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Abstract  25 

 Neural activity in the auditory system synchronizes to sound rhythms, and brain–26 

environment synchronization is thought to be fundamental to successful auditory perception.  27 

Sound rhythms are often operationalized in terms of the sound’s amplitude envelope. We 28 

hypothesized that – especially for music – the envelope might not best capture the complex 29 

spectro-temporal fluctuations that give rise to beat perception and synchronize neural activity. 30 

This study investigated 1) neural entrainment to different musical features, 2) tempo-31 

dependence of neural entrainment, and 3) dependence of entrainment on familiarity, 32 

enjoyment, and ease of beat perception. In this electroencephalography study, 37 human 33 

participants listened to tempo-modulated music (1–4 Hz). Independent of whether the analysis 34 

approach was based on temporal response functions (TRFs) or reliable components analysis 35 

(RCA), the spectral flux of music – as opposed to the amplitude envelope – evoked strongest 36 

neural entrainment. Moreover, music with slower beat rates, high familiarity, and easy-to-37 

perceive beats elicited the strongest neural response. Based on the TRFs, we could decode 38 

music stimulation tempo, but also perceived beat rate, even when the two differed. Our results 39 

demonstrate the importance of accurately characterizing musical acoustics in the context of 40 

studying neural entrainment, and demonstrate entrainment’s sensitivity to musical tempo, 41 

familiarity, and beat salience.   42 

43 
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Introduction 44 

Neural activity synchronizes to different types of rhythmic sounds, such as speech and music 45 

(Doelling and Poeppel, 2015, Nicolaou et al., 2017, Ding et al., 2017, Kösem et al., 2018), 46 

over a wide range of rates. Neural oscillations are involved in the regulation of 47 

(patho-)physiological activity and are important for gating input during sensory perception 48 

and temporal processing (Giraud and Poeppel, 2012, Henry and Herrmann, 2014). For this 49 

reason, bringing neural oscillations into temporal alignment with a rhythmic stimulus – neural 50 

entrainment – can influence perception in the auditory, visual, and somatosensory modalities 51 

(Henry and Obleser, 2012, Spaak et al., 2014, Gundlach et al., 2016). In the auditory domain, 52 

neural oscillations entrained at syllabic, prosodic, and semantic rates in speech seem to play 53 

an important role in speech perception and intelligibility (Doelling et al., 2014, Peelle et al., 54 

2013, Kösem et al., 2018). The current study examined neural entrainment to music.  55 

Music is highly rhythmic, and neural oscillations can be entrained by the beat, the 56 

most prominent isochronous pulse in music, to which listeners would sway their bodies or tap 57 

their feet (Tierney and Kraus, 2015, Nozaradan et al., 2012, Large and Snyder, 2009, Doelling 58 

and Poeppel, 2015). Most studies that have examined cortical tracking of musical rhythm used 59 

simplified musical stimuli, such as MIDI melodies or click tracks (Kumagai et al., 2018, 60 

Nozaradan et al., 2012, Di Liberto et al., 2020, Nozaradan et al., 2011, Wollman et al., 2020) 61 

or monophonic melodies (Doelling and Poeppel, 2015); only a few studies have focused on 62 

naturalistic, polyphonic music (Tierney and Kraus, 2015, Madsen et al., 2019, Kaneshiro et 63 

al., 2020). Listeners show a strong preference for music at beat rates around 2 Hz (here, we 64 

use the term tempo to refer to the beat rate). The preference for 2 Hz coincides with the modal 65 

tempo of Western pop music (Moelants, 2002) and the most prominent frequency of natural 66 

adult body movements (MacDougall and Moore, 2005). Indeed, previous research showed 67 

that listeners perceive rhythmic sequences at beat rates around 2 Hz especially salient when 68 

they are able to track the beat by moving their bodies (Zalta et al., 2020). Despite the 69 
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perceptual and motor evidence, studies looking at tempo-dependence of neural entrainment 70 

are scarce (Doelling and Poeppel, 2015, Nicolaou et al., 2017) and we are not aware of any 71 

study using naturalistic polyphonic musical stimuli that are tempo-modulated. By examining 72 

entrainment across a relatively wide and finely spaced range of musical tempi (1–4 Hz, 73 

corresponding to the neural δ band), we aimed to test whether the preference for music with 74 

beat rates around 2 Hz is reflected in the strength of neural entrainment. In addition, a number 75 

of different musical, behavioral, and perceptual measures have been shown to modulate 76 

neural entrainment and influence music perception, including complexity, familiarity, 77 

repetition of the music, musical training of the listener, and attention to the stimulus 78 

(Kumagai et al., 2018, Madsen et al., 2019, Doelling and Poeppel, 2015). Thus, we 79 

investigated the effects of enjoyment, familiarity and the ease of beat perception on neural 80 

entrainment.    81 

Most studies assessing neural entrainment to music have examined entrainment to 82 

either the stimulus amplitude envelope, which quantifies intensity fluctuations over time 83 

(Doelling and Poeppel, 2015, Kaneshiro et al., 2020, Wollman et al., 2020), or “higher order” 84 

musical features such as surprise and expectation (Di Liberto et al., 2020). This mimics 85 

approaches used for studying neural tracking of speech, where neural activity has been shown 86 

to be entrained by the amplitude envelope (Peelle and Davis, 2012), which roughly 87 

corresponds to syllabic fluctuations (Doelling et al., 2014), as well as by “higher order” 88 

semantic information (Broderick et al., 2019). “Higher order” musical features are difficult to 89 

compute for naturalistic music, which is typically polyphonic and has complex spectro-90 

temporal properties (Zatorre et al., 2002). However, amplitude-envelope entrainment is well 91 

documented: neural activity synchronizes to the amplitude fluctuations in music between 1 Hz 92 

and 8 Hz, and entrainment is especially strong for listeners with musical expertise (Doelling 93 

and Poeppel, 2015).  94 
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Because of the complex nature of natural polyphonic music, we hypothesized that 95 

amplitude envelope might not be the only or most dominant feature by which neural activity 96 

would be entrained (Mller, 2015). Thus, the current study investigated neural responses to 97 

different musical features that evolve over time and capture different aspects of the stimulus 98 

dynamics. Here, we use the term musical feature to refer to time-varying aspects of music that 99 

fluctuate on time scales corresponding roughly to the neural δ band, as opposed to elements of 100 

music such as key, harmony or syncopation. We examined amplitude envelope, the first 101 

derivative of the amplitude envelope (usually more sensitive to sound onsets than the 102 

amplitude envelope), beat times, and spectral flux, which describes spectral changes of the 103 

signal on a frame-to-frame basis by computing the difference between the spectral vectors of 104 

subsequent frames (Mller, 2015). One distinct advantage of spectral flux over the envelope or 105 

its derivative is that spectral flux is sensitive to rhythmic information that is communicated by 106 

changes in pitch even when they are not accompanied by changes in amplitude.  107 

The current study investigated neural entrainment to natural music by using two 108 

different analysis approaches: Reliable Components Analysis  (RCA) (Kaneshiro et al., 2020) 109 

and temporal response functions (TRFs) (Di Liberto et al., 2020). RCA typically relies on 110 

stimulus–response correlation or stimulus–response coherence (Kaneshiro et al., 2020). These 111 

approaches have been criticized because of their potential susceptibility to autocorrelation, 112 

which is argued to be minimized in the TRF approach (Zuk et al., 2021). Thus, we tested the 113 

agreement between these two analysis approaches.  114 

We aimed to answer four questions. 1) Does neural entrainment to natural music 115 

depend on tempo? 2) Which musical feature shows the strongest neural entrainment during 116 

natural music listening? 3) How compatible are RCA- and TRF-based methods with 117 

quantifying neural entrainment to natural music? 4) How do enjoyment, familiarity, and ease 118 

of beat perception affect neural entrainment? To answer these research questions, we recorded 119 

electroencephalography (EEG) data while participants listened to instrumental music 120 
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presented at different tempi (1–4 Hz). Strongest neural entrainment was observed in response 121 

to the spectral flux of music, for tempi between 1–2 Hz, to familiar songs, and to songs with 122 

an easy-to-perceive beat. Moreover, a classifier trained on the neural responses to each 123 

musical feature predicted the metrical level at which listeners tapped the beat. This indicates 124 

that the brain responded to perceived tempo, even when it was different from the stimulus 125 

tempo.  126 

 127 

Results   128 

Scalp EEG activity of 37 human participants was measured while they listened to 129 

instrumental segments of natural music from different genres (Supplementary Table 1). Music 130 

segments were presented at thirteen parametrically varied tempi (1–4 Hz in 0.25-Hz steps; see 131 

Materials and Methods). We assessed neural entrainment to four different musical features: 132 

amplitude envelope, first derivative of the amplitude envelope, beat times, and spectral flux. 133 

Neural entrainment was quantified using two different analysis pipelines and compared: 1) 134 

RCA combined with time- and frequency-domain analyses, and 2) TRFs (Crosse et al., 2016, 135 

Kaneshiro et al., 2020). As different behavioral and perceptual measures have been shown to 136 

influence neural entrainment to music (Madsen et al., 2019, Cameron et al., 2019), we 137 

investigated the effects of enjoyment, familiarity, and the ease with which a beat was 138 

perceived (Fig. 1A). To be able to use a large variety of musical stimuli on the group level, 139 

and to decrease any effects that may have arisen from individual stimuli occurring at certain 140 

tempi but not others, participants were divided into four subgroups that listened to different 141 

pools of stimuli (for more details please see Materials and Methods). The subgroups’ stimulus 142 

pools overlapped, but the individual song stimuli were presented at different tempi for each 143 

subgroup.  144 
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Musical features 145 

We examined neural synchronization to the time courses of four different musical features 146 

