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Abstract

The estimation of genetic clusters using genomic data has application from genome-wide
association studies (GWAS) to demographic history to polygenic risk scores (PRS) and
is expected to play an important role in the analyses of increasingly diverse, large-scale
cohorts. However, existing methods are computationally-intensive, prohibitively so in
the case of nationwide biobanks. Here we explore Archetypal Analysis as an efficient,
unsupervised approach for identifying genetic clusters and for associating individuals
with them. Such unsupervised approaches help avoid conflating socially constructed
ethnic labels with genetic clusters by eliminating the need for exogenous training labels.
We show that Archetypal Analysis yields similar cluster structure to existing
unsupervised methods such as ADMIXTURE and provides interpretative advantages.
More importantly, we show that since Archetypal Analysis can be used with
lower-dimensional representations of genetic data, significant reductions in
computational time and memory requirements are possible. When Archetypal Analysis
is run in this fashion, it takes several orders of magnitude less compute time than the
current standard, ADMIXTURE. Finally, we demonstrate uses ranging across datasets
from humans to canids.

Author summary

This work introduces a method that combines the singular value decomposition (SVD)
with Archetypal Analysis to perform fast and accurate genetic clustering by first
reducing the dimensionality of the space of genomic sequences. Each sequence is
described as a convex combination (admixture) of archetypes (cluster representatives) in
the reduced dimensional space. We compare this interpretable approach to the widely
used genetic clustering algorithm, ADMIXTURE, and show that, without significant
degradation in performance, Archetypal Analysis outperforms, offering shorter run
times and representational advantages. We include theoretical, qualitative, and
quantitative comparisons between both methods.

Introduction 1

Estimating ancestry cluster allele frequencies and cluster membership from single 2

nucleotide polymorphism (SNP) data is important for many applications in population 3
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genetics and applying methods to characterize diverse human cohorts has become an 4

essential part of large-scale genomic studies. With the growing number of samples in 5

whole genome databases, efficient population clustering techniques that can handle such 6

sample sizes have become increasingly important. Existing techniques for the clustering 7

of genomes include STRUCTURE [1], FRAPPE [2] and, ADMIXTURE [3]. These 8

compute probabilistic values referred to as ancestry coefficients that represent the 9

fraction of the genome of an individual attributable to a particular population cluster. 10

These methods can perform both supervised and unsupervised inference of ancestry 11

coefficients. Supervised inference requires reference individuals from predefined 12

ancestral populations, while unsupervised inference uses the structure of the data alone. 13

These existing approaches perform inference via Bayesian [1] or likelihood based 14

methods [2, 3] and tend to be computationally expensive due to the high dimensionality 15

of genomic data. 16

Dimensionality reduction techniques such as multidimensional scaling (MDS), 17

principal component analysis (PCA) and uniform manifold approximation (UMAP) 18

have been used to overcome the high dimensionality of genomic data [4, 5], and have 19

become indispensable for visualization and representation of diversity amongst genomic 20

sequences. In PCA, samples are projected onto the axes of highest variation, each of 21

which is a linear combination of allelic dosages across variants [6]. This method has 22

become particularly important in genome-wide association studies and has also been 23

used to investigate the distribution of genetic variation across geography [7]. An 24

advantage is that no assumptions are made about ancestral populations; however, 25

interpretation can often be misleading if sampling designs are irregular. Unsupervised 26

clustering techniques such as ADMIXTURE or Archetypal Analysis (AA) can 27

complement PCA to provide a detailed description of data and to augment visualization. 28

In this work we show how AA can be coupled with PCA, specifically Single Value 29

Decomposition (SVD), to efficiently cluster samples providing shorter run-times than 30

STRUCTURE or ADMIXTURE. We also discuss how these techniques work, where 31

they differ, and how they relate to well established general-purpose clustering 32

techniques such as K-Means and K-Medioids. 33

Materials and methods 34

System Overview 35

The complete proposed pipeline is presented in Figure 1. 36

Singular Value Decomposition 37

Because the subspace spanned by the centered genotype vectors can have no more than 38

N − 1 dimensions with N the number of samples, there is no loss of information in 39

projecting these centered genotype vectors onto their top N right singular vectors before 40

applying Archetypal Analysis. This operation corresponds simply to a rotation of the 41

coordinate system followed by a pruning of the unused dimensions and yields a space 42

that is generally far smaller than the original, that is the number of total genotyped 43

positions M, since typically N << M . 44

If we observe N individuals at M SNP positions, each individual i can be 45

represented by a vector xi ∈ {0, 12 , 1}
M , where each position j in xi indicates the 46

average number of alternate alleles found for each j (position) and i (individual’s 47

diploid genome). By aggregating xi the vectors for all individuals, we obtain an M ×N 48

genotype matrix G = [x1...xN ]. We center the columns of G to produce data matrix X 49

and then compute the SVD: 50
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Fig 1. Archetypal Analysis pipeline. The allele counts from both haplotypes of each of N individuals are averaged and
then dimensionally-reduced from M SNPs to N − 1 singular vectors via the SVD. Archetypal Analysis then implements an
alternating non-negative matrix factorization algorithm that minimizes a constrained sum of squares to find ancestry
proportions (α) and cluster centroids (Z: archetypes). Archetypal analysis models the individual genotypes as originating
from the admixture of A parental populations, where A is an input parameter. For visualization we create bar plots for
proportions of archetype assignments given by the matrix α, and project archetypes Z into a 3D subspace using the first
three principal components of the individual genotype sequences.

