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Abstract

Habitat suitability models are useful tools for a variety of wildlife management objectives. Distributions of 
wildlife species can be predicted for geographical areas that have not been extensively surveyed. The basis 
of these models' work is to minimize the relationship between species distribution and biotic and abiotic 
environments. For some species, there is information about presence and absence that allows the use of a 
variety of standard statistical methods, however, the absence data is not available for most species. 
Nowadays, the methods that need presence-only data are expanded. One of these methods is the Maximum 
Entropy (MaxEnt) modeling. The purpose of this study is to model the habitat of Urial (Ovis orientalis arkal) 
in the Samelghan plain in the North East of Iran with the MaxEnt method. This algorithm uses the Jackknife 
plot and percent contribution values to determine the significance of the variables. The results showed that 
variables such as southern aspects, Juniperus-Acer, Artemisia-Perennial plants, slope 0-5%, and asphalt road 
were the most important factors affecting the species’ habitat selection. The area under curve (AUC) 
Receiver Operating Characteristic (ROC) showed an excellent model performance. Suitable habitat was 
classified based on the threshold value (0.0513) and the ROC, which based on the results 28% of the area 
was a suitable habitat for Urial.

Introduction

Suitable habitat has a significant impact on the survival and reproduction of species, management, and 
conservation of wildlife [1,2]. Global diversity in recent decades has declined due to land-use changes, 
climate change [3], habitat destruction and fragmentation, invasive species, overexploitation [4].

Habitats modeling is predicting species geographical distribution based on environmental conditions of 
known sites, as well as an important method in analytical biology with applications in environmental 
protection and planning, evolution, epidemiology, ecology, management of invasive species, and other fields 
[5]. Species distribution models (SDMs) are empirical models relating field observations to environmental 
predictor variables based on statistically or theoretically derived response surfaces [6,2]. SDMs estimate the 
relationship between species records at sites and the environmental and/or spatial characteristics of those 
sites [7,2,8].

Generally, due to the irregular distribution of species in habitats, it is difficult and costly to determine 
the exact distribution of species [9], therefore, such models are naturally static and probable, because 
statistically, the geographical distribution of species or communities are related to their current habitats [10], 
so these models can perform well in describing the natural distribution of species (within their current range). 
It is essential to accurately estimate the distribution of species, to ensure that environmental protection 
planning efforts are more beneficial in managed areas [9]. Species distribution models or habitat suitability 
models allow potentially predicting human effects on biodiversity patterns at different spatial scales, the 
origin more of modeling methods to predict of fauna and flora distribution have in environmental-species 
relations [11]. Habitat models of habitat-wildlife relationships are used to assess the potential of the area 
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[12] and to create habitat patterns for species that are introduced or present in the area [13,14]. Digital 
distribution maps of species for basic and applied environmental research [15] based on powerful statistical 
software and Geographic Information System (GIS) tools, depending on the environmental needs of the 
species and their geographical distribution leads to the development of habitat modeling [16]. For some 
species, there is information about presence and absence that allows the use of a variety of standard statistical 
methods, however, the absence data is not available for most species [17]. 

Habitat evaluation models are divided into two groups, the group that needs presence and absence data 
and the group that needs the presence-only data, achieving the right non-presence data requires continuous 
monitoring of the habitat, recording the presence and absence of species for many years, and obtaining 
sufficient information about species ecology [18], because, reliable information about the absence of wildlife 
species cannot be easily obtained due to elusive behavior and patterns of activity [19], methods based on 
presence and absence data are exposed to the phenomenon of pseudo-absence. In other words, species 
observation by the observer for a variety of reasons, such as observer accuracy, equipment used, species 
behavior in camouflage, and concealment, causes that point to be recorded as the non-presence. This can 
lead to errors in data analysis [20]. Therefore, the use of models that only require the presence can prevent 
using pseudo-absence data [21]. As a result, modeling techniques that require presence-only data are 
extremely valuable [17].

