 

of the model’s ability to account for contextual information, capturing the potential effects of 

neighboring residues. We represented the COOH-terminal localization of the Cxxx sequence by 

front-padding with 100 unspecified “x” residues. In addition, the model added two special 

characters to represent the beginning and end of the amino acid sequence. This sequence was 

used to generate an embedding of size (1280, 106), which represents a 1280-dimensional 

abstract description of 104 residue positions plus two special symbols. ESM-1b features were 

extracted from this embedding by retrieving the positions corresponding with the Cxxx sequence 

and end-of-sequence character, which resulted in an array of size (1280, 5), flattened to size 

6400. We retained the positional encoding corresponding to the invariant cysteine due to the 

model’s unique ability to capture contextual information. 

 

Dimensionality reduction: Redundant features were removed through principal component 

analysis, a standard dimensionality reduction technique (33). This resulted in the reduction of 

sequence features from 60 to 53 dimensions, AAindex features from 1659 to 50 dimensions, 

and ESM-1b features from 6400 to 276 dimensions. These reduced features captured 99% of 

total variance in each feature set.  
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Prediction of Cxxx prenylation & cleavage 

 

Scoring: We quantified the performance of all prediction models based on accuracy, precision, 

recall, and F1-score. Reported values indicate the mean across 10-fold cross validation while 

confidence intervals indicate the standard deviation. 

 

Position-specific scoring matrix (PSSM): We constructed a PSSM based on prenylated or 

cleaved motifs. The amino acid distribution was normalized against a background amino acid 

distribution defined by the BLOSUM62 substitution matrix (34) with a pseudo-count of 0.05.  The 

resulting model was used to calculate the log probability of a given sequence being prenylated 

or cleaved. In order to obtain binary predictions, we defined a cutoff log probability that best 

separated the positive from the negative examples. 

 

Machine learning algorithms: We tested the performance of various machine learning algorithms 

as implemented by Scikit-learn (35). The parameters of individual predictors were optimized by 

grid search. Specific algorithms tested were support vector machine (SVM), Naïve Bayes, k-

nearest neighbor (kNN), and Gradient Boosted Decision Tree (GBDT). In subsequent analyses, 

we estimated the probabilities of each prediction for SVM through Platt scaling (23). 

 

Software: All computational analyses, unless otherwise mentioned, were implemented in Python 

3 using NumPy (36) and PyTorch (37). Figure plots were created using Matplotlib (38), seaborn 

(39), WebLogo3(40), and Adobe Illustrator. For WebLogo3, a custom color scheme was used 

where cysteine (C) was blue, polar charged amino acids (H, K, R, E, D) were green, polar 

uncharged amino acids (N, Q, S, T, Y) were black, branched-chain amino acids (L, I, V) were 

red, and all other amino acids (F, A, P, G, M, W) were purple.  This scheme matches that used 

in a previously published study of FTase specificity by our group (21). 
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Cut-offs used for predictions by prenylation methods: For analysis with the Prenylation 

Prediction Suite, (PrePS; https://mendel.imp.ac.at/PrePS), all 8000 Cxxx sequences were 

evaluated in the context of human H-Ras (RQHKLRKLNPPDESGPGCMSCKCxxx).  While 

PrePS only requires 15 amino acids for scoring, 26 were used to remain consistent with 

previous studies (19, 21).  For PrePS, sequences scoring greater than -2 were deemed positive 

predictions.  For FlexPepBind, sequences scoring greater than -1.1 were deemed positive 

predictions, consistent with the stringent threshold defined by the original study (12).  For Freq, 

prenylation sequences scoring greater than -1 were deemed positive predictions, while 

sequences scoring greater than 0 were deemed positive predictions for cleavage (21). 

 

Experimental validation 

 

Yeast strains: Strains used in this study are listed in Supplementary Materials Table S3.  Lithium 

acetate-based transformation methods were used to introduce plasmids into yeast strains (21, 

41). All strains were propagated at 25 °C unless otherwise stated, in YPD or appropriate 

selection media. For yWS2393, deletion of STE24 was carried out in strain yWS44 (mfa1∆ 

mfa2∆) using: a DNA fragment from pWS405 (CEN URA3 ste24::KanMX4) that was 

transformed into yWS44  (42). G418 resistant colonies were checked by PCR for integration of 

ste24::KANMX4 at the STE24 locus. For yWS2462, deletion of RCE1 was carried out in strain 

yWS44 using a rce1::KAN fragment recovered by PCR from the haploid yeast gene deletion 

collection (43), and integration at the RCE1 locus was confirmed by PCR. 

 

Plasmids: Plasmids used in this study are listed in Supplementary Material Table S4.  All 

plasmids newly created for this study were constructed using methods previously reported  (19, 

21, 44). Briefly, new plasmids encoding Ydj1p or a-factor reporters were constructed using 

PCR-directed recombination.  Mutagenic oligonucleotides (Table S5) encoding desired Cxxx 
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sequences were co-transformed with linearized or gapped parent plasmids, transformation 

mixes plated onto appropriate selection media, and plasmids recovered from surviving colonies.  

Plasmids were sequenced through the entire open reading frame of the reporter using an 

appropriate DNA sequencing primer and a sequencing service (Genewiz, Southfield NJ; 

Eurofins Genomics, Louisville, Kentucky).  pWS130 (2µ URA3 PPGK-HsRce1∆22) was 

constructed by subcloning a PCR-derived fragment from a baculovirus expression vector 

encoding HsRce1∆22 (courtesy of P. Casey, Duke University). The PCR fragment was 

designed to contain 5´ BamHI and 3´ PstI sites that were used for subcloning, where the latter 

was blunted with T4 Polymerase prior to cloning into the BamHI and SacII sites of pWS28 (2µ 

URA3 PPGK) (45).  pWS1609 was created from pWS1275 (2μ URA3 PPGK-HA-HsSTE24) by 

PCR-directed, plasmid-based recombination to eliminate the HA-tag, followed by subcloning 

PPGK-HsSTE24 into pRS316 (CEN URA3) (44, 46). 

 

Ydj1p gel shift assay: The prenylation status of Ydj1p was examined as described previously. 

Briefly, yeast strains expressing Ydj1p were cultured to A600 0.9-1.1 at 30 °C in synthetic 

complete media lacking uracil (SC-U). Cell pellets of the same mass were collected by 

centrifugation, washed with water, and cell extracts prepared by alkaline hydrolysis followed by 

TCA precipitation (47). Cell extracts were resuspended in Sample Buffer (250 mM Tris, 6 M 

Urea, 5% -mercaptoethanol, 4% SDS, 0.01% bromophenol blue, pH 8) and analyzed by SDS-

PAGE and immunoblotting with rabbit anti-Ydj1p antibody (courtesy of Dr. Avrom Caplan) and 

HRP conjugate antibody in TBST (10 mM Tris, 150 mM NaCl, 0.1% Tween-20; pH 7.5) with 1% 

milk/TBST.  Blots were developed with WesternBright ECL Spray (Advansta Inc, San Jose, 

California), and images captured using X-ray film or a digital imager (Kwikquant, Kindle 

Biosciences, Greenwich, Connecticut). 
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Yeast mating assay: Mating assays were performed as previously described (21).  Briefly, 

MATa and MATα strains were cultured to saturation at 30 °C in synthetic complete media 

lacking leucine (SC-L) and YPD, respectively, then normalized to an A600 value of 1 by dilution 

with appropriate sterile media.  MATa cultures were mixed individually 1:10 with the MATα 

cultures, each mixture was serially diluted 10-fold using the normalized MATα culture as the 

diluent, and serial dilutions were pinned onto minimal (SD) and synthetic complete media 

lacking lysine plates (SC-K). Plates were incubated for 72 hours and imaged against a black 

background using flat-bed scanner.  Images were adjusted using Photoshop to optimize the 

dynamic range of signal by adjusting input levels to a fixed range of 25-150. 

