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 2

ABSTRACT:  Bycatch impacts on non-target species present significant management 23 

problems in diverse fisheries throughout the world. Despite successful efforts to 24 

minimize bycatch in US West Coast Pacific Hake fisheries, these impacts remain a 25 

concern, particularly for sensitive populations of Chinook Salmon. NOAA Fisheries 26 

needed predictive models to estimate proportions of Chinook Salmon Evolutionarily 27 

Significant Units (ESUs) expected in bycatch. We used genetic mixture analysis to 28 

estimate ESU proportions from at-sea bycatch between 2008 and 2015. Using latitude as 29 

a predictor and applying jackknife cross validation, we found Dirichlet regression more 30 

accurately estimated abundant ESUs, whereas multinomial logistic regression performed 31 

better with rare ESUs. This targeted, ESU-specific approach showed the spatial 32 

distribution of sensitive stocks in bycatch and supported NOAA’s obligations to forecast 33 

impacts on listed ESUs. The overarching goal of this continuing work is to maximize 34 

sustainable harvest while protecting threatened and endangered Chinook Salmon ESUs. 35 
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INTRODUCTION 36 

Pacific Hake1 (Merluccius productus) are distributed from the Gulf of Alaska to 37 

the Gulf of California (Quirollo et al. 2001). This abundant marine resource supports a 38 

large-scale trawl fishery off the US West Coast. Trawling in this region began slowly in 39 

the 1870s but increased in the 1920s with implementation of diesel engines and other 40 

technological advances (Easley 2001). By 1966 harvest reached 137 kMT and now 41 

represents an important economic resource to the region and to the nation (Hamel et al. 42 

2015). In 2016, commercial landings of Pacific Hake totaled more than 260.8 kMT 43 

valued at over US$42 million (NOAA 2019).  44 

 45 

Incidental Take Statement for the US West Coast groundfish fisheries 46 

Despite much effort and management action to reduce impacts on non-target 47 

species, bycatch remains a concern in this commercially important fishery (Somers et al. 48 

2015). There is special concern for bycatch of Chinook Salmon (Oncorhynchus 49 

tshawytscha) protected under the US Endangered Species Act (ESA). By international 50 

treaty (PSC 2020), management of coastal Pacific hake fisheries is shared among 51 

Canadian Department of Fisheries and Oceans, NOAA Fisheries, and the Joint 52 

Management Committee. In cooperation with the Pacific Fishery Management 53 

Council (PFMC), NOAA manages the Pacific Hake fishery on the US West Coast in 54 

Federal waters (3 to 200 miles offshore). Federal agencies must consult with NOAA on 55 

activities that might jeopardize the continued existence of protected marine species 56 

(essentially any action that involves “take”). As part of the 2017 ESA Consultation for 57 

the West Coast Groundfish Fishery Management Plan salmon biological opinion (BiOp), 58 

                                                       
1 Also referred to by the industry name “Pacific whiting” 
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the PFMC and NOAA faced a series of questions related to alternative fishery regulation 59 

scenarios. For example: What would be the actual number of Chinook Salmon 60 

individuals in bycatch from each Evolutionarily Significant Unit (ESU), if the current 61 

restriction were rescinded on processing Pacific Hake south of latitude 42? What if there 62 

was a resumption of the tribal mothership fishery off the north coast of Washington 63 

State? Ultimately, NOAA’s Incidental Take Statement needed to forecast the actual 64 

number of Chinook Salmon from each ESU taken in bycatch, given predicted spatial 65 

distribution of fishing effort (Matson and Erickson 2018) and under different 66 

management scenarios (NMFS—WCR 2017).  67 

 68 

Limited CWT recoveries in bycatch 69 

Tiny coded-wire tags (CWTs) are implanted in the snouts of juvenile hatchery 70 

fish, and much has been learned about Chinook Salmon migration patterns and ocean 71 

distribution from CWT recoveries (Weitkamp 2010; Riddell et al. 2018; Shelton et al 72 

2019). We know that particular stocks have characteristic patterns of tag recovery, 73 

primarily in commercial salmon harvest. Importantly, these patterns of migration were 74 

shown to be surprisingly stable across years, despite high interannual variation in ocean 75 

conditions and relative abundance (Weitkamp 2010). In spite of broad utility in harvest 76 

management and basic research, coded-wire-tag recoveries in bycatch have generally 77 

been inadequate to estimate relative abundance and distribution of 17 ESUs (identified in 78 

Appendix 1). In parallel with tissue sampling, only 687 CWTs were recovered from 79 

among 9,862 Chinook Salmon sampled by NOAA At-Sea Observers over the 8 years of 80 

this study (2008 – 2015). Therefore, genetic analysis, where every fish, hatchery and wild, 81 
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is effectively “tagged,” presented an opportunity to significantly augment what was 82 

known from sparse CWT recoveries (NMFS—WCR 2017). 83 

 84 

In the current study, we used genetic mixture analysis to characterize stock 85 

composition of Chinook Salmon ESUs in the US West Coast, at-sea, Pacific Hake fishery. 86 

We also tested accuracy and precision of different predictive regression models used to 87 

forecast ESU impacts in a management context; the goal being to provide the most 88 

powerful forecasting tool requiring the simplest possible inputs. Beyond specific interest 89 

to salmon conservation and Pacific hake harvest, our results are relevant to broader 90 

studies of more general statistical challenges of multinomial regression modeling and 91 

measures of forecasting accuracy—both common problems in ecology and natural 92 

resource management.  93 

 94 

MATERIALS AND METHODS 95 

NOAA’s At-Sea Hake Observer Program (A-SHOP) collected Chinook Salmon 96 

tissue samples from the catcher/processor, mothership, and at-sea tribal sectors (NWFSC 97 

