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Abstract: 19 

Oxytocin has attracted research attention due to its role in promoting social bonding. One notable 20 

recent hypothesis is the biobehavioral feedback loop, which posits that the oxytocin system has 21 

evolved to support the formation and maintenance of social bonds through a positive feedback 22 

loop, where oxytocin promotes social behaviours which then cause oxytocin release themselves. 23 

In the two Pan species, humans’ closest relatives, oxytocin is known to be released following key 24 

behaviours related to social bonding, such as social grooming in chimpanzees and female-female 25 

sexual behaviour in bonobos. However, no experimental evidence has demonstrated that oxytocin 26 

promotes such socio-positive behaviours. To test this, we administered nebulized oxytocin or 27 

saline placebo to a group of female bonobos and subsequently observed the change in their gross 28 

behavior during free interaction. We found that bonobos groomed other group members 29 

significantly more frequently in the oxytocin compared to placebo condition. Other behavioural 30 

measures did not largely differ between conditions, except for a nonsignificant trend for reduction 31 

in abnormal regurgitation/reingestion behaviour. Overall, we found that oxytocin promoted socio-32 

positive interaction in bonobos, providing support for the biobehavioural feedback loop 33 

hypothesis of oxytocin in bonobo social evolution.  34 

Keywords: Oxytocin, bonobos, social bonding, biobehavioural feedback loop, social grooming, pan 35 

paniscus 36 
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Introduction: 38 

Oxytocin is a hormone neuropeptide conserved through mammalian evolution and plays diverse 39 

roles in regulating social behaviors across species. Evidence has accumulated for a biobehavioural 40 

feedback loop in mammalian social behaviours such as maternal care [1–3], pair bonding [4], and 41 

even the dog-human bond [5,6], where oxytocin both promotes and is released by key behaviours 42 

related to social bonding. In the great ape species most closely related to humans, the presence of 43 

such a positive feedback loop has also been suggested. Crockford et al. [7] showed that urinary 44 

oxytocin levels in wild chimpanzees increase following social grooming, a key socio-positive 45 

behavior widely present in nonhuman primates, and proposed that a positive feedback loop may 46 

have evolved to support social bonding in this species. Relatedly, Moscovice et al. [8] found that 47 

urinary oxytocin levels in wild female bonobos increased following same-sex sexual behaviour, 48 

genito-genital (GG) rubbing. Bonobos also increased proximity and coalitionary support among 49 

females after GG-rubbing; though it remains unclear if oxytocin played a direct role in these 50 

behavioural changes. Currently, experimental evidence is lacking as to whether oxytocin promotes 51 

socio-positive interaction in these species, a key piece of evidence that would support the 52 

presence of such a positive feedback loop in the Pan species.  53 

In several primate species, studies have demonstrated exogenous oxytocin can impact a 54 

wide range of social behaviours (reviewed in [9]). In macaques, several studies have demonstrated 55 

that oxytocin alters social gaze, such as increased attention to eyes [10], reduced attention to 56 

negative and fearful facial expressions [11] as well as social threats [12], and more gaze following 57 

[13]. In one of the first to test the effect of oxytocin in spontaneous social behaviour among 58 

multiple macaques, although still confined to primate chairs in a laboratory setting, Jiang and Platt 59 
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[14] found evidence that oxytocin flattened the dominance hierarchy and enhanced synchrony of 60 

mutual gaze. Marmosets similarly showed an increase in attention to eyes [15] following oxytocin 61 

administration and an increase in anxiety and vigilance following administration of an oxytocin 62 

antagonist [16]. Another study found that oxytocin promoted huddling in marmosets, while an 63 

oxytocin antagonist reduced social proximity and huddling [17]. On the other hand, in capuchin 64 

monkeys oxytocin was found to reduce food sharing through increasing interindividual distance 65 

[18]; the authors interpreted these results as derived from oxytocin’s anxiolytic effect, which 66 

increased social distance and thereby decreased opportunities for food sharing [18].  67 

Among non-human great apes, the majority of studies have been conducted through 68 

measurement of urinary oxytocin following key social behaviours. These studies have revealed 69 

that in chimpanzees oxytocin is released following a number of important social bonding 70 

behaviours, including social grooming [7], food sharing [19], and reconciliation [20], and in 71 

bonobos following female GG-rubbing [8]. Other studies have additionally demonstrated that 72 

urinary oxytocin rises in advance of border patrols as well as group hunting in chimpanzees 73 

