1	Compositional forecasting of Chinook Salmon Evolutionarily Significant Units in
2	bycatch for Pacific Hake fisheries
3	
4	Paul Moran Northwest Fisheries Science Center, National Marine Fisheries Service,
5	NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112 USA. Email:
6	paul.moran@noaa.gov
7	Vanessa J. Tuttle Northwest Fisheries Science Center, National Marine Fisheries Service,
8	NOAA, Seattle, WA USA
9	Susan Bishop West Coast Region, National Marine Fisheries Service, NOAA, Seattle,
10	WA USA
11	Larrie LaVoy West Coast Region, National Marine Fisheries Service, NOAA, Lacy,
12	WA USA
13	
14	Moran is a research geneticist at the Northwest Fisheries Science Center, NOAA—
15	Fisheries, Seattle, Washington USA, paul.moran@noaa.gov. Tuttle is a fishery biologist
16	at the Northwest Fisheries Science Center. Bishop is branch chief for Anadromous
17	Harvest Management, West Coast Region, NOAA—Fisheries, Seattle. LaVoy is a
18	biologist (retired) at the West Coast Region, NOAA—Fisheries, Lacey, Washington.
19	
20	Key words: Chinook salmon ESU, genetic stock identification, bycatch
21	

23	ABSTRACT: Bycatch impacts on non-target species present significant management
24	problems in diverse fisheries throughout the world. Despite successful efforts to
25	minimize bycatch in US West Coast Pacific Hake fisheries, these impacts remain a
26	concern, particularly for sensitive populations of Chinook Salmon. NOAA Fisheries
27	needed predictive models to estimate proportions of Chinook Salmon Evolutionarily
28	Significant Units (ESUs) expected in bycatch. We used genetic mixture analysis to
29	estimate ESU proportions from at-sea bycatch between 2008 and 2015. Using latitude as
30	a predictor and applying jackknife cross validation, we found Dirichlet regression more
31	accurately estimated abundant ESUs, whereas multinomial logistic regression performed
32	better with rare ESUs. This targeted, ESU-specific approach showed the spatial
33	distribution of sensitive stocks in bycatch and supported NOAA's obligations to forecast
34	impacts on listed ESUs. The overarching goal of this continuing work is to maximize
35	sustainable harvest while protecting threatened and endangered Chinook Salmon ESUs.

36	INTRODUCTION
37	Pacific Hake ¹ (Merluccius productus) are distributed from the Gulf of Alaska to
38	the Gulf of California (Quirollo et al. 2001). This abundant marine resource supports a
39	large-scale trawl fishery off the US West Coast. Trawling in this region began slowly in
40	the 1870s but increased in the 1920s with implementation of diesel engines and other
41	technological advances (Easley 2001). By 1966 harvest reached 137 kMT and now
42	represents an important economic resource to the region and to the nation (Hamel et al.
43	2015). In 2016, commercial landings of Pacific Hake totaled more than 260.8 kMT
44	valued at over US\$42 million (NOAA 2019).
45	
46	Incidental Take Statement for the US West Coast groundfish fisheries
47	Despite much effort and management action to reduce impacts on non-target
48	species, bycatch remains a concern in this commercially important fishery (Somers et al.
49	2015). There is special concern for bycatch of Chinook Salmon (Oncorhynchus
50	tshawytscha) protected under the US Endangered Species Act (ESA). By international
51	treaty (PSC 2020), management of coastal Pacific hake fisheries is shared among
52	Canadian Department of Fisheries and Oceans, NOAA Fisheries, and the Joint
53	Management Committee. In cooperation with the Pacific Fishery Management
54	Council (PFMC), NOAA manages the Pacific Hake fishery on the US West Coast in
55	Federal waters (3 to 200 miles offshore). Federal agencies must consult with NOAA on
56	activities that might jeopardize the continued existence of protected marine species
57	(essentially any action that involves "take"). As part of the 2017 ESA Consultation for
58	the West Coast Groundfish Fishery Management Plan salmon biological opinion (BiOp),

¹ Also referred to by the industry name "Pacific whiting"

59	the PFMC and NOAA faced a series of questions related to alternative fishery regulation
60	scenarios. For example: What would be the actual number of Chinook Salmon
61	individuals in bycatch from each Evolutionarily Significant Unit (ESU), if the current
62	restriction were rescinded on processing Pacific Hake south of latitude 42? What if there
63	was a resumption of the tribal mothership fishery off the north coast of Washington
64	State? Ultimately, NOAA's Incidental Take Statement needed to forecast the actual
65	number of Chinook Salmon from each ESU taken in bycatch, given predicted spatial
66	distribution of fishing effort (Matson and Erickson 2018) and under different
67	management scenarios (NMFS-WCR 2017).
68	
69	Limited CWT recoveries in bycatch
70	Tiny coded-wire tags (CWTs) are implanted in the snouts of juvenile hatchery
71	fish, and much has been learned about Chinook Salmon migration patterns and ocean
72	distribution from CWT recoveries (Weitkamp 2010; Riddell et al. 2018; Shelton et al
73	2019). We know that particular stocks have characteristic patterns of tag recovery,
74	primarily in commercial salmon harvest. Importantly, these patterns of migration were
75	shown to be surprisingly stable across years, despite high interannual variation in ocean
76	conditions and relative abundance (Weitkamp 2010). In spite of broad utility in harvest
77	management and basic research, coded-wire-tag recoveries in bycatch have generally
78	been inadequate to estimate relative abundance and distribution of 17 ESUs (identified in
79	Appendix 1). In parallel with tissue sampling, only 687 CWTs were recovered from
80	among 9,862 Chinook Salmon sampled by NOAA At-Sea Observers over the 8 years of
81	this study (2008 – 2015). Therefore, genetic analysis, where every fish, hatchery and wild,

82	is effectively "tagged," presented an opportunity to significantly augment what was
83	known from sparse CWT recoveries (NMFS-WCR 2017).

85	In the current study, we used genetic mixture analysis to characterize stock
86	composition of Chinook Salmon ESUs in the US West Coast, at-sea, Pacific Hake fishery
87	We also tested accuracy and precision of different predictive regression models used to
88	forecast ESU impacts in a management context; the goal being to provide the most
89	powerful forecasting tool requiring the simplest possible inputs. Beyond specific interest
90	to salmon conservation and Pacific hake harvest, our results are relevant to broader
91	studies of more general statistical challenges of multinomial regression modeling and
92	measures of forecasting accuracy—both common problems in ecology and natural
93	resource management.
94	
05	MATERIAL CAND METHODS
95	WATERIALS AND WETHODS
95 96	NOAA's At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon
95 96 97	NOAA's At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon tissue samples from the catcher/processor, mothership, and at-sea tribal sectors (NWFSC
95 96 97 98	NOAA's At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon tissue samples from the catcher/processor, mothership, and at-sea tribal sectors (NWFSC 2021). Rayed fin-clip samples were folded in Whatman 3MM chromatography paper,
95 96 97 98 99	NOAA's At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon tissue samples from the catcher/processor, mothership, and at-sea tribal sectors (NWFSC 2021). Rayed fin-clip samples were folded in Whatman 3MM chromatography paper, dried immediately, and stored in barcoded coin envelopes at ambient temperature.
95 96 97 98 99 100	NOAA's At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon tissue samples from the catcher/processor, mothership, and at-sea tribal sectors (NWFSC 2021). Rayed fin-clip samples were folded in Whatman 3MM chromatography paper, dried immediately, and stored in barcoded coin envelopes at ambient temperature. Samples were deposited in the Northwest Fisheries Science Center (NWFSC)
95 96 97 98 99 100 101	NOAA's At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon tissue samples from the catcher/processor, mothership, and at-sea tribal sectors (NWFSC 2021). Rayed fin-clip samples were folded in Whatman 3MM chromatography paper, dried immediately, and stored in barcoded coin envelopes at ambient temperature. Samples were deposited in the Northwest Fisheries Science Center (NWFSC) Conservation Biology Division's Genetic Tissue Archive (accession numbers in Table 1).
95 96 97 98 99 100 101 102	NOAA's At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon tissue samples from the catcher/processor, mothership, and at-sea tribal sectors (NWFSC 2021). Rayed fin-clip samples were folded in Whatman 3MM chromatography paper, dried immediately, and stored in barcoded coin envelopes at ambient temperature. Samples were deposited in the Northwest Fisheries Science Center (NWFSC) Conservation Biology Division's Genetic Tissue Archive (accession numbers in Table 1). All samples were collected during the normal fishing season beginning 15 May and
 95 96 97 98 99 100 101 102 103 	NOAA's At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon tissue samples from the catcher/processor, mothership, and at-sea tribal sectors (NWFSC 2021). Rayed fin-clip samples were folded in Whatman 3MM chromatography paper, dried immediately, and stored in barcoded coin envelopes at ambient temperature. Samples were deposited in the Northwest Fisheries Science Center (NWFSC) Conservation Biology Division's Genetic Tissue Archive (accession numbers in Table 1). All samples were collected during the normal fishing season beginning 15 May and ending 31 December. Tissue samples selected for genotyping (4,498) were drawn
 95 96 97 98 99 100 101 102 103 104 	NOAA's At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon tissue samples from the catcher/processor, mothership, and at-sea tribal sectors (NWFSC 2021). Rayed fin-clip samples were folded in Whatman 3MM chromatography paper, dried immediately, and stored in barcoded coin envelopes at ambient temperature. Samples were deposited in the Northwest Fisheries Science Center (NWFSC) Conservation Biology Division's Genetic Tissue Archive (accession numbers in Table 1). All samples were collected during the normal fishing season beginning 15 May and ending 31 December. Tissue samples selected for genotyping (4,498) were drawn randomly each year between 2008 and 2015. Annual sample sizes were dictated by