2021). Rayed fin-clip samples were folded in Whatman 3MM chromatography paper, 98 

dried immediately, and stored in barcoded coin envelopes at ambient temperature. 99 

Samples were deposited in the Northwest Fisheries Science Center (NWFSC) 100 

Conservation Biology Division’s Genetic Tissue Archive (accession numbers in Table 1). 101 

All samples were collected during the normal fishing season beginning 15 May and 102 

ending 31 December. Tissue samples selected for genotyping (4,498) were drawn 103 

randomly each year between 2008 and 2015. Annual sample sizes were dictated by 104 

project resources available in a given year, not total bycatch. Table 1 illustrates the 105 
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filtering process and identifies the following: total estimated bycatch, samples collected 106 

by observers, random sub-sample for genotyping, and filtered for genotyping quality and 107 

filtered for ≥0.8 assignment probability. The latter two sample sets provided the primary 108 

input data for this study and reflect two distinctly different statistical approaches; 1) 109 

modeled genetic stock composition estimates based on all individuals for all ESUs 110 

simultaneously, and 2) discrete individual assignment of each fish to population of origin. 111 

Our sample was intended to accurately reflect ESU-specific, spatial and temporal bycatch 112 

impacts over the course of each year in the fishery. That was the essential focus of 113 

NOAA’s BiOp as related to Chinook salmon impacts (NMFS—WCR 2017). 114 

 115 

[Table 1 near here] 116 

 117 

Genotyping, genetic mixture modeling, and individual assignment 118 

DNA was extracted and purified by using Qiagen® DNeasy™ membrane capture.  119 

Purified DNA was amplified and genotyped for 13 internationally standardized 120 

microsatellite loci (see below). Microsatellite products were sized using an Applied 121 

Biosystems Incorporated (ABI) 3100 Genetic Analyzer. Genotypes were inferred from 122 

electropherograms by using ABI Genescan and Genotyper software. We used conditional 123 

maximum likelihood mixture modeling (CMLMM) to simultaneously estimate stock 124 

compositions and make individual assignments to population of origin (Rannala and 125 

Mountain 1997; ONCOR, Kalinowski et al. 2007), with bias correction (Anderson et al. 126 

2008). Population-level allocation was then aggregated by ESU reporting group. Genetic 127 

mixture analysis using ONCOR was replicated and confirmed with the R package ‘rubias’ 128 

(Moran and Anderson 2019). The two sets of genetic results from ONCOR, 1) modeled 129 
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proportions and 2) individual assignments, were used for the two different classes of 130 

statistical analysis, 1) Dirichlet regression (DR; Maier 2014) and 2) multinomial logistic 131 

regression (MLR; Hilbe 2009). CMLMM is taken to be the best possible estimate of ESU 132 

proportions in a given year. We use the term “observed” in reference to observed 133 

genotypes and observed latitudes that are compared to “predicted” ESU proportions from 134 

the regression models. We calculated credibility intervals for CMLMM proportions, 135 

however, we relied principally on cross validation of predictions and evaluation of 136 

accuracy with scale-dependent and -independent metrics (see below). 137 

 138 

CMLMM depends on a baseline dataset of known-origin reference samples that is 139 

assumed to represent all potentially contributing populations. In this study, we used the 140 

most comprehensive Chinook Salmon baseline available, the internationally standardized, 141 

microsatellite dataset (i.e., common loci and consistent allele designations, Moran et al. 142 

2006) that was developed by the Genetic Analysis of Pacific Salmonids consortium 143 

(GAPS; Moran et al. 2005; Seeb et al. 2007). The GAPS baseline was designed for 144 

eastern Pacific fishery mixtures, primarily harvest, but the geographic coverage of 145 

potential source populations is complete from Southeast Alaska to Central Valley, 146 

California. The version of the baseline we used included more than 20,000 known-origin 147 

fish from 163 populations representing all ESUs and major Canadian and Alaskan stocks 148 

that contribute to these fisheries (Appendix 1). The GAPS baseline is thoroughly vetted 149 

by the salmon genetics community and has been widely used in studies of harvest 150 

impacts (Bellinger et al. 2015; Satterthwaite et al. 2015; Moran et al. 2018).   151 

 152 
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Predictive regression models and cross validation 153 

Input data for our preliminary exploration included the ESU to which each fish 154 

assigned, collection year, ordinal day of the year, latitude (decimal degrees), fork length 155 

(cm), and fishing depth (m). Akaike information criterion (AIC) was used to evaluate 156 

different predictive models. Focusing on mean latitude of an annual bycatch sample, we 157 

compared two multinomial regression methods for predictive forecasting. DR was used to 158 

relate observed proportions for an annual sample of individuals relative to the mean 159 

latitudes over which those individuals were taken. MLR was also used to estimate an 160 

expected proportion for each ESU as a function of latitude but was based on individual 161 

fish rather than annual means. Compositional proportions are bounded by zero and one, 162 

and not normally distributed or homoscedastic. This class of proportions violates 163 

assumptions of linear regression and common parametric analyses such as t-tests and 164 

ANOVA, when used as a dependent variable. To evaluate the absolute and relative 165 

accuracy and precision of the two regression methods, we conducted sequential, 166 

independent, cross-validation analyses holding out each of 8 individual years, one at a 167 

time, as test datasets and using all remaining years as training data. We used a similar 168 

jackknife approach for both regression methods. In each case, we evaluated the accuracy 169 

of the prediction (based on the training data set) against the independent, cross-validation, 170 

test set (the “actual” or “observed” ESU proportions derived from observed genotypes). 171 