X = UΣVT (1)

This yields U and V, the left and right-singular vectors respectively. The first N − 1 51

scores UΣ can then be used as input for Archetypal Analysis. As described in [6] these 52

vectors are made up of a linear combination (rotation) of genotypic values across the 53

genome. 54

Archetypal Analysis 55

This non-negative matrix factorization method was first developed by Cutler and 56

Breiman in 1994 [8], and here it represents each individual as a convex combination of 57

extreme points, or archetypes, in allele frequency space. In particular, given an N x M 58

multivariate data set X with N individuals and M SNPs, for a given number of 59

archetypes or clusters K, the algorithm finds the M x K matrix of archetypes Z 60

according to two principles: 61

1. The samples are approximated as convex combinations of the archetypes such that 62

the the residual sum of squares (RSS) between the approximation and original 63

data is minimized: 64

RSS = ||X − αZT ||2 (2)

with α representing the fractional ancestry assignments, so
∑K

j=1 αij = 1, 65

1 ≥ αij ≥ 0 for i = 1, ..., N , and j = 1, ...,K. 66

2. The archetypes are convex combinations of the samples: 67

Z = XTβ (3)

with β an N ×K matrix and βij indicating the weight of sample i at archetype j, 68

and
∑N

i=1 βij = 1 with 1 ≥ βij ≥ 0 . 69
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By combining Equation 2 and 3 we have: 70

RSS = ||X − αβTX||2 =
∑
i

||xi −
∑
k

αik

∑
j

βkjxj ||2 (4)

The optimization problem presented in Equation 2 and 3 consists of finding the 71

weight matrices α and β for a given data matrix X and a particular number of 72

archetypes K. This is commonly solved through an iterative process of optimizing α 73

and β in an alternating fashion. For a fixed set of values for α, finding the optimal 74

values for β is reduced to a constrained least squares problems, and vice versa [8]. The 75

iterative process is typically repeated until the quality of the decomposition reaches a 76

pre-defined threshold, or up to a fixed maximum number of steps. The constrained least 77

square optimization problem can be solved through a variety of techniques. Here we 78

make use of the implementation of [9], which utilizes a non-negative least squares solver 79

obtaining αij ≥ 0 and βij ≥ 0, where it adds an extra dimension to enforce 80∑n
i=1 αij = 1 and

∑n
i=1 βij = 1. There are multiple open-source packages available in 81

R [10], Python [9] and MATLAB [11] that implement Archetypal Analysis. 82

Unlike ADMIXTURE, Archetypal Analysis permits the use of dimensionally-rotated 83

representations of SNP data, such as the singular value decomposition. If all singular 84

vectors are used the residual sum of squares of the decomposition (RSS′) using 85

projected data X ′ is equivalent to the RSS of the original decomposition: 86

RSS′ =
∑
i

||x′i −
∑
k

αik

∑
j

βkjx
′
j ||2 =

∑
i

||Pxi −
∑
k

αik

∑
j

βkjPxj ||2

=
∑
i

||Pxi − P (
∑
k

αik

∑
j

βkjxj)||2

=
∑
i

||xi −
∑
k

αik

∑
j

βkjxj ||2 ∝ RSS

(5)

Since the projection matrix P = V , the orthonormal rotation matrix of X onto its 87

singular vector axes. 88

This permits us to perform AA clustering on a matrix of dimensions only N ×N − 1 89

instead of N ×M . Note that although the learnt parameters of AA, α and β, do not 90

depend on M , the computation times for Z and the RSS do, therefore, working in 91

lower dimensions reduces the computational load. 92

Constrained Optimization. Non-negative least squares (NNLS) is a constrained 93

least squares problem in which coefficients are always non-negative (Eq. 8). Archetypal 94

Analysis includes an additional constraint coefficient C and adds a row of ones to 95

matrices involved in optimization after every NNLS iteration (Eq. 9 and 10) to ensure 96

the coefficients also sum to one, one of the definitional properties of Archetypal 97

Analysis. 98

Given an N ×M matrix X representing a multivariate data set with N observations 99

and M attributes, for a given K, we minimize: 100

˜RSS = ||X̃ − α̃ZT ||2 (6)
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where α̃ is defined as: 101

α̃ =


α11C α12C α13C . . . α1KC
α21C α22C α23C . . . α2KC

...
...

... . . .
...

αN1C αN2C αN3C . . . αNKC
1 1 1 . . . 1

 (7)

and α and archetypes are defined are defined in the previous section. X̃ is defined as: 102

X̃ =


x11C x12C x13C . . . x1MC
x21C x22C x23C . . . x2MC

...
...