[21,22], further suggesting its importance to social bonds and coordination.  74 

Three studies have measured behaviour following oxytocin administration in non-human 75 

great apes. Proctor et al. [23] administered oxytocin to eight chimpanzees individually for one trial 76 

each in both saline and oxytocin conditions then observed them in their regular social groups. 77 

Although they did not find significant effects for any behaviours measured, the authors note that it 78 

may be due to methodological issues, such as failures to find effective dose of oxytocin for 79 

chimpanzees and effective time window to test the oxytocin effect, or due to influence from 80 

groupmates who did not receive oxytocin before social interaction. Hall et al. [24] similarly found 81 
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no effect of oxytocin when chimpanzee dyads were administered oxytocin or saline placebo and 82 

subsequently tested in a token exchange task. Each participant chose one of two tokens to 83 

exchange and received rewards based on the choice of both participants in distributions based on 84 

games such as the prisoner’s dilemma and hawk-dove. However, although this study administered 85 

oxytocin to a dyad, the authors reported the same methodological concerns for the oxytocin 86 

administration procedure as well as a confound between experimental condition and order. No 87 

clear patterns emerged in either the placebo or oxytocin conditions, limiting interpretation of 88 

oxytocin’s possible effect. On the contrary to these studies reporting null results, Brooks et al. [25] 89 

found that oxytocin enhanced species-typical social gaze, increasing eye contact in bonobos but 90 

not chimpanzees, indicating that oxytocin can modulate gaze behaviour. While the species 91 

difference in the latter study cannot be attributed to differences in oxytocin administration 92 

procedure, it remains unclear whether the lack of effect in the prior studies is due to methodology 93 

or choice of study species.   94 

Critically, although it is central to the biobehavioural feedback loop hypothesis that both 95 

socio-positive interactions cause oxytocin release and that oxytocin can lead to socio-positive 96 

interactions, there is no direct evidence showing that oxytocin promotes any socio-positive 97 

interaction in Pan. Given recent progresses in this line of research, it is worthwhile to test whether 98 

oxytocin promotes key social behaviours related to social bonding in Pan, particularly in bonobos 99 

using the updated methods of oxytocin administration. Therefore, this study administered 100 

nebulized oxytocin or saline placebo to a whole group of female bonobos following the methods 101 

employed in Brooks et al. [25] and subsequently observed the change in their gross interactive 102 
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behavior, including grooming and GG-rubbing, as well as other noninteractive behaviours during 103 

their free interaction.   104 
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Methods: 106 

Ethics statement: 107 

All ape participants received regular feedings, daily enrichment, and had ad libitum access to 108 

water. No change was made to their daily care routine for the purpose of this study. Apes were 109 

never restrained at any point. Ethical approval number was WRC-2020-KS014A. 110 

We carefully considered the safety of the OT administration as in previous studies. Again, we 111 

based this decision on the fact that 1) OT is often administered to human children and adults, 2) 112 

OT is active for only a short period of time following administration with no known side effects in 113 

humans (MacDonald et al., 2011), 3) OT is naturally produced in bonobos and chimpanzees 114 

following relevant behaviors (Crockford et al., 2013; Moscovice et al., 2019), and 4) no previous 115 

studies administering OT intranasally to chimpanzees or bonobos reported any agonistic 116 

interaction (Brooks et al., 2021; Hall et al., 2019; Proctor et al., 2016). 117 

Participants: 118 

Four adult female bonobos at Kumamoto Sanctuary participated in this research. Details about 119 

participant ages and rearing histories can be found in supplementary material (Table S1). Animals 120 

were not food or water deprived at any time and were given both physical and social 121 

environmental enrichment in their daily life. The bonobos live in a dynamic grouping structure 122 

where three of the four females are together on any given day, and the fourth is with two male 123 

bonobos. These two males were not involved in this study because one male refused to participate 124 

in any oxytocin experiments, and our aim was to test whole groups at a time. Three of the females 125 

join the male bonobos with varying frequency, while the fourth (Lenore) is always with other 126 
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female bonobos. Individuals thus had a varying number of trials, with Lenore having the most due 127 

to never joining the male group (24 trials), followed by Lolita (20 trials), followed by Louise and 128 