Central Valley Spring ESU only occurred in one test set (annual sample), so that ESU 172 

was omitted from the jackknife. To the extent possible, the jackknife is a sequential test 173 

of forecasting accuracy, “predicting” the composition of each annual sample as if it were 174 

a new observation.  175 

 176 
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To quantify accuracy and precision of our forecast predictions compared to 177 

observed genotypes, we used scale-dependent and scale-independent error metrics. For a 178 

scale-dependent metric we selected the widely used and easily understood mean squared 179 

error (MSE), 180 

 181 

MSE = 1/N Σ(yt – ft)
2. 182 

 183 

Where N = number of tests, yt = observed composition in the tth test, and ft = the tth 184 

forecast.  185 

 186 

 For a scale-independent metric we chose the less widely known mean arctangent 187 

absolute percentage error (MAAPE), 188 

 189 

MAAPE = 1/N Σ(arctan( |(yt - ft) / ft| )). 190 

 191 

MAAPE can be interpreted intuitively as an absolute percentage error like the commonly 192 

used mean absolute percentage error (MAPE). However, MAAPE is less biased in greater 193 

penalties for positive errors than negative (Makridakis 1993). Moreover, the bounded 194 

range of the arctangent function (limx→∞ tan−1 x = π /2) overcomes the MAPE’s limitation 195 

of going to infinity as the observed value approaches zero (Kim and Kim 2016). 196 

 197 

For context, we compared the accuracy of our modeled estimates with interannual 198 

variability between members of paired samples (observed data) that had similar mean 199 

latitudes. We selected pairs of annual samples that differed by less than 0.25 degrees in 200 
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mean latitude (2013 and 2014 at latitudes 43.8 and 43.5, respectively; and 2013 and 2015 201 

at latitudes 43.8 and 43.9). This interannual variability should represent the minimum 202 

error possible in a forecast estimate. We used the R statistical package (R Core Team 203 

2017) for most of our analyses and figures. 204 

 205 

RESULTS 206 

NOAA fishery observers from the A-SHOP collected 9,862 individual tissue 207 

samples, which represented 41% of the total estimated Chinook Salmon bycatch between 208 

2008 and 2015 (Table 1). Samples were stratified by year, and a total of 4,498 fish were 209 

randomly subsampled for DNA extraction and analysis (19% of total bycatch). 210 

Geographic distribution of individual tissue samples extended from Shelter Cove (41.43°), 211 

north to the Canadian border (48.48°); fishing depth 46 - 507 m (mean 246, SD 90.4); 212 

bottom depth 66 - 2,743 m (mean 427, SD 217.4), and fork length 24 - 113 cm (mean 213 

58.7, SD 11.9). A slight female bias was observed (0.54). Mean latitude values for each 214 

annual bycatch sample ranged over 4.4 degrees (43.5° - 47.9°). A general shift to the 215 

south was observed in fishing effort and bycatch beginning in 2011 (Table 1). Clearly, 216 

similar values for mean latitude might produce very different stock compositions if they 217 

have different distribution, e.g., non-normal. Through practical application and cross 218 

validation, our results demonstrate the sensitivity of our models to those violations of 219 

normality.  220 

 221 

Genotyping and genetic mixture modeling 222 

Of 4,498 fish subsampled for genotyping, 96% met genotyping quality criteria. In 223 

addition to high genotyping success, high individual fish assignment probabilities were 224 
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also observed. About 78% of fish successfully genotyped met the assignment probability 225 

criterion of ≥ 0.8 (N = 3,360, 14% of total bycatch; see Moran et al. 2014 for sensitivity 226 

analysis). Modeled genetic estimates of overall proportions derived from all fish 227 

successfully genotyped (“observed”) showed that most of the Chinook Salmon bycatch in 228 

this period came from Upper Klamath-Trinity River and S. Oregon and N. California 229 

Coastal ESUs (Fig. 1). Those two ESUs accounted for more than 50% of all bycatch in 230 

the study period. Secondary contributors included the Oregon Coast and Puget Sound 231 

ESUs and Southern British Columbia (lower Fraser River, data not shown).  232 

 233 

[Fig. 1 near here] 234 

Managers often focus on fishery management areas. Differences in ESU 235 

composition between fishery management areas north and south of Cape Falcon (45.77°) 236 

showed the effect of latitude (See figs. 2 and 3 for area boundaries). The two southern 237 

ESUs—Upper Klamath-Trinity Rivers and S. Oregon/N. California—dominated bycatch 238 

south of Cape Falcon but dropped to only ~5% each to the north of Cape Falcon. The 239 

opposite was true of the northern ESU, Puget Sound, and Southern BC populations. 240 

Spatial variation was also reflected when comparing the annual samples, which were 241 

each taken at different mean latitudes and showed different ESU proportions (see 242 

Jackknife cross validation below). 243 

 244 

[Fig. 2 near here] 245 

Individual assignment 246 

Again, our analysis included two fundamentally different approaches, modeled 247 

proportions versus individual assignment. The ESU stock composition results above 248 
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describe fitted genetic models to all observed genotypic data simultaneously (Koljonen et 249 

al. 2005). At this point we shift to analyses based on individual fish assignment. First, we 250 

simply created a scatter plot of individually georeferenced fish, color coded by ESU, and 251 

overlaid on a map of the US West Coast (Fig. 3). That heuristic presentation also showed 252 

strong effects of latitude on ESU composition.  No fish assigned to Sacramento Winter 253 

