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Th1, Th2 and Th17 inflammatory pathways synergisti-
cally correlate with cardiometabolic processes. A case
study in COVID-19.

James R. Michels#, Mohammad Shaheed Nazrul†, Sudeep Adhikari‡, Dawn Wilkins†, and
Ana B. Pavel∗#§

A predominant source of complication in SARS-CoV-2 patients arises from the cytokine storm, an
elevated expression of inflammatory helper T-cell associated cytokines that can lead to tissue damage
and organ failure. The high inflammatory burden of this viral infection often results in cardiovascular
comorbidities. A better understanding of the interaction between the cytokine storm and cardiovas-
cular proteins might inform medical decisions and therapeutic approaches. We hypothesized that all
major helper T-cell inflammatory pathways (Th1, Th2 and Th17) synergistically contribute to car-
diometabolic modifications in serum of COVID-19 patients. We proved our hypothesis by integrating
Th1, Th2 and Th17 cytokines to predict expression of cardiometabolic proteins profiled by OLINK
proteomics.

1 Introduction
The respiratory virus SARS-CoV-2 has quickly spread around the
world, resulting in a total of over 200 million reported cases and
over 5 million reported deceased to date.1 Despite incredible ad-
vancements in the development of vaccines aiding the prevention
of cases, targeted treatments toward COVID-19 symptoms and ef-
fects are still needed. Complications such as the acute respiratory
distress syndrome (ARDS), respiratory failure, hepatic and renal
insufficiency are common in more severe cases.2 Proteomic pro-
files are currently being investigated in order to study the effect
of these cytokines in COVID-19 disease.3 A better understanding
of cytokines interactions with the cardiovascular system, might
enhance development of novel immunomodulatory therapies and
reduce mortality in COVID-19 vulnerable patients.

Previous studies have shown various helper T-cell responses
in SARS-CoV-2 infections. One study in elderly SARS-CoV-2 pa-
tients found that the predominant response to infection was in the
form of Th1-associated cytokines. However, the levels of Th17-
associated cytokines were also detected in COVID-19 severe dis-
ease.4–6, and Th2 secretions were associated to SARS-CoV-2 sus-
ceptibility.7,8

We have recently shown an association between a shift in Th1
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towards Th2 expression in patients with increased risk of severe
COVID-19 disease.8 Our findings were further validated by a clin-
ical trial conducted in a cohort of atopic patients, which demon-
strated a significantly higher rate of asymptomatic cases among
patients treated with Dupilumab, a Th2-specific inhibitor, as com-
pared to other systemic treatments.9 Furthermore, Th2 cytokines
have been previously linked to vascular inflammation risk in pa-
tients with Type 2 inflammatory conditions, such as atopic der-
matitis.10,11

In this study we used serum protein profiles from Mas-
sachusetts General Hospital COVID-19 registry.12 Immune media-
tors were previously associated with SARS-Cov-2 infection in this
data set,12 however no prior study has integrated all major helper
T-cell pathways (Th1, Th2 and Th17) to evaluate the overall im-
pact of COVID-19 cytokine storm on cardiometabolic proteins.

We hypothesized that all Th1, Th2, and Th17 immune path-
ways synergistically impact cardiometabolic processes associated
with COVID-19 severe disease. While increased expression in Th1
and Th17 cytokines has been associated with other viral infections
such as, influenza13, rhinoviruses14, and other coronaviruses like
MERS15, these infections do not show severe cardiovascular man-
ifestations such as those observed in COVID-19 disease. In ad-
dition, COVID-19 also has a higher mortality rate (estimated to
be between 3% to 4%) compared to influenza, rhinoviruses, and
drastically more deaths than the total deaths from MERS.16 Thus,
we hypothesized that Th2 cytokines are key players in the im-
mune response triggered by SARS-CoV-2 and that Th1, Th2 and
Th17 pathways synergistically contribute to the complex cytokine
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Figure 1

Fig. 1 A. Heatmaps of estimated mean expression of Th1, Th2 and Th17 mediators stratified by severity in COVID-19 positive patients. B. Heatmaps
of estimated mean expression of Th1, Th2 and Th17 mediators stratified by severity in COVID-19 negative patients. The heatmaps are z-score
normalized with blue denoting decreased expression and red denoting increased expression.

network that severely affects cardiometabolic processes.