... . . .
...

xN1C xN2C xN3C . . . xNMC
1 1 1 . . . 1

 (8)

where C is a constraint coefficient for C > 0 and rows of 1’s are added after every 103

NNLS iteration. This ensures the constraint
∑k

j=1 αij = 1 where the value of C 104

represents a weighting between the importance of the constraint and NNLS 105

minimization, with lower C’s giving a stronger importance to the constraint. The same 106

method is applied to β coefficients to ensure
∑n

i=1 βij = 1. 107

Archetype Initialization. We make use of the implementation in [9] which supports 108

three different archetype initialization strategies: (1) random initialization of the 109

archetypes where each dimension of the archetype is sampled from a uniform 110

distribution scaled to have the same range as the input data, (2) random selection of a 111

sample from the input data as the archetype, and (3) the FurthestSum introduced 112

in [11]. By default we make use of FurthestSum initialization as it efficiently generates 113

initial archetype candidates by, after selecting the first archetype randomly, selecting 114

each subsequent archetype as the sample that has the largest aggregate distance from 115

the previously selected archetypes. 116

Implementation Details. Archetypal analysis was run with the following 117

parameters (with code adapted from [9]). 118

• Tolerance: defines when to stop optimization when alternating between finding 119

the best α’s for given archetypes Z and finding the best Z for given α’s. 120

Specifically, the threshold applied is, 121

||RSSc −RSSp||
RSSp

> T (9)

where RSS is the residual sum of squares defined in (Eq. 2) for the current 122

iteration RSSc and the previous iteration RSSp, and T is the desired tolerance. 123

We use a value of T = 0.001. 124

• Maximum number of iterations for the residual sum of squares (RSS) 125

minimization: 50. 126

• Constraint coefficient C: coefficient that ensures the summation of α’s and β’s 127

equals to 1. See Appendix B for further details on the constrained optimization 128

method. We use a value of C = 0.001. 129

• Initialization method: we use FurthestSum [11] as the initialization method. 130
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Datasets 131

HUMAN 132

Whole genomes from the Human Genome Diversity Project [12], the Simons Genome 133

Diversity Project [13] and the 1000 Genomes Project [14] have been included in this 134

study. The Human Genome Diversity Project whole genome cohort includes 929 135

individuals from 54 human populations. The Simons Genome Diversity Project contains 136

300 genomes from 142 diverse populations, and the 1000 Genomes Project includes 2504 137

individuals from 26 populations. The three datasets were merged, removing duplicated 138

individuals between the studies and retaining only SNPs present in all three datasets, 139

yielding an intersection of 1, 411, 471 SNPs for analysis. Rare variants with minor allele 140

frequencies < 0.1 were removed. In total, 3558 individuals were included in the study 141

from 7 different continents: 683 from Europe, 805 from Africa, 34 from Oceania, 695 142

from South Asia, 772 from East Asia, 150 from West Asia, and 419 indigenous 143

individuals from the Americas. 144

Dogs 145

The heterogeneous data set of dog breeds from [15] consists of 1355 groups representing 146

166 dog breeds. Each sequence has a total of 150, 131 SNPs. Populations with vastly 147

different histories are included, originating from all continents except Antarctica [15]. 148

Results 149

Human datasets 150

Principal Components and Archetypal Analysis 151

We first compute the principal components of the human data set and display the first 152

two components in a plot coloured by continental population (Fig. 2, a). The African 153

population displays the highest genetic variability extending across the first principal 154

component axis (11% explained variance). We then use all principal components, that is 155

the projection onto all the left singular vectors of the SVD, as input to the Archetypal 156

Analysis and plot the proportional membership of each cluster for each individual in a 157

compositional plot (Fig. 2, b). The African population is represented by three 158

archetypes (A1, A2 and A8), while the East Asian and South Asian populations have 159

one archetype each (A3 and A5 respectively). Note that Archetypal Analysis addresses 160

the high variation within African groups by using multiple archetypes. The European 161

and West Asian populations share a single archetype (A4), while the Oceanian 162

populations are found on the gradient between the East Asian and South Asian 163

archetypes. Finally, the Native American populations are represented by two archetypes 164

(A6 and A7) and have a gradient running to the European/West Asian archetype due to 165

colonial admixture. Example populations found along this gradient are the Puerto 166

Ricans and Colombians. 167

Comparison of ancestry estimates 168

To compare the ancestry estimates derived from ADMIXTURE and Archetypal 169

Analysis, we display the proportional ancestry cluster assignments, the Q and α 170

matrices respectively, in a bar plot for K = 8 cluster (Fig. 3, b). Each vertical bar 171

represents an individual and the shaded colors denote the cluster proportions. We also 172

display individuals on a three-dimensional PCA plot with projected archetypes (Z) and 173
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ADMIXTURE cluster centers (F ) (Fig. 3, a). A theoretical comparison of both 174

methods can be found in the Discussion section. 175

Archetypal Analysis: European (red), South Asian (turquoise), and East Asian 176

populations (yellow) are predominantly represented by a single archetype. Native 177

American populations are a combination of three archetypes, two of which are mostly 178

specific to this population (light green and dark green) and a third, representing 179

colonial admixture, which is European (red). Individuals from Puerto Rico and 180

Colombia mostly share the third archetype with Europeans. The African population is 181

represented by three archetypes. One archetype encompasses West African populations 182

such as Mandeka, Gambian Mandika and Mende (ocean blue). Another includes eastern 183

and southern groups such as Luhya and San (navy blue). A third archetype represents a 184

few individuals from all African populations (light blue). 185

ADMIXTURE : Oceanian (purple) and East Asian populations (yellow) are 186

predominantly represented by a single cluster center. Europeans and West Asians are a 187

combination of two centers (red and pink) that are located outside the point cloud of 188

individuals, differing from AA which captures both with a unique cluster. Native 189