 

Data Availability 

Strains and plasmids are available upon request.  All relevant datasets for this study are 

included in the supplemental files of manuscript.  The coding used is publicly available at the 

GitHub repository: https://github.com/waylandy/prenylation_cleavage_prediction. 

 

Results 

Prenylated and cleaved Cxxx sequences can be distinguished based on primary amino acid 

sequence feature 

 

To evaluate whether the information encoded in primary sequences can be used to distinguish 

prenylated and cleaved sequences, we first curated a training dataset from two previously 

published genetic screens that used Ras61 and Ydj1p as reporters (8, 21).  As prenylation is 

necessary for the optimal function of both Ras61 and Ydj1p reporter activities, we curated 489 

prenylated sequences by combining the top performing sequences from both screens.  Another 

508 low performing sequences from the Ras61 study served as the non-prenylated set; the 

Ydj1p-based study did not yield information for low-performing sequences. Notably, prenylation 
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and proteolysis have historically been considered coupled events, and as such, previous 

methodologies do not report on proteolysis.  However, the Ydj1p reporter is uniquely able to 

differentiate between shunted (i.e., only prenylated) and cleaved sequences (i.e., canonically 

modified; prenylated, cleaved and carboxymethylated).  Thus, we curated 136 sequences from 

the Ydj1p screen and 140 sequences from the Ras61 screen to serve as shunted and cleaved 

sets, respectively (21). 

 

We next evaluated the contribution of three sequence representation methods: one hot 

encoding of primary sequence (sequence-only), AAindex, and ESM-1b.  These methods 

capture different aspects of Cxxx sequences (see Materials & Methods for additional details) in 

classifying prenylated and non-prenylated sequences. Two-dimensional projections of each set 

of features revealed that sequence-only and AAindex features readily distinguish prenylated and 

non-prenylated sequences, while ESM-1b exhibited poor separation (Fig 1A). As AAindex 

appeared to best separate the prenylated and non-prenylated sequences, we used Weblogo to 

analyze the sequences clustered with the right and left sides of the projection (Fig 1B).  The 

right-side cluster was mostly composed of prenylated sequences that closely resembled the 

canonical definition of CaaX, with a clear enrichment of aliphatic amino acids at the a2 position, 

and to some extent the a1 position.  By comparison, the left-side cluster was a mixed population 

of prenylated and non-prenylated sequences lacking these canonical aliphatic residues. 

Although ESM-1b encodes more information (276 dimensions to capture 99% variance in data 

compared to 50 dimensions for sequence and AAindex (see Materials & Methods)), the poor 

separation observed with ESM-1b is likely a consequence of the additional contextual 

information which could not be sufficiently compressed into two-dimensional space.  All three 

sequence representation methods, meanwhile, are suitable for separating cleaved and 

uncleaved sequences (Fig 1C). 
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SVM-ESM-1b outperforms several machine learning based models for prenylation and cleavage 

predictions 

 

A position-specific scoring matrix model (PSSM) is a common bioinformatics method employed 

for motif detection (22). A variation of this method is used by the PrePS model (6). We thus 

constructed a PSSM model based on the Cxxx sequences from our curated datasets to 

Fig 1. Separation of sequences by machine learning-based methods. A) Data points from all three 

features sets: sequence only, AAindex and ESM-1b, are represented as a two-dimensional 

projection of prenylated (red x) and non-prenylated sequences (black dot). The axes are not shown 

as they represent a linear combination of all features that maximizes variance. B) Bimodal 

distribution of sequences across the X-axis from the AAindex manifold were graphed as sequence 

logos. The distribution shown on the left contains a mix of non-prenylated Cxxx sequences and 

prenylated, non-canonical sequences, while the one on the right mostly consists of prenylated, 

canonical CaaX sequences. C) A similar two-dimensional projection was used to represent cleaved 

(red x) and shunted (i.e., uncleaved) sequences (black dot). 
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establish a baseline for comparisons of other prenylation and cleavage prediction models.  The 

PSSM model applied to a curated dataset of both canonical and non-canonical sequences 

achieved 83.8 ± 3.3% accuracy for prenylation predictions, and a second PSSM model to 

predict cleavage achieved 93.8 ± 4.6% accuracy, based on 10-fold cross validation (Table 1).  

We next evaluated whether the baseline PSSM classification accuracy could be  

improved through different representations of Cxxx sequences using machine learning (see 

Materials & Methods for details on methods used). 

 
Table 1. Performance of various models for prenylation prediction. 

 aPSSM – Position-specific Scoring Matrix; SVM – support vector machine; GBDT – 
GradientBoost Decision Tree; kNN – k-Nearest Neighbors. 
bFeatures for predicting sequence prenylation were based on one-hot encoding (sequence), 
physico-biochemical properties of amino acids (AAindex), and the ESM-1b Transformer model 
(ESM-1b). 
cReported percentages indicate the mean across 10-fold cross validation, while confidence 
intervals indicate the standard deviation. 
dReported percentages based off validation set tested in vivo 
 

For prenylation, most of the 12 machine learning methods evaluated scored above 80% in all 

categories.  We selected the best model based on F1-score, defined as the harmonic mean of 

Modela Featuresb Accuracyc Precision Recall F1 Validationd 

PSSM sequence 83.8 ± 3.3 87.7 ± 3.5 77.9 ± 5.9 82.4 ± 3.8 68.4 (13/19) 

       

SVM sequence 86.0 ± 2.7 86.5 ± 4.0 84.9 ± 3.8 85.6 ± 2.8 84.2 (16/19) 

SVM AAindex 85.1 ± 3.5 86.6 ± 4.1 82.4 ± 3.6 84.4 ± 3.6 73.7 (14/19) 

SVM ESM-1b 86.4 ± 3.0 86.6 ± 3.3 85.5 ± 4.1 86.0 ± 3.1 84.2 (16/19) 

       

GBDT sequence 86.2 ± 2.4 87.9 ± 3.5 83.4 ± 3.5 85.5 ± 2.6 68.4 (13/19) 

GBDT AAindex 86.2 ± 2.8 87.2 ± 3.5 84.3 ± 4.3 85.6 ± 3.0 73.7 (14/19) 

GBDT ESM-1b 85.0 ± 2.9 85.8 ± 3.8 83.2 ± 3.6 84.4 ± 3.0 78.9 (15/19) 

       

 Näive 
Bayes 

sequence 82.9 ± 1.8 85.5 ± 3.1 78.7 ± 3.3 81.9 ± 1.9 63.2 (12/19) 