ESU, preventing inclusion of that ESU in the exploratory regression analysis described 254 

below. 255 

 256 

[Fig. 3 near here] 257 

Individual assignment was used to explore the ESU-specific predictive power of 258 

multiple sample attributes (e.g., latitude, depth, fork length, etc.). Previous simulations 259 

using the GAPS baseline showed that individual assignment with a threshold of ≥0.8 for 260 

inclusion, and regressing traits on ESUs is a robust and generally unbiased approach to 261 

inferring ESU-specific phenotypes (Moran et al. 2014). However, we recognize that 262 

individual assignment for compositional prediction raises issues of potential bias that go 263 

beyond the scope of this article. Nevertheless, our cross-validation approach subsumes 264 

those errors, allowing meaningful comparisons between disparate statistical methods. 265 

According to AIC evaluation of MLR models in particular, latitude was by far the most 266 

powerful single predictor of ESU origin (similar GAM results not shown). Other factors, 267 

most notably year, clearly explained additional variation, but Burnham and Anderson’s 268 

(2004) ΔAIC values for individual factors, relative to latitude alone, were compelling: 269 

year 1505, depth 1574, ordinal day 2271, and fork length 2544. More complex models 270 

gave lower AIC values, but were less suitable as predictors and as practical fishery 271 

management regulatory elements.  272 
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 273 

Plotting DR and MLR curves further illustrated the importance of latitude for 274 

most ESUs (Fig. 4). Consistent with the plot of fishery management areas (Fig. 2), 275 

northern ESUs were encountered primarily in the north, whereas southern ESUs were 276 

concentrated in southern and central coastal areas. Cape Falcon marked an abrupt 277 

transition in ESU composition of Chinook salmon bycatch. 278 

 279 

[Fig. 4 near here] 280 

Jackknife cross validation 281 

The estimated regression curves in Figure 4 can be compared with observed 282 

proportions in each annual sample (points in Fig. 4). However, the regression estimates 283 

include all data and are therefore not independent from the point observations in Figure 4 284 

(i.e., potentially presenting an overly optimistic interpretation of predictive power). By 285 

contrast, the jackknife, cross-validation analysis provided an independent observation for 286 

every ESU proportion in every year. Figure 5 compares observed ESU proportions for 287 

each year with independently derived estimates from the two regression methods and 288 

latitude alone. Figure 6 almost perfectly summarizes all individual years (Fig. 4) by 289 

averaging over jackknife iterations. Despite a major difference in the MLR estimate for 290 

Upper Klamath/Trinity Rivers, estimates for both regression models were close to one 291 

another and close to observation for most ESUs.  292 

 293 

[Fig. 5 and Fig. 6 near here] 294 

Annual replicates at similar latitude 295 
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By chance, some annual samples had very similar mean latitudes. Consistent with 296 

latitude being more important than year in the AIC, similar ESU proportions were 297 

observed in those annual samples that had similar mean latitudes (i.e., 2013, 2014, and 298 

2015; Fig. 5). Comparison of variation between years with the accuracy of our forecast 299 

was mixed. Forecast predictions for large contributors showed substantially greater errors 300 

than variation observed between years at similar latitude (MSE = 0.0005 for DR and 301 

0.0008 for MLR compared with only 0.0001 for the annual replicates). However, the 302 

scale-independent metric suggested that prediction errors were quite similar to 303 

interannual variation (MAAPE = 0.670 and 0.564 for DR and MLR versus 0.572 for 304 

interannual replicates).  305 

 306 

Accuracy of DR vs MLR, overall and by ESU 307 

In predicting the ESU composition obtained from CMLMM in a given year, DR 308 

outperformed MLR for most ESUs that contributed more that 2.5%; however, the 309 

distribution of errors was complicated. For all contributors, MSE (most sensitive to large 310 

contributors) was 38% lower for DR than for MLR. Yet DR errors were more than three 311 

times as variable across years (CV = 56% for DR versus 21% for MLR). By contrast 312 

MAAPE (sensitive to small contributors) was 16% lower for MLR but nearly twice as 313 

variable (CV = 27% for MLR versus 14% for DR). So in each case, the more accurate 314 

regression method was less precise. A few patterns were evident in the accuracy and 315 

precision of individual ESU estimates. DR underpredicted Upper Klamath-Trinity Rivers 316 

ESU, in contrast to MLR that substantially overpredicted that ESU in nearly all years. 317 

Large MSE values for MLR were driven largely—but not entirely—by the extreme 318 

overprediction of Upper Klamath-Trinity Rivers ESU (Fig. 6; omitting Klamath/Trinity 319 
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only reduced MSE from 0.0008 to 0.0007, still greater than 0.0005 for DR, and much 320 

greater than 0.0001 observed between years at the same latitude). With the notable 321 

exception of S. Oregon and N. California Coastal ESU, which MLR estimated almost 322 

exactly, southern ESUs were overestimated by MLR, whereas northern ESUs were 323 

underestimated. DR underestimated all larger contributors (>5%), but consistently 324 

overestimated smaller contributors, e.g., Washington Coast, Upper Willamette River, 325 

Mid-Columbia River Spring, Upper Columbia River Spring Snake River Spring/Summer, 326 

Snake River Fall ESUs [all years except 2009], and Central British Columbia and Alaska). 327 