Americans show traces of the European and West Asian cluster components, but are 190

mostly represented by their own, here single, cluster (light green). African populations 191

are predominantly represented by two clusters (ocean blue and light blue), while a few 192

populations, such as the North African Mozabites, show traces of European and West 193

Asian components. Finally, South Asians predominantly cluster around a single cluster 194

(turquoise), but also show traces of the European and West Asian clusters. 195

Overall, Archetypal Analysis provide estimates which qualitatively often match 196

ethnolinguistic and geographical labels. AA properly captures the wide variation within 197

African populations; however, it fails to identify a unique cluster for Oceanians. 198

Additionally, due to its stronger constraints than ADMIXTURE, AA obtains cluster 199

centroids that lie near actual sampled genotypes. 200

Domestic dog breed dataset 201

Principal Components and Archetypal Analysis 202

We compute the principal components of the dog breed data sets and display the first 203

two components in a plot coloured by dog clades (Fig. 4, a). The Asian Spitz clade 204

shows the highest genetic variability extending across the first principal component axis, 205

including breeds such as Chow Chow, Greenland Sledge Dog and Siberian Husky. The 206

latter is found close to the wolf, while the European Mastiff clade represented by breeds 207

such as Bull Terrier, Boxer and Bulldog extends across the second principal component 208

axis. Archetypal Analysis is then computed for K = 5 and K = 15 with principal 209

components as input (Fig 4, b and c). For K = 5, dog archetypes were found to be the 210

Asian Spitz dogs (A1), the Bulldog-derived dogs (A2), the Terriers (A3), hunting water 211

dogs (A4) and herding dogs (A5). The remaining breeds are displayed as a combination 212

of these main archetypes, mostly represented by A5 and A4. This matches the structure 213

shown in PCA, where most of the breeds are clustered in the origin, except the dogs in 214

the Bull Terrier and Husky groups. When increasing the number of archetypes to 215

K = 15, individual dog breeds begin clustering around single archetypes, showing the 216

growing population structure. New archetypes appear for the Boxer (A3), Irish 217

Wolfhound (A4), Otter Hound (A5), Bullmastiff (A6), Bernese Mountain Dog (A10), 218

Glen of Imaal Terrier (A11), French Bulldog (A12), Boston Terrier (A13), Shetland 219

Sheepdog (A14) and Tibetan Spaniel (A15). The rest of the breeds are mostly found 220

near A14 and A15. 221
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Performance metric analysis 222

The dog breed dataset was used to benchmark the computation times and clustering 223

quality of both ADMIXTURE and Archetypal Analysis. Running times and explained 224

variances of ADMIXTURE and Archetypal Analysis are measured for an increasing 225

number of archetypes/clusters K = 1, ..., 22 and K = 1, ..., 30 respectively. The 226

initialization was set to random for both methods to achieve uniform comparison and 227

results were averaged over 5 runs. Accumulated run-times increased exponentially with 228

K for ADMIXTURE whereas they increased linearly for Archetypal Analysis (Fig. 5). 229

An accumulated runtime of 34 minutes was taken by Archetypal Analysis to compute 230

ancestry estimates for K = 2 to K = 30 clusters. For ADMIXTURE, the accumulated 231

runtime from K = 2 to K = 30 was 78 hours. Thus, Archetypal Analysis ran 137 times 232

faster than ADMIXTURE on the domestic dog breed dataset. A similar increase in 233

relative speed was maintained, on average, for non-cumulative times (Table 1). 234

Explained variances increased linearly in the number of clusters for both algorithms 235

(Fig. 5). The explained variance for Archetypal Analysis was on average 2% lower than 236

for ADMIXTURE. For the values of K included in this analysis, the mean standard 237

deviation for five averaged runs with random initialization was 0.007 for Archetypal 238

Analysis and 0.0004 for ADMIXTURE. As described in the following Discussion section, 239

the difference in explained variance is due, at least in part, to the stronger restrictions 240

that Archetypal Analysis imposes when estimating the cluster centroids. However, as 241

shown with human sequences in figure 3, the stronger restrictions of AA lead to 242

centroids that are always a linear combination of actual samples, guaranteeing that they 243

represent theoretically observable population samples. 244

Table 1. Runtime (in minutes) for ADMIXTURE-AA comparison

K (number of clusters / archetypes)
Algorithm [2-6) [6-10) [10-14) [14-18) [18-22) [22-26) [26-30)

ADMIXTURE 43 64 97 150 247 250 319
AA 0.5 0.48 0.7 1 1.4 1.9 2.4

Relative speed 86× 133× 139× 150× 176× 132× 132×
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Fig 2. Principal Component Analysis and Archetypal Analysis compositional plots for human populations
(K=8). a), 2-dimensional PCA plot of human continental populations, where groups of individuals are colored by the unique
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Fig 3. Comparison of ancestry estimates for human populations (K=8). a), three-dimensional PCA plot of
individuals with projected archetypes (circles) and ADMIXTURE cluster centers (triangles). b), bar plot where individual
are represented along the horizontal axis as narrow columns and ordered by population group. Colour bars along the vertical
axis show the proportional cluster assignment for each individual. We compare the cluster assignments of ADMIXTURE (top)
and Archetypal Analysis (bottom).
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Fig 4. Principal Component Analysis and Archetypal Analysis compositional plots for domestic dog breeds.
a), two-dimensional PCA plot of domestic dog breeds where groups of dogs are colored by clade. b) and c), proportional
composition of each cluster for each individual in coordinate space for K=5 and K=15 respectively. Data points are coloured
by clade and archetype representatives are shown as drawings. Gradients between edges indicate combinations between breeds.
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a)

b)