2 Materials and Methods

2.1 Data

In this study we used the publicly available Massachusetts Gen-
eral Hospital COVID-19 registry12 consisting of 383 patients (af-
ter removal of one patient with missing data), where 305 were
COVID-19 positive and 78 were COVID-19 negative with other
respiratory infections. Patients in this data set were classified by
their severity as 42 COVID-19 positive and 7 COVID-19 negative
deceased patients (who max score = 1), 67 COVID-19 positive and
16 COVID-19 negative intubated patients (who max score= 2) and
196 COVID-19 positive and 55 COVID-19 negative non-severe pa-
tients (who max score ≥ 3).

We included in our analysis serum proteins profiled by OLINK
Explore platform,12 such the Cardiometabolic panel consisting of
355 detected proteins, and all available Th1, Th2 and Th17 cy-
tokines as previously described.8 OLINK proteomics platform has

been extensively used to profile targeted biomarkers and drug
targets associated with various diseases and tissue types.8,17

The helper T-cell pathways were defined by 11 Th1 markers
(CCL3, CCL4, CXCL11, CXCL10, CXCL9, IL2RA, IFNG, IFNGR1,
IFNGR2, IL12B and IL1B), 14 Th2 markers (CCL11, CCL13,
CCL17, CCL22, CCL24, CCL26, CCL7, IL10, IL13, IL33, IL4R, IL5,
IL7R and TSLP) and 13 Th17 markers (CCL20, S100P, IL6, IL6R,
LCN2, S100A12, CXCL1, PI3, IL17A, IL17F, CXCL3, IL12A and
IL12B).8

2.2 Statistical Modeling
We first applied a linear regression model to associate the nor-
malized expression (NPX) for each immune or cardiometabolic
protein (dependent variable) with disease severity (indepen-
dent variable) in both COVID-19 positive and negative patients.
We then displayed heatmaps of the mean estimates of de-
ceased, intubated and non-severe groups for all Th1, Th2 and
Th17 cytokines, and all significantly differentially expressed car-
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Fig. 2 A. Heatmap of estimated mean expression of top significantly
differentially expressed cardiometabolic proteins stratified by COVID-19
severity (35 proteins). Differentially expressed proteins were determined
by | f old−change| ≥ 2 and FDR< 0.05 in any comparison (deceased versus
non-severe, intubated versus non-severe or deceased versus intubated).
All 35 proteins achieved statistical significance between deceased and
non-severe groups. B. Heatmap of estimated mean expression of top
significantly differentially expressed cardiometabolic proteins stratified by
severity of COVID-19 negative patients with other respiratory conditions
(8 proteins). Differentially expressed proteins were determined by | f old−
change| ≥ 2 and FDR < 0.05 in any comparison (deceased versus non-
severe, intubated versus non-severe or deceased versus intubated). None
of these 8 proteins achieved significance between deceased versus non-
severe patients. The heatmaps are z-score normalized with blue denoting
decreased expression and red denoting increased expression.

diometabolic markers between any comparison (deceased versus
non-severe, intubated versus non-severe or deceased versus intu-
bated) by False Discovery Rate (FDR)< 0.05.

Next, we integrated all Th1, Th2 and Th17 immune mediators
by elastic net regularized generalized linear models with 10-fold
cross-validation, using cv.glmnet function from glmnet R package,
to predict expression levels of each cardiometabolic protein on
the OLINK panel based on helper T-cell immune profiles.

We then ranked the best predictions among all 355 car-
diometabolic markers by Pearson correlation coefficient calcu-
lated between the real and predicted value, and considered as
best fit those correlations with r ≥ 0.7 and FDR < 0.05.

To visualize the interaction between immune and car-
diometabolic markers with r ≥ 0.7 we used igraph R package. The
edges of the network represent non-zero coefficients of the elas-
tic net regression model with absolute value ≥ 0.05. We used this
threshold to exclude weak interactions and filter noise.

We performed all statistical analyses using R programming lan-
guage.

3 Results
We first analyzed all cytokines of T-helper cell types pathways
(Th1, Th2 and Th17) in both COVID-19 positive and COVID-19
negative patients and displayed them as heatmaps of mean ex-
pression estimates stratified by disease severity (Figure 1). We ob-
served an increasing trend in protein expression from non-severe
to deceased COVID-19 patients in most of Th1 and Th17 medi-
ators and in more than 50% of Th2 mediators. We found signif-
icant increases (p− value < 0.05) in Th1 (IFNGR1, CCL3, CCL4,
CCL5, CXCL9, CXCL10, IL1B, IL2RA), Th2 (CCL11, CCL13, CCL7,
CCL24, IL4R) and Th17 (S100A12, S100P, CCL20, LCN2, PI3,
CXCL1, IL17A, IL6) mediators in deceased as compared to non-
severe COVID-19 patients (Figure 1 A, Supplementary Table 1).
In contrast, COVID-19 negative patients with other respiratory in-
fections did not show significant increasing trends in deceased as
compared to non-severe patients in the Th1, Th2 and Th17 path-
ways (Figure 1 B, Supplementary Table 2).