106	filtering process and identifies the following: total estimated bycatch, samples collected
107	by observers, random sub-sample for genotyping, and filtered for genotyping quality and
108	filtered for ≥ 0.8 assignment probability. The latter two sample sets provided the primary
109	input data for this study and reflect two distinctly different statistical approaches; 1)
110	modeled genetic stock composition estimates based on all individuals for all ESUs
111	simultaneously, and 2) discrete individual assignment of each fish to population of origin.
112	Our sample was intended to accurately reflect ESU-specific, spatial and temporal bycatch
113	impacts over the course of each year in the fishery. That was the essential focus of
114	NOAA's BiOp as related to Chinook salmon impacts (NMFS-WCR 2017).
115	
116	[Table 1 near here]
117	
118	Genotyping, genetic mixture modeling, and individual assignment
118 119	<i>Genotyping, genetic mixture modeling, and individual assignment</i> DNA was extracted and purified by using Qiagen® DNeasy [™] membrane capture.
118 119 120	Genotyping, genetic mixture modeling, and individual assignment DNA was extracted and purified by using Qiagen® DNeasy [™] membrane capture. Purified DNA was amplified and genotyped for 13 internationally standardized
118 119 120 121	Genotyping, genetic mixture modeling, and individual assignment DNA was extracted and purified by using Qiagen® DNeasy™ membrane capture. Purified DNA was amplified and genotyped for 13 internationally standardized microsatellite loci (see below). Microsatellite products were sized using an Applied
118 119 120 121 122	Genotyping, genetic mixture modeling, and individual assignment DNA was extracted and purified by using Qiagen® DNeasy [™] membrane capture. Purified DNA was amplified and genotyped for 13 internationally standardized microsatellite loci (see below). Microsatellite products were sized using an Applied Biosystems Incorporated (ABI) 3100 Genetic Analyzer. Genotypes were inferred from
118 119 120 121 122 123	Genotyping, genetic mixture modeling, and individual assignmentDNA was extracted and purified by using Qiagen® DNeasy™ membrane capture.Purified DNA was amplified and genotyped for 13 internationally standardizedmicrosatellite loci (see below). Microsatellite products were sized using an AppliedBiosystems Incorporated (ABI) 3100 Genetic Analyzer. Genotypes were inferred fromelectropherograms by using ABI Genescan and Genotyper software. We used conditional
118 119 120 121 122 123 124	Genotyping, genetic mixture modeling, and individual assignment DNA was extracted and purified by using Qiagen® DNeasy [™] membrane capture. Purified DNA was amplified and genotyped for 13 internationally standardized microsatellite loci (see below). Microsatellite products were sized using an Applied Biosystems Incorporated (ABI) 3100 Genetic Analyzer. Genotypes were inferred from electropherograms by using ABI Genescan and Genotyper software. We used conditional maximum likelihood mixture modeling (CMLMM) to simultaneously estimate stock
118 119 120 121 122 123 124 125	Genotyping, genetic mixture modeling, and individual assignmentDNA was extracted and purified by using Qiagen® DNeasy™ membrane capture.Purified DNA was amplified and genotyped for 13 internationally standardizedmicrosatellite loci (see below). Microsatellite products were sized using an AppliedBiosystems Incorporated (ABI) 3100 Genetic Analyzer. Genotypes were inferred fromelectropherograms by using ABI Genescan and Genotyper software. We used conditionalmaximum likelihood mixture modeling (CMLMM) to simultaneously estimate stockcompositions and make individual assignments to population of origin (Rannala and
 118 119 120 121 122 123 124 125 126 	Genotyping, genetic mixture modeling, and individual assignmentDNA was extracted and purified by using Qiagen® DNeasy™ membrane capture.Purified DNA was amplified and genotyped for 13 internationally standardizedmicrosatellite loci (see below). Microsatellite products were sized using an AppliedBiosystems Incorporated (ABI) 3100 Genetic Analyzer. Genotypes were inferred fromelectropherograms by using ABI Genescan and Genotyper software. We used conditionalmaximum likelihood mixture modeling (CMLMM) to simultaneously estimate stockcompositions and make individual assignments to population of origin (Rannala andMountain 1997; ONCOR, Kalinowski et al. 2007), with bias correction (Anderson et al.
 118 119 120 121 122 123 124 125 126 127 	Genotyping, genetic mixture modeling, and individual assignmentDNA was extracted and purified by using Qiagen® DNeasy™ membrane capture.Purified DNA was amplified and genotyped for 13 internationally standardizedmicrosatellite loci (see below). Microsatellite products were sized using an AppliedBiosystems Incorporated (ABI) 3100 Genetic Analyzer. Genotypes were inferred fromelectropherograms by using ABI Genescan and Genotyper software. We used conditionalmaximum likelihood mixture modeling (CMLMM) to simultaneously estimate stockcompositions and make individual assignments to population of origin (Rannala andMountain 1997; ONCOR, Kalinowski et al. 2007), with bias correction (Anderson et al.2008). Population-level allocation was then aggregated by ESU reporting group. Genetic
 118 119 120 121 122 123 124 125 126 127 128 	Genotyping, genetic mixture modeling, and individual assignment DNA was extracted and purified by using Qiagen® DNeasy™ membrane capture. Purified DNA was amplified and genotyped for 13 internationally standardized microsatellite loci (see below). Microsatellite products were sized using an Applied Biosystems Incorporated (ABI) 3100 Genetic Analyzer. Genotypes were inferred from electropherograms by using ABI Genescan and Genotyper software. We used conditional maximum likelihood mixture modeling (CMLMM) to simultaneously estimate stock compositions and make individual assignments to population of origin (Rannala and Mountain 1997; ONCOR, Kalinowski et al. 2007), with bias correction (Anderson et al. 2008). Population-level allocation was then aggregated by ESU reporting group. Genetic mixture analysis using ONCOR was replicated and confirmed with the R package 'rubias'

130	proportions and 2) individual assignments, were used for the two different classes of
131	statistical analysis, 1) Dirichlet regression (DR; Maier 2014) and 2) multinomial logistic
132	regression (MLR; Hilbe 2009). CMLMM is taken to be the best possible estimate of ESU
133	proportions in a given year. We use the term "observed" in reference to observed
134	genotypes and observed latitudes that are compared to "predicted" ESU proportions from
135	the regression models. We calculated credibility intervals for CMLMM proportions,
136	however, we relied principally on cross validation of predictions and evaluation of
137	accuracy with scale-dependent and -independent metrics (see below).
138	
139	CMLMM depends on a baseline dataset of known-origin reference samples that is
140	assumed to represent all potentially contributing populations. In this study, we used the
141	most comprehensive Chinook Salmon baseline available, the internationally standardized,
142	microsatellite dataset (i.e., common loci and consistent allele designations, Moran et al.
143	2006) that was developed by the Genetic Analysis of Pacific Salmonids consortium
144	(GAPS; Moran et al. 2005; Seeb et al. 2007). The GAPS baseline was designed for
145	eastern Pacific fishery mixtures, primarily harvest, but the geographic coverage of
146	potential source populations is complete from Southeast Alaska to Central Valley,
147	California. The version of the baseline we used included more than 20,000 known-origin
148	fish from 163 populations representing all ESUs and major Canadian and Alaskan stocks
149	that contribute to these fisheries (Appendix 1). The GAPS baseline is thoroughly vetted
150	by the salmon genetics community and has been widely used in studies of harvest
151	impacts (Bellinger et al. 2015; Satterthwaite et al. 2015; Moran et al. 2018).
152	