Fig 5. Performance metrics analysis. a), runtime analysis for ADMIXTURE and
Archetypal Analysis for K = 2 to K = 30. Time is expressed in units of accumulated
hours. b), explained variance analysis comparison for ADMIXTURE and Archetypal
analysis for K = 2 to K = 22. Results are averaged over five distinct random seed
values for each value of K and the ranges observed are shown as vertical bars.
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Discussion 245

Population structure overview 246

Archetypal Analysis proved to be an interpretable alternative to ADMIXTURE. It 247

assigned separate regional archetypes that associated predominantly with Europeans, 248

with South Asians, and with East Asians, and it recognized the high genetic variability 249

of African populations. Differences within regions were also detectable (Fig. 3). For 250

example, indigenous peoples across the Americas were separated from the remainder of 251

the modern American communities as the light green archetype. Peruvians were also 252

included in this group, most likely because indigenous groups make up 45% of the 253

Peruvian population. Similarities in peoples that are geographically spread were also 254

detected. For example, the Bantu peoples (Bantu Herero, Bantu Tswana, Bantu Kenya, 255

Bantu South Africa and Luhya) comprise several hundred indigenous ethnic groups in 256

Africa spread over a vast area from Central Africa to Southern Africa, but those present 257

in our dataset were grouped together forming the dark blue archetype. 258

European-like archetype components seen in African peoples due to geographic 259

proximity and migration were also found in the Saharawi and Mozabites from the 260

northwestern part of Africa. As also observed in previous studies, American populations, 261

such as Puerto Rico and Colombia, showed European representation due to Spanish 262

colonization. The suggested effects of this historical event can also be observed in (Fig. 263

2, b), which shows a gradient of relatedness to Europeans that runs through Puerto 264

Ricans, Colombians, Peruvians through the Mexican-Americans. Archetypal Analysis 265

also identified South Asian communities having a shared component with Europeans 266

that ADMIXTURE did not detect (Fig. 3, b). For example, the Brahui, Kalash and 267

Baloch were identified with a European-like archetype by Archetypal Analysis and not 268

by ADMIXTURE. These might reflect the influence of Indo-European migrations and 269

the Ancestral North Indians [16], an ancestral genetic grouping in India that shares 270

some ancestry with other Indo-European speakers from India to Iran to Europe. 271

Relationship between Archetypal Analysis and ADMIXTURE 272

The popular algorithm ADMIXTURE estimates individual ancestries by computing 273

maximum likelihood estimates in a parametric model. Specifically, it maximizes the 274

biconcave log-likelihood of the model using block relaxation: 275

L(Q,F ) =
∑
i,j

(nij ln pij + (2− nij) ln (1− pij)) (10)

where genotype nij for individual i at SNP j represents the number of type ’1’ 276

alleles observed. Given K populations, the success probability pij =
∑K

k=1 qikfki in the 277

binomial distribution nij v Bin(2,pij) depends on the fraction qik of i ’s ancestry 278

attributable to population k and on the frequency fkj of the allele 1 in population k, 279

where qik and fkj are the entries of Q and F respectively [3]. 280

ADMIXTURE and Archetypal Analysis share similar modeling assumptions. Both 281

qkj ADMIXTURE and α archetype fractions can be interpreted as partial cluster 282

assignments while ADMIXTURE frequency coefficients fkj and archetype coordinates 283

Z encode cluster center locations in SNP space. A key difference is that ADMIXTURE 284

cluster centroids have M (# of SNPs) free parameters, in other words, the frequency at 285

each SNP for each cluster (fkj) is a parameter that needs to be learnt. Instead, in AA, 286

cluster centroids have N (number of samples) free parameters, that is, a coefficient (β) 287

for each training sample needs to be learnt for each cluster center. When M � N (the 288

typical scenario when working with genomic data), AA has far fewer free-parameters 289

than ADMIXTURE. This can lead to lower explained variance values (or higher 290
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reconstruction errors), but guarantees centers that exist within the convex hull of real 291

samples (and thus could represent a real descendant individual), while ADMIXTURE 292

can over-fit, yielding centers outside the hull of the observed data (see Results section) 293

that may represent no population that has ever existed. Furthermore, because AA does 294

not optimize each of the M free-parameters, it can work with rotated data (the left 295

singular vectors of the SVD) without any loss of information, or with 296

dimensionally-reduced data, allowing for a much more efficient computation. 297

The likelihood function of ADMIXTURE can be understood as an error or distance 298

metric between the input sequences X (where both haplotypes have been averaged) and 299

a decomposed product QF . In fact, when X ≈ QF : 300

1

2
L(Q,F ) =

∑
i,j

(xij ln qijfij + (1− xij) ln (1− qijfij)) ≈
∑
i,j

||xij − qijfij ||2 (11)

Therefore, the likelihood function resembles the RSS problem of AA. In fact, 301

ADMIXTURE can be understood as a type of likelihood-based relaxed archetypal 302

analysis, where the constraints imposed on the cluster centroids are loosened. 303