(Fig. 1B). First, we quantified energy fluctuations over time as the gammatone-filtered 147 

amplitude envelope (we report analyses on the full-band envelope in Supplementary Figures 2 148 

and 4). Second, we computed the half-wave-rectified first derivative of the amplitude 149 

envelope, which is typically considered to be sensitive to the presence of onsets in the 150 

stimulus (Bello et al., 2005). Third, a percussionist drummed along with the musical segments 151 

to define beat times, which were here treated in a binary manner. Fourth, a spectral novelty 152 

function, referred to as spectral flux (Mller, 2015), was computed to capture changes in 153 

frequency content (as opposed to amplitude fluctuations) over time. In contrast to the first 154 

derivative, the spectral flux is better able to identify note onsets that are characterized by 155 

changes in spectral content (pitch or timbre), even if the energy level remains the same. To 156 

ensure that each musical feature possessed acoustic cues to the stimulation-tempo 157 

manipulation, we computed a fast Fourier transform (FFT) on the musical-feature time 158 

courses separately for each stimulation-tempo condition; the mean amplitude spectra are 159 

plotted in Figure 1C. Overall, amplitude peaks were observed at the intended stimulation 160 

tempo and at the harmonic rates for all stimulus features.  161 

In order to assess the degree to which the different musical features might have been 162 

redundant, we calculated mutual information (MI) for all possible pairwise feature 163 

combinations and compared MI values to surrogate distributions calculated separately for 164 

each feature pair (Fig. 1D, E). MI quantifies the amount of information gained about one 165 

random variable by observing a second variable (Cover and Thomas, 2005). MI values were 166 

analyzed using separate three-way ANOVAs (MI data vs. MI surrogate × Tempo × Subgroup) 167 

for each musical feature. Spectral flux shared significant information with all other musical 168 

features; significant MI (relative to surrogate) was found between amplitude envelope and 169 

spectral flux (F(1,102)=24.68, pFDR=1.01e-5, η2=0.18), derivative and spectral flux 170 
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(F(1,102)=82.3, pFDR=1.92e-13, η2=0.45) and beat times and spectral flux (F(1,102)=23.05, 171 

pFDR=1.3e-5, η2=0.13). This demonstrates that spectral flux captures information from all 172 

three other musical features, and as such, we expected that spectral flux would be associated 173 

with strongest neural entrainment. Unsurprisingly, there was also significant shared 174 

information between the amplitude envelope and first derivative (F(1,102)=14.11, 175 

pFDR=4.67e-4, η2=0.09; other comparisons: (Fenv-beat(1,102)=8.44, pFDR=0.006, η2=0.07; Fder-176 

beat(1,102)=6.06, pFDR=0.016, η2=0.05).  177 

There was a main effect of Tempo on MI shared between the amplitude envelope and 178 

derivative (F(12,91)=4, pFDR=0.0002, η2=0.32) and the spectral flux and beat times 179 

(F(12,91)=5.48, pFDR=4.35e-6, η2=0.37) (Supplementary Fig. 1). This is likely due to the 180 

presence of slightly different songs in the different tempo conditions, as the effect of tempo 181 

on MI was unsystematic for both feature pairs (see Materials and Methods and 182 

Supplementary Table 1). MI for the remaining feature pairs did not differ significantly across 183 

tempi.  184 

No significant differences in MI were observed between subgroups, despite the 185 

subgroups hearing slightly different pools of musical stimuli: (Fenv-der(3,100)=0.71, pFDR=0.94, 186 

η2=0.01; Fenv-beat(3,100)=2.63, pFDR=0.33, η2=0.07; Fenv-spec(3,100)=0.3, pFDR=0.94, η2=0.01; 187 

Fder-beat(3,100)=0.43, pFDR=0.94, η2=0.01; Fder-spec(3,100)=0.46, pFDR=0.94, η2=0.01; Fbeat-188 

spec(3,100)=0.13, pFDR=0.94, η2=0.002).  189 
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Figure 1. Experimental design and musical features. (A) Schematic of the experimental 

procedure. Each trial consisted of the presentation of one music segment, during which 

participants were instructed to listen attentively without moving. After a 1-s silence, the last 

5.5 s of the music segment was repeated while participants tapped their finger along with 

the beat. At the end of each trial, participants rated their enjoyment and familiarity of the 

music segment, as well as the ease with which they were able to tap to the beat (Translated 

English example in Figure: “How much did you like the song?” rated from “not at all” to 

“very much”). (B) Exemplary traces of the four musical features of one music segment. (C) 

Z-scored mean amplitude spectrum of all 4 musical features. (D) Mutual information (MI) 

for all possible feature combinations (green) compared to a surrogate distribution (yellow, 

three-way ANOVA, *pFDR<0.001, rest: pFDR<0.05). Boxplots indicate the median, the 25th 

and 75th percentiles. (E) MI scores between all possible feature combinations (*pFDR<0.001, 

rest: pFDR<0.05).   

 190 
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Neural entrainment was strongest in response to slow music  191 

Neural entrainment to music was investigated using two converging analysis pipelines based 192 

on (1) RCA followed by time- (stimulus-response correlation, SRCorr) and frequency- 193 

(stimulus-response coherence, SRCoh) domain analysis and (2) TRFs.  194 

First, an RCA-based analysis approach was used to assess tempo effects on neural 195 

entrainment to music (Fig. 2, Supplementary Fig. 2). RCA involves estimating a spatial filter 196 

that maximizes correlation across data sets from multiple participants (for more details see 197 

Materials and Methods) (Kaneshiro et al., 2020, Parra et al., 2018). The resulting time course 198 

data from a single reliable component can then be assessed in terms of its correlation in the 199 

time domain (SRCorr) or coherence in the frequency domain (SRCoh) with different musical 200 

feature time courses. Our analyses focused on the first reliable component, which exhibited an 201 

auditory topography (Fig. 2A). SRCorrs were significantly tempo-dependent for all four 202 

musical features (repeated-measure ANOVAs with Greenhouse-Geiser correction where 203 

required: Fenv(12,408)=4.5, p= 8.18e-7, η2=0.12; Fder(12,408)=2.5, p=0.004, η2=0.07; 204 

Fbeat(12,408)=2.5, p=0.004, η2=0.07; Fspec(12,408)=5.84, pGG=8.82e-6, η2=0.15). Highest 205 

correlations were found at slower tempi (~1-2 Hz). No significant differences were observed 206 

across subgroups (Fenv(3,32)=1.11, pFDR=0.46, η2=0.1; Fder(3,32)=0.88, pFDR =0.46, η2=0.08; 207 

Fbeat(3,32)=1.5, pFDR =0.46, η2=0.12; Fspec(3,32)=2.05, pFDR=0.26, η2=0.16). In the frequency 208 

domain, normalized SRCoh (Fig. 2E-H) showed clear peaks at the stimulation tempo and 209 

harmonics. Overall, SRCoh was stronger at the first harmonic of the stimulation tempo than at 210 

the stimulation tempo itself, regardless of the musical feature (Fig. 2E-I). This effect was 211 

significant for the envelope, derivative and spectral flux (Fig. 2I, paired-sample t-test, 212 

envelope: t(12)=-4.21, pFDR=0.005, re=0.65; derivative: : t(12)=-3.09, pFDR=0.03, re=0.53; 213 

beat: : t(12)=-2.43, pFDR=0.07, re=0.44; spectral flux: : t(12)=-8.26, pFDR=2.25e-5, re=0.86). 214 

The stimuli themselves mostly also contained highest FFT amplitudes at the first harmonic 215 

(Fig. 2J, envelope: t(12)=-6.81, pFDR= 5.23e-5, re=0.81; derivative: t(12)=-6.88, pFDR= 5.23e-216 
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5, re=0.81; spectral flux: t(12)=-8.04, pFDR= 2.98e-5, re=0.85), apart from the beat onsets 217 

(beat: t(12)=6.27, pFDR= 8.56-5. re=0.79). For evaluating tempo-dependent effects, we 218 

averaged SRCoh across the stimulation tempo and first harmonic and submitted the average 219 

SRCoh values to repeated-measure ANOVAs for each musical feature. Highest SRCoh was 220 

found for slow music (Fenv(12,408)=2.58, pGG=0.02, η2=0.07; Fder(12,408)=2.76, pGG=0.01, 221 

η2=0.08; Fbeat(12,408)=1.29, pGG=0.25, η2=0.04; Fspec(12,408)=3.86, pGG=0.002, η2=0.1). No 222 

significant differences for the SRCoh were observed across subgroups (Fenv(3,32)=1.45, 223 

pFDR=0.38, η2=0.11; Fder(3,32)=1.39, pFDR =0.38, η2=0.1; Fbeat(3,32)=1.2, pFDR =0.38, η2=0.09; 224 

Fspec(3,32)=1.07, pFDR=0.38, η2=0.08). Individual data examples of the SRCorr and SRCoh 225 

can be found in Supplementary Figure 3. 226 

Second, TRFs were calculated for each stimulation tempo. A TRF-based approach is a 227 

linear-system identification technique that serves as a filter describing the mapping of 228 

stimulus features onto the neural response (forward model) (Crosse et al., 2016). Using linear 229 

convolution and ridge regression to avoid overfitting, the TRF was computed based on 230 

mapping each musical feature to “training” EEG data. Using a leave-one-trial-out approach, 231 

the EEG response for the left-out trial was predicted based on the TRF and the stimulus 232 

feature of the same trial. The predicted EEG data were then correlated with the actual, unseen 233 

EEG data (we refer to this correlation value throughout as TRF correlation). We analyzed the 234 

two outputs of the TRF analysis: the filter at different time lags, which typically resembles 235 

evoked potentials, and the TRF correlations (Fig. 3, Supplementary Fig. 4). Again, strongest 236 

neural entrainment (here quantified as Pearson correlation coefficient between the predicted 237 

and actual EEG data) was observed for slower music (Fig. 3A). Repeated-measure ANOVAs 238 

showed that, significant effects of Tempo were observed for all musical features, with TRF 239 

correlations being strongest at slower tempi (~1-2 Hz) (Fenv(12,408)=2.35, pGG=0.02, η2=0.06; 240 

Fder(12,408)=1.82, p=0.04, η2=0.05; Fbeat(12,408)=2.29, pGG=0.03, η2=0.06; 241 

Fspec(12,408)=8.54, pGG=2.36e-9, η2=0.22).  242 
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Figure 2. Stimulus–response correlation and stimulus–response coherence are tempo 

dependent for all musical features. (A) Projected topography of the first reliable 

component (RC1). (B) Average SRCorr across tempi for each musical feature (±SEM; 

shaded area). Highest correlations were found at slow tempi. Significant differences 

between tempi were assessed using a repeated-measure ANOVA (with Greenhouse-Geiser 

correction where applicable) and the slopes of regression models were used to compare the 

tempo-specificity between musical features. (C) Mean SRCorr across musical features. 