Extensive additional analyses did not show an obvious effect of omitting fish that failed 328 

to meet the 0.8 probability criterion for MLR.  329 

 330 

Discussion 331 

We succeeded in developing useful predictive models for Chinook Salmon ESU 332 

stock composition estimates in a fishery management context. Latitudinal clines and 333 

stock-specific distributions observed here were generally consistent with distribution of 334 

CWT recoveries in harvest fisheries (Weitkamp 2010; Shelton et al. 2019; Shelton et al. 335 

2021). However, the current study, is the first we know of to describe pre-season 336 

prediction of ESU-specific impacts based simply on anticipated latitude of a proposed 337 

fishery. Given estimated bycatch numbers and latitudes (Matson and Erickson 2018), 338 

NOAA needed to parse total numbers by ESU to give predictions of actual fish counts, 339 

based on forecast proportions. These models were used previously in support of the 2017 340 

Chinook salmon ITS and BiOp for the West Coast Groundfish Fishery Management Plan 341 

(NMFS—WCR 2017). This paper is an extension of the ground truthing that went into 342 

the BiOp. Because management needed to estimate ESU-specific impacts at various 343 
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levels of take, our application required estimating proportions. Our approach was dictated 344 

by specific management needs, but the challenges of compositional forecasting and 345 

characterization of errors are ubiquitous in fields as disparate as ecological genetics and 346 

economic market research (Aitchison 1986). Even more broadly, the analysis of 347 

individuals versus aggregates is a fundamental statistical dichotomy.  348 

 349 

Broadly similar results between methods 350 

We evaluated the performance of two accepted multinomial regression models 351 

representing two different analytical approaches, one based on genetic mixture modeling 352 

and DR, and the other based on individual assignment and MLR. We observed broadly 353 

similar results, despite differences in both the treatment of genetic data and in the 354 

regression. Independent cross validation showed that both analysis methods gave 355 

surprisingly accurate estimates despite a range of potential challenges. Not least, that 356 

different distributions of bycatch, with different stock compositions, might have similar 357 

means, thus confounding our prediction.  358 

 359 

On initial inspection, Dirichlet regression appeared more accurate than MLR, but 360 

neither method provided a clear advantage across both rare and abundant ESUs. For 361 

example, MLR consistently overestimated the abundant Upper Klamath-Trinity Rivers 362 

ESU, especially in 2008 and 2011, whereas DR was much more accurate. DR was clearly 363 

more accurate than MLR in estimating large contributors; however, DR consistently 364 

overestimated small contributors, such as Upper Willamette River, Snake River 365 

Spring/Summer, and Snake River Fall—all listed as Threatened under the US 366 

Endangered Species Act. MLR was much more accurate than DR in estimating those 367 
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small contributors at all latitudes and in nearly all years. Essentially all prediction errors 368 

for large contributors were greater than observed between members of paired annual 369 

samples at similar mean latitude—clearly room for improvement. However, for small 370 

contributors, prediction accuracy was extremely good. For example, 8 of 17 ESUs 371 

showed less variation between MLR prediction and observed ESU proportions in a given 372 

year than between years at similar latitude (6 of 17 for DR). In other words, prediction 373 

error with MLR was no larger than interannual variation for these small contributors.  374 

 375 

Prediction accuracy is often critical for small contributors to mixed fisheries. 376 

Overprediction of sensitive or ESA-listed ESUs can lead to elevated concern, fishery 377 

restrictions, and needless forgone harvest. Moreover, a scale-independent metric like 378 

MAAPE could be considered a more appropriate measure of general forecasting accuracy 379 

than MSE.  So, the recommended method depends on specific application and relative 380 

concern for abundant versus rare stocks. Harvest allocation might call for DR, whereas 381 

conservation might be better served by MLR. Managers are advised to examine both DR- 382 

and MLR-based take estimates and weigh the implications of specific inconsistencies.  383 

 384 

Comparison of Chinook Salmon stocks in bycatch versus directed harvest 385 

We noted interesting differences from stock compositions previously reported for 386 

harvest. Direct comparison is difficult, but it appeared anecdotally that the Bellinger et al. 387 

(2015) study of commercial troll observed substantially higher proportions of Central 388 

Valley Fall ESU and lower proportions of Klamath-Trinity ESU than the current study. 389 

Also, Columbia River populations were more abundant in troll than in bycatch (Fig. 5 e, f, 390 
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and g in Bellinger et al. 2015 compared to our Fig. 1). Similar results were seen in 391 

harvest studies (commercial and recreational fisheries) that sampled areas farther south 392 

(Winans et al. 2001; Satterthwaite et al. 2015).  393 

 394 

With respect to latitude, the most direct available comparison between harvest and 395 

bycatch comes from the Washington commercial troll fishery (Moran et al. 2018). The 396 

mean latitude for all samples observed in that study between 2012 and 2015 was 47.4°, 397 

which was similar to the annual bycatch sample that we analyzed in 2009 (47.9°). 398 

Despite that similarity in latitude, the observed stock compositions were quite different. 399 

The relative abundance of Lower Columbia River and Upper Columbia River 400 

Summer/Fall was much higher in Washington troll than in bycatch from similar latitude. 401 

By contrast, proportions of Puget Sound and Southern British Columbia were much 402 

lower in troll than in bycatch. A difference worth noting is that at-sea bycatch tends to be 403 

unimodal in latitude within years (either north or south) but bimodal among years, 404 

whereas Washington coastal troll is strongly bimodal every year (Moran et al. 2018). 405 

There are also differences in depth and distance offshore. These anecdotal stock 406 

composition differences among disparate studies are difficult to interpret without broader 407 

spatial overlap and temporal replication. Eventually, however, the hope is that meta-408 

analyses among fisheries can help discriminate where fish are caught from exactly where 409 

they are and how different populations use the marine environment in time and space.  410 