Another shared aspect of both methods is the alternating nature of the optimization 304

procedure. In both methods, cluster centers and cluster assignments are optimized in an 305

iterative manner. Once the cluster assignments are fixed, optimizing centers becomes a 306

convex problem, and vice versa, allowing for fast convergences. 307

Table 2. ADMIXTURE and Archetypal Analysis comparison

ADMIXTURE Archetypal Analysis

Model X ≈ QF X ≈ αZT

Loss Function log-likelihood RSS
Free-parameters (N +M)K −N 2NK −N −K
Cluster Assignments (CA) Q α
CA Dimensions N ×K N ×K
CA Free-parameters N(K − 1) N(K − 1)

CA Constraints
∑K

j=1Qij = 1 and Qij ≥ 0
∑K

j=1 αij = 1 and αij ≥ 0

Cluster Centroids (CC) F Z = XTβ
CC Dimensions K ×M K ×M
CC Free-parameters KM K(N − 1)

CC Constraints 0 ≤ Fij ≤ 1
∑N

j=1 βij = 1 and βij ≥ 0

Relationship between Archetypal Analysis, ADMIXTURE, K-Means, and 308

K-Medioid Clustering 309

Archetypal Analysis and ADMIXTURE hold a strong relationship with K-Means and 310

K-Medioids. As already stated in [11], if the constraints on the archetypes Z are relaxed, 311

and cluster assignments are limited to binary values α ∈ {0, 1} and
∑k

j=1 αij = 1, then 312

archetypal analysis becomes equivalent to K-Means. Similarly, if the sparsity 313

regularization used in ADMIXTURE [3] is strongly applied, the clusters assignments Q 314

become binary and the technique becomes similar to K-Means. In a similar fashion, if 315

both α and β are restricted to be binary, α, β ∈ {0, 1}, Archetypal Analysis becomes 316

equivalent to K-Medioids. Therefore, AA can be understood as a smooth or fuzzy 317

version of K-Medioids. Note that both K-Means and K-Medioids are also typically 318

optimized in a iterative alternating nature, similar to AA and ADMIXTURE. 319
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Figure 6 shows a qualitative comparison of all four of these methods when K = 4. 320

Examples with K = 3 and K = 5 can be found in the supplement. We can observe that 321

ADMIXTURE with sparsity constraints (green) obtains cluster centroids less extremal 322

than ADMIXTURE without these constraints, showing a behaviour that tends to 323

K-Means. Note that the differences between cluster centers will not depend only on 324

differences in modelling assumptions for each technique, but also in differences in 325

implementation details and initialization approaches of each method. 326
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Fig 6. Comparison of cluster centroids from different methods. Cluster centers learned by ADMIXTURE,
ADMIXTURE with sparsity regularization, Archetypal Analysis, K-Means, and K-Medoids

Conclusion 327

In this paper we show how Archetypal Analysis can be used as a fast alternative to 328

ADMIXTURE for population clustering. We also show how the Archetypal Analysis 329
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model has fewer degrees of freedom, restricting the centroids of clusters within convex 330

hull combinations of the training samples, which leads to lower explained variance than 331

ADMIXTURE, but provide more interpretable cluster centroids. We apply our 332

proposed system to human and dog genotypes, showing that AA can perform more than 333

two orders of magnitude faster than ADMIXTURE while still properly capturing the 334

population structure of the data. 335
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Supporting information

Human bar plot labels Table 3 displays all the subpopulation labels used in Figure
3b. The details of the dataset can be found in the Datasets subsection in the Methods
section.

Table 3. Bar plot labels

ID Population ID Population ID Population ID Population

1 Mandenka 2 Gambian Mandinka 3 Mende 4 Yoruba
5 Esan 6 African-Caribbean 7 African-American SW 8 Bantu Herero
9 Mozabite 10 Saharawi 11 Luo 12 Bantu South Africa
13 Dinka 14 Somali 15 Masai 16 Bantu Kenya
17 Luhya 18 Bantu Tswana 19 Khomani San 20 Mbuti
21 Biaka 22 San 23 Puerto Rican 24 Colombian
25 Mexican-American 26 Peruvian 27 Maya 28 Pima
29 Zapotec 30 Quechua 31 Mixe 32 Chane
33 Mixtec 34 Piapoco 35 Surui 36 Karitiana
37 Ami 38 Southern Han Chinese 39 Miao 40 Tujia
41 Han 42 She 43 Dai 44 Dai Chinese
45 Atayal 46 Han Chinese 47 Igorot 48 Korean
49 Kinh Vietnamese 50 Lahu 51 Japanese 52 Northern Han
53 Yi 54 Naxi 55 Hezhen 56 Daur
57 Tu 58 Thai 59 Xibo 60 Mongolian
61 Oroqen 62 Cambodian 63 Ulchi 64 Burmese
65 Even 66 Yakut 67 Altaian 68 Itelman
69 Kyrgyz 70 Tubalar 71 Eskimo Chaplin 72 Eskimo Sireniki
73 Eskimo Naukan 74 Uygur 75 Mansi 76 Chukchi
77 Aleut 78 Tlingit 79 Basque 80 Czech
81 Sardinian 82 Bergamo Italian 83 French 84 British
85 CEPH 86 Albanian 87 Tuscan 88 Spanish
89 Orcadian 90 Norwegian 91 Icelandic 92 Hungarian
93 Polish 94 Estonian 95 Bulgarian 96 Finnish
97 Crete 98 Greek 99 Russian 100 Samaritan
101 Adygei 102 Lezgin 103 Abkhasian 104 Saami
105 Chechen 106 North Ossetian 107 Druze 108 Yemenite Jew
109 Palestinian 110 Jordanian 111 Armenian 112 Bedouin
113 Georgian Mingrelian 114 Iraqi Jew 115 Turkish Cappadocia 116 Iranian
117 Papuan Highlands 118 Australian 119 Papuan Sepik 120 Bougainville
121 Maori 122 Hawaiian 123 Dusun 124 Gujarati
125 Indian Telugu 126 Sri Lankan 127 Brahmin 128 Yadava
129 Mala 130 Kapu 131 Punjabi 132 Madiga
133 Relli 134 Irula 135 Bengali 136 Sindhi
137 Pathan 138 Kalash 139 Burusho 140 Balochi
141 Brahui 142 Khonda Dora 143 Makrani 144 Tajik
145 Kusunda 146 Hazara
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Domestic dog breeds details. Tables 4 and 5 show the breeds of all the dogs
included in our study. Details about the dataset can be found above in the Datasets
subsection within the Methods section.