 Näive 
Bayes 

AAindex 82.1 ± 3.0 82.2 ± 4.0 81.4 ± 3.6 81.7 ± 3.0 73.7 (14/19) 

 Näive 
Bayes 

ESM-1b 73.2 ± 2.3 70.4 ± 1.9 78.3 ± 3.9 74.1 ± 2.5 57.9 (11/19) 

       

kNN sequence 84.1 ± 3.7 82.7 ± 4.3 85.5 ± 4.3 84.0 ± 3.7 78.9 (15/19) 

kNN AAindex 82.7 ± 2.3 83.5 ± 3.1 81.0 ± 3.0 82.2 ± 2.3 78.9 (15/19) 

kNN ESM-1b 83.0 ± 2.3 82.4 ± 3.5 83.4 ± 2.4 82.9 ± 2.1 78.9(15/19) 
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precision and recall. Based on this criterion, support vector machine (SVM) paired with ESM-1b 

features was the best overall performer.  We next evaluated how well each model predicted 

prenylation of a validation set of 31 Cxxx sequences that were not part of training sets (Table 

S1). Within this validation set, 19 of the 31 sequences naturally occur in the yeast proteome.  

The reasons for choosing these 19 sequences varied:  12 formed 6 pairs that differ by only one 

amino acid, for example Ras2 (CIIS) and Hmg1 (CIKS); 7 exhibited varying predictions for 

prenylation with multiple prediction methods (e.g., PrePS, Freq, etc.).  The remaining 12 

sequences were chosen due to differing predictions by SVM-ESM-1b, PrePS, and the 

frequency-based scoring system (Freq). The sequences representing the validation set were 

incorporated onto Ydj1p and prenylation evaluated by a gel shift assay (Fig 4A, Table 3), with 

the exception of one sequence (CQSQ) that had been previously evaluated (21). Relative to 

PSSM, most machine learning methods improved at predicting actual prenylation (Table 1; 

Validation score).  SVM was repeatedly the best overall performer when paired with ESM-1b 

features.  Considering the results of performance testing with training and naïve test sets, SVM 

paired with ESM-1b features was chosen as the preferred machine learning method for 

additional prenylation prediction studies. 

 

We also explored sequence cleavage using similar methods (Table 2). All models performed 

comparably well based on 10-fold cross validation, with most scoring above 90% in all 

categories.  As observed for prenylation prediction, many of the models surpassed the PSSM 

model for accuracy and recall, and only 1 bettered PSSM for precision (Table 2).  Overall, SVM 

paired with either sequence or ESM-1b features achieved the best F1-score for predicting 

cleavage.  As SVM-ESM-1b had the smaller standard deviation, it was chosen as the preferred 

method for cleavage prediction. We next evaluated how well each model predicted cleavage of 

the validation set of 19 naturally occurring Cxxx sequences.  We incorporated these 19 

sequences onto the a-factor reporter that conditionally requires both prenylation and cleavage 
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for bioactivity (Fig 4B).  Because 5 of the sequences were not observed to be prenylated by gel-

shift assay (CIKS, CIDL, CSEI, CSGL, CSGK), these sequences were not expected to exhibit 

any a-factor activity, which was indeed the case.  For this reason, these 5 sequences were not 

included statistically in the a-factor validation set. The remaining 14 sequences either 

possessed a-factor activity, indicative of cleavage, or lacked bioactivity, indicative of only being 

prenylated. Surprisingly, we found that several models outperformed SVM-ESM-1b on the 

validation set when considering the 14 prenylated sequences (Table 3, Table S1). We caution, 

however, that the small size of the validation set may lack sufficient statistical power to make 

proper comparisons and conclusions. 

Table 2. Performance of various models for cleavage prediction. 
 

Modela Features Accuracy  Precision Recall F1 Validation 

PSSM sequence 93.8 ± 4.6 97.1 ± 4.5 90.7 ± 7.9 93.6 ± 4.9 89.4 (12 / 14) 

       

SVM sequence 97.5 ± 2.3 96.7 ± 4.3 98.6 ± 2.9 97.5 ± 2.2 78.9 (10 / 14) 

SVM AAindex 96.4 ± 2.8 95.3 ± 4.1 97.9 ± 3.3 96.5 ± 2.7 78.9 (10 / 14) 

SVM ESM-1b 97.5 ± 1.6 97.3 ± 3.3 97.9 ± 3.3 97.5 ± 1.6 78.9 (10 / 14) 

       

GBDT sequence 94.9 ± 3.4 94.6 ± 3.9 95.8 ± 5.7 95.0 ± 3.4 52.6 (8 / 14) 

GBDT AAindex 86.9 ± 3.2 87.7 ± 4.3 85.3 ± 3.1 86.4 ± 3.2 73.7 (11 / 14) 

GBDT ESM-1b 86.2 ± 1.9 87.0 ± 2.8 84.5 ± 2.3 85.7 ± 1.9 78.9 (10 / 14) 

       

Näive Bayes sequence 89.9 ± 6.0 89.1 ± 6.6 91.5 ± 7.0 90.1 ± 5.9 68.4 (9 / 14) 

Näive Bayes AAindex 94.2 ± 2.4 94.5 ± 4.0 94.3 ± 4.3 94.3 ± 2.3 89.4 (12 / 14) 

Näive Bayes ESM-1b 85.5 ± 7.6 85.3 ± 7.3 86.4 ± 10.3 85.7 ± 7.9 68.4 (9 / 14) 

       

kNN sequence 94.9 ± 4.3 96.5 ± 4.7 93.6 ± 5.9 94.9 ± 4.4 84.2 (12 / 14) 

kNN AAindex 94.6 ± 3.3 92.4 ± 5.9 97.9 ± 3.3 94.9 ± 3.0 78.9 (10 / 14) 

kNN ESM-1b 95.3 ± 4.5 94.7 ± 5.6 96.4 ± 5.8 95.4 ± 4.5 78.9 (10 / 14) 
aTerms, definitions, and calculations are as described for Table 1. 
 
 

Global predictions for prenylation and cleavage of Cxxx sequence space 

 

After evaluating different models for prenylation and cleavage with our curated training and 

validation sets, we chose SVM paired with ESM-1b to predict both prenylation and cleavage for 

the full scope of Cxxx sequences (Supplemental File S2).  In the case of prenylation, our model 

was trained to make binary predictions, but these sequence predictions are better represented 
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on a continuum as partial prenylation could occur, resulting in sequences with fractions of the 

protein population being prenylated.  In order to model this continuum, we obtained probabilistic 

outputs for the SVM model by Platt scaling (23) (Fig 2). We note that this method only provides 

an estimated probability, which does not perfectly translate to a strict cutoff value for the actual 

binary classification.  Altogether, our analysis of all 8000 Cxxx sequences predicts that 67% 

(n=5373) are unmodified, 18% (n=1420) are shunted (i.e., prenylation only), and 15% (n=1217) 

cleaved (i.e., canonically modified; prenylated, cleaved, and carboxylmethylated). (Fig 3A,D).  