153	Predictive regression models and cross validation
154	Input data for our preliminary exploration included the ESU to which each fish
155	assigned, collection year, ordinal day of the year, latitude (decimal degrees), fork length
156	(cm), and fishing depth (m). Akaike information criterion (AIC) was used to evaluate
157	different predictive models. Focusing on mean latitude of an annual bycatch sample, we
158	compared two multinomial regression methods for predictive forecasting. DR was used to
159	relate observed proportions for an annual sample of individuals relative to the mean
160	latitudes over which those individuals were taken. MLR was also used to estimate an
161	expected proportion for each ESU as a function of latitude but was based on individual
162	fish rather than annual means. Compositional proportions are bounded by zero and one,
163	and not normally distributed or homoscedastic. This class of proportions violates
164	assumptions of linear regression and common parametric analyses such as t-tests and
165	ANOVA, when used as a dependent variable. To evaluate the absolute and relative
166	accuracy and precision of the two regression methods, we conducted sequential,
167	independent, cross-validation analyses holding out each of 8 individual years, one at a
168	time, as test datasets and using all remaining years as training data. We used a similar
169	jackknife approach for both regression methods. In each case, we evaluated the accuracy
170	of the prediction (based on the training data set) against the independent, cross-validation,
171	test set (the "actual" or "observed" ESU proportions derived from observed genotypes).
172	Central Valley Spring ESU only occurred in one test set (annual sample), so that ESU
173	was omitted from the jackknife. To the extent possible, the jackknife is a sequential test
174	of forecasting accuracy, "predicting" the composition of each annual sample as if it were
175	a new observation.

176

177	To quantify accuracy and precision of our forecast predictions compared to
178	observed genotypes, we used scale-dependent and scale-independent error metrics. For a
179	scale-dependent metric we selected the widely used and easily understood mean squared
180	error (MSE),
181	
182	$MSE = 1/N \Sigma (y_t - f_t)^2.$
183	
184	Where N = number of tests, y_t = observed composition in the t^{th} test, and f_t = the t^{th}
185	forecast.
186	
187	For a scale-independent metric we chose the less widely known mean arctangent
188	absolute percentage error (MAAPE),
189	
190	$MAAPE = 1/N \Sigma(\arctan((y_t - f_t) / f_t)).$
191	
192	MAAPE can be interpreted intuitively as an absolute percentage error like the commonly
193	used mean absolute percentage error (MAPE). However, MAAPE is less biased in greater
194	penalties for positive errors than negative (Makridakis 1993). Moreover, the bounded
195	range of the arctangent function $(\lim_{x\to\infty} \tan^{-1} x = \pi/2)$ overcomes the MAPE's limitation
196	of going to infinity as the observed value approaches zero (Kim and Kim 2016).
197	
198	For context, we compared the accuracy of our modeled estimates with interannual
199	variability between members of paired samples (observed data) that had similar mean
200	latitudes. We selected pairs of annual samples that differed by less than 0.25 degrees in

201	mean latitude (2013 and 2014 at latitudes 43.8 and 43.5, respectively; and 2013 and 2015
202	at latitudes 43.8 and 43.9). This interannual variability should represent the minimum
203	error possible in a forecast estimate. We used the R statistical package (R Core Team
204	2017) for most of our analyses and figures.
205	
206	RESULTS
207	NOAA fishery observers from the A-SHOP collected 9,862 individual tissue
208	samples, which represented 41% of the total estimated Chinook Salmon bycatch between
209	2008 and 2015 (Table 1). Samples were stratified by year, and a total of 4,498 fish were
210	randomly subsampled for DNA extraction and analysis (19% of total bycatch).
211	Geographic distribution of individual tissue samples extended from Shelter Cove (41.43°),
212	north to the Canadian border (48.48°); fishing depth 46 - 507 m (mean 246, SD 90.4);
213	bottom depth 66 - 2,743 m (mean 427, SD 217.4), and fork length 24 - 113 cm (mean
214	58.7, SD 11.9). A slight female bias was observed (0.54) . Mean latitude values for each
215	annual by catch sample ranged over 4.4 degrees (43.5° - 47.9°). A general shift to the
216	south was observed in fishing effort and bycatch beginning in 2011 (Table 1). Clearly,
217	similar values for mean latitude might produce very different stock compositions if they
218	have different distribution, e.g., non-normal. Through practical application and cross
219	validation, our results demonstrate the sensitivity of our models to those violations of
220	normality.
221	
222	Genotyping and genetic mixture modeling
223	Of 4,498 fish subsampled for genotyping, 96% met genotyping quality criteria. In

addition to high genotyping success, high individual fish assignment probabilities were

225	also observed. About 78% of fish successfully genotyped met the assignment probability
226	criterion of ≥ 0.8 (N = 3,360, 14% of total by catch; see Moran et al. 2014 for sensitivity
227	analysis). Modeled genetic estimates of overall proportions derived from all fish
228	successfully genotyped ("observed") showed that most of the Chinook Salmon bycatch in
229	this period came from Upper Klamath-Trinity River and S. Oregon and N. California
230	Coastal ESUs (Fig. 1). Those two ESUs accounted for more than 50% of all bycatch in
231	the study period. Secondary contributors included the Oregon Coast and Puget Sound
232	ESUs and Southern British Columbia (lower Fraser River, data not shown).
233	
234	[Fig. 1 near here]
235	Managers often focus on fishery management areas. Differences in ESU
236	composition between fishery management areas north and south of Cape Falcon (45.77°)
237	showed the effect of latitude (See figs. 2 and 3 for area boundaries). The two southern
238	ESUs—Upper Klamath-Trinity Rivers and S. Oregon/N. California—dominated bycatch
239	south of Cape Falcon but dropped to only $\sim 5\%$ each to the north of Cape Falcon. The
240	opposite was true of the northern ESU, Puget Sound, and Southern BC populations.
241	Spatial variation was also reflected when comparing the annual samples, which were
242	each taken at different mean latitudes and showed different ESU proportions (see
243	Jackknife cross validation below).
244	
245	[Fig. 2 near here]
246	Individual assignment
247	Again, our analysis included two fundamentally different approaches, modeled
248	proportions versus individual assignment. The ESU stock composition results above

249	describe fitted genetic models to all observed genotypic data simultaneously (Koljonen et
250	al. 2005). At this point we shift to analyses based on individual fish assignment. First, we
251	simply created a scatter plot of individually georeferenced fish, color coded by ESU, and
252	overlaid on a map of the US West Coast (Fig. 3). That heuristic presentation also showed
253	strong effects of latitude on ESU composition. No fish assigned to Sacramento Winter
254	ESU, preventing inclusion of that ESU in the exploratory regression analysis described
255	below.

256

257 [Fig. 3 near here]

258 Individual assignment was used to explore the ESU-specific predictive power of 259 multiple sample attributes (e.g., latitude, depth, fork length, etc.). Previous simulations 260 using the GAPS baseline showed that individual assignment with a threshold of ≥ 0.8 for 261 inclusion, and regressing traits on ESUs is a robust and generally unbiased approach to 262 inferring ESU-specific phenotypes (Moran et al. 2014). However, we recognize that 263 individual assignment for compositional prediction raises issues of potential bias that go 264 beyond the scope of this article. Nevertheless, our cross-validation approach subsumes 265 those errors, allowing meaningful comparisons between disparate statistical methods. 266 According to AIC evaluation of MLR models in particular, latitude was by far the most 267 powerful single predictor of ESU origin (similar GAM results not shown). Other factors, 268 most notably year, clearly explained additional variation, but Burnham and Anderson's 269 (2004) Δ AIC values for individual factors, relative to latitude alone, were compelling: 270 year 1505, depth 1574, ordinal day 2271, and fork length 2544. More complex models 271 gave lower AIC values, but were less suitable as predictors and as practical fishery 272 management regulatory elements.