Next, we evaluated 355 cardiometabolic proteins detected by
OLINK Explore Cardiometabolic panel. We found that 35 of
these proteins were strongly associated with COVID-19 severity
(| f old − change| ≥ 2, FDR < 0.05) as shown in Figure 2 A (Sup-
plementary Table 3). All these 35 differentially expressed proteins
were significantly increased in deceased compared to non-severe
COVID-19 patients, and several of them (i.e. LTBP2, RNASE3,
CHI3L1, CSTB, RETN, GDF15, CXCL8, PLA2G2A, IL1RL1 and
NADK) also showed significantly elevated expression in intubated
compared to the non-severe patients.

In contrast to this strong cardiometabolic signal associated with
COVID-19 severity, COVID-19 negative patients with other res-
piratory infections showed no statistically significant differences
between deceased and non-severe patients, and only 8 proteins
were increased in intubated as compared to non-severe patients
(Figure 2 B, Supplementary Table 4).

Next, we sought to test our hypothesis that all Th1, Th2 and
Th17 cytokines contribute to cardiometabolic modifications asso-
ciated with SARS-CoV-2 infections. We integrated all Th1, Th2
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Fig. 3 A. Positive associations (links) between the major components of the cytokine storm, Th1 (yellow-green), Th2 (blue) and Th17 (green)
mediators, and the predicted cardiometabolic proteins (gray). B. Th1 pathway had 367 positive links and 122 negative links, Th2 had 452 positive
links and 90 negative links, and Th17 had 546 positive links and 91 negative links with cardiometabolic proteins.

and Th17 immune markers by elastic net regularized linear re-
gression to predict the abundance of each cardiometabolic protein
in COVID-19 positive patients. By this approach we were able to
rank all the cytokines and immune mediators by their predictive
potential.

We evaluated the best fit of our predictions by Pearson corre-
lation coefficient computed between the measured and predicted
expression values for each of the 355 cardiometabolic proteins
(Supplementary Table 5). We identified 186 significant predic-
tions (r ≥ 0.7 and FDR < 0.05), and further represented them
as a graph structure, where the edges (links) represent the non-
zero coefficients (abs ≥ 0.05) corresponding to each cytokine. We
found that all Th1, Th2 and Th17 immune pathways synergisti-
cally describe the expression of these 186 cardiometabolic pro-
teins. Most of the links in our networks were positive connec-
tions (Figure 3), suggesting that an increased production in cy-
tokines stimulates the overall production of cardiometabolic pro-
teins. Figure 3 A shows all positive links between Th1 (yellow-
green), Th2 (blue) and Th17 (green) cytokines and the signifi-
cantly predicted cardiometabolic proteins (gray), highlighting the
extent of the immune system’s impact on cardiometabolic pro-
cesses.

We found that 31 of the 35 cardiometabolic proteins associated
with COVID-19 severity (Figure 2 A) were also significantly pre-
dicted by the cytokine storm, except for CA3, TNNI3, NPPB, CHIT1
which did not reach our prediction threshold for the "goodness
of fit" (r ≥ 0.7 and FDR < 0.05). Most of the cytokines and im-
mune mediators positively contributed to these predictions. In
Figure 4 we highlighted 20 of these cardiometabolic proteins that
were both significantly associated with COVID-19 severity and
significantly predicted by the cytokine storm, and in addition were
found to be associated with cardiovascular inflammation and hy-
pertension in other studies.18–37 Across these 20 cardiovascular
markers, the most common association with Th1 pathway was
represented by IFNGR1 (85%), while the most common Th2 as-
sociations included CCL11 (50%) and CCL7 (40%), and the most
common Th17 associations included PI3 (50%), LCN2 (50%) and
IL6 (45%).