Highest correlations were found in response to spectral flux. There were significant 

differences between all possible feature combinations except between the derivative and 

beat onset features (derivative-beat: pFDR=0.37; (repeated-measure ANOVA, Tukey’s test, 

pFDR<0.001). Boxplots illustrate the median, 25th and 75th percentiles. (D) Same as (C) for 

the frequency based SRCoh. All possible feature combinations were significantly different 

from each other apart from the derivative and beat onsets (derivative-beat: pFDR=0.08; 

pFDR<0.001). Coherence values were averaged over the stimulus tempo and first harmonic. 

Normalized SRCoh in response to the (E) amplitude envelope, (F) first derivative, (G) beat 

onsets and (H) spectral flux. Each panel depicts the stimulus response coherence as 

colorplot (left) and the pooled SRCoh values at the stimulation tempo and first harmonic 

(right). (I) Mean differences of SRCoh values at the stimulation tempo and the first 
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harmonic (negative values: higher SRCoh at harmonic, positive values: higher SRCoh at 

stimulation tempo, paired-sample t-test, *pFDR<0.05; **pFDR<0.001). (J) Same as (I) based 

on the FFT amplitudes of each musical feature. 

 243 

Spectral flux drives strongest neural entrainment 244 

As natural music is a complex, multi-layered auditory stimulus, we sought to explore the 245 

neural response to different musical features and to identify the stimulus feature or features 246 

that would evoke strongest neural entrainment. Regardless of the dependent measure (RCA-247 

SRCorr, RCA-SRCoh, TRF correlation), strongest neural entrainment was found in response 248 

to the spectral flux (Fig. 2C-D, 3B). In particular, significant differences (as quantified with a 249 

repeated-measure ANOVA followed by Tukey’s test) were observed between the spectral flux 250 

and all other musical features using the SRCorr (FSRCorr(3,140)=33.41, pGG= 4.01e-15, 251 

η2=0.5), SRCoh (FSRCoh(3,140)=38.83, pGG =5.53e-10, η2=0.53) and TRF correlations 252 

(FTRF(4,175)=24.56, pGG=2.2e-10, η2=0.42).  253 

As the TRF approach offers the possibility of running a multivariate analysis, all 254 

musical features were combined and compared to the single-feature TRF correlations (Fig. 255 

3B). Although there was a significant increase in TRF correlations in comparison to the 256 

amplitude envelope (repeated-measure ANOVA with follow-up Tukey’s test, pFDR=1.66e-8), 257 

first derivative (pFDR =1.66e-8) and beat onsets (pFDR=1.66e-8), the spectral flux alone showed 258 

an advantage over the multi-featured TRF (pFDR=2.18e-4). Thus, taking all stimulus features 259 

together is not a better descriptor of the neural response than the spectral flux alone, 260 

indicating together with the MI results from Figure 1 that spectral flux is a more complete 261 

representation of the rhythmic structure of the music than the other musical features.  262 

To test how strongly modulated TRF correlations were by each musical feature, a 263 

regression line was fitted to single-participant TRF correlations as a function of tempo, and 264 

the slopes were compared across musical features (Fig. 3A). Linear slopes were significantly 265 

higher for the spectral flux and the multivariate model compared to the remaining three 266 
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musical features with the exception of the slopes of the multivariate model and envelope (one-267 

way ANOVA, envelope-spectral flux: pFDR= 0.005; envelope – all: pFDR= 0.06; derivative-268 

spectral flux: pFDR= 3e-4; derivative – all: pFDR= 0.005; beat-spectral flux: pFDR= 3e-4; beat – 269 

all: pFDR= 0.006). The results for SRCorr were qualitatively similar (envelope-spectral flux: 270 

pFDR= 0.046; derivative-spectral flux: pFDR= 3e-4; beat-spectral flux: pFDR= 0.002; Fig. 2B).  271 

We also examined the time courses of TRF weights (Fig. 3C–F) for time lags between 272 

0 and 400 ms. Cluster-based permutation testing (1000 repetitions) was used to identify time 273 

windows in which TRF weights differed across tempi for each musical feature (see Materials 274 

and Methods for more details). Significant effects of tempo on TRF weights were observed 275 

for the beat times at time lags between 164–351 ms (p=0.036) and for the spectral flux 276 

between 101–242 ms (p<0.001) and 312–398 ms (p=0.033) (Fig. 3E-I). For these two musical 277 

features, the tempo specificity was observable in the amplitudes of the TRF weights, which 278 

were largest for slower music (Fig. 3G-I). The TRFs for the amplitude envelope and first 279 

derivative demonstrated similar patterns to each other, with strong deflections in time 280 

windows consistent with a canonical auditory P1–N1–P2 complex, but did not differ 281 

significantly between stimulation tempi (Fig. 3C-D). In contrast, the full-band (Hilbert) 282 

amplitude envelope and the corresponding first derivative (Supplementary Fig. 4) displayed 283 

tempo-specific effects at time lags of 172–305 ms (envelope, p=0.01) and 219–344 ms 284 

(derivative, p=0.01). Visual inspection suggested that TRF differences for these musical 285 

features were related to latency, as opposed to amplitude (Supplementary Fig. 4E-F, I-J). 286 

Therefore, we identified the latencies of the TRF-weight time courses within the time window 287 

of the N2, and fit a piece-wise linear regression to those mean latency values per musical 288 

feature (Supplementary Fig. 4G, K). In particular, TRF latency in the N2 time window 289 

decreased over the stimulation tempo conditions from 1–2.5 Hz and from 2.75–4 Hz for both 290 

stimulus features (envelope: T1-2.5Hz=-0.86, p=0.43; T2.75-4Hz=-2.04, p=0.11), but this was only 291 

significant for the derivative (T1-2.5Hz=-4.44, p=0.007; T2.75-4Hz=-4.05, p=0.016).  292 
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Figure 3. TRFs are tempo dependent. (A) Mean TRF (±SEM) correlations as a function 

of stimulation tempo per stimulus feature (p-values next to the legend correspond to a 

repeated-measure ANOVA across tempi for every musical feature and p-value below the 

legend to a one-way ANOVA based on the slopes of a linear regression model). TRF 

correlations were highest for spectral flux and combined musical features for slow tempi. 

(B) Violin plots of the TRF correlations across musical features. Boxplots illustrate the 

median, 25th and 75th percentiles (n=36). Significant pairwise musical feature comparisons 

were calculated using a repeated-measure ANOVA with follow-up Tukey’s test, 

*pFDR<0.001. (C) Top panel: TRF time lags (0-400 ms) of the amplitude envelope. Each 

line depicts one stimulation tempo (13 tempi between 1 Hz, blue and 4 Hz, green). Middle 

panel: Colormap of the normalized TRF weights of the envelope in the same time window 

across stimulation tempi. Lower panel: Topographies of the TRF correlations in response to 

the amplitude envelope. (D) Same as (C) for the first derivative, (E) beat onsets and (F) 

spectral flux. Cluster-based permutation testing was used to identify significant tempo-

specific time windows (red dashed box, p<0.05). Mean TRF weights in response to (G) 

beat onsets from the significant time lag window (164-351 ms), (H) spectral flux for time 

lags between 101-242 ms and (I) between 312-398 ms. 

 293 
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Results of TRF and SRCorr/SRCoh converge  294 

So far, we demonstrated that both RCA- and TRF-based measures of neural entrainment lead 295 

to similar results at the group level, and reveal strongest neural entrainment to spectral flux 296 

and at slow tempi. Next, we wanted to quantify the relationship between the SRCorr/SRCoh 297 

and TRF correlations across individuals (Fig. 4, Supplementary Fig. 3). This could have 298 

implications for the interpretation of studies focusing only on one method. To test this 299 

relationship, we predicted TRF correlations from SRCorr or SRCoh values (fixed effect) in 300 

separate linear mixed-effects models with Participant and Tempo as random effects (grouping 301 

variables). Each musical feature was modeled independently. For all four musical features, 302 

SRCorr significantly predicted TRF correlations (tenv(466) =6.46, βenv=0.38, pFDR= 5.37e-10, 303 

R2=0.41; tder(466) =3.63, βder=0.22, pFDR= 4e-4, R2=0.16; tbeat(466) =2.64, βbeat=0.26, pFDR= 304 

0.009, R2=0.41; tspec(466) =11.62, βspec=0.52, pFDR= 5.78e-27, R2=0.73). The strongest 305 

correlations between neural entrainment measures were found for the spectral flux of music 306 

(Fig. 4D). In the frequency domain, we examined the SRCoh values at the stimulation tempo 307 

and first harmonic separately (Supplementary Fig. 5). SRCoh values at both the intended 308 

stimulation tempo and the first harmonic significantly predicted TRF correlations for all 309 

musical features. For all musical features, the intended stimulation tempo was a better 310 

predictor of TRF correlations than the first harmonic except for the spectral flux and 311 

derivative (intended tempo: tenv(466) =4.47, βenv=0.15, pFDR= 2.62e-05, R2=0.32; tder(466) 312 

=2.03, βder=0.07, pFDR= 0.04, R2
r=0.11; tbeat(466) =2.37, βbeat=0.12, pFDR= 0.02, R2=0.37; 313 

tspec(466) =3.65, βspec=0.1, pFDR= 4e-4, R2=0.62; first harmonic: tenv(466) =5.89, βenv=0.08, 314 

pFDR= 2.96e-8, R2=0.26; tder(466) =3.86, βder=0.06, pFDR= 2e-4, R2=0.1; tbeat(466) =3.12, 315 

βbeat=0.1, pFDR= 0.003, R2
t=0.35; tspec(466) =6.39, βspec=0.09, pFDR= 3.16e-9, R2=0.62). 316 

Overall, these results suggest that, despite their differences, TRF and RCA–SRCorr/RCA-317 

SRCoh pick up on similar features of the neural response, but may potentially strengthen each 318 

other’s explanatory power when used together. 319 
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Figure 4. Significant relationships between SRCorr and TRF correlations for all 

musical features. (A) Linear-mixed effects models of the SRCorr (predictor variable) and 

TRF correlations (response variable) in response to the amplitude envelope. Each dot 

represents the mean correlation of one participant (n=36) at one stimulation tempo (n=13) 

(=grouping variables; blue, 1 Hz-green, 4 Hz). Violin plots illustrate fixed effects 

coefficients (β). (B)-(D) same as (A) for the first derivative, beat onsets and spectral flux. 