2	7	2
Z	1	3

274	Plotting DR and MLR curves further illustrated the importance of latitude for
275	most ESUs (Fig. 4). Consistent with the plot of fishery management areas (Fig. 2),
276	northern ESUs were encountered primarily in the north, whereas southern ESUs were
277	concentrated in southern and central coastal areas. Cape Falcon marked an abrupt
278	transition in ESU composition of Chinook salmon bycatch.
279	
280	[Fig. 4 near here]
281	Jackknife cross validation
282	The estimated regression curves in Figure 4 can be compared with observed
283	proportions in each annual sample (points in Fig. 4). However, the regression estimates
284	include all data and are therefore not independent from the point observations in Figure 4
285	(i.e., potentially presenting an overly optimistic interpretation of predictive power). By
286	contrast, the jackknife, cross-validation analysis provided an independent observation for
287	every ESU proportion in every year. Figure 5 compares observed ESU proportions for
288	each year with independently derived estimates from the two regression methods and
289	latitude alone. Figure 6 almost perfectly summarizes all individual years (Fig. 4) by
290	averaging over jackknife iterations. Despite a major difference in the MLR estimate for
291	Upper Klamath/Trinity Rivers, estimates for both regression models were close to one
292	another and close to observation for most ESUs.
293	
294	[Fig. 5 and Fig. 6 near here]

295

Annual replicates at similar latitude

296	By chance, some annual samples had very similar mean latitudes. Consistent with
297	latitude being more important than year in the AIC, similar ESU proportions were
298	observed in those annual samples that had similar mean latitudes (i.e., 2013, 2014, and
299	2015; Fig. 5). Comparison of variation between years with the accuracy of our forecast
300	was mixed. Forecast predictions for large contributors showed substantially greater errors
301	than variation observed between years at similar latitude (MSE = 0.0005 for DR and
302	0.0008 for MLR compared with only 0.0001 for the annual replicates). However, the
303	scale-independent metric suggested that prediction errors were quite similar to
304	interannual variation (MAAPE = 0.670 and 0.564 for DR and MLR versus 0.572 for
305	interannual replicates).
306	
307	Accuracy of DR vs MLR, overall and by ESU
308	In predicting the ESU composition obtained from CMLMM in a given year, DR
309	outperformed MLR for most ESUs that contributed more that 2.5%; however, the
310	distribution of errors was complicated. For all contributors, MSE (most sensitive to large
311	contributors) was 38% lower for DR than for MLR. Yet DR errors were more than three
312	times as variable across years ($CV = 56\%$ for DR versus 21% for MLR). By contrast
313	MAAPE (sensitive to small contributors) was 16% lower for MLR but nearly twice as
314	variable ($CV = 27\%$ for MLR versus 14% for DR). So in each case, the more accurate
315	regression method was less precise. A few patterns were evident in the accuracy and
316	precision of individual ESU estimates. DR underpredicted Upper Klamath-Trinity Rivers
317	ESU, in contrast to MLR that substantially overpredicted that ESU in nearly all years.
318	Large MSE values for MLR were driven largely—but not entirely—by the extreme

320	only reduced MSE from 0.0008 to 0.0007, still greater than 0.0005 for DR, and much
321	greater than 0.0001 observed between years at the same latitude). With the notable
322	exception of S. Oregon and N. California Coastal ESU, which MLR estimated almost
323	exactly, southern ESUs were overestimated by MLR, whereas northern ESUs were
324	underestimated. DR underestimated all larger contributors (>5%), but consistently
325	overestimated smaller contributors, e.g., Washington Coast, Upper Willamette River,
326	Mid-Columbia River Spring, Upper Columbia River Spring Snake River Spring/Summer,
327	Snake River Fall ESUs [all years except 2009], and Central British Columbia and Alaska).
328	Extensive additional analyses did not show an obvious effect of omitting fish that failed
329	to meet the 0.8 probability criterion for MLR.
330	
331	Discussion
331 332	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU
331 332 333	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU stock composition estimates in a fishery management context. Latitudinal clines and
331 332 333 334	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU stock composition estimates in a fishery management context. Latitudinal clines and stock-specific distributions observed here were generally consistent with distribution of
 331 332 333 334 335 	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU stock composition estimates in a fishery management context. Latitudinal clines and stock-specific distributions observed here were generally consistent with distribution of CWT recoveries in harvest fisheries (Weitkamp 2010; Shelton et al. 2019; Shelton et al.
 331 332 333 334 335 336 	DiscussionWe succeeded in developing useful predictive models for Chinook Salmon ESUstock composition estimates in a fishery management context. Latitudinal clines andstock-specific distributions observed here were generally consistent with distribution ofCWT recoveries in harvest fisheries (Weitkamp 2010; Shelton et al. 2019; Shelton et al.2021). However, the current study, is the first we know of to describe pre-season
 331 332 333 334 335 336 337 	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU stock composition estimates in a fishery management context. Latitudinal clines and stock-specific distributions observed here were generally consistent with distribution of CWT recoveries in harvest fisheries (Weitkamp 2010; Shelton et al. 2019; Shelton et al. 2021). However, the current study, is the first we know of to describe pre-season prediction of ESU-specific impacts based simply on anticipated latitude of a proposed
 331 332 333 334 335 336 337 338 	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU stock composition estimates in a fishery management context. Latitudinal clines and stock-specific distributions observed here were generally consistent with distribution of CWT recoveries in harvest fisheries (Weitkamp 2010; Shelton et al. 2019; Shelton et al. 2021). However, the current study, is the first we know of to describe pre-season prediction of ESU-specific impacts based simply on anticipated latitude of a proposed fishery. Given estimated bycatch numbers and latitudes (Matson and Erickson 2018),
 331 332 333 334 335 336 337 338 339 	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU stock composition estimates in a fishery management context. Latitudinal clines and stock-specific distributions observed here were generally consistent with distribution of CWT recoveries in harvest fisheries (Weitkamp 2010; Shelton et al. 2019; Shelton et al. 2021). However, the current study, is the first we know of to describe pre-season prediction of ESU-specific impacts based simply on anticipated latitude of a proposed fishery. Given estimated bycatch numbers and latitudes (Matson and Erickson 2018), NOAA needed to parse total numbers by ESU to give predictions of actual fish counts,
 331 332 333 334 335 336 337 338 339 340 	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU stock composition estimates in a fishery management context. Latitudinal clines and stock-specific distributions observed here were generally consistent with distribution of CWT recoveries in harvest fisheries (Weitkamp 2010; Shelton et al. 2019; Shelton et al. 2021). However, the current study, is the first we know of to describe pre-season prediction of ESU-specific impacts based simply on anticipated latitude of a proposed fishery. Given estimated bycatch numbers and latitudes (Matson and Erickson 2018), NOAA needed to parse total numbers by ESU to give predictions of actual fish counts, based on forecast proportions. These models were used previously in support of the 2017
 331 332 333 334 335 336 337 338 339 340 341 	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU stock composition estimates in a fishery management context. Latitudinal clines and tsock-specific distributions observed here were generally consistent with distribution of CWT recoveries in harvest fisheries (Weitkamp 2010; Shelton et al. 2019; Shelton et al. 2021). However, the current study, is the first we know of to describe pre-season prediction of ESU-specific impacts based simply on anticipated latitude of a proposed fishery. Given estimated bycatch numbers and latitudes (Matson and Erickson 2018), NOAA needed to parse total numbers by ESU to give predictions of actual fish counts, based on forecast proportions. These models were used previously in support of the 2017 Chinook salmon ITS and BiOp for the West Coast Groundfish Fishery Management Plan
 331 332 333 334 335 336 337 338 339 340 341 342 	Discussion We succeeded in developing useful predictive models for Chinook Salmon ESU stock composition estimates in a fishery management context. Latitudinal clines and tsock-specific distributions observed here were generally consistent with distribution of CWT recoveries in harvest fisheries (Weitkamp 2010; Shelton et al. 2019; Shelton et al. 2021). However, the current study, is the first we know of to describe pre-season prediction of ESU-specific impacts based simply on anticipated latitude of a proposed fishery. Given estimated bycatch numbers and latitudes (Matson and Erickson 2018), NOAA needed to parse total numbers by ESU to give predictions of actual fish counts, based on forecast proportions. These models were used previously in support of the 2017 Chinook salmon ITS and BiOp for the West Coast Groundfish Fishery Management Plan (NMFS—WCR 2017). This paper is an extension of the ground truthing that went into

344	levels of take, our application required estimating proportions. Our approach was dictated
345	by specific management needs, but the challenges of compositional forecasting and
346	characterization of errors are ubiquitous in fields as disparate as ecological genetics and
347	economic market research (Aitchison 1986). Even more broadly, the analysis of
348	individuals versus aggregates is a fundamental statistical dichotomy.
349	
350	Broadly similar results between methods
351	We evaluated the performance of two accepted multinomial regression models
352	representing two different analytical approaches, one based on genetic mixture modeling
353	and DR, and the other based on individual assignment and MLR. We observed broadly
354	similar results, despite differences in both the treatment of genetic data and in the
355	regression. Independent cross validation showed that both analysis methods gave
356	surprisingly accurate estimates despite a range of potential challenges. Not least, that
357	different distributions of bycatch, with different stock compositions, might have similar
358	means, thus confounding our prediction.
359	
360	On initial inspection, Dirichlet regression appeared more accurate than MLR, but
361	neither method provided a clear advantage across both rare and abundant ESUs. For
362	example, MLR consistently overestimated the abundant Upper Klamath-Trinity Rivers
363	ESU, especially in 2008 and 2011, whereas DR was much more accurate. DR was clearly
364	more accurate than MLR in estimating large contributors; however, DR consistently
365	overestimated small contributors, such as Upper Willamette River, Snake River
366	Spring/Summer, and Snake River Fall-all listed as Threatened under the US
367	Endangered Species Act. MLR was much more accurate than DR in estimating those