Ikela (14 trials each) who are most often with the males. 129 

Administration procedure: 130 

Oxytocin administration procedures followed Brooks et al. [25]. Briefly, oxytocin was dissolved in 131 

saline at a concentration of 40IU/mL. The oxytocin solution or placebo control was nebulized into 132 

a box using a portable nebulizer (Omron NE-U100) at a minimum rate of 0.25mL/minute, for a 133 

cumulative 4 minutes while apes drank juice (thus a total of 40IU or more was nebulized during 134 

the administration period). Timing was stopped while apes’ noses were outside the box. 135 

Participation was voluntary and apes were never restrained.  136 

Observation procedure: 137 

Observation began 30 minutes after completion of administration criteria of all individuals (30 138 

minutes from the completion of the last individual), in line with previous studies [9], and lasted for 139 

one hour. The last individual to complete administration procedures was always within 30 minutes 140 

of the first individual to finish, and thus all participants were observed for one hour between 30 141 

minutes and 2 hours following completion of administration procedures on any given day. 142 

Observation methods combined scan and event sampling. Specifically, every 2 minutes, 143 

interindividual proximity was estimated for each dyad into one of four categories (in contact, 144 

within arm’s reach-one individual could extend their arm to touch the other, < 3 meters, and > 3 145 

meters) as well as each individual’s behaviour (grooming including direction, resting, self-directed 146 

behaviour, moving, eating). All occurrences of play, GG-rubbing, abnormal behaviour, and 147 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.30.468796doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.468796


aggression towards groupmates (including displays) were additionally recorded (see Brooks et al. 148 

[26] for more details about these observation methods).  149 

Analysis 150 

Behavioural scan data was analyzed with binomial GLMMs (Generalized Linear Mixed Models), 151 

where each individual at each point in time was characterized as either engaged in (1) or not 152 

engaged in (0) a given behaviour. The model included a test fixed effect of condition in addition to 153 

control fixed effects of day (counting upwards from first experimental day) and time, with random 154 

effects of dyad and grouping structure (a unique value was given for each possible combination of 155 

individuals) and random slopes of each fixed effect for each random effect. Numeric effects were 156 

scaled to a mean of 0 and standard deviation of 1. Random slope structure was kept maximal, 157 

except that the interaction between random slopes and intercepts was removed due to issues 158 

with convergence. For grooming data, we analyzed rates of active grooming (giving or mutual 159 

grooming), and receiving grooming was valued as 0 for not actively grooming another individual. 160 

Proximity data was analyzed using a CLMM (cumulative link mixed model) on ordinal data. 161 

Fixed and random effect structures were the same as those in the behavioural scan data analysis, 162 

except for the individual participant variable was replaced by dyad (a unique value for each dyad), 163 

and the addition of two random effects to represent the two individuals within a dyad (randomly 164 

distributed as individual variable 1 and 2). Random slope structure was kept maximal and the 165 

interaction between random slopes and intercepts was retained in this model.  166 

All occurrence data was analyzed with a binomial GLMM, where each individual for each 167 

day was characterized as having engaged in (1) or not engaged in (0) a given behaviour. The fixed 168 
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and random effect structure was the same as in the scan behaviour models, except for the time 169 

variable removed due to data being summarized across a given observation day. Model syntax for 170 

all model types can be found in supplemental material. 171 
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Results 173 

Bonobos engaged in active social grooming significantly more in the oxytocin condition than the 174 

control condition (𝛽 = 0.48, SE = 0.16, χ2 = 3.94, p = 0.047; Figure 1). Plots of this effect by 175 

participant, group, and time can be found in supplementary material (figures S1, S2, and S3). 176 

 177 

Figure 1. Mean active grooming rates in the oxytocin compared to saline control condition (giving 178 

or mutual grooming). Error bars represent 95% confidence intervals. 179 

 180 

We did not find significant differences in other behaviors between conditions. However, there was 181 

a non-significant trend for closer interindividual proximity in the oxytocin compared to control 182 
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condition (𝛽 = -0.22, SE = 0.12, χ2 = 2.85, p = 0.091) and for a reduction in the abnormal behaviour 183 

regurgitation and reingestion in the oxytocin compared to control condition (𝛽 = -0.73, SE = 0.36, 184 

χ2 = 3.08, p = 0.079). There were no significant changes in self-directed behaviour (𝛽 = -0.33, SE = 185 

0.18, χ2 = 2.04, p =0.15) or rest (𝛽 =-0.13, SE = 0.18, χ2 = 0.47, p =0.49). Bonobos engaged in GG-186 

rubbing only once (oxytocin condition) and displayed no aggression toward groupmates or any 187 

bouts of play during the observation period. See supplementary material Table S2 for full details of 188 

all models. 189 
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Discussion: 191 