 411 

Fishery-dependent focus: Opportunities and limitations 412 

Satterthwaite et al. (2014:128) pointed out that, for management purposes, 413 

“variability in interactions with the fishery is more relevant than ecological distribution.”  414 
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The focus of the current study was not stock-specific, ecological distribution. Instead, we 415 

measured fishery impacts explicitly, and we limited most of our analysis to high-level 416 

spatial and temporal strata (i.e., coast-wide, annual). We chose both the scale and the 417 

compositional forecasting approach to provide fishery managers with a tool that required 418 

only simple inputs and would help meet obligations for predicting ESU impacts. In the 419 

context of depressed populations, it’s worth recognizing the inherent challenge in 420 

estimating very small bycatch numbers. Some ESUs were rare or absent in our analysis. 421 

Fewer than 10 fish were observed for each of six ESUs, and no Sacramento Winter fish 422 

were observed. Despite small numbers of observations for some ESUs, the expected 423 

proportions for those rare ESUs are not independent and are partially informed by the 424 

proportions of all other ESUs, including abundant ESUs for which estimates are much 425 

more confident. Despite concerns about interannual variability, non-normal latitudinal 426 

distributions, and the utility of mean latitude, our cross validation showed that error in the 427 

MLR estimate was essentially indistinguishable from interannual variation between 428 

samples taken at the same latitude. Again, we point out that “errors” in our regression 429 

estimates are relative to “observation” that is also an estimate but is based on observed 430 

genotypes and is our best estimates of ESU proportions in a given year. We use the term 431 

observation to emphasize the distinction between estimation and prediction, an observed 432 

mixed fishery versus a compositional forecast. 433 

 434 

Results of Weitkamp (2010) suggested stable Chinook Salmon stock distributions 435 

across years, despite different ocean conditions and relative stock abundance (but see 436 

Satterthwaite et al. 2012; Shelton et al. 2019; Shelton et al. 2021). Seasonal variation in 437 

bycatch composition is substantially dampened, relative to directed harvest, because of 438 
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the broad distribution of age classes in bycatch. For future genetic bycatch data, we will 439 

conduct a detailed exploration of stock-specific associations with oceanographic 440 

variables (sea-surface temperature, chlorophyll, etc.). Irrespective of spatial changes in 441 

fishing activity, if Chinook Salmon change their distribution or relative abundance in 442 

response to climate change, will the curves remain the same, shift uniformly north (or 443 

south), or will shapes and relative relationships of the curves change fundamentally, as 444 

predicted by Shelton et al (2021)? Climate effects on these latitudinal distributions could 445 

go beyond Chinook ESU impacts and conservation, to the extent ESA-listed southern 446 

resident killer whales target preferred Chinook salmon stocks (Hanson et al. 2010). 447 

 448 

These questions are important, as the fishing industry becomes increasingly 449 

sophisticated in their requests for data on salmon distribution. Not only do fishing fleets 450 

want to avoid Chinook Salmon bycatch, they especially want to avoid protected or 451 

sensitive ESUs like Puget Sound, Lower Columbia River, Upper Klamath-Trinity Rivers, 452 

California Coast, and Central Valley Fall. Our figures 3 and 4 summarize what we know 453 

about where these ESUs are most likely to be caught. An obvious measure to avoid 454 

particular ESUs is to avoid nearby latitudes. The trouble is, moving north to avoid the 455 

threatened California Coast ESU, for example, would likely shift impacts to Puget Sound 456 

and Lower Columbia River, also listed as threatened under the US ESA. Moreover, 457 

moving fishing pressure north or south has a big effect on ESUs like Upper Klamath-458 

Trinity Rivers or Puget Sound that have steep latitudinal clines, but less effect on ESUs 459 

like California Coast that have broader, flatter distributions. Despite that practical 460 

limitation to active avoidance of sensitive stocks, our regression models successfully 461 
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address thorny statistical challenges and offer practical tools that are useful in evaluating 462 

ESU-specific impacts under different fishery management scenarios.  463 
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Table 1. Chinook Salmon bycatch in the at-sea sectors of the US West Coast Pacific 647 

Hake fishery (where >0.8 is the number of individual fish that met that assignment 648 

probability threshold, and Mean latitude is derived from all fish genotyped) 649 

Year Bycatch1 Collected Subsampled Genotyped >0.8 Mean lat. Accession #2 

2008 875 271 271 258 178 46.32 34801 

2009 1,142 403 403 390 326 47.89 34592 

2010 1,364 680 680 664 548 46.89 34927 

2011 4,360 1,837 1,8353 1,693 1,284 44.77 90517 

2012 4,209 2,013 288 288 215 44.43 90598 

2013 3,739 1,542 288 285 218 43.78 90601 

2014 6,695 2,368 384 381 295 43.54 90627 

2015 1,806 748 349 345 296 43.91 90654 

Total 24,190 9,862 4,498 4,304 3,360 45.21   

1Estimated total Chinook bycatch 

nwfsc.noaa.gov/research/divisions/fram/observation/xls/SalmonBycatch_Expanded_2002-

2015.xlsx 

2NWFSC Conservation Biology Division Tissue Archive 

3Essentially all collected samples were selected for genotyping in 2012 

 650 

  651 
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APPENDIX   652 

Reference populations and reporting group structure for genetic mixture analysis based 653 

on Evolutionarily Significant Units (J. Myers, pers. comm. January 2016). Populations 654 

modified from Seeb et al. (2007). Status: E = Endangered, T = Threatened, C = Candidate, 655 