For all musical features, the fixed effects were significant.  

 320 

Familiar songs and songs with an easy-to-tap beat drive strongest neural entrainment  321 

Next, we tested whether neural entrainment to music depended on 1) how much the song was 322 

enjoyed, 2) the familiarity of the song, and 3) how easy it was to tap the beat of the song; each 323 

of these characteristics was rated on a scale ranging between –100 and +100. We 324 

hypothesized that difficulty to perceive and tap to the beat in particular would be associated 325 

with weaker neural entrainment. Ratings on all three dimensions are shown in Figure 5A. To 326 

evaluate the effects of tempo on the individual’s ratings, separate repeated-measure ANOVAs 327 

were conducted for each behavioral rating. Although enjoyment (F(12,408)=1.2, pGG=0.31, 328 

η2=0.03) and familiarity (F(12,408)=1.93, pGG=0.09, η2=0.05) were unaffected by tempo, 329 

participants indicated that it was more difficult to tap to the beat of faster than slower stimuli 330 

(F(12,408)=6.3, pGG=4.71e-06, η2=0.17).  331 

To assess the effects of familiarity, enjoyment, and beat-tapping ease on neural 332 

entrainment, TRFs in response to spectral flux were calculated for the 15 trials with the 333 
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highest and the 15 trials with the lowest ratings per participant per behavioral rating condition 334 

(Fig. 5B-F). TRF correlations were not significantly different for less enjoyed compared to 335 

more enjoyed music (paired-sample t-test, t(35)=1.22, pFDR=0.23, re=0.24; Fig. 5C). In 336 

contrast, significantly higher TRF correlations were observed for familiar vs. unfamiliar songs 337 

(t(35)=-2.88, pFDR=0.02, re=0.51), and there was a trend for stronger neural entrainment to 338 

songs with an easier-to-perceive beat (t(35)=-1.94, pFDR=0.09, re=0.37). These results were 339 

reflected in the TRFs at time lags between 0-400 ms (Fig. 5D-F).  340 

Next, we wanted to entertain the possibility that musical training could modulate 341 

neural entrainment to music. Therefore, participants with less than 2 years of regular, daily 342 

music training were assigned to a “non-musician” group (n=17) and participants with over 6 343 

years of regular music training were labelled as “musicians” (n=14). Although there is little 344 

agreement about the specific criterion that should be used to defined musician and non-345 

musician participants, this division had the advantages that it ignored participants with 346 

medium amounts of training and it roughly equally divided our sample. Subsequently, TRF 347 

correlations were compared between groups (Supplementary Fig. 6). Regardless of the 348 

stimulus feature, no significant differences were detected between participants with different 349 

levels of musical expertise (paired-sample t-test, envelope: pFDR=0.93; derivative: pFDR=0.93; 350 

beats: pFDR=0.85; spectral flux: pFDR=0.93). Moreover, the Goldsmith’s Musical 351 

Sophistication Index (Gold-MSI) was used to quantify musical “sophistication” (referring not 352 

only to the years of musical training, but also e. g. musical engagement or self-reported 353 

perceptual abilities (Müllensiefen et al., 2014)), which we then correlated with neural 354 

entrainment. No significant correlations were observed between musical sophistication and 355 

TRF correlations (Pearson correlation, envelope: R=-0.22, pFDR=0.26; derivative: R=-0.16, 356 

pFDR=0.26; beats: R=-0.25, pFDR=0.34; spectral flux: R=-0.29, pFDR=0.26; Supplementary Fig. 357 

6). 358 
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Figure 5. TRF correlations are highest in response to familiar songs. (A) Normalized 

(to the maximum value per rating/participant), averaged behavioral ratings of enjoyment, 

familiarity and easiness to tap to the beat (±SEM). Significant differences across tempo 

conditions were observed (repeated-measure ANOVA with Greenhouse-Geiser correction). 

(B) Mean TRF correlations topography across all ratings (based on the analysis of 15 trials 

with highest and lowest ratings per behavioral measure). (C) Violin plots of TRF 

correlations comparing low vs. highly enjoyed, low vs. highly familiar, and subjectively 

difficult vs. easy beat trials. Strongest TRF correlations were found in response to familiar 

music (paired-sample t-test, pFDR=0.02). (D) Mean TRFs (±SEM) for time lags between 0-

400 ms of more and less enjoyable music songs. (E)-(F) Same as (D) for trials with low vs. 

high familiarity and difficult vs. easy beat ratings.   

 359 

Brain responses to musical features predicts perceived beat rate  360 

In natural music, the beat can be perceived at multiple metrical levels. For that reason, it was 361 

possible that listeners did not perceive the beat at the tempo we intended (the stimulation 362 

tempo), but may have instead perceived the beat at double or half that rate. Thus, we wanted 363 

to explore whether our TRF-based measures of neural entrainment simply reflected the 364 

stimulus tempo that we presented, or whether they might be sensitive to perceived beat rate 365 

when that differed from the stimulation tempo, i.e., the intended beat rate. For this analysis, 366 

we made use of the tapping data that were collected in the final part of each trial, during 367 

which participants finger-tapped to the beat for 5.5 s. Trials with at least three consistent taps 368 

were assigned to a perceived tempo condition (1-4 Hz in steps of 0.25-Hz, see Materials and 369 

Methods for more details). In this study, we will use the term “stimulation tempo” to refer to 370 
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the predominant beat frequency in each music segment, whereas we will use the term “tapped 371 

beat rate” when referring to the tapped frequency. The preferred tapped beat rate on the group 372 

level was ~1.55 Hz (Supplementary Fig. 7C, mode of skewed Gaussian fitted to mean 373 

histograms of the relative number of trials per tapped beat rate).  374 

We wanted to test if we could identify the stimulation tempo (chosen by us) or the 375 

tapped beat rate (rate the participant tapped to) based on the neural data, in particular when 376 

the stimulation tempo and the tapped beat rate were different. We used a support vector 377 

machine (SVM) classifier to first, predict the stimulation tempo (Fig. 6A-B) and second, to 378 

predict the perceived (tapped) rate based on the neural response to different musical features 379 

(Fig. 6C-D). For predicting the stimulation tempo, we identified two sets of 6 trials (per 380 

participant) each, one set where the participants tapped the intended stimulation tempo and 381 

the other set where they tapped the same rate, but the intended stimulation tempo was twice as 382 

fast as what the participants tapped, i.e., participants tapped the subharmonic of the 383 

stimulation tempo. We were able to do this for 19 of our 36 participants. Next, TRFs were 384 

computed in response to each musical feature for each set of trials (tapped rate = intended 385 

stimulation tempo vs. same tapped rate = 2*stimulation tempo). The SVMs were computed 386 

using bootstrapping (100 repetitions) and a leave-one-out approach. The mean SVM 387 

prediction accuracies for each musical feature were compared to a surrogate distribution 388 

generated by randomly shuffling the tempo labels (tapped rate = intended stimulation tempo 389 

vs. same tapped rate = 2*stimulation tempo) when training the SVM classifier. We observed 390 

significantly higher prediction accuracies in comparison to the surrogate data for all musical 391 

features (paired-sample t-test, envelope: t(18)=51.89,  pFDR<1e-15, re=0.996; derivative: 392 

t(18)=124.4, pFDR< 1e-15, re=0.999; beat onsets: t(18)=78.91, pFDR<1e-15, re=0.998; spectral 393 

flux: t(18)=99.92, pFDR<1e-15, re=0.998; Fig. 6A). This shows that even if the perceived 394 

tempo of two musical pieces is the same, the intended (acoustic) stimulation tempo evokes 395 

varying levels of neural entrainment. For comparing the prediction accuracies across musical 396 
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features, an accuracy index((AccuracyData-AccuracySurr)/(AccuracyData+AccuracySurr)) was 397 

submitted to a repeated-measure ANOVA. No significant differences between musical 398 

features were observed (F(3,72)=0.83, p=0.49, η2=0.05; Fig.6B).  399 

Next, the neural response to different musical features were used to predict the tapped 400 

beat rate for sets of trials with the same stimulation tempo (intended stimulation tempo = 401 

tapped rate vs. same stimulation tempo = 2*tapped rate). Analogous to the previously 402 

described analysis pipeline, 13 individual datasets from different tempo conditions (this time 403 

from only 9 participants with each one dataset and two participants with each two datasets to 404 

increase the sample size) were identified that met the criterion. All SVM classifier prediction 405 

accuracies yielded significant differences in comparison to the surrogate data (paired-samples 406 

t-test, envelope: t(12)=52.02,  pFDR= 2.22e-15, re=0.996; derivative: t(12)=122.61, pFDR< 1e-407 

15, re=0.999; beat onsets: t(12)=44.57,  pFDR= 1.07e-14, re=0.994; spectral flux: t(12)=54.31,  408 

pFDR=2e-15, re=0.996; Fig. 6C), suggesting that entrained neural responses also possess 409 

unique signatures of the perceived beat rate, even when it is different from the stimulation 410 

tempo. No significant differences in predicting the tapped beat rate between musical features 411 

were observed (F(3,48)=0.17, p=0.92, η2=0.02; Fig. 6D).  412 
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Fig. 6. Tapped beat rate can be predicted based on the neural response to musical 

features. (A) Violin plot of the mean accuracies of a support vector machine (SVM) 

classifier predicting the stimulation tempo (n=19; tapped rate = intended stimulation tempo 

vs. same tapped rate = 2*stimulation tempo). Based on the TRFs to all musical features, 

significant differences in prediction accuracies were computed in comparison to a surrogate 

(paired-sample t-test, *pFDR<0.001). (B) Comparison of SVM classifier accuracies 

((AccuracyData-AccuracySurr)/(AccuracyData+AccuracySurr)) across musical features revealed 

no significant differences in predicting the stimulation tempo (repeated-measure ANOVA, 

p=0.92). (C)-(D) Same as (A)-(B), but here the SVM classifier predicted the tapped rate 

based on the TRFs (n=13; intended stimulation tempo = tapped rate vs. same stimulation 

tempo = 2*tapped rate) (paired-sample t-test, pFDR<0.001). No differences were observed in 

SVM prediction accuracies across musical features (repeated-measure ANOVA, p=0.92).       