Female bonobos groomed groupmates significantly more in the oxytocin condition than in the 192 

saline condition. In combination with the previous studies showing oxytocin is released in bonobos 193 

and chimpanzees following socio-positive interaction [7,8], our results provide experimental 194 

support for the biobehavioural feedback loop hypothesis in bonobos. Other observed behaviours 195 

did not largely differ between the oxytocin and saline conditions (self-directed behavior and rest) 196 

or were rarely or never observed during our 1-hour observation window (GG-rubbing, play, and 197 

aggression). There were non-significant trends for closer inter-individual proximity and reduced 198 

rates of regurgitation and reingestion. Brosnan et al. [18] found that oxytocin increased 199 

interindividual distance in capuchin monkeys (though individuals were separated by a mesh 200 

partition), possibly through oxytocin’s known anxiolytic effect, and this increase in interindividual 201 

distance then reduced food-sharing. Our results did not demonstrate this pattern in freely 202 

interacting bonobos. Potential reduction of regurgitation and reingestion may be explained by 203 

oxytocin’s effect on anxiety or digestion [27–29].  204 

Although we present the first observation that oxytocin promotes socio-positive 205 

interaction in female bonobos, there are several important limitations in this study. First, due to 206 

limited possibility of testing, enclosures suitable for detailed observation, and some apes’ 207 

willingness to join experiments, the sample was limited to just four adult female bonobos. This 208 

limits firm conclusions about a biobehavioural feedback loop, as Crockford et al. [7] measured 209 

urinary oxytocin after grooming only in chimpanzees, while Moscovice et al. [8] focused on sexual 210 

interactions rather than grooming in bonobos. While these previous studies characterized the 211 

changes similarly as socio-positive behaviours strengthening bond formation, conclusive proof of a 212 
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biobehavioural feedback loop in one or both species would require evidence of increased urinary 213 

oxytocin following grooming in bonobos, administration of oxytocin promoting GG-rubbing in 214 

bonobos, or administration of oxytocin promoting grooming among bond partners in 215 

chimpanzees. It remains possible that exogenous oxytocin promotes grooming in bonobos but not 216 

chimpanzees, or that oxytocin is released following grooming in chimpanzees but not bonobos. 217 

Previous work has also indicated sex-specific effects of oxytocin [30–32], and thus it remains 218 

unclear whether our results can be generalized to different sex pairs. However, it should be noted 219 

that Crockford et al. [7] did not find significant differences between female-female, female-male, 220 

and male-male dyads in urinary oxytocin level following grooming in wild chimpanzees. Second, it 221 

has not been demonstrated whether urinary oxytocin shows a similar increase following grooming 222 

in wild bonobos, though Moscovice et al. [8] found that urinary oxytocin rose following GG-223 

rubbing which was interpreted as a similar socio-positive behaviour. GG-rubbing was very 224 

infrequent in our study, possibly due to low overall social tension, precluding formal analysis. 225 

Relatedly, Proctor et al. [23] did not find any behavioural change after administration of oxytocin 226 

on captive chimpanzees. While several methodological limitations preclude interpretation of their 227 

results (and unlike our study, only one individual, instead of a whole group, was tested and 228 

observed at a time), currently it has not been demonstrated whether oxytocin promotes grooming 229 

in captive chimpanzees. Finally, the small number of participants did not enable us to test the 230 

effect of closeness with and selectivity to a certain groupmate, which may interact with the 231 

observed increase in grooming.  232 

In conclusion, although there are several limitations, our finding offered experimental 233 

evidence that oxytocin promotes socio-positive interaction in bonobos. We thus suggest that the 234 
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oxytocin system has been coopted through evolution to the formation and maintenance of social 235 

bonds though a positive feedback loop. Moreover, we suggest that oxytocin administration can be 236 

an effective tool in great ape research involving free interactions among groupmates. Future work 237 

should further test potential differences in oxytocin’s effect between species, should examine 238 

inter-individual variation with respect to social closeness and centrality, and should study how 239 

social contexts such as feeding tension interact with this effect. We demonstrate that exogenous 240 

oxytocin can affect great ape behaviour in naturalistic, spontaneous social interactions and 241 

provide experimental support for the biobehavioural feedback loop hypothesis of oxytocin in the 242 

evolution of bonobo social bonding.  243 
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