NW = Not Warranted, N/A = Not Applicable, stock aggregates that are not ESUs, which 656 

are only defined for the conterminous, US West Coast states. Carson Hatchery is a 657 

mixed-origin broodstock that is not listed under the ESA. 658 

Genetic baseline population ESU reporting group Status 

Sacramento Hatchery Sacramento Winter E 

Butte Creek sp Central Valley Spring T 

Deer Creek sp Central Valley Spring T 

Mill Creek sp Central Valley Spring T 

Feather Hatchery sp Central Valley Fall C 

Feather Hatchery fa Central Valley Fall C 

Butte Creek fa Central Valley Fall C 

Stanislaus River Central Valley Fall C 

Battle Creek Central Valley Fall C 

Russian River California Coastal T 

Eel River California Coastal T 

Trinity Hatchery fa Upper Klamath-Trinity Rivers NW 

TrinityHatchery sp Upper Klamath-Trinity Rivers NW 

Klamath River fa Upper Klamath-Trinity Rivers NW 

Chetco River S. Oregon and N. California Coastal NW 

Applegate Creek S. Oregon and N. California Coastal NW 

Cole Rivers Hatchery S. Oregon and N. California Coastal NW 
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Genetic baseline population ESU reporting group Status 

Elk Hatchery Oregon Coast NW 

Sixes River Oregon Coast NW 

Coquille River Oregon Coast NW 

Coos Hatchery Oregon Coast NW 

S Umpqua Hatchery Oregon Coast NW 

Umpqua Hatchery Oregon Coast NW 

Siuslaw River Oregon Coast NW 

Alsea River Oregon Coast NW 

Yaquina River Oregon Coast NW 

Siletz River Oregon Coast NW 

Salmon River fa Oregon Coast NW 

Nestucca Hatchery Oregon Coast NW 

Trask River Oregon Coast NW 

Wilson River Oregon Coast NW 

Kilchis River Oregon Coast NW 

Nehalem River Oregon Coast NW 

Necanicum Hatchery Oregon Coast NW 

Forks Creek Hatchery Washington Coast NW 

Humptulips Hatchery Washington Coast NW 

Queets River Washington Coast NW 

Hoh River Washington Coast NW 

Sol Duc Hatchery Washington Coast NW 

Makah Hatchery Washington Coast NW 

Lewis Hatchery sp Lower Columbia River T 
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Genetic baseline population ESU reporting group Status 

Kalama Hatchery sp Lower Columbia River T 

Cowlitz Hatchery sp Lower Columbia River T 

Cowlitz Hatchery fa Lower Columbia River T 

Sandy River Lower Columbia River T 

Lewis River fa Lower Columbia River T 

Spring Creek Hatchery Lower Columbia River T 

McKenzie Hatchery Upper Willamette River T 

N Santiam Hatchery Upper Willamette River T 

Warm Springs Hatchery Mid-Columbia River Spring NW 

John Day River Mid-Columbia River Spring NW 

U Yakima Hatchery Mid-Columbia River Spring NW 

Wenatchee River sp Upper Columbia River Spring E 

Wenatchee Hatchery sp Upper Columbia River Spring E 

Carson Hatchery Upper Columbia River Spring N/A 

U Deschutes River Deschutes River Summer/Fall NW 

L Deschutes River Deschutes River Summer/Fall NW 

Hanford Reach Upper Columbia River Summer/Fall NW 

Wenatchee River su/fa Upper Columbia River Summer/Fall NW 

Wells Hatchery Upper Columbia River Summer/Fall NW 

Methow River Upper Columbia River Summer/Fall NW 

Lyons Ferry Hatchery Snake River Fall T 

EF Salmon River Snake River Spring/Summer T 

WF Yankee Fork Snake River Spring/Summer T 

Secesh River Snake River Spring/Summer T 
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Genetic baseline population ESU reporting group Status 

Rapid River Hatchery Snake River Spring/Summer T 

Minam River Snake River Spring/Summer T 

Imnaha River Snake River Spring/Summer T 

Newsome Creek Snake River Spring/Summer T 

Tucannon Hatchery Snake River Spring/Summer T 

Tucannon River Snake River Spring/Summer T 

Clear Creek Hatchery Puget Sound T 

Voights Hatchery Puget Sound T 

S Prairie Creek Puget Sound T 

Soos Hatchery Puget Sound T 

George Adams Hatchery Puget Sound T 

Hamma Hamma River Puget Sound T 

Snoqualmie River Puget Sound T 

Samish Hatchery Puget Sound T 

Elwha Hatchery Puget Sound T 

Elwha River Puget Sound T 

Dungeness River Puget Sound T 

NF Nooksack Hatchery Puget Sound T 

White Hatchery Puget Sound T 

Hatcheryupp Sp Hatchery Puget Sound T 

Skykomish River Puget Sound T 

Wallace Hatchery Puget Sound T 

NF Stillaguam Hatchery Puget Sound T 

Skagit River Puget Sound T 
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Genetic baseline population ESU reporting group Status 

