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Abstract 
Recent advances in multiplexed imaging methods allow simultaneous detection of dozens of pro-

teins and hundreds of RNAs enabling deep spatial characterization of both healthy and diseased tis-

sues. Parameters for design of optimal sequencing-based experiments have been established, but 

such parameters, especially those estimating how much area has to be imaged to capture all cell 

phenotype clusters, are lacking for multiplex imaging studies. Here, using a spatial transcriptomic 

atlas of healthy and tumor human tissues, we developed a new statistical framework that determines 

the number and area of fields of view necessary to accurately identify all cell types that are part of a 

tissue. Using this strategy on imaging mass cytometry data, we identified a measurement of tissue 

spatial segregation that enables optimal experimental design. This strategy will enable significantly 

improved design of multiplexed imaging studies. 

Main text 
 In the last decade, single-cell technologies for proteomic (Bendall et al. 2011), transcriptom-

ic and genomic (Jaitin et al. 2014, Macosko et al. 2015, Xu et al 2012) analyses have been devel-

oped. Experiments using these technologies have enhanced our understanding of biological systems 

ranging from human immune cells (Villani et al. 2017) to whole cnidarian organisms (Sebé-Pedrós 

et al. 2018). Clear guidelines have been established to determine optimal experimental design of 

sequencing studies, including the total number of cells and sequencing depth necessary for detec-

tion of rare cell types or transcripts (Torre et al. 2018).  

Increasingly, single-cell transcriptomic and proteomic measurements are performed with 

spatial resolution (Lewis et al. 2021). Multiplexed imaging techniques are modern counterparts of 

histological analyses and aim to detect a given set of cell types and their state based on the target 

markers used. Therefore, the ability of a multiplexed imaging experiment to detect every expected 

cell type that is present in a given tissue section is essential. Guidelines for optimal design of multi-

plexed imaging experiments, such as those performed using imaging mass cytometry (IMC) 

(Giesen et al. 2014), MIBI (Angelo et al. 2014), and CODEX (Goltsev et al. 2018) and in situ hy-

bridization methods such as seqFISH (Shah et al. 2016), MERFISH (Chen et al. 2015) and HDST 

(Vickovic et al. 2019), have not been developed. Given that current highly-multiplexed tissue imag-

ing methods have low spatial throughput and high costs, such guidelines, especially to estimate the 
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area to be measured to capture a tissues phenotypic heterogeneity is urgently needed. Since it is 

possible to model the probability of detecting an object when imaging a given area (Illian et al. 

2008), solid theoretical foundation for modeling and interpreting the outputs of multiplexed imag-

ing experiments exists. Building on pioneering work on the number of regions that must be imaged 

to characterize the intensity distribution of a single fluorescent marker and single cell type (Rajaram 

et al. 2017), we report the development of a strategy to determine the minimal number of fields of 

view (FoVs) necessary to identify all main cell phenotypes across various healthy and tumor tis-

sues. 

Optimal tissue sampling strategy for spatial transcriptomic data 

 Despite the lack of singe-cell resolution, spatial transcriptomic datasets cover large areas of 

tissues (16 mm2 for Visium® arrays) and are assumed to provide an exhaustive description of cell 

phenotypes present in the tissue. Using these spatial transcriptomic data, we  wanted to assess how 

many areas have to be measured with another spatial imaging technology to capture all present phe-

notypes. We chose IMC which is capable to measure 40 markers in situ. We used previously col-

lected 22 Visium datasets on 12 different types of tissues (Table S1). The Visium data were normal-

ized and clustered to identify different cell types and cellular niches (Figure 1A). We then simulated 

IMC data acquisition on these same tissues by performing repeated random sampling without re-

placement of a variable number of non-overlapping small square regions with widths of 400 µm 

across the tissue. We computed the number of different clusters (which correspond to unique cell 

types) detected across the sampled regions. Finally, the results were aggregated across samplings. 