We also made global predictions using the SVM-ESM-1b prenylation model paired with our 

previously published Freq method that outperformed all machine learning models on cleavage 

validation score (Fig 3B,E), as well as using Freq for both prenylation predictions and cleavage 

(Fig 3C,F) (21). All predictions were qualitatively similar, with the majority of the 8000 

sequences being unmodified, and more shunted sequences predicted relative to canonical 

sequences.  

 

 

 
 
 

 

 

 

 

 

 

 

 

 

Fig 2. Probability distributions for prenylation and cleavage predictions made by SVM-ESM-1b. 

Probability distributions for both prenylation (A) and cleavage (B) determined for the training sets 

(top) and for all 8000 Cxxx motifs (bottom). A) For prenylation, the training set distribution is 

represented as a stacked bar plot where prenylated sequences are white, while non-prenylated 

sequences are black. B) For cleavage, the training set distribution is represented as a stacked bar 

plot where shunted sequences (prenylation only) are black and cleaved sequences for proteolysis. 

The probability distributions were determined for the training sets (top) and for all 8000 Cxxx motifs 

(bottom).  
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Comparisons to previous prenylation methods and evaluation of yeast proteome predictions 

 

Several prenylation predictors have been developed previously.  These include: PrePS, a 

PSSM-based model; FlexPepBind (FPB), a molecular docking-based model encompassing 

energy scores; and Freq, an in-house method developed by scoring the frequency of residues 

at each position in the positive and negative testing sets used for machine learning in this study.  

Relative to all 8000 Cxxx sequence space, our SVM-ESM-1b based model predicts prenylation 

for more sequences (33%) in comparison to PrePS (20%) and FlexPepBind (17%), but less by 

comparison to Freq (42%).  While Freq predicts more prenylated sequences, it is important to 

note that this method overpredicts prenylation in the negative training set relative to the SVM-

ESM-1b model (~40% vs. 3%, respectively). A potential explanation for the higher false positive 

rate of Freq may be that this method does not explicitly encode contextual information when 

Fig 3. Predictions for modification of Cxxx sequences based on various methods. Predictions for 

prenylation and cleavage for all 8000 Cxxx sequences (A-C) and 89 naturally occurring yeast Cxxx 

sequences (D-F).  Models used were SVM-ESM-1b for both predictions (A,D), SVM-ESM-1b 

for prenylation and Freq for cleavage (B,E), and Freq for both (C,F).  Predictions are binned as non-

prenylated (white), shunted (gray), and cleaved sequences (black).    
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generating features. Overall, we conclude that the SVM-ESM-1b based machine learning model 

predicts more prenylatable space as compared to PrePS and FlexPepBind, and may more 

accurately predict prenylation than our previously reported Freq method.   Regarding CaaX 

cleavage prediction, Freq has been the only available method for binning prenylated sequences 

as either shunted or cleaved.  Freq predicts more shunted sequences relative to PSSM-based 

predictions (30% vs. 21%, respectively), while the prediction for cleaved sequences is the same 

in both cases (12%). 

 

Altogether, the yeast genome contains 89 proteins having Cxxx at the COOH-terminus.  

Prenylation and cleavage predictions were determined for the Cxxx sequences associated with 

these proteins using our SVM-ESM-1b and PSSM models, respectively.  SVM predicted 41 

yeast Cxxx proteins to be prenylated, where 32 were canonically modified and 9 were shunted 

(Fig 3B). While many of the canonically modified CaaX proteins have been previously 

characterized (a-factor, Ras, etc.), some have non-canonical Cxxx sequences and have not 

been previously evaluated for their prenylation status, including Cst26p (CFIF; an 

acyltransferase) and Sua5p (CIQF; involved in threonylcarbamoyladenosine synthesis).  Of the 

89 Cxxx sequences associated with the yeast proteome, 19 were directly evaluated in this study 

in the context of the Ydj1p reporter (Table 3, Fig 4A,S1). The SVM-ESM-1b model correctly 

predicted the prenylation (both positive and negative) for 84% of the sequences.  By 

comparison, PrePS was next best, correctly predicting 79%, followed by Freq correctly 

predicting 74%, and FPB correctly predicting 58%.  Because SVM-ESM-1b, PrePS, and Freq 

performed similarly in predicting prenylation of naturally occurring Cxxx sequences, we 

evaluated additional sequences to better differentiate the prediction methods.  Our lab 

possesses a large collection of plasmids encoding Ydj1-Cxxx variants (n > 200).  Excluding 

those with Cxxx sequences that were part of machine learning training sets and others for which 

SVM-ESM-1b and PrePS had the same prediction led us to 12 plasmids with varying differential 
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predictions by SVM, PrePS, and Freq.  (Table 4).  For these 12 Cxxx sequences, Freq correctly 

predicted 10, SVM-ESM-1b correctly predicted 9, and PrePS correctly predicted 4 (Table 4, Fig 

4B).  All 12 sequences were prenylated to some degree, resulting in a high percentage of false 

negatives for PrePS and SVM.  Thus, for the combined set of 31 sequences evaluated, SVM 

correctly predicted 81% (25/31), Freq correctly identified 77% (24/31), and PrePS correctly 

predicted 61% (19/31) (Table 5). 

 
Table 3. Comparison of prenylation and cleavage prediction models with empirical 
observations. 

aSigns represent predictions of prenylation and cleavage that were reported as positive (+) or 
negative (-) by the indicated model.  NA – not applicable. 
bSVM – SVM-ESM-1b; PrePS – Prenylation Prediction Suite; Freq – in-house, frequency-based; 
FPB – FlexPepBind. 
cObserved by Ydj1 prenylation gel shift – see Fig 4A, Fig S1. 
dObserved by a-factor mating – see Fig 4C. 
 
 
 
 
 
 

   Prenylation Cleavage 

 yeast protein CaaX SVMa,b PrePS Freq FPB Observedc SVMa Freq Observedd 

similar 
sequences 

Ras2 CIIS + + + + + + + + 

Hmg1 CIKS - - - - - NA NA NA 

Rho2 CIIL + + + - + + + + 

Ssp2 CIDL - - - - - NA NA NA 

Skt5, MiY1 CVIM + + + - + + + + 

Tbs1 CVKM - - - - + + - - 

YDL022C-A CSII + + + + + + + + 

YBR096W CSEI - - - - - NA NA NA 

YMR265C CSNA - - + - + - - - 

Pet18 CYNA - - - + + - - - 

Lih1 CSGL - - + - - NA NA NA 

Cup1 CSGK - - - - - NA NA NA 

other 
sequences 

Nap1 CKQS + + + - + - - - 

Cst26 CFIF + + - - + + - - 

YIL134C-A CAPY + + - - + - - - 

Atr1 CTVA + + + + + + + + 

Las21 CALD + - + + + - + - 

YDL009C CAVS + + + + + - + + 

Sua5 CIQF + + + - + + - - 

number observed/predicted 16/19 15/19 14/19 11/19  10/14 13/14  
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Table 4: Comparison of SVM-ESM-1b and PrePS prenylation predictions with empirical 
observations. 