Archetypal Analysis compositional plots. Figures 7 and 8 show further
examples of Archetypal Analysis predictions with the dataset of dog genotypes. The
figures show that as the number of archetypes increases, more breeds are clustered in
their individual archetype (e.g. A6 to A15 in the 15 archetypes plot), while the rest of
breeds (the majority of the breeds) are represented as a combination of a few number of
archetypes (e.g. A1 to A5 in the 15 archetypes plot).

Genome-Wide Association Studies. In order to depict how Archetypal Analysis
can be included in GWAS, we display a Manhattan plot (Figure 9) and a Q-Q plot
(Figure 10) of an association study of the height of dog breeds with and without
archetype proportions as covariates.

Relationship between AA, K-Means, and K-Medioids. We include additional
plots comparing the K = 3 cluster centers of AA, ADMIXTURE, K-Means, and
K-Medioids in Figure 11 and K = 5 in Figure 12.
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Table 4. Domestic dog breeds details (1)

Breed Clade N Breed Clade N

American Cocker Spaniel Spaniel 10 American Eskimo Dog Nordic Spitz 6
Afghan Hound Mediterranean 10 American Hairless Terrier American Terrier 10
Airedale Terrier Terrier 3 Akita Asian Spitz 10
Alaskan Malamute Asian Spitz 10 American Staffordshire Terrier European Mastiff 6
Anatolian Shepherd Mediterranean 6 Australian Cattle Dog UK Rural 10
Australian Shepherd UK Rural 10 Australian Terrier Terrier 10
Azawakh Mediterranean 5 Basset Hound Scent Hound 10
Beagle Scent Hound 10 Bedlington Terrier Terrier 7
Belgian Sheepdog Continental Herder 10 Bearded Collie UK Rural 3
Bichon Frise Poodle 10 Bloodhound Scent Hound 10
Belgian Malenois Continental Herder 6 Bernese Mountain Dog Alpine 10
Boerboel European Mastiff 3 Border Collie UK Rural 10
Border Terrier Terrier 10 Borzoi UK Rural 10
Boston Terrier European Mastiff 10 Bouvier des Flandres Continental Herder 8
Boxer European Mastiff 10 Berger Picard New World 3
Briard Continental Herder 10 Brittany Pointer Setter 10
Black Russian Terrier Drover 4 Brussels Griffon Toy Spitz 2
Basenji - 10 Bulldog European Mastiff 10
Bulmastiff European Mastiff 10 Bull Terrier European Mastiff 10
Cairn Terrier Terrier 10 Cane Corso European Mastiff 9
Cardigan Welsh Corgi UK Rural 10 Curly Coated Retriever Retriever 6
Chihuahua American Toy 10 Japanese Chin Asian Toy 4
Chow Chow Asian Spitz 10 Cirneco dell’Etna Mediterranean 5
Cavalier King Charles Spaniel Spaniel 10 Collie UK Rural 10
Chinook New World 10 Coton du Tulear Poodle 2
Cane Paratore New World 2 Chinese Crested American Toy 10
Dachshund Scent Hound 10 Dalmatian Pointer Setter 9
Great Dane European Mastiff 10 Dogue de Bordeaux European Mastiff 6
Scottish Deerhound UK Rural 10 Doberman Pinscher Drover 10
English Cocker Spaniel Spaniel 10 English Setter Pointer Setter 10
English Springer Spaniel Spaniel 10 Eurasier - 10
French Bulldog European Mastiff 10 Flat-coated Retriever Retriever 10
Field Spaniel Spaniel 4 Finish Spitz - 10
Foxhound Scent Hound 10 Glen of Imaal Terrier Terrier 9
Golden Retriever Retriever 10 Gordon Setter Pointer Setter 10
Great Pyrenees Mediterranean 10 Greenland Sledge Dog Asian Spitz 10
Greyhound UK Rural 10 German Shepherd Dog New World 10
German Shorthaired Pointer Pointer Setter 10 Greater Swiss Mountain Dog Alpine 6
Giant Schnauzer Drover 10 German Wirehaired Pointer Pointer Setter 2
Havanese Poodle 10 Siberian Husky Asian Spitz 10
Ibizan Hound Mediterranean 10 Icelandic Sheepdog Nordic Spitz 2
Peruvian Hairless dog New World 10 Irish Terrier Terrier 7
Irish Setter Pointer Setter 9 Italian Greyhound UK Rural 10
Irish Wolfhound UK Rural 10 Irish Water Spaniel Retriever 10
Jack Russell Terrier Terrier 10 Keeshond NordicSpitz 10
Kelpie UK Rural 2 Kerry Blue Terrier Terrier 4
Komondor Mediterranean 2 Kuvasz Mediterranean 10
Labrador Retriever Retriever 10 Large Munsterlander Pointer Setter 3
Leonberger Mediterranean 10 Lhasa Apso Asian Toy 10
Levriero Meridionale Mediterranean 2 Mastino Abruzzese Mediterranean 2
Maltese Poodle 10 English Mastiff European Mastiff 10
Miniature Bull Terrier European Mastiff 10 Toy Mnachester Terrier Pinscher 2
Miniature Pinscher Pinscher 10 Miniature Schnauzer Schnauzer 10
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Table 5. Domestic dog breeds details (2)