There was an apparent saturation in the detection of clusters as the number of FoVs increased (Fig-

ure 1B).  

 To model the relationship between number of clusters and number of FoVs, we used a mod-

el derived from the analysis of homogeneous Poisson point processes (Illian et al. 2008):   

 N(r) = No *(1-exp(-r/𝜏))  (1) 

where r is the number of FoVs, N(r) is the number of recovered clusters, No corresponds to the total 

number of observed clusters, and 𝜏 indicates how many regions must be imaged to recover most of 
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the known clusters. According to this model, 2𝜏 FoVs must be imaged to detect 86% of known clus-

ters. This model fit well across all Visium datasets (Figure S1A). The value of 𝜏 varied significantly 

across tissues (Figure 1C). We observed that tumor samples had higher 𝜏 values than healthy sam-

ples, indicating that more FoVs are required on average to identify cell phenotype clusters in tumor 

tissue than in healthy tissue (Figure 1D, p=0.0231). 
 We next studied the effects of the width of the FoV, w, on spatial sampling efficiency by per-

forming the same simulated IMC analysis with various values of w. As expected, fewer regions 

needed to be imaged to detect all known clusters when w values were larger (Figure 1E, left panel). 

Following logarithmic transformation, there was a linear relationship between w and 𝜏 across all 

studied tissues (Figure 1E, right panel, Figure 1F, and Figure S1B). This indicated an underlying 

power law. Therefore, 𝜏 can be written as a function of w: 

 (w) = C/w𝜶   (2) 

where C and 𝜶 depend on sample.  

 We then explored whether there could be a relationship between 𝜏 and the granularity of the 

initial clustering analysis. To test this, we aggregated the most similar pairs of clusters for each 

sample by determining the correlation between mean expression profiles, performed a sampling 

analysis to compute 𝜏, and then merged the next two most similar clusters, repeating until only two 

clusters were left (Figure S1C). We observed a linear relationship between 𝜏 and the number of 

clusters in certain Visium samples such as a glioblastoma (Figure 1G), but the linear regression fit 

poorly for others such as cerebellum (Figure S1D). In addition, across all samples, 𝜏 and the number 

of cell clusters were moderately correlated (Figure 1H, R2=0.45), implying that the number of clus-

ters significantly impacts the value of 𝜏 and partly explains the difference in 𝜏 values between 

healthy and tumor samples. This indicates that this relationship cannot be generalized. 

Characterization of 𝜶 and C as measures of tissue spatial segregation 

 In order to assess that results obtained from the analysis of spatial transcriptomic data can be 

generalized to data obtained from other technologies that provide images at single-cell resolution, 
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we imaged large areas of two human formalin-fixed paraffin-embedded lymph node sections using 

IMC with two antibody panels (Table S2) and performed a spatial sampling analysis with various 

FoV widths (Figure 2A). As for the Visium lymph node data, the relationship between the number 

of sampled regions and of recovered clusters was fit by equation (1) (Figure 2B, left panel), and the 

FoV width affected 𝜏 as described by equation (2) (Figure 2B, middle and right panels). However, 

the values of 𝜏 drastically differed between the Visium lymph node data and the two IMC datasets 

(Figure 2C, left panel). When analyzing the parameters of (2), we found that the 𝜶 parameter did 

not significantly differ between the two imaging modalities (Figure 2C, middle panel), whereas 

there was a large difference in C (Figure 2C, right panel). Within a given technology, the parameter 

𝜶 varied considerably across tissue types with values ranging from 2 for cardiac tissue to 0.91 for 

breast tumor tissue analyzed by spatial transcriptomics (Figure S2A). 𝜶 was significantly lower in 

cancer samples than healthy tissues (Figure S2A, p=0.0401).  