 

 

 

 

 

 

 

 

 
 

aSigns represent predictions of prenylation and cleavage that were reported as positive (+) or 
negative (-) by the indicated model.  NA – not applicable. 
bSVM – SVM-ESM-1b; PrePS – Prenylation Prediction Suite; Freq – in-house, frequency-based; 
FPB – FlexPepBind. 
cObserved by Ydj1 prenylation gel shift – see Fig 4B. 
dObservation previously reported (21). 
 

 Table 5: Summary of prenylation and cleavage predictions 

 

 

 

 

 

a SVM – SVM-ESM-1b; PrePS – Prenylation Prediction Suite; Freq – in-house, frequency-
based; FPB – FlexPepBind. 
bValues determined by empirical data via Ydj1 prenylation gel shift (prenylation, Fig 4A,B, Fig 
S1) or a-factor mating (cleavage, Fig 4C). 
 

Reporter Prenylation   

Ydj1-Cxxx SVMa,b PrePS Freq FPB Observedc 

CAAQ  + - + - + 

CAHQ + - + - + 

CASA + - + - + 

CKQH + - + -  + 

CNLI + - + - + 

CSFL + - + - + 

CVAA + - + - + 

CVFM + - + - + 

CKQG - + + - + 

CKQL - + + - + 

CQTS - + - - + 

CQSQd + + - -     + 

number 
observed/predicted 

9/12 4/12 10/12 0/12   

 Prenylation Cleavage 

 SVMa, PrePS Freq FPB SVMa Freq 

number observed/predictedb 25/31 19/31 24/31 11/31 10/14 13/14 

%observed/predicted 81% 61% 77% 28% 71.4% 92.9% 

       

number false positive 0/20 0/14 1/22 0/6 3/7 1/7 

% false positive 0 0 4.5% 0 42.8% 14.3% 

       

number false negative 6/11 12/17 5/9 20/25 1/7 0/7 

% false negative 54.5% 70.6% 55.5% 80% 14.3% 0 
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For assessing cleavage, we used the yeast a-factor mating pheromone as a reporter (Fig 4B).  

Canonical modification of a-factor (i.e., prenylation, cleavage, and carboxylmethylation) is 

required for mating of haploid yeast, which can be quantified as an indirect measure of a-factor 

production.  As noted previously, for this assessment, we only evaluated the 14 sequences that 

Fig 4. Empirically determined prenylation and cleavage of various Cxxx sequences. Yeast 

strains lacking chromosomally encoded YDJ1 (yWS304 or yWS2544, ydj1∆) or MFA1 and 

MFA2 (SM2331, mfa1Δ mfa2Δ) were engineered to individually express the 

indicated Ydj1p-Cxxx or a-factor-Cxxx variant, respectively, using a plasmid-based 

expression system (Table S2). A, B) Prenylation of the indicated naturally occurring Cxxx 

sequences in yeast (A) or global Cxxx sequences (B) were determined by Ydj1p-gel shift 

assay. Yeast extracts were evaluated by SDS-PAGE and anti-Ydj1p immunoblot to 

reveal prenylated (closed triangle) and non-prenylated sequences (open triangle). Partial 

prenylation (i.e. doublet bands) were counted as a positive result. C) Cleavage of the 

indicated Cxxx sequences was determined by the a-factor mating assay.  MATa yeast 

cultures were serial diluted 10-fold in the presence of excess MATα yeast (IH1793) and 

plated on SD media. Mating is indicated by diploid growth and is reported relative to 

mating exhibited by wildtype a-factor (CVIA).    
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were confirmed as being prenylated by Ydj1p gel-shift, regardless of whether they were 

predicted to be prenylated by any computational method. In this case, Freq outperformed SVM-

ESM-1b, correctly predicting cleavage for 93% of sequences compared to 71%, respectively; 

FBP and PrePS are not able to predict cleavage, so they were not evaluated (Table 3).  For 

sequences where mating is observed, the mating levels are comparable to that of the wild type 

a-factor sequence (CVIA) (Fig 4B), indicative of complete rather than partial cleavage. 

 

Limitations of machine learning for predicting CaaX protein PTMs 
 

While SVM-ESM-1b can predict prenylation and cleavage, one limitation is that it does not 

provide any information about enzyme specificity due to the lack of enzyme-specific training 

information.  For both prenylation and proteolysis, there are two possible enzymes for each 

reaction. For prenylation, FTase and GGTase-I can each prenylate a wide array of CaaX 

proteins with C15 farnesyl and C20 geranylgeranyl, respectively, while for proteolysis, Rce1p 

and Ste24p are both able to cleave the farnesylated CVIA motif of a-factor, but selectivity is 

observed for other motifs.  The determinants of substrate specificity have not been fully 

ascertained for the aforementioned enzymes.  A case in point is proteolysis of the CaaX motif 

CSIM, a sequence found on human prelamin A that has long thought to be a substrate of both 

CaaX proteases.  SVM-ESM-1b and PSSM both predict that CSIM is cleaved, which we 

confirmed by using the a-factor reporter.  When both proteases were present, comparable 

mating levels were observed between strains expressing a-factor in the context of the native 

CVIA motif that is cleaved by both Rce1p and Ste24p, the CTLM motif that is Rce1p-specific, 

and the CSIM motif (Fig 5A). When evaluated in the context of just one CaaX protease, we 

observed that all three motifs could be cleaved by Rce1p, but only CVIA was cleaved by Ste24p 

(Fig 5B).  A similar result was observed when evaluating the human CaaX proteases in our 

yeast system (Fig 5C).  Our observations are consistent with multiple reports challenging the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.30.470454doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470454


 24 

role of Ste24p as an authentic CaaX protease, including a recent in vitro study demonstrating 

the inability of the human Ste24 ortholog, ZMPSTE24 to cleave at the Cys(farnesyl)-Ser bond of 

the CSIM motif, as would be expected for a CaaX protease (24). 

 

 

Discussion 

A collection of in vivo, in silico and in vitro observations support a wider array of prenylation 

substrates than those previously defined by the COOH-terminal CaaX motif (8-12, 21).  Among 

the new substrates are those that lack aliphatic amino acids at the a1 and a2 position, leading to 

a broader definition for the prenylation motif.  Using the machine learning platform SVM paired 

with ESM-1b training on CaaX motifs identified using both shunted and canonical reporters, we 

have developed a robust prediction algorithm for protein prenylation. SVM-based predictions 

suggest that approximately 33% of all 8000 Cxxx motifs are prenylatable.  This estimate is 

approximately 50% higher than the number of potential targets predicted by PrePS and is 

approximately double the number of sequences predicted by FlexPepBind (FPB).  These 

Fig 5. Rce1 is responsible for cleavage of yeast a-factor-CSIM. Yeast strains 

expressing the indicated a-factor Cxxx variant as the sole source of a-factor were 

evaluated as described for Fig 4 in the context of yeast and human CaaX 

proteases.  Yeast strains expressing A) both yeast CaaX proteases (SM2331, 

mfa1Δ mfa2Δ), B) one or the other yeast CaaX protease (yWS2393, mfa1∆ mfa2∆ 

ste24; yWS2462, mfa1∆ mfa2∆ rce1), or C) plasmid-based human CaaX proteases 

(pWS130, HsRce1∆1-22; pWS1609, ZMPSTE24) in a strain lacking both yeast 

CaaX proteases (yWS164, mfa1∆ mfa2∆ rce1 ste24). 
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findings are not meant to be indicative of the number of prenylated proteins in a cell since far 

fewer than all 8000 possible Cxxx motifs are encoded in genomes.  For example, S. cerevisiae 

encodes only 89 proteins that end in Cxxx.  Of these, SVM-ESM-1b predicted 46% (n=41) to be 

prenylated.  By comparison, FPB and PrePS predicted 27% (n=24) and 32% (n=29) of yeast 

proteins to be prenylated, respectively.  Confirmation of SVM-predicted prenylation will need to 

be evaluated on a case-by-case basis or by application of emerging methods for in vivo labeling 

of prenyl proteins to firmly establish whether SVM is an improvement over previous methods. 