 413 

Discussion 414 

We investigated neural entrainment to naturalistic, polyphonic music presented at different 415 

tempi. The music stimuli varied along a number of dimensions in idiosyncratic ways, 416 

including the familiarity and enjoyment of the music, and the ease with which the beat was 417 

perceived. The current study demonstrates that neural entrainment is strongest to 1) music 418 

with beat rates between 1 and 2 Hz, 2) spectral flux of music, 3) familiar music and music 419 

with an easy-to-perceive beat. In addition, 4) brain responses to the music stimuli were 420 
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informative regarding the listeners' perceived metrical level of the beat, and 5) analysis 421 

approaches based on TRF and RCA revealed converging results.   422 

Neural entrainment was strongest to music with beat rates in the 1–2 Hz range 423 

Strongest neural entrainment was found in response to stimulation tempi between 1 and 2 Hz 424 

in terms of SRCorr (Fig. 2B), TRF correlations (Fig. 3A), and TRF weights (Fig. 3C-F). 425 

Moreover, we observed a behavioral preference to tap to the beat in this frequency range, as 426 

the group preference for music tapping was at 1.55 Hz (Supplementary Fig. 7C). Previous 427 

studies have shown a preference to listen to music with beat rates around 2 Hz (Bauer et al., 428 

2015), which is moreover the modal beat rate in Western pop music (Moelants, 2002) and the 429 

rate at which the modulation spectrum of natural music peaks (Ding et al., 2017). Even in 430 

nonmusical contexts, spontaneous adult human locomotion is characterized by strong energy 431 

around 2 Hz (MacDougall and Moore, 2005). Moreover, when asked to rhythmically move 432 

their bodies at a comfortable rate, adults will spontaneously move at rates around 2 Hz 433 

(McAuley et al., 2006) regardless whether they use their hands or feet (Rose et al., 2020). 434 

Thus, there is a tight link between preferred rates of human body movement and preferred 435 

rates for the music we make and listen to that was moreover reflected in our neural data. This 436 

is perhaps not surprising, as musical rhythm perception activates motor areas of the brain, 437 

such as the basal ganglia and supplementary motor area (Grahn and Brett, 2007), and is 438 

further associated with increased auditory–motor functional connectivity (Chen et al., 2008). 439 

In turn, involving the motor system in rhythm perception tasks improves temporal acuity 440 

(Morillon et al., 2014), but only for beat rates in the 1–2 Hz range (Zalta et al., 2020).   441 

In the frequency domain, SRCoh was strongest at the stimulation tempo and its harmonics 442 

(Fig. 2E-I). In fact, highest coherence was observed at the first harmonic and not at the 443 

stimulation tempo itself (Fig. 2I). This replicates previous work that also showed higher 444 

coherence (Kaneshiro et al., 2020) and spectral amplitude (Tierney and Kraus, 2015) at the 445 

first harmonic than at the musical beat rate. There are several potential reasons for this 446 
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finding. One reason could be that the stimulation tempo that we defined for each musical 447 

stimulus was based on beat rate, but natural music can be subdivided into smaller units (e.g., 448 

notes) that can occur at faster time scales. A recent MEG study demonstrated inter-trial phase 449 

coherence for note rates up to 8 Hz (Doelling and Poeppel, 2015). Hence, the neural responses 450 

to the music stimuli in the current experiment likely tracked not only the beat rate, but also 451 

faster elements such as notes. In line with this hypothesis, FFTs conducted on the stimulus 452 

features themselves showed higher amplitudes at the first harmonic than the stimulation 453 

tempo for all musical features except the beat onsets (Fig. 2J). Moreover, there are other 454 

explanations for higher coherence at the first harmonic than at the beat rate. For example, the 455 

low-frequency beat-rate neural responses fall into a steeper part of the 1/f slope, and as such 456 

may simply suffer from worse signal-to-noise ratio than their harmonics.  457 

Regardless of the reason, since frequency-domain analyses separate the neural response 458 

into individual frequency-specific peaks, it is easy to interpret neural tracking (SRCoh) or 459 

stimulus spectral amplitude at the beat rate and the note rate – or at the beat rate and its 460 

harmonics – as independent (Keitel et al., 2021). However, music is characterized by a nested, 461 

hierarchical rhythmic structure, and it is unlikely that neural tracking at different metrical 462 

levels goes on independently and in parallel. One potential advantage of TRF-based analyses 463 

is that they operate on relatively wide-band data compared to Fourier-based approaches, and 464 

as such are more likely to preserve nested neural activity and perhaps less likely to lead to 465 

over- or misinterpretation of frequency-specific effects.  466 

 467 

Neural entrainment is driven by spectral flux 468 

Neural entrainment was strongest in response to the spectral flux of music, regardless whether 469 

the analysis was based on TRFs or RCA. Similar to speech-tracking studies, music-tracking 470 

studies typically use the amplitude envelope of the sound to characterize the stimulus rhythm 471 

(Vanden Bosch der Nederlanden et al., 2020, Kumagai et al., 2018, Doelling and Poeppel, 472 
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2015, Decruy et al., 2019, Reetzke et al., 2021). Although speech and music share features 473 

such as amplitude fluctuations over time and hierarchical grouping (Patel, 2003), there are 474 

differences in their spectro-temporal composition that make spectral information especially 475 

important for music perception. For example, while successful speech recognition requires 4-476 

8 spectral channels, successful recognition of musical melodies requires at least 16 spectral 477 

channels (Shannon, 2005) – the flipside of this is that music is more difficult than speech to 478 

understand based only on amplitude-envelope information. Moreover, increasing spectral 479 

complexity of a music stimulus enhances neural entrainment (Wollman et al., 2020). 480 

Critically, both temporal and spectral information influence the perceived accent structure in 481 

music (Pfordresher, 2003).  482 

A recent study claimed that neuronal activity synchronizes less strongly to music than 483 

to speech (Zuk et al., 2021); notably they focused specifically on amplitude envelope to 484 

characterize the stimulus rhythms. We argue that the amplitude envelope – even when passed 485 

through a model of the peripheral auditory system – is a suboptimal measure to approximate 486 

individual note onsets that convey rhythmic structure in music and to which neural activity 487 

can be entrained (Mller, 2015). Imagine listening to a melody played in a glissando fashion on 488 

a violin. There might never be a clear onset that would be represented by the amplitude 489 

envelope – all of the rhythmic structure is communicated by spectral changes. Thus, in this 490 

study we wanted to compare neural entrainment by the amplitude envelope to neural 491 

entrainment by spectral flux, which compares spectral content, i.e., power spectra, on a frame-492 

to-frame basis, and which is arguably a more appropriate measure of rhythmic and metrical 493 

structure in music. Indeed, many automated tools for extracting the beat in music used in the 494 

musical information retrieval (MIR) literature rely on spectral flux information (Oliveira et 495 

al., 2010). Also in the context of body movement, spectral flux has been associated with the 496 

type and temporal acuity of synchronization between the body and music at the beat rate 497 

(Burger et al., 2018) to a greater extent than other acoustic characterizations of musical 498 
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rhythmic structure. As such, we found that spectral flux drove stronger entrainment than the 499 

amplitude envelope.  500 

 Using TRF analysis, we found that not only was neural entrainment to spectral flux 501 

stronger than to any other musical feature, it was also stronger than to the response to a mutli-502 

variate predictor that combined all musical features. For this reason, we calculated the shared 503 

information (MI) between each pair of musical features, and found that spectral flux shared 504 

significant information with all other musical features (Fig. 1). Hence, spectral flux seems to 505 

capture information also contained in, for example, the amplitude envelope, but contains 506 

unique information about rhythmic structure that cannot be gleaned from the other acoustic 507 

features (Fig. 3). This finding has potentially important implications for direct comparisons of 508 

neural tracking of music and speech, or music and natural sounds (Zuk et al., 2021). We 509 

would caution that conclusions about differences in how neural activity entrains to different 510 

categories of sounds should be sure to characterize stimuli as fairly as possible rather than 511 

relying on the amplitude envelope as a one-size-fits-all summary of rhythmic structure.  512 

 513 

Neural entrainment was strongest to familiar songs and songs with an easy beat 514 

We found that the strength of neural entrainment depended on the familiarity of music and, to 515 

a lesser extent, the ease with which a beat could be perceived (Fig. 5). This is in line with a 516 

previous study showing stronger neural entrainment to familiar music (Madsen et al., 2019). It 517 

is likely that songs a person knows – familiar songs – increase engagement. We note that we 518 

did not have a measure of engagement, though engagement has been shown to be a major 519 

driver of neural entrainment during film viewing (Dmochowski et al., 2014).  520 

There was also a trend for higher neural entrainment to music with subjectively “easy-to-521 

tap-to” beats. However, both neural entrainment and ease of beat tapping were highest for 522 

slow stimulation tempi; faster songs were associated with weaker entrainment and were rated 523 

as more difficult to tap to. Thus, in the current study, it is not possible to separate the 524 
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influences of stimulation tempo and beat salience on neural entrainment. Here, we chose 525 

music stimuli with salient, easy-to-perceive beats. However, a design including more “weakly 526 

metrical” or syncopated rhythms may have more success in doing so. Overall, we interpret 527 

our results as indicating that stronger neural entrainment is evoked in response to music that is 528 

more predictable: familiar music and with easy-to-track beat structure. 529 

Musical training did not affect the degree of neural entrainment in response to tempo-530 

modulated music (Supplementary Fig. 6). This contrasts with previous music research 531 

showing that musicians’ neural activity was entrained more strongly by music than non-532 

musicians’ (Madsen et al., 2019, Doelling and Poeppel, 2015, Di Liberto et al., 2020). There 533 

are several possible reasons for this discrepancy. One is that our study recruited participants 534 

with varying level of musical expertise and did not aim for a specific target group; our study 535 

was not intended to examine the role of musical training in neural entrainment. Furthermore, 536 

most studies that have done so have focused on classical music (Doelling and Poeppel, 2015, 537 

Madsen et al., 2019, Di Liberto et al., 2020), whereas we incorporated music stimuli with 538 

different instruments and from different genre (e. g. Rock, Pop, Techno, Western, Hip Hop or 539 