368	small contributors at all latitudes and in nearly all years. Essentially all prediction errors
369	for large contributors were greater than observed between members of paired annual
370	samples at similar mean latitude—clearly room for improvement. However, for small
371	contributors, prediction accuracy was extremely good. For example, 8 of 17 ESUs
372	showed less variation between MLR prediction and observed ESU proportions in a given
373	year than between years at similar latitude (6 of 17 for DR). In other words, prediction
374	error with MLR was no larger than interannual variation for these small contributors.
375	
376	Prediction accuracy is often critical for small contributors to mixed fisheries.
377	Overprediction of sensitive or ESA-listed ESUs can lead to elevated concern, fishery
378	restrictions, and needless forgone harvest. Moreover, a scale-independent metric like
379	MAAPE could be considered a more appropriate measure of general forecasting accuracy
380	than MSE. So, the recommended method depends on specific application and relative
381	concern for abundant versus rare stocks. Harvest allocation might call for DR, whereas
382	conservation might be better served by MLR. Managers are advised to examine both DR-
383	and MLR-based take estimates and weigh the implications of specific inconsistencies.
384	
385	Comparison of Chinook Salmon stocks in bycatch versus directed harvest

We noted interesting differences from stock compositions previously reported for
harvest. Direct comparison is difficult, but it appeared anecdotally that the Bellinger et al.
(2015) study of commercial troll observed substantially higher proportions of Central
Valley Fall ESU and lower proportions of Klamath-Trinity ESU than the current study.
Also, Columbia River populations were more abundant in troll than in bycatch (Fig. 5 e, f,

and g in Bellinger et al. 2015 compared to our Fig. 1). Similar results were seen in

392 harvest studies (commercial and recreational fisheries) that sampled areas farther south

- 393 (Winans et al. 2001; Satterthwaite et al. 2015).
- 394

395	With respect to latitude, the most direct available comparison between harvest and
396	bycatch comes from the Washington commercial troll fishery (Moran et al. 2018). The
397	mean latitude for all samples observed in that study between 2012 and 2015 was 47.4 $^{\circ}$,
398	which was similar to the annual by catch sample that we analyzed in 2009 (47.9°).
399	Despite that similarity in latitude, the observed stock compositions were quite different.
400	The relative abundance of Lower Columbia River and Upper Columbia River
401	Summer/Fall was much higher in Washington troll than in bycatch from similar latitude.
402	By contrast, proportions of Puget Sound and Southern British Columbia were much
403	lower in troll than in bycatch. A difference worth noting is that at-sea bycatch tends to be
404	unimodal in latitude within years (either north or south) but bimodal among years,
405	whereas Washington coastal troll is strongly bimodal every year (Moran et al. 2018).
406	There are also differences in depth and distance offshore. These anecdotal stock
407	composition differences among disparate studies are difficult to interpret without broader
408	spatial overlap and temporal replication. Eventually, however, the hope is that meta-
409	analyses among fisheries can help discriminate where fish are caught from exactly where
410	they are and how different populations use the marine environment in time and space.
411	
412	Fishery-dependent focus: Opportunities and limitations
413	Satterthwaite et al. (2014:128) pointed out that, for management purposes,
414	"variability in interactions with the fishery is more relevant than ecological distribution."

415 The focus of the current study was not stock-specific, ecological distribution. Instead, we 416 measured fishery impacts explicitly, and we limited most of our analysis to high-level 417 spatial and temporal strata (i.e., coast-wide, annual). We chose both the scale and the 418 compositional forecasting approach to provide fishery managers with a tool that required 419 only simple inputs and would help meet obligations for predicting ESU impacts. In the 420 context of depressed populations, it's worth recognizing the inherent challenge in 421 estimating very small bycatch numbers. Some ESUs were rare or absent in our analysis. 422 Fewer than 10 fish were observed for each of six ESUs, and no Sacramento Winter fish 423 were observed. Despite small numbers of observations for some ESUs, the expected 424 proportions for those rare ESUs are not independent and are partially informed by the 425 proportions of all other ESUs, including abundant ESUs for which estimates are much 426 more confident. Despite concerns about interannual variability, non-normal latitudinal 427 distributions, and the utility of mean latitude, our cross validation showed that error in the 428 MLR estimate was essentially indistinguishable from interannual variation between 429 samples taken at the same latitude. Again, we point out that "errors" in our regression 430 estimates are relative to "observation" that is also an estimate but is based on observed 431 genotypes and is our best estimates of ESU proportions in a given year. We use the term 432 observation to emphasize the distinction between estimation and prediction, an observed 433 mixed fishery versus a compositional forecast.

434

Results of Weitkamp (2010) suggested stable Chinook Salmon stock distributions
across years, despite different ocean conditions and relative stock abundance (but see
Satterthwaite et al. 2012; Shelton et al. 2019; Shelton et al. 2021). Seasonal variation in
bycatch composition is substantially dampened, relative to directed harvest, because of

439	the broad distribution of age classes in bycatch. For future genetic bycatch data, we will
440	conduct a detailed exploration of stock-specific associations with oceanographic
441	variables (sea-surface temperature, chlorophyll, etc.). Irrespective of spatial changes in
442	fishing activity, if Chinook Salmon change their distribution or relative abundance in
443	response to climate change, will the curves remain the same, shift uniformly north (or
444	south), or will shapes and relative relationships of the curves change fundamentally, as
445	predicted by Shelton et al (2021)? Climate effects on these latitudinal distributions could
446	go beyond Chinook ESU impacts and conservation, to the extent ESA-listed southern
447	resident killer whales target preferred Chinook salmon stocks (Hanson et al. 2010).
448	
449	These questions are important, as the fishing industry becomes increasingly
450	sophisticated in their requests for data on salmon distribution. Not only do fishing fleets
451	want to avoid Chinook Salmon bycatch, they especially want to avoid protected or
452	sensitive ESUs like Puget Sound, Lower Columbia River, Upper Klamath-Trinity Rivers,
453	California Coast, and Central Valley Fall. Our figures 3 and 4 summarize what we know
454	about where these ESUs are most likely to be caught. An obvious measure to avoid
455	particular ESUs is to avoid nearby latitudes. The trouble is, moving north to avoid the
456	threatened California Coast ESU, for example, would likely shift impacts to Puget Sound
457	and Lower Columbia River, also listed as threatened under the US ESA. Moreover,
458	moving fishing pressure north or south has a big effect on ESUs like Upper Klamath-
459	Trinity Rivers or Puget Sound that have steep latitudinal clines, but less effect on ESUs
460	like California Coast that have broader, flatter distributions. Despite that practical
461	limitation to active avoidance of sensitive stocks, our regression models successfully

462 address thorny statistical challenges and offer practical tools that are useful in evaluating

463 ESU-specific impacts under different fishery management scenarios.

464

465 ACKNOWLEDGEMENTS

466 We especially thank Andre Punt and William Satterthwaite of the PFMC's Scientific and

467 Statistical Committee. They questioned our early compositional analyses and started us

468 down a very interesting and rewarding path. We thank Jeffrey Hard, Eric Ward, Jim

469 Hastie, and Owen Hamel for helping develop the theoretical framework. NOAA's A-

470 SHOP and Cassandra Donovan provided outstanding training, sample collection, and data

471 preparation. NWFSC laboratory staff Delia Patterson, Eric Iwamoto, Eric LaHood, and

472 David Kuligowski conducted sample processing and genotyping. Many reviewers

473 improved early drafts, including Michael Ford, Owen Hamel, Jeffrey Hard, Garrett

474 McKinney, William Satterthwaite, Eric Ward, Laurie Weitkamp, and two anonymous

475 reviewers. Reference to trade names is for information only, not endorsement by the U.S.