U Sauk River Puget Sound T 

Suiattle River Puget Sound T 

L Sauk River Puget Sound T 

Marblemount Hatchery sp Puget Sound T 

Marblemount Hatchery su Puget Sound T 

U Cascade River Puget Sound T 

U Skagit River Puget Sound T 

W Chilliwack Hatchery Southern BC N/A 

Maria Slough Southern BC N/A 

Birkenhead Hatchery Southern BC N/A 

M Shuswap Hatchery Southern BC N/A 

L Thomson River Southern BC N/A 

L Adams Hatchery Southern BC N/A 

Clearwater River Southern BC N/A 

Riveraft River Southern BC N/A 

Spius Hatchery Southern BC N/A 

Nicola Hatchery Southern BC N/A 

Louis Creek Southern BC N/A 

Deadman Hatchery Southern BC N/A 

U Chilcotin River Southern BC N/A 

Chilko River Southern BC N/A 

Quesnel River Southern BC N/A 

Nechako River Southern BC N/A 

Stuart River Southern BC N/A 
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Genetic baseline population ESU reporting group Status 

Swift River Southern BC N/A 

Morkill River Southern BC N/A 

Salmon River sp Southern BC N/A 

Cowichan Hatchery Southern BC N/A 

Nanaimo Hatchery fa Southern BC N/A 

Big Qualicum Hatchery Southern BC N/A 

Puntledge Hatchery fa Southern BC N/A 

Quinsam Hatchery Southern BC N/A 

Nitinat Hatchery Southern BC N/A 

Sarita Hatchery Southern BC N/A 

Tranquil River Southern BC N/A 

Robertson Hatchery Southern BC N/A 

Conuma Hatchery Southern BC N/A 

Tahsis River Southern BC N/A 

Marble Hatchery Southern BC N/A 

Porteau Cove Hatchery Southern BC N/A 

Klinaklini River Southern BC N/A 

Wannock Hatchery Central BC-AK N/A 

Atnarko Hatchery Central BC-AK N/A 

Kitimat Hatchery Central BC-AK N/A 

Ecstall River Central BC-AK N/A 

L Kalum River Central BC-AK N/A 

Bulkley River Central BC-AK N/A 

Sustut River Central BC-AK N/A 
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Genetic baseline population ESU reporting group Status 

Kincolith River Central BC-AK N/A 

Kwinageese River Central BC-AK N/A 

Damdochax River Central BC-AK N/A 

Owegee River Central BC-AK N/A 

L Tahltan River Central BC-AK N/A 

Nakina River Central BC-AK N/A 

Kowatua Creek Central BC-AK N/A 

Tatsatua Creek Central BC-AK N/A 

U Nahlin River Central BC-AK N/A 

Chickamin/White Hatchery Central BC-AK N/A 

Chickamin Hatchery Central BC-AK N/A 

Chickamin River Central BC-AK N/A 

Keta River Central BC-AK N/A 

King Creek Central BC-AK N/A 

Clear Creek Central BC-AK N/A 

Creekipple Creek Central BC-AK N/A 

Andrew Creek Central BC-AK N/A 

Andrew/Mac Hatchery Central BC-AK N/A 

Andrew/Med Hatchery Central BC-AK N/A 

Andrew/Cry Hatchery Central BC-AK N/A 

King Salmon River Central BC-AK N/A 

Big Boulder Creek Central BC-AK N/A 

Tahini River Central BC-AK N/A 

Tahini/Mac Hatchery Central BC-AK N/A 
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Genetic baseline population ESU reporting group Status 

Klukshu River Central BC-AK N/A 

Situk River Central BC-AK N/A 

1Feather River spring run brood stock was extensively hybridized with fall run in that 659 

program and the two are now genetically indistinguishable. 660 

2Brood stock from Cole M. Rivers Hatchery on the Rogue River in Southern Oregon is 661 

currently propagated and released in Young’s Bay at the mouth of the Columbia River. 662 
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Figure captions 663 

Figure 1. Overall Chinook Salmon ESU proportions observed in at-sea Pacific Hake 664 

trawl fisheries for all years combined 2008 - 2015. ESUs and two stock aggregates are 665 

ordered from south to north. 666 

Figure 2. Chinook Salmon ESU proportions, stratified by fishery management area, 667 

ordered from south to north. Area 1: North of Cape Falcon, Oregon (45.77°); Area 2: 668 

Cape Falcon, Oregon to Cape Blanco, Oregon (42.75° to 45.77°); Area 3: Cape Blanco, 669 

Oregon to Cape Mendocino, California (40.16° to 42.75°). See Figure 3 for area 670 

boundaries. 671 

Figure 3. Individual Chinook Salmon taken in bycatch, color coded by most likely ESU 672 

of origin, from red in the south to blue in the north. Fishery management area boundaries 673 

are shown as red lines with associated latitudes (see Fig. 2 for area descriptions). 674 

Figure 4. Dirichlet regression (solid) and multinomial logistic regression (dashed) with 675 

observed proportions (summing to one over all four panels) and mean latitudes of annual 676 

samples (points). Data ranges differ because DR is based on mean latitudes, whereas 677 

MLR is fitted to individual fish, their observed latitude, and the ESU to which they were 678 

assigned. Regional divisions simply facilitate interpretation. 679 

Figure 5. Selected realizations of the jackknife analysis are shown in each panel, where 680 

one entire annual sample (identified in title) was held out as a cross-validation test set 681 

(Obs). The remaining years were used as a training set to estimate ESU proportions given 682 

the observed latitude. Those proportions shifted beginning in 2011 and from 2012 to 683 
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2015 northern ESUs nearly disappeared. Note that observed proportions were similar 684 

between 2013 and 2015, when mean latitudes were also similar (~43.8°, Table 1). 685 

Figure 6. Model cross validation, summarized from Figure 5, comparing observed ESU 686 

proportions (Obs) with values predicted from Dirichlet regression (DR) and multinomial 687 

logistic regression (MLR), independent of observation.  688 

 689 
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