Jazz). We suspect that musicians are more likely to be familiar with, in particular, classical 540 

music, and as we have shown that familiarity with the individual piece increases neural 541 

entrainment, these studies may have inadvertently confounded musical training with 542 

familiarity.  543 

 544 

Neural responses predicted tempo perception 545 

One interesting yet difficult aspect of music, when it comes to studying entrainment, is 546 

that music has metrical structure; that is, there are several levels at which nested periodicities 547 

can be perceived. Here, we asked participants to tap along with short sections of each musical 548 

stimulus so that we could confirm that their perceived (tapped) beat rate matched our intended 549 

stimulation tempo. Although participants mostly tapped at the rate we intended, they 550 
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sometimes tapped at half or double the intended stimulation tempo, especially when the 551 

stimulation tempo was particularly fast or slow, respectively. Here, we applied a classification 552 

approach to demonstrate that entrained neural responses to music can predict a) whether 553 

participants tapped at double-time or half-time to stimuli with the same stimulation tempo, or 554 

b) whether stimuli to which participants tapped identically belonged to the double-time or 555 

half-time stimulation-tempo condition. Importantly, neural activity was measured in response 556 

to auditory stimulation (without movement) and the perceived metrical level was based on the 557 

beat tapping rate established in a separate part of each trial after the listening portion was 558 

over. To our knowledge, this study constitutes the first to successfully identify the specific 559 

metrical level at which individuals perceived a beat in the absence of overt movement. 560 

Nonetheless, there are a few caveats to mention. First, we chose musical stimuli that all had a 561 

relatively easy-to-perceive beat. As a result, only 11 participants had enough trials with 562 

metrically ambiguous tapping behaviour to stimuli belonging to the same intended stimulation 563 

tempo condition for conducting TRF analysis. Moreover, we initially only included the beat-564 

tapping section of each trial as a verification of the validity of our tempo manipulation. As 565 

such, we only collected tapping responses for 5.5 s per trial, and tapping behavior was quite 566 

difficult to analyze due to the short tapping epochs, which resulted in many tapping trials 567 

being discarded.  568 

 569 

TRF- and RCA-based measures show converging results 570 

In the present study, we used the TRF and RCA analysis approaches to quantify neural 571 

entrainment. Here, we have purposefully avoided the debate about whether these metrics 572 

measure entrainment “in the narrow sense” (Obleser and Kayser, 2019), meaning phase-573 

locked and (mainly) unidirectional coupling between a rhythmic input and neural activity 574 

generated by a neural oscillator (Lakatos et al., 2019) or whether neural tracking reflects 575 

convolution with an evoked response (Zuk et al., 2021). Here, we prefer to remain agnostic, 576 
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and refer rather to “entrainment in the broad sense” (Obleser and Kayser, 2019), that is neural 577 

tracking of music independent of the underlying physiological mechanism.  578 

RCA and TRF approaches share their ability to characterize neural responses to single-579 

trial, ongoing, naturalistic stimuli. As such, both techniques afford something that is 580 

challenging or impossible to accomplish with “classic” ERP analysis. However, we made use 581 

of two techniques in parallel in order to leverage their unique advantages.  RCA allows for 582 

frequency-domain analysis such as SRCoh, which can be useful for identifying neural 583 

tracking responses specifically at the beat rate, for example. Past music studies often used a 584 

“frequency-tagging” approach for this, which is based on averaging over trials in the time 585 

domain (so requires repetition of stimuli) rather than relating the neural response to the 586 

stimulus time course, and moreover operates in electrode as opposed to component space 587 

(Nozaradan et al., 2012, Nozaradan et al., 2011). TRFs rather take into account wider-band 588 

neural data, which may better capture the tracking of nested metrical structure as in music. 589 

Moreover, TRFs offer a univariate and multivariate analysis approach that allowed us to show 590 

that adding other musical features to the model did not improve the correspondence to the 591 

neural data over and above spectral flux alone. Despite their differences, we found strong 592 

correspondence between the dependent variables from the two approaches. Specifically, TRF 593 

correlations were strongly correlated with stimulation-tempo SRCoh, and this correlation was 594 

higher than for SRCoh at the first harmonic of the stimulation tempo for the amplitude 595 

envelope, derivative and beat onsets (Supplementary Fig. 5). Thus, despite being computed on 596 

a relatively broad range of frequencies, the TRF seems to be correlate with frequency-specific 597 

measures at the stimulation tempo. 598 

 599 

Conclusions 600 

This study presented new insights into neural entrainment to natural music. We compared 601 

neural entrainment to different musical features and showed strongest neural responses to the 602 
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spectral flux. This has important implications for research on neural entrainment to music 603 

research, which has so far often quantified stimulus rhythm with what we would argue is a 604 

subpar acoustic feature – the amplitude envelope. Moreover, our findings demonstrate that 605 

neural entrainment is strongest for slower beat rates, and for predictable stimuli, namely 606 

familiar music with an easy-to-perceive beat.  607 

  608 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470396
http://creativecommons.org/licenses/by/4.0/


 31 

Materials and Methods 609 

Participants 610 

Thirty-seven participants completed the study (26 female, 11 male, mean age = 25.7 years, 611 

SD = 4.33 years, age range = 19-36 years); data for 36 were included in the final analysis (see 612 

EEG data preprocessing). The sample-sizes for all projects funded by the ERC Starting Grant 613 

(ERC-STG-804029 BRAINSYNC) were pre-calculated with 24 + 4 individuals for between 614 

condition- comparisons experiments and with 32 + 4 individuals for built-in correlational 615 

experiments to obtain 80% power for a significant medium-sized effect while allowing to 616 

discard ~ 15% of the recorded data (G*Power3).  Since the current experiment was designed 617 

to have both types of comparisons, we defaulted to the larger sample size. Prior to the EEG 618 

experiment, all participants filled out an online survey about their demographic and musical 619 

background using LimeSurvey (LimeSurvey GmbH, Hamburg, Germany, 620 

http://www.limesurvey.org). All participants self-identified as German speakers. Most 621 

participants self-reported normal hearing (7 participants reported occasional ringing in one or 622 

both ears). Thirty-four participants were right- and three were left-handed. Seventeen 623 

participants reported having no musical background (0-2 years of daily music training, here 624 

termed as “non-musicians”) and 14 reported at least 6 years of musical training (“musicians”). 625 

Musical expertise was assessed using the Goldsmith Music Sophistication Index (Gold-626 

MSI;(Müllensiefen et al., 2014)). Participants received financial compensation for 627 

participating (Online: 2.50 €, EEG: 7€ per 30 min). All participants signed the informed 628 

consent before starting the experiment. The study was approved by the Ethics Council of the 629 

Max Planck Society Ethics Council in compliance with the Declaration of Helsinki.  630 

 631 

Stimuli 632 

The stimulus set started from 39 instrumental versions of musical pieces from different 633 

genres, including techno, rock, blues, and hip-hop. The musical pieces were available in a 634 
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*.wav format on Qobuz Downloadstore (https://www.qobuz.com/de-de/shop). Each musical 635 

piece was segmented manually using Audacity (Version 2.3.3, Audacity Team, 636 

https://www.audacityteam.org) at musical phrase boundaries (e.g., between chorus and verse), 637 

leading to a pool of 93 musical segments with varying lengths between 14.4 – 38 s. We did 638 

not use the beat count from any publicly available beat-tracking softwares, because they did 639 

not track beats reliably across genres. Due to the first Covid-19 lockdown, we assessed the 640 

original tempo of each musical segment using an online method. Eight tappers, including the 641 

authors, listened to and tapped to each segment on their computer keyboard for a minimum of 642 

17 taps; the tempo was recorded using an online BPM estimation tool 643 

(https://www.all8.com/tools/bpm.htm). In order to select stimuli with unambiguous strong 644 

beats that are easy to tap to, we excluded 21 segments due to high variability in tapped 645 

metrical levels (if more than 2 tappers tapped different from the others) or bad sound quality. 646 

The remaining 72 segments were then tempo-manipulated using a custom-written 647 

MAX patch (Max 8.1.0, Cycling ’74, San Francisco, CA, USA). Each segment was shifted to 648 

tempi between 1–4 Hz in steps of 0.25 Hz. Subsequently, the authors screened all of the 649 

tempo-shifted music and eliminated versions where the tempo manipulation led to acoustic 650 

distortions, made individual notes indistinguishable, or excessively repetitive. Overall, 703 651 

music stimuli with durations of 8.3–56.6 sec remained. All stimuli had a sampling rate of 652 

44,100 Hz, were converted from stereo to mono, linearly ramped with 500-ms fade-in and 653 

fade-out and root-mean-square normalized using Matlab (R2018a; The MathWorks, Natick, 654 

MA, USA). A full overview of the stimulus segments can be found in the Supplementary 655 

Material (Supplementary Table 1). 656 

Each participant was assigned to one of four pseudo-randomly generated stimulus 657 

lists. Each list comprised 4–4.6 min of musical stimulation per tempo condition (Kaneshiro et 658 

al., 2020), resulting in 7–17 different musical segments per tempo and a total of 159–162 659 

segments (trials) per participant. Each segment was repeated only once per tempo but was 660 
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allowed to occur for up to three times at different tempi within one experimental session 661 

(tempo difference between two presentations of the same segment was 0.5 Hz minimum). The 662 

presentation order of the musical segment was randomly generated for each participant prior 663 

to the experiment. The music stimuli were played at 50 dB sensation level (SL), based on 664 

individual hearing thresholds that were determined using the method of limits (Leek, 2001).    665 

 666 

Experimental design 667 

After attaching the EEG electrodes and seating the participant in an acoustically and 668 

electrically shielded booth, the participant was asked to follow the instructions on the 669 

computer screen (BenQ Monitor XL2420Z, 144Hz, 24”, 1920x1080, Windows 7 Pro (64-670 

bit)). The auditory and visual stimulus presentation was achieved using custom-written 671 

Matlab scripts using Psychtoolbox (PTB-3, (Brainard, 1997)) in Matlab (R2017a; The 672 

MathWorks, Natick, MA, USA).  673 

The overall experimental flow for each participant can be found in Figure 1A. First, 674 

each participant conducted a self-paced spontaneous motor tempo task (SMT; (Fraisse, 1982)) 675 

which is a commonly used technique to assess individual’s preferred tapping rate (Rimoldi, 676 