We fully expect that the predicted SVM-based prenylation in some cases may not be possible in 

natural proteins due to inaccessibility of the COOH terminus to cytosolic prenyltransferases, 

either due to steric constraints for cytosolic proteins or the incompatible topology of membrane 

or secreted proteins.  Despite the potential limitations of our prediction method, it is clear that 

SVM-ESM-1b predicted prenylation of known, non-canonical Cxxx sequences in instances 

where other methods did not (e.g., Ydj1p CASQ and Pex19p CKQQ), suggesting that SVM is an 

improvement for identifying prenylated proteins as a whole. Moreover, the non-canonical CKQS 

sequence associated with the histone chaperone Nap1p is also predicted to be prenylated by 

our SVM-ESM-1b model. To date, there exists no direct evidence for yeast Nap1p prenylation, 

but such evidence does exist for human and plant Nap1 homologs, which both possess a 

similar CKQQ motif (25, 26).  Notably, the CKQQ sequence is also present on the human tumor 

suppressor Lkb1, another well documented prenylprotein (27). 

 

As part of this study, we were also able to develop SVM-ESM-1b into a first-ever method for 

distinguishing between shunted (i.e., prenylation only) and cleaved sequences (i.e., canonical). 

Of the approximately 2600 sequences predicted to be prenylated by SVM, approximately 63% 

are predicted to be shunted and the remaining 37% cleaved.  Again, these findings are not 

meant to reflect the actual ratio of shunted and cleaved prenylated proteins in cells.  In fact, we 

observe that the predictions are somewhat inversed within the yeast proteome.  Of the 41 
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sequences predicted to be prenylated, 27% are predicted to be shunted and the remaining 73% 

cleaved. This observation suggests that the cleavage and carboxymethylation of the prenylated 

COOH terminus may serve an important role in vivo, potentially increasing membrane 

association, as historically expected for canonical CaaX modifications.  While the role of the 

isoprenyl group on shunted proteins remains unclear, we posit that this PTM may help mediate 

protein-protein interactions and/or provide a structural role rather than contribute to membrane 

association.  This is supported by observations made on the human protein Spindly, whose 

Cxxx motif of CPQQ was predicted to be shunted by our SVM model, and for which a farnesyl-

dependent protein complex interaction has been proposed (28, 29). 

 

An unexpected result from this study was the observation that Freq and SVM-ESM-1b had a 

similar level of accuracy for prenylation prediction of the validation set (77% and 80% , 

respectively).  As noted previously, Freq globally predicted more  prenylated sequences than 

SVM-ESM-1b (42% and 33%, respectively), which is consistent with Freq having a higher false 

positive rate compared to SVM for our negative training set (40% and 3%, respectively). This 

suggests to us that  Freq overpredicts prenylation.  It’s also worth noting that while Freq and 

SVM-ESM1b rely on the same data set for predictions, their predictions are not coincident, 

indicating that predictions are fundamentally different for the two methods.   Long term, we 

expect that future advancements in machine learning will lead to better prediction performance 

relative to the Freq-based method. 

 

To further improve our prediction methods, one aspect that we wish to especially improve upon 

is the high false negative rate for prenylation predictions that was determined empirically by 

evaluating a small subset of test sequences (n=31; Table 5).  While a larger test set may yield a 

more accurate false negative rate, it remains possible that the high negative false rate is simply 

due to the training datasets themselves being too small or somehow compromised.  We have 
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high confidence that our positive prenylation training set is composed of prenylated sequences 

that, importantly, were derived from studies involving both canonical and shunted reporters.  

Our negative training test set, however, was derived from a single study that relied on a 

canonical reporter, and it is suspected that shunted sequences may be among the negative hits 

in that study, thus poisoning the quality of our negative test set. Our future studies are aimed at 

identifying a set of sequences that better reflect non-prenylatable sequences for use as an 

improved negative training set that we expect to lead to improved prenylation predictions and a 

lower false negative rate.   

 

Interestingly, we observed that several models out-performed SVM-ESM-1b for cleavage 

prediction (e.g., PSSM, Freq).  As previously noted, a larger set of test sequences may be 

needed to better assess performance.  Alternatively, it may be that a better genetic test for 

cleavage is required.  Previous studies have reported that geranylgeranylated a-factor has less 

mating activity in vivo (18, 21, 30), suggesting that the genetic mating assay may only work well 

in the context of farnesylated a-factor.  This potentially impacts results associated with the CFIF 

and CIQF sequences in our test set; the terminal Phe is a preferred GGTase-I feature.  SVM-

ESM-1b predicted prenylation of both sequences while SVM-ESM-1b, PSSM and Freq methods 

all predicted cleavage.  Prenylation was confirmed in the context of Ydj1p, but neither sequence 

supported a-factor mating activity that would be indicative of cleavage.  It remains unclear 

whether lack of mating activity is due to shunting or geranylgeranylation.  Because of this issue, 

it is difficult to fully assess the accuracy of any of the cleavage predictors described in this 

study.  In terms of the CaaX proteases, while CSIM was identified as a canonical motif, 

additional genetic studies utilizing a-factor were needed to resolve whether cleavage was 

mediated by Rce1p or Ste24p.  As the yeast a-factor mating pheromone is the only known 

substrate of Ste24p to date, it is tempting to speculate that Rce1p is the main and possibly only 
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relevant CaaX protease. If that eventually bears out to be the case, then our cleavage predictors 

could be used to infer Rce1p specificity. 

 

Altogether, we have demonstrated that machine learning can be developed into a useful tool to 

prediction prenylation and cleavage events associated with CaaX proteins. The utility of this tool 

is reflected by its ability to better identify possible shunted sequences relative to other publicly 

available prediction methods, in addition to identifying canonically modified sequences. These 

findings represent an important step in expanding the full scope of prenylatable motifs in yeast.  