Nowadays, the methods that need presence-only data are expanded. One of these methods is Maximum 
Entropy (MaxEnt) modeling. The MaxEnt model has proven to be highly effective in determining habitat 
suitability and species distribution because it relies solely on presence data and lacks many of the effects 
associated with presence-absence analytical methods [22]. The purpose of this study is to model the habitat 
of Urial (Ovis orientalis arkal) in the Samelghan plain (north-eastern Iran) areas with the MaxEnt method. 
The importance of this region is due to the existence of the Rivi archaeological site and because, based on 
the samples obtained from zooarcheological studies, the historical distribution of species can be understood. 
Also, with zooarchaeology and analysis of animal remains, it is possible to reconstruct past habitats [23,24]. 
Indeed, this study may serve as a pilot project and will give a basic outline for future investigations along 
with the Tappe Rivi Project that will estimate wildlife versus animal management through ancient times and 
in comparison to modern fauna.
Material and methods
Study area

The Samelghan plain (10 km south of Atrak Valley) is located in Northern Khorasan province, North 
East of Iran, and exhibits an ancient settlement area of more than 100 ha with four major Tappe ruins. The 
archaeological remains date back from the Late Bronze and Iron Age throughout the early historic periods 
of the Achaemenid and Sassanid empires (approx. 1500 BC until 500 AD), plus a succeeding village-like 
occupation during Early Islamic times [25,26]. The study area covers an area of 1116.6 Km2 (Fig. 1), which 
is located in the geographical position of 37⁰ 21´ to 37⁰ 40´ north latitude and 56⁰ 26´ to 57⁰ 06´ east 
longitude.
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Fig. 1. Location of the study area in Iran.
Species studied

Ovis orientalis populations have been decreasing both in size and geographical range in Iran. Poaching, 
habitat destruction, and competition from livestock have been recognized as the main causes of population 
decline [27,28]. Urial (Ovis orientalis arkal) is a subspecies of Ovis orientalis [29] that occurs on rolling 
hills and gentle mountain slopes in northeast Iran. Urial is currently listed as vulnerable (VU) by IUCN [27].

Occurrence and Environmental Data

Lack of information about the absence of species complicates the use of conventional environmental 
modeling tools, because some of these models rely on presence and absence data [8]. For this reason, a 
modeling technique that does not require absence data was used to identify the environmental factors that 
explain the distribution of Urial in the Samelghan area. The MaxEnt is a correlative model based on the 
principle of maximum entropy to predict or infer species occurrence using presence-only data and 
environmental variables [7,30,31,32,33,34,35]. This algorithm is one of the methods that, despite the small 
number [30] of presence points have high predictability, and has been widely used by researchers due to 
time savings and reduced study costs [36,37]. The MaxEnt method uses the presence-only data as a sample 
and environmental factor classes as environmental variables for modeling in the study area, it also calculates 
the correlation between the dependent variable and the environment variable [33].

The environmental variables used for modeling include topography and geomorphology, climatology, 
land use, vegetation, water resources, and human development variables such as villages and roads. Also, 
class maps of slope percentages and the main aspects were prepared by using DEM. All variables were 
converted to raster maps after digitization with 30×30 m cell size. After determining the border of the region 
based on the watershed, all variable were clipped according to the border. In order to collect occurrence 
records, the distance sampling method [38,39], direct observations, also,  information from the province's 
environmental experts were obtained. the geographical coordinates of the point were recorded using the 
Global Positioning System (GPS) as the presence-point, with a total of 53 points (Fig. 1) were obtained for 
the Urial species in the Samelghan plain.

Results
The MaxEnt model produces the prediction map, response curves of the variables used,the ROC plot 

with the AUC (Area Under Curve), and Jackknife's plot of analysis help researchers to interpret and 
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understand the outcomes of the MaxEnt model. In the MaxEnt method, the map of the potential suitability 
of the habitat provides a range of suitability for the habitat. The continuous map is shifting between 0 to 1 
(Fig. 2) So that if the suitability goes to 1, the habitat for species has higher suitability, and in the same way, 
it moves to 0, the suitability of the habitat decreases [40].