1951, McAuley, 2010). To obtain SMT, each participant tapped for thirty seconds (3 677 

repetitions) at a comfortable rate with a finger on the table close to a contact microphone 678 

(Oyster S/P 1605, Schaller GmbH, Postbauer-Heng, Germany). Second, we estimated 679 

individual’s hearing threshold using the method of limits. All sounds in this study were 680 

delivered by a Fireface soundcard (RME Fireface UCX Audiointerface, Audio AG, 681 

Haimhausen, Germany) via on-ear headphones (Beyerdynamics DT-770 Pro, Beyerdynamic 682 

GmbH & Co. KG, Heilbronn, Germany). After a short three-trial training, the main task was 683 

performed. The music stimuli in the main task were grouped into eight blocks with 684 

approximately 20 trials per block and the possibility to take a break in between.  685 
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Each trial comprised two parts: attentive listening (music stimulation without 686 

movement) and tapping (music stimulation + finger tapping; Fig. 1A). During attentive 687 

listening, one music stimulus was presented (8.3–56.6 s) while the participant looked at a 688 

fixation cross on the screen; the participant was instructed to mentally locate the beat without 689 

moving. Tapping began after a 1-s interval; the last 5.5 s of the previously listened musical 690 

segment were repeated, and participants were instructed to tap a finger to the beat of the 691 

musical segment (as indicated by the replacement of the fixation cross by a hand on the 692 

computer screen). Note that 5.5 s of tapping data is not sufficient to conduct standard analyses 693 

of sensorimotor synchronization; rather, our goal was to confirm that the participants tapped 694 

at the intended beat rate based on our tempo manipulation. After each trial, participants were 695 

asked to rate the segment based on enjoyment/pleasure, familiarity and ease of tapping to the 696 

beat with the computer mouse on a visual analogue scale ranging from -100 to +100. At the 697 

end of the experiment, the participant performed the SMT task again for three repetitions.  698 

 699 

EEG data acquisition 700 

EEG data were acquired using BrainVision Recorder (v.1.21.0303, Brain Products GmbH, 701 

Gilching, Germany) and a Brain Products actiCap system with 32 active electrodes attached 702 

to an elastic cap based on the international 10-20 location system (actiCAP 64Ch Standard-2 703 

Layout Ch1-32, Brain Products GmbH, Gilching, Germany). The signal was referenced to the 704 

FCz electrode and grounded at the AFz position. Electrode impedances were kept below 10 705 

kOhm. The brain activity was acquired using a sampling rate of 1000 Hz via a BrainAmp DC 706 

amplifier (BrainAmp ExG, Brain Products GmbH, Gilching, Germany). To ensure correct 707 

timing between the recorded EEG data and the auditory stimulation, a TTL trigger pulse over 708 

a parallel port was sent at the onset and offset of each musical segment and the stimulus 709 

envelope was recorded to an additional channel using a StimTrak (StimTrak, Brain Products 710 

GmbH, Gilching, Germany).    711 
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 712 

Data Analysis 713 

Behavioral data. Tapping data was processed offline with a custom-written Matlab script. To 714 

extract the taps, the *.wav files were imported and downsampled (from 44.1 kHz to 2205 Hz). 715 

The threshold for extracting the taps was adjusted for each trial manually (SMT and music 716 

tapping) and trials with irregular tap intervals were rejected. The SMT results were not 717 

analyzed as part of this study and will not be discussed further. For the music tapping, only 718 

trials with at least three taps (two intervals) were included for further analysis. Five 719 

participants were excluded from the music tapping analysis due to irregular and inconsistent 720 

taps within a trial (if > 40% of the trials were excluded).  721 

One of our goals was to test whether we could identify trials based on the neural data 722 

where the perceived tempo differed from the intended stimulation rate (see Brain responses to 723 

musical features can predict the produced beat tapping rate). For this analysis, we identified 724 

two subsets of participants: those that tapped the same tempo to two sets of stimuli with 725 

different intended stimulation tempi, and those that tapped the intended stimulation tempo on 726 

some trials and a different tempo than what was intended (the harmonic or subharmonic) on 727 

other trials. We identified 19 participants that tapped for at least 6 trials at the intended 728 

stimulation tempo and tapped for at least 6 trials at the same tempo when the stimulation 729 

tempo was something different (double the tapped tempo; i.e., participants tapped at half the 730 

intended stimulation tempo). In contrast, we identified 11 participants that tapped for at least 731 

6 trials at the intended stimulation tempo and for at least 6 trials at half-/double the 732 

stimulation tempo. TRFs were submitted to a SVM classifier (see section EEG – Temporal 733 

Response Function).  734 

On each trial, participants were asked to rate the musical segments based on 735 

enjoyment/pleasure, familiarity and ease to tap to the beat. The rating scores were normalized 736 

to the maximum absolute rating per participant and per category. For the group analysis the 737 
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mean and standard error of the mean (SEM) were calculated. For assessing the effects of each 738 

subjective dimension on neural entrainment, the 15 trials with the highest and lowest ratings 739 

(regardless of the tempo) per participant were further analyzed (see EEG – Temporal 740 

Response Function). 741 

 742 

Audio Analysis. We assessed neural entrainment to four different musical features (Fig. 1B-743 

C). Note that the term “musical feature” is used to describe time-varying features of music 744 

that operate on a similar time-scale as neural entrainment as opposed to the classical musical 745 

elements such as syncopation or harmony; 1) Amplitude envelope – gammatone filtered 746 

amplitude envelope in the main manuscript and absolute value of the full-band Hilbert 747 

envelope in the Supplementary Material; the gammatone filterbank consisted of 128 channels 748 

linearly spaced between 60-6000 Hz. 2) Half-wave rectified, first derivative of the amplitude 749 

envelope, which detects energy changes over time and is typically more sensitive to onsets 750 

(Daube et al., 2019, Di Liberto et al., 2020). 3) Binary-coded beat onsets (0= no beat; 1=beat); 751 

a professionally trained percussionist tapped with a wooden drumstick on a MIDI drum pad to 752 

the beat of each musical segment at the original tempo (3 trials per piece). After latency 753 

correction, the final beat times were taken as the average of the two takes with the smallest 754 

difference (Harrison and Müllensiefen, 2018). 4) Spectral novelty (“spectral flux”) (Mller, 755 

2015) was computed using a custom-written Python script (Python 3.6, Spyder 4.2.0) using 756 

the packages numpy and librosa. For computing the spectral flux of each sound, the 757 

spectrogram across frequencies of consecutive frames (frame length = 344 samples) was 758 

compared. All stimulus features were z-scored and downsampled to 128 Hz for computing the 759 

stimulus-brain synchrony.   760 

To validate that each musical feature contained acoustic cues to our tempo 761 

manipulation, we conducted a discrete Fourier transform using a Hamming window on each 762 
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musical segment (resulting frequency resolution of 0.0025 Hz), averaged and z-scored the 763 

amplitude spectra per tempo and per musical feature (Fig. 1C).   764 

To assess how much information the different musical features share, a mutual 765 

information (MI) score was computed between each pair of musical features (Fig. 1D). MI (in 766 

bits) is a time-sensitive measure that quantifies the reduction of uncertainty for one variable 767 

after observing a second variable (Cover and Thomas, 2005). MI was computed using 768 

quickMI from the Neuroscience Information Theory Toolbox with 4 bins, no delay, and a p-769 

value cut-off of 0.001 (Timme and Lapish, 2018). For each stimulus feature, all trials were 770 

concatenated in the same order for each tempo condition and stimulation subgroup (Time x 13 771 

Tempi x 4 Subgroups). MI values for pairs of musical features were compared to surrogate 772 

datasets in which one musical feature was time reversed (Fig. 1D). To statistically asses the 773 

shared information between musical features, a three-way ANOVA test was performed (with 774 

first factor: data-surrogate comparison; second factor: tempo and third factor: stimulation 775 

subgroup). 776 

 777 

EEG data preprocessing. Unless stated otherwise, all EEG data were analyzed offline using 778 

custom-written Matlab code (R2019b; The MathWorks, Natick, MA, USA) combined with 779 

the Fieldtrip toolbox (Oostenveld et al., 2011). The continuous EEG data were bandpass 780 

filtered between 0.5-30 Hz (Butterworth filter), re-referenced to the average reference, 781 

downsampled to 500 Hz, and epoched between 1 s after stimulus onset (to remove onset 782 

responses to the start of the music stimulus) until the end of the initial musical segment 783 

presentation (attentive listening part of the trial). Single trials and channels containing large 784 

artefacts were removed based on an initial visual inspection. Missing channels were 785 

interpolated based on neighbouring channels with a maximum distance of 3 cm 786 

(ft_prepare_neighbours). Subsequently, Independent Component Analysis (ICA) was applied 787 

to remove artefacts and eye movements semi-automatically. After transforming the data back 788 
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from component to electrode space, electrodes that exceeded 4 standard deviations of the 789 

mean (of the squared data) for at least 10% of the recording time were excluded. If bad 790 

electrodes were identified, pre-processing for that recording was repeated after removing the 791 

identified electrode (Kaneshiro et al., 2020). Next, noisy segments of the single-trial, single-792 

electrode recordings were rejected. For the RCA analysis, the data points were replaced by 793 

NaNs when the segment exceeded a threshold of two standard deviations of the single-trial, 794 

single-electrode mean amplitude. For the TRF analysis, which does not operate on NaNs, 795 

noisy transients were replaced by estimates using spherical spline interpolation with a pre- 796 

and post- window length of 0.5 s. This step was repeated four times to ensure that all artefacts 797 

were removed (Kaneshiro et al., 2020). The dataset of one participant was discarded because 798 

of large artefacts in the EEG signal and for not following the experimental instructions. The 799 

behavioral and neural data of the remaining 36 participants were utilized for further analysis. 800 

Next, the data were restructured to match the requirements of the RCA or TRF (see 801 

sections EEG – Temporal Response Function and EEG – Reliable Component Analysis), 802 

downsampled to 128 Hz and z-scored. For the RCA analysis approach, the trials in each 803 

tempo condition were concatenated resulting in a time-by-electrode matrix (Time x 33 804 

Electrodes; with Time varying across tempo condition). Subsequently the data of participants 805 

in the same subgroup were pooled together in a time-by-electrode-by-participant matrix (Time 806 

x 33 Electrodes x 9 or 10 Participants depending on the subgroup). In contrast to the RCA, for 807 