Given the high degree of target specificity exhibited by both prenyltransferases and CaaX 

proteases across species, it is likely that the prenylatable space identified by this study also 

represents the full scope of prenylated motifs in humans.  Among these are sequences 

associated with proteins that represent potential new additions to the prenylome, which has 

implications for the impact of prenyltransferase and protease inhibitors being developed as 

therapeutics. 
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Supplementary Table S1.  Probability estimates and prediction calls for prenylation and 
cleavage of naturally occurring yeast Cxxx sequences as reported by the SVM-ESM-1b model. 

  prenylation cleavage 

yeast protein motif scorea prediction score prediction 

Ras2 CIIS 0.9969 + 6.1594 + 

Hmg1 CIKS 0.2587 - NA NA 

Rho2 CIIL 0.9880 + 5.0875 + 

Ssp2 CIDL 0.0534 - NA NA 

Skt5, MiY1 CVIM 1.0000 + 8.9377 + 

Tbs1 CVKM 0.1811 -b 1.8026 - 

YDL022C-A CSII 0.9762 + 5.9957 + 

YBR096W CSEI 0.1155 - NA NA 

YMR265C CSNA 0.1339 -b -0.6976 - 

Pet18 CYNA 0.0738 -b -0.2218 - 

Lih1 CSGL 0.1847 - NA NA 

Cup1 CSGK 0.0034 - NA NA 

Nap1 CKQS 0.5680 + 1.8671 - 

Cst26 CFIF 0.9800 + 5.1732 +b 

YIL134C-A CAPY 0.6833 + -1.2698 - 

Atr1 CTVA 0.9860 + 4.8219 + 

Las21 CALD 0.6017 + 2.4882 - 

YDL009C CAVS 0.9831 + 4.3306 + 

Sua5 CIQF 0.9018 + 4.0671 - 
aProbability estimates were determined for the SVM-ESM-1b model using Platt-scaling. Signs 
represent predictions of prenylation and that were reported as positive (+) or negative (-) by the 
SVM-ESM-1b model. NA – not applicable. 
bPrediction differs from empirical observation. 
 

Fig S1. Confirmation of prenylation status on ambiguous Cxxx sequences. Yeast strains 

lacking chromosomally encoded YDJ1 +/- RAM1 (yWS304, ydj1∆ or yWS2542, 

ydj1∆ram1∆) expressing Ydj1p-Cxxx plasmids of sequences were evaluated in the 

presence/absence of FTase (RAM1 gene) as described in Fig 4. Sequences were 

selected from Fig 4A for further evaluation due to unclear gel shift or prenylation status. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.30.470454doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470454


 33 

Supplementary Table S2.  Prediction calls for cleavage of naturally occurring yeast Cxxx 
sequences by indicated model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

aPSSM – PSSM sequence; Naïve Bayes – Naïve Bayes AAindex; kNN – kNN sequence. 
bSigns represent predictions of cleavage that were reported as positive (+) or negative (-) by the 
indicated model. NA – not applicable. 
cPrediction differs from empirical observation. 
  

 

 

 

 

 

 

 

 

yeast protein motif PSSMa,b  Naïve Bayes kNN 
Ras2 CIIS + + + 

Hmg1 CIKS NA NA NA 

Rho2 CIIL + + + 

Ssp2 CIDL NA NA NA 

Skt5, MiY1 CVIM + + + 

Tbs1 CVKM - - - 

YDL022C-A CSII + + + 

YBR096W CSEI NA NA NA 

YMR265C CSNA - - - 

Pet18 CYNA - - - 

Lih1 CSGL NA NA NA 

Cup1 CSGK NA NA NA 

Nap1 CKQS - - - 

Cst26 CFIF +c +c +c 

YIL134C-A CAPY - - - 

Atr1 CTVA + + + 

Las21 CALD - - - 

YDL009C CAVS -c -c -c 

Sua5 CIQF - - - 

number observed/predicted 12/14 12/14 12/14 

% observed/predicted 85.7 85.7 85.7 

    

number false positive 1/7 1/7 1/7 

% false positive 14.3 14.3 14.3 

    

number false negative 1/7 1/7 1/7 

% false negative 14.3 14.3 14.3 
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Supplementary Table S3. Yeast strains used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strain Genotype Reference 

BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 (48) 

IH1793; 
ATCC#204279 

MATα lys1 (49) 

SM2331 MATa trp1 leu2 ura3 his4 can1 mfa1-∆1 mfa2-∆1 (50) 

yWS164 
MATa trp1 leu2 ura3 his4 can1 mfa1-∆1 mfa2-∆1 
rce1::TRP1 ste24::KANR 

(45) 

yWS304 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 ydj1∆::KANR (43) 

yWS2393 
MATa trp1 leu2 ura3 his4 can1 mfa1-∆1 mfa2-∆1 
ste24::KANR 

This study 

yWS2462 
MATa trp1 leu2 ura3 his4 can1 mfa1-∆1 mfa2-∆1 
rce1::KANR 

This study 

yWS2542 
MATa his3 leu2 met15 ura3 ydj1∆::NATR 
ram1∆::KANR 

(21) 

yWS2544 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 ydj1∆::NATR (21) 
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Supplementary Table S4.  Yeast expression plasmids used in this study 
 

Gene Identifier Genotype Reference 
vectors pRS315 CEN LEU2 (51)  

pRS316 CEN URA3 (51) 
 pRS415 CEN LEU2 (51) 

HsRce1 pWS130 2µ URA3 PPGK HsRce1∆22 This study 

HsSte24 pWS1609 CEN URA3 PPGK HsSTE24 This study 

YDJ1 pWS942 CEN URA3 YDJ1 (19)  
pWS1132 CEN URA3 YDJ1-SASQ (19)   
pWS1343 CEN URA3 YDJ1-CASA  (21)  
pWS1372 CEN URA3 YDJ1-CAAQ  (21)  
pWS1410 CEN URA3 YDJ1-CVAA This study   
pWS1411 CEN URA3 YDJ1-CKQS This study   
pWS1437 CEN URA3 YDJ1-CAHQ This study   
pWS1456 CEN URA3 YDJ1-CAKS This study  
pWS1460 CEN URA3 YDJ1-CQTS This study  
pWS1461 CEN URA3 YDJ1-CSFL This study  
pWS1463 CEN URA3 YDJ1-CVIM This study  
pWS1729 CEN URA3 YDJ1-CTDS This study  
pWS1745 CEN URA3 YDJ1-CALD This study  
pWS1746 CEN URA3 YDJ1-CAPY This study  
pWS1747 CEN URA3 YDJ1-CAVS This study  
pWS1748 CEN URA3 YDJ1-CFIF This study 
pWS1749 CEN URA3 YDJ1-CIDL This study 
pWS1751 CEN URA3 YDJ1-CIIL This study 
pWS1752 CEN URA3 YDJ1-CIKS This study 
pWS1753 CEN URA3 YDJ1-CIQF This study 
pWS1757 CEN URA3 YDJ1-CSEI This study 
pWS1758 CEN URA3 YDJ1-CSGK This study 
pWS1759 CEN URA3 YDJ1-CSGL This study 
pWS1760 CEN URA3 YDJ1-CSII This study 
pWS1761 CEN URA3 YDJ1-CSNA This study 
pWS1762 CEN URA3 YDJ1-CTVA This study 
pWS1763 CEN URA3 YDJ1-CVKM This study 
pWS1764 CEN URA3 YDJ1-CYNA This study 
pWS1830 CEN URA3 YDJ1-CNLI This study 
pWS1834 CEN URA3 YDJ1-CVFM This study 
pWS2021 CEN URA3 YDJ1-CKQG This study 
pWS2022 CEN URA3 YDJ1-CKQH This study 
pWS2025 CEN URA3 YDJ1-CKQL This study 