476 Government.

477

478

REFERENCES

479 Aitchison, J. 1986. The statistical analysis of compositional data. Chapman and Hall,

480 London, 416 p. doi.org/10.1007/978-94-009-4109-0

481

482 Anderson, E. C. R. S. Waples, and S. T. Kalinowski. 2008. An improved method for

483 predicting the accuracy of genetic stock identification. Canadian Journal of Fisheries and

484 Aquatic Sciences 65:1475-1486.

486	Bellinger.	M. R.	. M. A.	Banks.	S. J.	Bates.	E. D.	Crandall.	J. C.	Garza.	G. Sy	vlvia.	and P
			,		~				,		\sim	,	

- 487 W. Lawson. 2015. Geo-referenced, abundance calibrated ocean distribution of Chinook
- 488 Salmon (*Oncorhynchus tshawytscha*) stocks across the West Coast of North America.
- 489 PLOS (Public Library of Science) ONE [online serial] 10(7):e0131276.
- 490
- 491 Burnham, K. P. and D. R. Anderson. 2002. Model selection and multimodel inference: A
- 492 practical information-theoretic approach. New York, NY: Springer.
- 493
- 494 Easley, J. 2001. History of trawling off the Pacific Coast. In: Microbehavior and
- 495 Macroresults: Proceedings of the Tenth Biennial Conference of the International Institute
- 496 of Fisheries Economics and Trade, July 10-14, 2000, Corvallis, Oregon, USA. Edited by
- 497 Richard S. Johnston and compiled by Ann L. Shriver. International Institute of Fisheries
- 498 Economics and Trade (IIFET), Corvallis, OR, 2001. CD ROM. ISBN: 0-9763432-2-3
- 499
- 500 Hamel, O. S., P. H. Ressler, R. E. Thomas, D. A. Waldeck, A. C. Hicks, J. A. Holmes, G.
- 501 W. Fleischer. 2015. Biology, fisheries, assessment and management of Pacific hake
- 502 (Merluccius productus). In Arancibia, H. (Ed.) Hake: Biology, Fisheries and Markets
- 503 [2nd Edition]. Wiley-Blackwell Science.
- 504
- 505 Hanson, M. B., R.W. Baird, J. K. B. Ford, J. Hempelmann-Halos, D. M. Van Doornik, J.
- 506 R. Candy, C. K. Emmon1, G. S. Schorr, B. Gisborne, K. L. Ayres, S. K. Wasser, K. C.
- 507 Balcomb, K. Balcomb-Bartok, J. G. Sneva, and M. J. Ford. 2010. Species and stock
- 508 identification of prey consumed by endangered southern resident killer whales in their
- 509 summer range. 11:69-82.

Γ.	1	Δ
Э	Т	υ

- 511 Hilbe, J. M. 2009. Logistic regression models. Chapman and Hall/CRC Press.
- 512
- 513 Kalinowski, S. T., K. R. Manlove, and M. L. Taper. 2007. ONCOR A computer program
- 514 for Genetic Stock Identification. Department of Ecology, Montana State University,
- 515 Bozeman MT 59717. Available: montana.edu/kalinowski.
- 516
- 517 Kim, S. and H. Kim. 2016. A new metric of absolute percentage error for intermittent
- 518 demand forecasts. International Journal of Forecasting 32:669-679.
- 519

520 Koljonen, M.-L., J. J. Pella, and M. Masuda. 2005. Classical individual assignments

- 521 versus mixture modeling to estimate stock proportions in Atlantic salmon (*Salmo salar*)
- 522 catches from DNA microsatellite data. Canadian Journal of Fisheries and Aquatic
- 523 Sciences 62:2143-2158.
- 524
- 525 Maier, M. J. 2014. DirichletReg: Dirichlet regression for compositional data in R.
- 526 Research Report Series/Department of Statistics and Mathematics, 125. WU Vienna
- 527 University of Economics and Business, Vienna. Available: epub.wu.ac.at/4077/
- 528
- Makridakis, S. 1993. Accuracy measures: theoretical and practical concerns. International
 Journal of Forecasting. 9:527-529.
- 531

532	Matson, S. E. and D. Erickson. 2018. Analysis of West Coast Groundfish Fisheries for
533	the 2017 Salmon ESA Biological Opinion, NOAA. NOAA Technical Memorandum
534	NMFS-OSF-X, 113 p.

535

- 536 Moran, B. M. and E. C. Anderson. 2019. Bayesian inference from the conditional genetic
- 537 stock identification model. Canadian Journal of Fisheries and Aquatic Sciences 76:551-
- 538 560.
- 539
- 540 Moran, P., M. Banks, T. Beacham, C. Garza, S. Narum, M. Powell, M. Campbell, L.
- 541 Seeb, R. Wilmot, S. Young, B. Ardren, and J. Wenburg. 2005. Interlaboratory
- 542 standardization of coast-wide Chinook salmon genetic data for international harvest
- 543 management. Progress report from the Genetic Analysis of Pacific Salmonids (GAPS)
- 544 consortium to the Chinook Technical Committee of the Pacific Salmon Commission,
- 545 FY2004, FY2005, 44 p. Available:
- 546 nwfsc.noaa.gov/research/divisions/cb/documents/gaps_year2_final.pdf
- 547
- 548 Moran, P., D. J. Teel, E. S. LaHood, J. Drake, and S. Kalinowski. 2006. Standardising
- 549 multi-laboratory microsatellite data in Pacific salmon: an historical view of the future.
- 550 Ecology of Freshwater Fish. 15:597-605.
- 551
- 552 Moran, P., D. J. Teel, M. A. Banks, T. D. Beacham, M. R. Bellinger, S. M. Blankenship,
- J. R. Candy, J. C. Garza, J. E. Hess, S. R. Narum, L. W. Seeb, W. D. Templin, C. G.
- 554 Wallace, and C. T. Smith. 2013. Divergent life-history races do not represent Chinook
- salmon coast-wide: the importance of scale in Quaternary biogeography. Canadian

556 Journal of Fisheries and Aquatic Sciences 70:415–435.

557

558	Moran, P.,	J. B.	Bromaghin,	and M.	Masuda.	2014.	Use of	genetic of	data to	infer
								/ -		

559 population-specific ecological and phenotypic traits from mixed aggregations. PLoS

560 ONE 9(6):e98470.

561

562 Moran, P., J. Dazey, L. LaVoy, and S. Young. 2018. Genetic mixture analysis supports

re-calibration of the Fishery Regulation Assessment Model. Fisheries 43:83-97.

564

565 NMFS—WCR (National Marine Fisheries Service, West Coast Region). 2017.

566 Endangered Species Act (ESA) Section 7(a)(2) Biological Opinion. Reinitiation of

567 Section 7 Consultation regarding the Pacific Fisheries Management Council's Groundfish

568 Fishery Management Plan, NMFS Consultation Number: F/WCR-2017-7552. Available

569 westcoast.fisheries.noaa.gov/publications/fishery_management/groundfish/s7-

570 groundfish-biop-121117.pdf

571

572 NOAA (National Oceanic and Atmospheric Administration). 2019. FishWatch U.S.

573 Seafood Facts. Available: <u>fishwatch.gov/profiles/pacific-whiting</u> (accessed 5 June

574 2019).

575

576 NWFSC (Northwest Fisheries Science Center,). 2021. At-Sea Hake Observer Program

577 Sampling Manual. Fishery Resource Analysis and Monitoring Division. Available:

578 https://media.fisheries.noaa.gov/2021-04/A-SHOP-Manual%202021-508-compliant-

579 <u>updated.pdf?null</u>.

5	8	0
0	o	v

581	PSC (Pacific Salmon Commission). 2020. Treaty between the Government of Canada
582	and the Government of the United States of America concerning Pacific salmon.
583	Prepared by the Pacific Salmon Commission, January 2020. Available:
584	https://www.psc.org/download/45/miscellaneous/2337/pacific-salmon-treaty.pdf.
585	
586	Quirollo, L. F., V. G. Wespestad, and M. W. Dorn. 2001. Pacific hake, in California's
587	living marine resources: A status report. California Department of Fish and Game. Pages
588	393 – 397. Available: <u>nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=34265&inline.</u>
589	
590	R Core Team. 2017. R: A language and environment for statistical computing. R
591	Foundation for Statistical Computing, Vienna, Austria. Available: <u>R-project.org/</u> .
592	
593	Rannala, B. and J. L. Mountain. 1997. Detecting immigration by using multilocus
594	genotypes. Proceedings of the National Academy of Sciences USA. 94:9197-9201.
595	
596	Riddell, B. E., R. D. Brodeur, A. V. Bugaev, P. Moran, J. M. Murphy, J. A. Orsi, M.
597	Trudel, L. A. Weitkamp, B. K. Wells, and A. C. Wertheimer. 2018. Ocean ecology of
598	Chinook Salmon. Pages 555 – 696 in: R. Beamish (ed.) Ocean ecology of Pacific salmon
599	and trout. American Fisheries Society. 1147 p.
600	
601	Satterthwaite, W.H., Michael Steven Mohr, Michael Robert O'Farrell, and Brian Kenneth
602	Wells. 2012. A Bayesian hierarchical model of size-at-age in ocean-harvested stocks —