Breed Clade N Breed Clade N

Neapolitan Mastiff European Mastiff 6 Chinese Shar-pei Asian Spitz 10
Norwegian Elkhound Nordic Spitz 10 Shiba Inu Asian Spitz 8
Newfoundland Retriever 10 Shih Tzu Asian Toy 10
Norfolk Terrier Terrier 10 Silky Terrier Terrier 4
Norwich Terrier Terrier 10 Schipperke Toy Spitz 10
Nova Scotia Duck Tolling Retriever Retriever 10 Sloughi Mediterranean 5
Old English Sheepdog UK Rural 10 Spinone Italiano Pointer Setter 2
Otter Hound Scent Hound 9 Shetland Sheepdog UK Rural 10
Papillon Toy Spitz 10 Standard Schnauzer Schnauzer 10
Parsons Russell Terrier Terrier 2 Stafforshire Bull Terrier European Mastiff 10
Petit Basset Greffon Vendeen Scent Hound 10 Saint Bernard Alpine 10
Pekingese Asian Toy 10 Swedish Valhund Nordic Spitz 6
Pembroke Welsh Corgi UK Rural 10 Tibetan Mastiff Asian Spitz 10
Pharoah Hound Mediterranean 2 Tibetan Spaniel Asian Toy 10
Pomeranian Small Spitz 10 Tibetan Terrier - 10
Poodle - Miniature Poodle 10 Belgian Tervuren Continental Herder 10
Poodle - Standard Poodle 10 Toy Fox Terrier American Terrier 4
Poodle - Toy Poodle 10 Vizsla Pointer Setter 7
Portuguese Water Dog Poodle 10 Volpino Italiano Small Spitz 4
Pug Dog Toy Spitz 10 Weimaraner Pointer Setter 10
Puli Hungarian 4 Wire Fox Terrier Terrier 10
Pumi Hungarian 5 Whippet UK Rural 10
Rat Terrier American Terrier 2 Wirehaired Pointing Griffon Pointer Setter 6
Redbone Coonhound Scent Hound 2 West Highland White Terrier Terrier 10
Rhodesian Ridgeback European Mastiff 9 Xigou Asian Spitz 5
Rottweiler Drover 10 Xoloitzcuintle New World 5
Saluki Mediterranean 19 Xoloitzcuintle - Miniature New World 5
Samoyed - 10 Yorkshire Terrier Terrier 10
Scottish Terrier Terrier 10 Grey Wolf - 7
Soft Coated Wheaten Terrier Terrier 4 Golden Jackal - 2
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3 archetypes 4 archetypes

5 archetypes 6 archetypes

7 archetypes 9 archetypes

Fig 7. Archetypal Analysis compositional plots for human continental populations. Archetypal Analysis
polygon compositions of human data (3-9 archetypes, excepting the 8-archetype polygon which can be found as Fig. 2 in
Section 4.1.1). The colours represent the continental origins: EUR - European (red), AFR - African (blue), EAS - East Asian
(purple), WAS - West Asian (orange), OCE - Oceanian (brown), SAS - South Asian (pink), AMR - American (gray).
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Fig 8. Archetypal Analysis compositional plots for human continental populations. Archetypal Analysis
polygon compositions of human data (10-15 archetypes). The colours represent the continental origins: EUR - European
(red), AFR - African (blue), EAS - East Asian (purple), WAS - West Asian (orange), OCE - Oceanian (brown), SAS - South
Asian (pink), AMR - American (gray).
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Fig 9. Manhattan plot Manhattan plots for no covariates (top), when adding 10 PCs (middle) and when adding 10 PCs
and 15 Archetype coefficients (bottom).
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Fig 10. Quantile-Quantile plot (Q-Q) Q-Q plots for no covariates (blue), when adding 10 PCs (yellow) and when adding
10 PCs and 15 Archetype coefficients (green).
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Fig 11. Comparison of cluster centroids from different methods. Cluster centroids learned by ADMIXTURE,
ADMIXTURE with sparsity regularization, Archetypal Analysis, K-Means, and K-Medoids
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Fig 12. Comparison of cluster centroids from different methods. Cluster centroids learned by ADMIXTURE,
ADMIXTURE with sparsity regularization, Archetypal Analysis, K-Means, and K-Medoids
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