TRF analysis, trials in the same stimulation condition were not concatenated in time, but 808 

grouped into cell arrays per participant according to the stimulus condition (Tempo x Trials x 809 

Electrodes x Time). 810 

 811 

EEG – Reliable Component Analysis. To reduce data dimensionality and enhance the signal-812 

to-noise ratio, we performed RCA (reliable components analysis, also correlated components 813 

analysis) (Dmochowski et al., 2012). RCA is designed to capture the maximum correlation 814 
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between datasets of different participants by combining electrodes linearly into a vector space. 815 

One important feature of this technique is that it maximizes the correlation between electrodes 816 

across participants (which differentiates it from the similar canonical correlation analysis) 817 

(Madsen et al., 2019). Using the rcaRun Matlab function (Dmochowski et al., 2012, 818 

Kaneshiro et al., 2020), the time-by-electrode matrix was transformed to a time-by-819 

component matrix with the maximum across-trial correlation in the first reliable component 820 

(RC1), followed by components with correlation values in descending order. For each RCA 821 

calculation, for each tempo condition and subgroup, the first three RCs were retained, 822 

together with forward-model projections for visualizing the scalp topographies. The next 823 

analysis steps in the time and frequency-domain were conducted on the maximally correlated 824 

RC1 component.  825 

To examine the correlation between the neural signal and stimulus over time, the 826 

stimulus-response correlation (SRCorr) was calculated for every musical feature. This 827 

analysis procedure was adopted from (Kaneshiro et al., 2020). In brief, every stimulus feature 828 

was concatenated in time with trials of the same tempo condition and subgroup to match the 829 

neural component-by-time matrix. The stimulus features were temporally filtered to account 830 

for the stimulus–brain time lag, and the stimulus features and neural time-courses were 831 

correlated. To create a temporal filter, every stimulus feature was transformed into a Toeplitz 832 

matrix, where every column repeats the stimulus-feature time course, shifted by one sample 833 

up to a maximum shift of 1 s, plus an additional intercept column. The Moore-Penrose 834 

pseudoinverse of the Toeplitz matrix and temporal filter was used to calculate the SRCorr. To 835 

report the SRCorr, the mean (± SEM) correlation coefficient across tempo conditions for 836 

every stimulus feature was calculated. For comparing tempo-specificity between musical 837 

features, a linear regression was fit to SRCorr values (and TRF correlations) as a function of 838 

tempo for every participant and for every musical feature (using fitlm). We compared the 839 

resulting slopes across musical features with a one-way ANOVA 840 
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Stimulus-response coherence (SRCoh) is a measure that quantifies the consistency of 841 

phase and amplitude of two signals in a specific frequency band and ranges from 0 (no 842 

coherence) to 1 (perfect coherence) (Srinivasan et al., 2007). Here, the magnitude-squared 843 

coherence between different stimulus features and neural data was computed using the 844 

function mscohere with a Hamming window of 5 s and 50% overlap, resulting in a frequency 845 

range 0–64 Hz with a 0.125 Hz resolution. For visualizing the mean frequency response per 846 

musical feature, the coherence values at each stimulation tempo were normalized by dividing 847 

by the mean coherence across all other stimulation tempi per frequency bin (Fig. 2E-H) (van 848 

Bree et al., 2021). As strong coherence was found at the stimulation tempo and the first 849 

harmonic, the SRCoh values of each frequency vector were compared between musical 850 

features.   851 

   852 

EEG – Temporal Response Function. The TRF is a system identification technique, which 853 

computes a filter that optimally describes the relationship between the brain response and 854 

stimulus features (Ding and Simon, 2012, Crosse et al., 2016). Via linear convolution, the 855 

filter delineates how the stimulus features map onto the neural response (forward model), 856 

using ridge regression to avoid overfitting. All computations of the TRF used the Matlab 857 

toolbox “The multivariate Temporal Response Function (mTRF) Toolbox” (Crosse et al., 858 

2016). The TRF was calculated in a leave-one-out cross-validation manner for all trials per 859 

stimulation tempo; this procedure was repeated for each musical feature separately, and 860 

additionally for all musical features together in a multivariate model (using mTRFcrossval 861 

and mTRFtrain) using time lags 0–400 ms (Di Liberto et al., 2020). Using mTRFpredict, the 862 

neural time course of the left-out trial was predicted based on the time course of the 863 

corresponding musical feature of that trial. The quality of the predicted neural data was 864 

assessed by computing Pearson correlations between the predicted and actual EEG data 865 

separately for each electrode (TRF correlations). We averaged over the eight electrodes with 866 
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the highest TRF correlations that also corresponded to a canonical auditory topography. To 867 

quantify differences in the TRFs, the mean TRF correlation across stimulation tempo and/or 868 

musical feature was calculated per participant. The TRF weights across time lags were Fisher-869 

z-scored (Fig. 3C-F) (Crosse et al., 2016). 870 

The assessment of TRF weights across time lags was accomplished by using a 871 

clustering approach for each musical feature and comparing significant data clusters to 872 

clusters from a random distribution (Fig. 3C-F). To extract significant time windows in which 873 

the TRF weights were able to differentiate the different tempo conditions, a one-way ANOVA 874 

was performed at each time point. Clusters (consecutive time windows) were identified if the 875 

p-value was below a significance level of 0.05 and the size and F-statistic of those clusters 876 

were retained. Next, the clusters were compared to a surrogate dataset, which followed the 877 

same procedure, but had the labels of the tempo conditions randomly shuffled before entering 878 

it to the ANOVA. This step was repeated for 1000 times (permutation testing). At the end, the 879 

significance of clusters was evaluated by subtracting the proportion of times the summed F-880 

values of each clusters exceeded the summed F-values of the surrogate clusters from 1. A p-881 

value below 0.05 was considered significant (Fig. 3G-I). This approach yielded significant 882 

regions for the full-band (Hilbert) envelope and derivative (Supplementary Fig. 4). As these 883 

clusters did not show differences across amplitudes but rather in time, a latency analysis was 884 

conducted. Therefore, local minima around the grand average minimum within the significant 885 

time lag window were identified for every participant/tempo condition and the latencies 886 

retained. As there was no significant correlation between latencies and tempo conditions, the 887 

stimulation tempi were split upon visual inspection into two groups (1-2.5 Hz and 2.75-4 Hz). 888 

Subsequently, a piecewise linear regression was fitted to the data and the root mean square 889 

error (RMSE) and p-value calculated (Supplementary Fig. 4G, K).  890 

TRFs were evaluated based on participant ratings of enjoyment, familiarity, and ease 891 

to tap to the beat. Two TRFs were calculated per participant based on the 15 highest and 15 892 
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lowest ratings on each measure (ignoring tempo condition and subgroup), and the TRF 893 

correlations and time lags were compared between the two groups of trials (Fig. 5). 894 

Significant differences between the groups were evaluated based on paired-sample t-tests.  895 

The effect of musical sophistication was analyzed by computing the Pearson 896 

correlation coefficients between the maximum TRF correlation across tempi per participant 897 

and the general musical sophistication (Gold-MSI) per participant (Supplementary Fig. 6). 898 

A support vector machine (SVM) classifier tested whether TRFs captured information 899 

about the intended stimulation tempo, the perceived beat rate, or both (Fig. 6). As described 900 

previously (see Behavioral Analysis), individual tempo conditions were identified in which 901 

participants tapped the same rate for two sets of trials that had different intended stimulation 902 

tempi, and conditions were also identified in which participants tapped two different rates in 903 

response to the same intended stimulation tempo. TRF analysis was performed separately for 904 

those two groups of trials, and the z-scored TRF weights were fed into the SVM classifier. 905 

First, the SVM classifier was trained to predict the stimulation tempo based on the TRF 906 

weights for trials on which the stimulation tempo corresponded to the tapped rate versus trials 907 

when the same tapped rate was twice the stimulation tempo (tapped rate = intended 908 

stimulation tempo vs. same tapped rate = 2*stimulation tempo; n=19). In comparison, we next 909 

identified participants that tapped for 6 trials at the intended tempo and for 6 trials at the 910 

harmonic of that intended tempo (intended stimulation tempo = tapped rate vs. same 911 

stimulation tempo = 2*tapped rate, n=13). The resulting TRFs were used to predict the tapped 912 

rate of the participants. Overall, the classifier was trained to find the optimal hyperplane that 913 

separates the data (fitcsvm) and was validated in with a leave-one-out cross-validation method 914 

(crossval). Classification error (quantified with kfoldLoss) was compared to a surrogate 915 

condition in which the labels of the classifier were randomly shuffled during the training step. 916 

The SVM was computed for 100 iterations of the surrogate data. An SVM-accuracy metric 917 

was quantified as: 918 
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𝐷𝑎𝑡𝑎 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦−𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝐷𝑎𝑡𝑎 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
      (1) 919 

leading to a matrix of 4 Musical Features x 13 or 19 Tempo conditions x 100 SVM 920 

repetitions.  921 

 922 

EEG – Comparison of TRF and RCA measures. The relationship between the TRF analysis 923 

approach and the SRCorr was calculated using a linear-mixed effects model (using fitlme). 924 

Participant and tempo were random (grouping) effects; SRCorr the fixed (predictor) effect 925 

and TRF correlations the response variable. To examine the underlying model assumption, the 926 

residuals of the linear-mixed effects model were plotted and checked for consistency. The 927 

best predictors of the random effects and the fixed-effects coefficients (beta) were computed 928 

for every musical feature and illustrated as violin plot (Fig. 4).  929 

  930 

Statistical Analysis.  931 

For each analysis, we assessed the overall difference between multiple subgroups 932 

using a one-way ANOVA. To test for significant differences across tempo conditions and 933 

musical features (TRF Correlation, SRCorr and SRCoh), repeated-measure ANOVAs were 934 

conducted coupled to Tukey’s test and Greenhouse-Geiser correction was applied when the 935 

assumption of sphericity was violated (as calculated with the Mauchly’s test). As effect size 936 

measures, we report partial η2 for repeated-measures ANOVAs and requivalent for paired sample 937 

t-test (Rosenthal and Rubin, 2003). Where applicable, the p-values were corrected using the 938 

False Discovery Rate (FDR).  939 
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