- 603 quantifying effects of climate and temporal variability. Canadian Journal of Fisheries and
- 604 Aquatic Sciences. 69:942-954.
- 605
- 606 Satterthwaite, W. H., M. S. Mohr, M. R. O'Farrell, E. C. Anderson, M. A. Banks, S. J.
- Bates, M. R. Bellinger, L. A. Borgerson, E. D. Crandall, J. C. Garza, B. J. Kormos, P. W.
- 608 Lawson, and M. L. Palmer-Zwahlen. 2014. Use of stock identification data for
- 609 comparison of the ocean spatial distribution, size at age, and fishery exposure of an
- 610 untagged stock and its indicator: California coastal versus Klamath River Chinook
- 611 Salmon. Transactions of the American Fisheries Society 143:117–133.
- 612

613 Satterthwaite, W. H., J. Ciancio, E. Crandall, M. L. Palmer-Zwahlenc, A. M. Grover, M.

- 614 R. O'Farrell, E. C. Anderson, M. S. Mohra, J.C. Garza. 2015. Stock composition and
- 615 ocean spatial distribution inference from California recreational Chinook salmon fisheries
- 616 using genetic stock identification. Fisheries Research 170:166–178.
- 617
- 618 Seeb, L.W., A. Antonovich, M.A. Banks, T.D. Beacham, M.R. Bellinger, S.M.
- 619 Blankenship, M. Campbell, N. A. Decovich, J. C. Garza, C. M. Guthrie III, T.A.
- 620 Lundrigen, P. Moran, S.R. Narum, J.J. Stephenson, K J. Supernault, D.J. Teel, W.D.
- 621 Templin, J.K. Wenburg, S.F. Young, and C.T. Smith. 2007. Development of a
- 622 standardized DNA database for Chinook salmon. Fisheries 32:540-552.
- 623
- 624 Shelton, A.O., W.H. Satterthwaite, E.J. Ward, B.E. Feist, and B. Burke. 2019. Using
- 625 hierarchical models to estimate stock-specific and seasonal variation in ocean distribution,
- 626 survivorship, and aggregate abundance of fall run Chinook salmon. Canadian Journal of

|--|

629	Shelton	ΑO	GH	Sullaway	ΕI	Ward	ΒE	Feist	ΚA	Somers	VΙ	Tuttle	IΤ
02)	Shellon,	л.о.,	U.I.I.	Sunaway,	L.J.	waru,	D.L.	T UISU,	, 11.71.	Somers,	¥.J.	I utile,	, J. I.

- 630 Watson, and W.H. Satterthwaite. 2021. Redistribution of salmon populations in the
- northeast Pacific ocean in response to climate. Fish and Fisheries 22:503-517.
- 632
- 633 Somers, K. A., M. A. Bellman, J. E. Jannot, Y. W. Lee, J. McVeigh, V. Tuttle. 2015.
- 634 Observed and estimated total bycatch of salmon in the 2002-2013 U.S. West Coast
- 635 fisheries. West Coast Groundfish Observer Program. National Marine Fisheries Service,
- 636 NWFSC, 2725 Montlake Blvd E., Seattle, WA 98112. Available:
- 637 <u>nwfsc.noaa.gov/research/divisions/fram/observation/pdf/Salmon_Bycatch_Report_2002-</u>
- 638 <u>2013.pdf</u>
- 639
- 640 Weitkamp, L. A. 2010. Marine distribution of Chinook Salmon (Oncorhynchus
- 641 *tshawytscha*) from the West Coast of North America determined by coded wire tag
- recoveries. Transactions of the American Fisheries Society 139:147–170.
- 643
- 644 Winans, G. A., D. Viele, A. Grover, M. Palmer-Zwahlen, D.Teel, and D. Van Doornik.
- 645 2001. An update of genetic stock identification of Chinook Salmon in the Pacific
- 646 Northwest: Test fisheries in California. Reviews in Fisheries Science, 9:213–237.

- Table 1. Chinook Salmon bycatch in the at-sea sectors of the US West Coast Pacific
- Hake fishery (where >0.8 is the number of individual fish that met that assignment

Year	Bycatch ¹	Collected	Subsampled	Genotyped	>0.8	Mean lat.	Accession # ²
2008	875	271	271	258	178	46.32	34801
2009	1,142	403	403	390	326	47.89	34592
2010	1,364	680	680	664	548	46.89	34927
2011	4,360	1,837	1,835 ³	1,693	1,284	44.77	90517
2012	4,209	2,013	288	288	215	44.43	90598
2013	3,739	1,542	288	285	218	43.78	90601
2014	6,695	2,368	384	381	295	43.54	90627
2015	1,806	748	349	345	296	43.91	90654
Total	24,190	9,862	4,498	4,304	3,360	45.21	

649 probability threshold, and Mean latitude is derived from all fish genotyped)

¹Estimated total Chinook bycatch

nwfsc.noaa.gov/research/divisions/fram/observation/xls/SalmonBycatch_Expanded_2002-

<u>2015.xlsx</u>

²NWFSC Conservation Biology Division Tissue Archive

³Essentially all collected samples were selected for genotyping in 2012

650

652 APPENDIX

- 653 Reference populations and reporting group structure for genetic mixture analysis based
- on Evolutionarily Significant Units (J. Myers, pers. comm. January 2016). Populations
- 655 modified from Seeb et al. (2007). Status: E = Endangered, T = Threatened, C = Candidate,
- 656 NW = Not Warranted, N/A = Not Applicable, stock aggregates that are not ESUs, which
- are only defined for the conterminous, US West Coast states. Carson Hatchery is a
- 658 mixed-origin broodstock that is not listed under the ESA.

Genetic baseline population	ESU reporting group	Status
Sacramento Hatchery	Sacramento Winter	E
Butte Creek sp	Central Valley Spring	Т
Deer Creek sp	Central Valley Spring	Т
Mill Creek sp	Central Valley Spring	Т
Feather Hatchery sp	Central Valley Fall	С
Feather Hatchery fa	Central Valley Fall	С
Butte Creek fa	Central Valley Fall	С
Stanislaus River	Central Valley Fall	С
Battle Creek	Central Valley Fall	С
Russian River	California Coastal	Т
Eel River	California Coastal	Т
Trinity Hatchery fa	Upper Klamath-Trinity Rivers	NW
TrinityHatchery sp	Upper Klamath-Trinity Rivers	NW
Klamath River fa	Upper Klamath-Trinity Rivers	NW
Chetco River	S. Oregon and N. California Coastal	NW
Applegate Creek	S. Oregon and N. California Coastal	NW
Cole Rivers Hatchery	S. Oregon and N. California Coastal	NW

Genetic baseline population	ESU reporting group	Status
Elk Hatchery	Oregon Coast	NW
Sixes River	Oregon Coast	NW
Coquille River	Oregon Coast	NW
Coos Hatchery	Oregon Coast	NW
S Umpqua Hatchery	Oregon Coast	NW
Umpqua Hatchery	Oregon Coast	NW
Siuslaw River	Oregon Coast	NW
Alsea River	Oregon Coast	NW
Yaquina River	Oregon Coast	NW
Siletz River	Oregon Coast	NW
Salmon River fa	Oregon Coast	NW
Nestucca Hatchery	Oregon Coast	NW
Trask River	Oregon Coast	NW
Wilson River	Oregon Coast	NW
Kilchis River	Oregon Coast	NW
Nehalem River	Oregon Coast	NW
Necanicum Hatchery	Oregon Coast	NW
Forks Creek Hatchery	Washington Coast	NW
Humptulips Hatchery	Washington Coast	NW
Queets River	Washington Coast	NW
Hoh River	Washington Coast	NW
Sol Duc Hatchery	Washington Coast	NW
Makah Hatchery	Washington Coast	NW
Lewis Hatchery sp	Lower Columbia River	Т