Fig. 2. The Habitat continuous map.

In order to use the model in predicting the presence of the species, it is necessary, evaluate and validate 
the model to determine its accuracy. The area under curve (AUC) Receiver Operating Characteristic (ROC), 
which equates to the probability of correct detection between presence and absence points by a model, has 
been widely used as the best evaluation standard in species distribution [41]. 

The ROC curves evaluate each value of a prediction result as a possible judging threshold [42]. The 
ROC curve is one of the most common statistical methods widely used in species distribution modeling to 
evaluate predictive models [7]. The level below the curve (ROC), is the probability of discernment power 
between the presence and absence data of a model [4343]. The range of AUC values of 0.5 indicates the 
lowest predictive ability or not different from a randomly selected predictive distribution, and a value of 1.0 
indicates perfect model performance [17,44,45, 42]. In this study, the ROC curve for Urial was 0.981, with 
a standard deviation of 0.001, which indicates the ability to detect very good performance (Fig. 3).
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Fig. 3. The ROC curve and AUC value.

In the process of modeling species distribution, it is also important to know which variables and to what 
extent they are involved in predicting species presence. The Jackknife results are displayed in a bar plot to 
illustrate how the model is run using all input variables, as well as without one variable and using only one 
variable [46,33]. The Jackknife test provides statistical and accurate estimates of the importance of variables 
in model prediction. This method removes a variable at runtime and executes the model based on the 
remaining variables. It then creates a model with each of the dropped variables and finally creates the final 
model with all the variables participating in the model [47]. The plot shows the importance of variables in 
three different colors; The blue color indicates how much of the species information is justified when running 
the model with only one variable, the light green indicates the implementation of the model without the 
desired variable, and the red color indicates the implementation of the model with all variables [43]. The 
JackKnife test provides the importance of variables by implementing an effective bootstrap algorithm in the 
distribution of species [48]. Based on the plot, it can determine which variables alone are most influential in 
modeling (Fig. 4). 
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Fig. 4. The jackknife plot in determining the importance of variables.

According to our data, the southern aspects are the most effective variable for predicting the distribution 
of the occurrence data that with remove it, the greatest reduction in the amount of the AUC occurs. These 
results are used to determine which variables have the greatest influence on probability-presence on the 
MaxEnt model [33]. Table 1 showed the relative percent values of each of the environmental variables in 
the distribution of Urial at the surface of the Samelghan plain. 
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Table 1
Percent contribution values of variables used in modeling.

Variable Percent 
contribution

Variable Percent 
contribution

Juniperus-Acer 14.7 Eastern Aspects 1.7
The Slope 0-5% 12.8 The slope 5-10% 1.4
Artemisia 11.2 Hill 2/1 1.2
Asphalt road 8.9 Western Aspects 1.1
Cotoneaster-Colutea 6.1 Plateau 3/1 1.1
Artemisia-Perennial plants 5.5 Elevation 900-1500 m 1
Thin forest 3.1 River 1
The slope >30% 2.4 Artemisia-Astragalus 0.9
The slope 10-15 2.4 Rhamnus 0.7
Mountain1/2 2.2 Mediterranean climate 0.6
Elevation >2400 m 2.1 Northern Aspects 0.5
Residential village 2 Elevation 1400-1900 m 0.5
Dense pastures 2 Uninhabited Villages 0.5
Southern Aspects 2 Irrigated agriculture 0.4
Juniperus-Crataegus 2 Semi-dense forests 0.4
Wet climate 1.9 Rainfed agriculture 0.3
Semi-dense pastures 1.9 Juniperus 0.1
Dirt road 1.7

Created map for species was entered into the ArcGIS10.3 and according to the threshold value obtained 
from the model (0.0513) for Urial, the habitat was divided into a binary map (suitable/unsitable areas) (Fig. 
5). The final habitat suitability map has been prepared from the results and interpretation of the Jackknife 
plot, the response curve, and the ROC curve based on the presence-only data of species in the region.