MFA1 pWS610 CEN LEU2 MFA1  (52)  
 pWS613 CEN LEU2 MFA1-CTLM (19) 
 pWS846 CEN LEU2 MFA1-CKQS (52) 
 pWS1561 CEN LEU2 MFA1-CSIM This study  

pWS1562 CEN LEU2 MFA1-CIIS This study  
pWS1671 CEN LEU2 MFA1-CTVA This study  
pWS1730 CEN LEU2 MFA1-CALD This study  
pWS1733 CEN LEU2 MFA1-CIQF This study  
pWS1734 CEN LEU2 MFA1-CYNA This study  
pWS1738 CEN LEU2 MFA1-CVIM This study  
pWS1739 CEN LEU2 MFA1-CSGL This study  
pWS1777 CEN LEU2 MFA1-CAVS This study  
pWS1778 CEN LEU2 MFA1-CFIF This study  
pWS1779 CEN LEU2 MFA1-CIIL This study 
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pWS1780 CEN LEU2 MFA1-CIKS This study  
pWS1781 CEN LEU2 MFA1-CIDL This study  
pWS1782 CEN LEU2 MFA1-CSII This study  
pWS1783 CEN LEU2 MFA1-CSEI This study  
pWS1784 CEN LEU2 MFA1-CSNA This study  
pWS1785 CEN LEU2 MFA1-CAPY This study  
pWS1788 CEN LEU2 MFA1-CSGK This study  
pWS1809 CEN LEU2 MFA1-CVKM This study 
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Supplementary Table S5. PCR Oligonucleotides used in this study. 
 

Gene Oligo Mutation Sequence (5' to 3') 

Plasmid 
UTR 

oWS219a NAb tgaCCATGATTACGCCAAGC 

YDJ1 oWS999 CVAA TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
GTTGCCGCATGAttttcttgataaaaaaagatca 

oWS1000 CKQS TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
AAGCAGAGCTGAttttcttgataaaaaaagatca 

oWS1008 CAHQ GATTCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAA
TGTGCTCAtCAATGAttttcttgataaaaaaagatcaac 

oWS1028 CIIS  GATTCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAA
TGTatcatttctTGAttttcttgataaaaaaagatca 

oWS1032 CQTS GATTCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAA
TGTcaaacatctTGAttttcttgataaaaaaagatca 

oWS1033 CSFL GATTCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAA
TGTtcttttttgTGAttttcttgataaaaaaagatca 

oWS1035 CVIM  GATTCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAA
TGTgttatcatgTGAttttcttgataaaaaaagatca 

oWS1051 NAb GGTATGAAGTGGAGGGAGGAT 

oWS1334 CALD TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
GCTTTGGATTGAttttcttgataaaaaaagatc 

oWS1335 CAPY TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
GCTCCATATTGAttttcttgataaaaaaagatc 

oWS1336 CAVS TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
GCTGTTTCTTGAttttcttgataaaaaaagatc 

oWS1337 CFIF TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
TTTATTTTTTGAttttcttgataaaaaaagatc 

oWS1338 CIDL TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
ATTGATTTGTGAttttcttgataaaaaaagatc 

oWS1340 CIIL TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
ATTATTTTGTGAttttcttgataaaaaaagatc 

oWS1341 CIKS TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
ATTAAATCTTGAttttcttgataaaaaaagatc 
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oWS1342 CIQF TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
ATTCAATTTTGAttttcttgataaaaaaagatc 

oWS1346 CSEI TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
TCTGAAATTTGAttttcttgataaaaaaagatc 

oWS1347 CSGK TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
TCTGGTAAATGAttttcttgataaaaaaagatc 

oWS1348 CSGL TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
TCTGGTTTGTGAttttcttgataaaaaaagatc 

oWS1349 CSII TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
TCTATTATTTGAttttcttgataaaaaaagatc 

oWS1350 CSNA TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
TCTAATGCTTGAttttcttgataaaaaaagatc 

oWS1351 CTVA TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
ACTGTTGCTTGAttttcttgataaaaaaagatc 

oWS1352 CVKM TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
GTTAAAATGTGAttttcttgataaaaaaagatc 

oWS1353 CYNA TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
TATAATGCTTGAttttcttgataaaaaaagatc 

oWS1423 CNLI TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
AATTTGATTTGAttttcttgataaaaaaagatc 

oWS1444 CVFM TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAATGT
GTTTTTATGTGAttttcttgataaaaaaagatc 

oWS1583 CKQG tccgatgaagaagaacaaggtggcgaaggtgttcaatgtAAACAAGGTtgattt
tcttgataaaaaaagatc 

oWS1584 CKQH tccgatgaagaagaacaaggtggcgaaggtgttcaatgtAAACAACATtgattt
tcttgataaaaaaagatc 

oWS1587 CKQL tccgatgaagaagaacaaggtggcgaaggtgttcaatgtAAACAATTGtgattt
tcttgataaaaaaagatc 

MFA1 oWS356 CVKM  AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGcgt
aaaaatgTAGTTTCTGCGTACAAAAACGCGT 

oWS1178 CSIM AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGctct
atcatgTAGTTTCTGCGTACAAAAACGCGT 

oWS1179 CIIS AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGCat
catttctTAGTTTCTGCGTACAAAAACGCGT 
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oWS1224 CALD AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGTg
ctttggatTAGtttctgcgtacaaaaacgCGT 

oWS1232 CIIL AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGTat
tattttgTAGtttctgcgtacaaaaacgCGT 

oWS1234 CIQF AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGTat
tcaatttTAGtttctgcgtacaaaaacgCGT 

oWS1236 CSGL AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGTtc
tggtttgTAGtttctgcgtacaaaaacgCGT 

oWS1239 CTVA AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGTa
ctgttgctTAGtttctgcgtacaaaaacgCGT 

oWS1241 CVIM AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGTgt
tattatgTAGtttctgcgtacaaaaacgCGT 

oWS1244 CYNA AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGTta
taatgctTAGtttctgcgtacaaaaacgCGT 

oWS1357 CAVS AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGTg
ctgtttctTAGtttctgcgtacaaaaacgCGT 

oWS1358 CFIF AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGTttt
atttttTAGtttctgcgtacaaaaacgCGT 

oWS1362 CIKS AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGcatt
aaatctTAGtttctgcgtacaaaaacgCGT 

oWS1363 CIDL AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGcatt
gatttgTAGtttctgcgtacaaaaacgCGT 

oWS1364 CSII AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGctct
attattTAGtttctgcgtacaaaaacgCGT 

oWS1365 CSEI AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGctct
gaaattTAGtttctgcgtacaaaaacgCGT 

oWS1366 CSNA AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGctct
aatgctTAGtttctgcgtacaaaaacgCGT 

oWS1367 CSGK AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGctct
ggtaaaTAGtttctgcgtacaaaaacgCGT 

oWS1369 CAPY AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCATGcgc
tccttatTAGtttctgcgtacaaaaacgCGT 

aReverse oligonucleotide paired with listed MFA1 or YDJ1 mutagenic oligonucleotides 

bNot applicable. 
cLowercase letters indicate differences from wildtype sequences. 
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