Genetic baseline population	ESU reporting group	Status
Kalama Hatchery sp	Lower Columbia River	Т
Cowlitz Hatchery sp	Lower Columbia River	Т
Cowlitz Hatchery fa	Lower Columbia River	Т
Sandy River	Lower Columbia River	Т
Lewis River fa	Lower Columbia River	Т
Spring Creek Hatchery	Lower Columbia River	Т
McKenzie Hatchery	Upper Willamette River	Т
N Santiam Hatchery	Upper Willamette River	Т
Warm Springs Hatchery	Mid-Columbia River Spring	NW
John Day River	Mid-Columbia River Spring	NW
U Yakima Hatchery	Mid-Columbia River Spring	NW
Wenatchee River sp	Upper Columbia River Spring	E
Wenatchee Hatchery sp	Upper Columbia River Spring	E
Carson Hatchery	Upper Columbia River Spring	N/A
U Deschutes River	Deschutes River Summer/Fall	NW
L Deschutes River	Deschutes River Summer/Fall	NW
Hanford Reach	Upper Columbia River Summer/Fall	NW
Wenatchee River su/fa	Upper Columbia River Summer/Fall	NW
Wells Hatchery	Upper Columbia River Summer/Fall	NW
Methow River	Upper Columbia River Summer/Fall	NW
Lyons Ferry Hatchery	Snake River Fall	Т
EF Salmon River	Snake River Spring/Summer	Т
WF Yankee Fork	Snake River Spring/Summer	Т
Secesh River	Snake River Spring/Summer	Т

Genetic baseline population	ESU reporting group	Status
Rapid River Hatchery	Snake River Spring/Summer	Т
Minam River	Snake River Spring/Summer	Т
Imnaha River	Snake River Spring/Summer	Т
Newsome Creek	Snake River Spring/Summer	Т
Tucannon Hatchery	Snake River Spring/Summer	Т
Tucannon River	Snake River Spring/Summer	Т
Clear Creek Hatchery	Puget Sound	Т
Voights Hatchery	Puget Sound	Т
S Prairie Creek	Puget Sound	Т
Soos Hatchery	Puget Sound	Т
George Adams Hatchery	Puget Sound	Т
Hamma Hamma River	Puget Sound	Т
Snoqualmie River	Puget Sound	Т
Samish Hatchery	Puget Sound	Т
Elwha Hatchery	Puget Sound	Т
Elwha River	Puget Sound	Т
Dungeness River	Puget Sound	Т
NF Nooksack Hatchery	Puget Sound	Т
White Hatchery	Puget Sound	Т
Hatcheryupp Sp Hatchery	Puget Sound	Т
Skykomish River	Puget Sound	Т
Wallace Hatchery	Puget Sound	Т
NF Stillaguam Hatchery	Puget Sound	Т
Skagit River	Puget Sound	Т

Genetic baseline population	ESU reporting group	Status
	Loo reporting group	Suitus
U Sauk River	Puget Sound	Т
Suiattle River	Puget Sound	Т
L Sauk River	Puget Sound	Т
Marblemount Hatchery sp	Puget Sound	Т
Marblemount Hatchery su	Puget Sound	Т
U Cascade River	Puget Sound	Т
U Skagit River	Puget Sound	Т
W Chilliwack Hatchery	Southern BC	N/A
Maria Slough	Southern BC	N/A
Birkenhead Hatchery	Southern BC	N/A
M Shuswap Hatchery	Southern BC	N/A
L Thomson River	Southern BC	N/A
L Adams Hatchery	Southern BC	N/A
Clearwater River	Southern BC	N/A
Riveraft River	Southern BC	N/A
Spius Hatchery	Southern BC	N/A
Nicola Hatchery	Southern BC	N/A
Louis Creek	Southern BC	N/A
Deadman Hatchery	Southern BC	N/A
U Chilcotin River	Southern BC	N/A
Chilko River	Southern BC	N/A
Quesnel River	Southern BC	N/A
Nechako River	Southern BC	N/A
Stuart River	Southern BC	N/A

Genetic baseline population	ESU reporting group	Status
Swift River	Southern BC	N/A
Morkill River	Southern BC	N/A
Salmon River sp	Southern BC	N/A
Cowichan Hatchery	Southern BC	N/A
Nanaimo Hatchery fa	Southern BC	N/A
Big Qualicum Hatchery	Southern BC	N/A
Puntledge Hatchery fa	Southern BC	N/A
Quinsam Hatchery	Southern BC	N/A
Nitinat Hatchery	Southern BC	N/A
Sarita Hatchery	Southern BC	N/A
Tranquil River	Southern BC	N/A
Robertson Hatchery	Southern BC	N/A
Conuma Hatchery	Southern BC	N/A
Tahsis River	Southern BC	N/A
Marble Hatchery	Southern BC	N/A
Porteau Cove Hatchery	Southern BC	N/A
Klinaklini River	Southern BC	N/A
Wannock Hatchery	Central BC-AK	N/A
Atnarko Hatchery	Central BC-AK	N/A
Kitimat Hatchery	Central BC-AK	N/A
Ecstall River	Central BC-AK	N/A
L Kalum River	Central BC-AK	N/A
Bulkley River	Central BC-AK	N/A
Sustut River	Central BC-AK	N/A

Genetic baseline population	ESU reporting group	Status
Kincolith River	Central BC-AK	N/A
Kwinageese River	Central BC-AK	N/A
Damdochax River	Central BC-AK	N/A
Owegee River	Central BC-AK	N/A
L Tahltan River	Central BC-AK	N/A
Nakina River	Central BC-AK	N/A
Kowatua Creek	Central BC-AK	N/A
Tatsatua Creek	Central BC-AK	N/A
U Nahlin River	Central BC-AK	N/A
Chickamin/White Hatchery	Central BC-AK	N/A
Chickamin Hatchery	Central BC-AK	N/A
Chickamin River	Central BC-AK	N/A
Keta River	Central BC-AK	N/A
King Creek	Central BC-AK	N/A
Clear Creek	Central BC-AK	N/A
Creekipple Creek	Central BC-AK	N/A
Andrew Creek	Central BC-AK	N/A
Andrew/Mac Hatchery	Central BC-AK	N/A
Andrew/Med Hatchery	Central BC-AK	N/A
Andrew/Cry Hatchery	Central BC-AK	N/A
King Salmon River	Central BC-AK	N/A
Big Boulder Creek	Central BC-AK	N/A
Tahini River	Central BC-AK	N/A
Tahini/Mac Hatchery	Central BC-AK	N/A

Genetic baseline population	ESU reporting group	Status
Klukshu River	Central BC-AK	N/A
Situk River	Central BC-AK	N/A

- ⁶⁵⁹ ¹Feather River spring run brood stock was extensively hybridized with fall run in that
- 660 program and the two are now genetically indistinguishable.
- ²Brood stock from Cole M. Rivers Hatchery on the Rogue River in Southern Oregon is
- 662 currently propagated and released in Young's Bay at the mouth of the Columbia River.

663 **Figure captions**

- Figure 1. Overall Chinook Salmon ESU proportions observed in at-sea Pacific Hake
- trawl fisheries for all years combined 2008 2015. ESUs and two stock aggregates are
- ordered from south to north.
- 667 Figure 2. Chinook Salmon ESU proportions, stratified by fishery management area,
- ordered from south to north. Area 1: North of Cape Falcon, Oregon (45.77°); Area 2:
- 669 Cape Falcon, Oregon to Cape Blanco, Oregon (42.75° to 45.77°); Area 3: Cape Blanco,
- 670 Oregon to Cape Mendocino, California (40.16° to 42.75°). See Figure 3 for area
- 671 boundaries.
- Figure 3. Individual Chinook Salmon taken in bycatch, color coded by most likely ESU
- 673 of origin, from red in the south to blue in the north. Fishery management area boundaries
- are shown as red lines with associated latitudes (see Fig. 2 for area descriptions).
- Figure 4. Dirichlet regression (solid) and multinomial logistic regression (dashed) with
- 676 observed proportions (summing to one over all four panels) and mean latitudes of annual
- 677 samples (points). Data ranges differ because DR is based on mean latitudes, whereas
- 678 MLR is fitted to individual fish, their observed latitude, and the ESU to which they were
- assigned. Regional divisions simply facilitate interpretation.
- Figure 5. Selected realizations of the jackknife analysis are shown in each panel, where
- one entire annual sample (identified in title) was held out as a cross-validation test set
- 682 (Obs). The remaining years were used as a training set to estimate ESU proportions given
- the observed latitude. Those proportions shifted beginning in 2011 and from 2012 to

- 684 2015 northern ESUs nearly disappeared. Note that observed proportions were similar
- between 2013 and 2015, when mean latitudes were also similar (~43.8°, Table 1).
- 686 Figure 6. Model cross validation, summarized from Figure 5, comparing observed ESU
- 687 proportions (Obs) with values predicted from Dirichlet regression (DR) and multinomial
- 688 logistic regression (MLR), independent of observation.
- 689

Northern ESUs

Columbia ESUs

Coastal ESUs

Southern ESUs