Fig. 5. The habitat classification map.

Discussion
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Habitat suitability models are useful tools for a variety of wildlife management objectives. Distributions 
of wildlife species can be predicted for geographical areas that have not been extensively surveyed [49]. 
Habitat models are also useful for predicting areas that may not currently be used by wildlife species [50]. 
The basis of these models' work is to minimize the relationship between species distribution and biotic and 
abiotic environments [51].

The MaxEnt identifies important variables in determining suitable/unsuitable habitats and the 
importance of each variable in increasing or decreasing the likelihood of species presence the space. The 
AUC value obtained was 0.981, therefore, this model provide new information about the potential 
distribution of the species with fairly good accuracy.

The most important variables are obtained based on the "percent contribution values" and "Jackknife 
test" include; Juniperus-Acer, the areas with a slope of 0-5%, Artemisia-Perennial Plants, mountain 1/2 (high 
mountains with deep valleys consisting of limestone, metamorphic and igneous rocks), southern aspects, and 
asphalt road. These variables have the most impact on modeling compared to other variables used in the 
model, that is by eliminating each of these variables, the most change will be in the chart and finally the 
most change in the final model.

The slope variable of 0-5% is one of the variables that were important in Maxent's results. The species 
response curve for this variable showed that this factor was effective in the absence of species and reduced 
suitability. In other words, areas with higher slopes are more important in the presence of the species and 
habitat suitability.As shownin figure 6, steep slopesare so important in the presenceof the species that the 
suitability of the habitat will begreatly reduced by increasing the distance. In studies that have been shown 
in other areas for Urial species, high slopes classes are more important [48]. The asphalt road variable is 
important in habitat modeling of the study area because of its high abundance in the basin and species habitat. 
This variable causes the habitat fragmentation. The probability of presence is highrt in habitats that are far 
from this variable, so that with increasing distance from this variable, the suitability of habitat increases as 
well. In the present study, the results showed that the species differently response to each of the 
environmental variables. Thus, some variables contribute more to modeling, That is, they are very effective 
in modeling the presence of the species. This function can have a variety of causes, including the presence 
of a competing species, the hunters, the food sources, and many other factors that affect the presence of the 
species. 
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Fig. 6. The response curves of Urial to environmental variables.

Our results show that environmental variables cause significant changes in the suitability models for the 
Urial and based on these changes, management decisions can be made to protect species. Indeed, it is 
suggested that:
- since the area was not under cultivation, other species should be identified and examined, if possible, to 

define the area as a "No-hunting area".
- along with future results of the zoo-archaeology for the ancient periods, one may also ancient wildlife 

habitats modeling and possible changes as well as the impact of human-animal management.
Habitat suitability map in the Samelghan plain shows that habitats are important for Urial that are outside 

residential areas and human activities. However, some areas, such as roads and parts of agricultural lands 
are in the suitable habitat for the species, it is because of the expansion of roads and the development of 
human activities in the study area.

Finally, Maxent produces the final map based on the effects of all environmental variables that effect 
increasing and decreasing suitability. Suitable habitat indicates the importance and interaction of all the 
environmental classes used in modeling. This study showed that approximately 28% (313 Km2) of the 
Samelghan plain is a suitable habitat for the Urial. The habitat's predicted in the areas of the region, which 
has at least overlap with human activity, also, least conflict than other parts of the region. These areas include 
a habitat that has better quality in terms of nutrition and shelter. According to the obtained map, it can be 
understood to what extent human activities have been effective in fragmenting the habitat of Urial . Areas 
suitable for Urial are mostly extended in the highlands of the study area, including hills and mountains.
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