4 Discussion

In this paper we explored the relationships between key immune
mediators of COVID-19 cytokine storm and cardiometabolic pro-
teins measured by OLINK Explore platform.12 Using predictive
modeling, we integrated Th1, Th2 and Th17 cytokines and found
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Fig. 4 A-T. Immune-cardiometabolic associations for 20 significant predictions (r ≥ 0.7 and FDR < 0.05). These cardiometabolic predicted proteins
were also significantly associated with COVID-19 severity in this data set, as well as previously associated with cardiovascular inflammation by other
studies. The vertex color maps with the type of helper T-cell cytokines and immune mediators and the sign of correlation is explained in the color
key. The circle size of the cytokines and immune mediators is proportional to their correlation strength with the respective cardiometabolic protein.
Cardiometabolic proteins are represented in gray and their size is proportional to the number of associations with helper T-cell mediators.
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186/355 significant cardiometabolic predictions. Of these 186
cardiometabolic proteins, 31 were also significantly associated
with COVID-19 severity. We highlighted 20 of these 31 pro-
teins that were also associated with cardiovascular inflamma-
tion and hypertension in previous studies. For example, LTBP2
has been previously reported as a marker of human heart fail-
ure18. CHI3L1 levels have been correlated with severity of coro-
nary disease19 and carotid atherosclerotic plaque,20 as well as
stroke21. Elevated GDF15 levels have been associated with higher
risks in multiple cardiovascular diseases such as stable coronary
artery disease, acute coronary syndrome, and heart failure22. El-
evated CXCL8 expression levels have been identified in cases of
atherosclerotic plaque23. SPP1 expression has been found to be
higher in response to ischemia associated with stroke24, myocar-
dial infarction25, and peripheral artery disease26. FABP4 has
been found to contribute to the development of atherosclerosis,
and studies had shown that lower levels of FABP4 protect against
atherosclerosis to a degree38. REG1A has been shown to have
high levels of expression in hearts of patients who died of my-
ocardial infarction27. TFF3 levels in sera have been linked to
the prediction of major adverse cardiovascular events28 as well
as being identified as a possible biomarker for myocardial infarc-
tion29. TNC has been previously linked to many cardiovascular
diseases in humans such as pulmonary thromboembolism30 and
hypertension31. IL1RL1 has been studied as a marker of cardiac
disease, and found to have increased expression in the lung of pa-
tients with heart failure32. CSTB has been identified as a relevant
biomarker associated with chronic heart failure patients33. NT-
proBNP has been shown to be a reliable biomarker in diagnostic
evaluation and outcome prediction in cases of acute heart failure,
especially in dyspnoeic patients34,35. One study suggested that
NTproBNP been seen as a signal of heart failure, valvular heart
diseases, pulmonary hypertension36. Higher IGFBP1 expression
has been previously related to lessened cardiovascular risk factors
and decreased presence of atherosclerosis in elderly patients37.

Our study highlights the potential role of helper T-cells in
the production of cardiometabolic proteins in SARS-CoV-2 in-
fection, suggesting the association of the severe cytokine storm
with cardiovascular-associated complications. While Type 1 and
Type 17 helper T-cells have been extensively associated with the
immune system’s response to SARS-CoV-2 infection, the role of
Type 2 helper T-cells is still poorly understood. Type 2 inflam-
mation characterizes allergic and autoimmune reactions and has
been previously associated with an increased risk of vascular in-
flammation.10,11 In addition, Th2 inhibition has been suggested
to offer protection against COVID-19 symptoms17,39, and hence
Th2 inhibitors are currently being tested in cases of patients with
atopic conditions9. Our study suggests that in synergy with Th1,
both Th2 and Th17 pathways play an important role in the over-
production of cardiovascular-associated proteins. While Th1 cy-
tokines are important mediators in fighting against any viral in-
fection, Th2 and Th17 pathways are signals triggered by the se-
vere autoimmune response to the unknown pathogen. Hence in-
hibiting Th2 and Th17 cytokines specifically with immunomodu-
lators may help reduce cardiovascular inflammation without re-
ducing the body’s immune capabilities to fight the infection.

We acknowledge the use of a limited OLINK assay analysis
rather than a whole genome analysis, and the potential misdi-
agnosis of COVID-19 cases during the first wave of the pandemic
as limitations of our study.

In summary, while additional research to explore the link be-
tween helper T-cells and cardiovascular inflammation is needed,
our data suggests that major immune axes (Th1, Th2 and
Th17 pathways) are synergistically linked to a myriad of car-
diometabolic proteins, which may potentially explain the cardio-
vascular complications associated with cytokine storm in COVID-
19 patients. Future work will include further investigation of
the relationships between immune and cardiovascular pathways
and a detailed comparisons with other viral infections and au-
toimmune conditions to create a more complete map of immune-
cardiovascular interaction of human body.
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