 To further assess the properties of 𝜶, we re-analyzed a previously published IMC dataset 

(Jackson et al. 2020) containing 100 FoVs, each derived from a unique breast cancer sample. For 

each FoV, we simulated a progressive shrinkage of the FoV width and computed the effect on the 

number of detected clusters to obtain an estimate of 𝜶 for each FoV (Figure S2B). We did not ob-

served a significant difference between the estimated 𝜶 values using IMC data and the one estimat-

ed from five different Visium breast cancer samples (Figure 2D, p=0.699). These results support a 

hypothesis that 𝜶 is a technology-independent but tissue dependent parameter.  

 Lastly, to evaluate the impact of 𝜶 on the sampling strategy design, we computed the theo-

retical number of recovered clusters when sampling a defined area with various numbers and area 

of FoVs. We performed this analysis on two different types of tissue: cardiac (low spatial segrega-

tion, 𝜶=2) and breast cancer tissue (strong spatial segregation, 𝜶=0.91) using the values fitted on 

Visium datasets. First we observed that the number of recovered clusters was not affected by the 

fragmentation of the FoVs for the heart sample but only by the total imaged area (Figure 2E and 

2F). In contrast, for breast cancer samples, increasing the fragmentation of the imaged area into 

multiple small ROIs drastically increases the number of recovered cell clusters: for instance when 
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imaging 0.8mm2, shifting from 4 to 10 ROIs will result in the doubling of the proportion of recov-

ered cell phenotypes, from less than 40% to more than 80% (Figure 2E and 2F).   

Discussion 
 Here we report how experimental design parameters impact the efficiency of multiplexed 

imaging experiments using the proportion of detected cell phenotypes as a simple yet robust metric. 

Our analysis identified the number of FoVs and their widths as key parameters that drive imaging 

experiment efficiency. Moreover, we determined the precise mathematical relationship linking these 

two parameters to the number of detected clusters. We found that the impact of FoV width on the 

experiment efficiency was regulated by a term 𝜶 that seems to be tissue specific and potentially in-

dependent of the imaging technology used. In practice, 𝜶 can be estimated in a pilot experiment us-

ing either a spatial transcriptomic approach, or by imaging a large region of a sample of a given co-

hort using a multiplexed imaging  technology. Once determined for a tissue type, 𝜶 should be valid 

for other tissues of similar type. 

 Interestingly, we observed highly variable values of 𝜶 across tissues and this must be taken 

into account when planning an multiplexed imaging experiment. Indeed, a value of 𝜶 close to 2 

means that one can image a small number of large FoVs or many small FoVs and detect the same 

number of cell types. In contrast, a small 𝜶 value requires the sampling of many small regions in 

order to efficiently recover the maximum number of cell phenotypes at a minimal cost. In order to 

facilitate the planning of imaging experiments, we provide 𝜶 values for various healthy and cancer-

ous tissues (Table S3).  

Our model has limitations. In the moment, it only determines the ideal parameters to capture 

all (or a certain proportion) of phenotypic clusters present in the tissue. The model does not consid-

er spatial relationships and tissues structures such as tertiary lymphoid structure. Additional work is 

therefore needed to see how our results, that are cell-based, can be extended to multi-cellular struc-

tures in order to implement more complex multiplex imaging experiments.     

 Beyond application to design of multiplexed imaging experiments, our results could also be 

used in the field of anapathology in which the current standard for classification of samples is the 
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analysis of one to four circular punches of variable diameter (600 µm to 2 mm) (Eckel-Passow et al. 

2010). Although we focused on the recovery of multiple cell types (i.e., clusters) rather than a single 

type of cell (for instance, HER2+ cells in breast cancer samples) (Harbeck et al. 2019), it is likely 

that a similar phenomenon of spatial segregation determines the efficacy of this type of sampling. In 

summary, our approach provides essential guidance for study of tissue structures using multiplex 

imaging in a time and cost-efficient manner. 

Methods  

Visium data pre-processing and analysis  

 Visium data were downloaded from the 10X Genomics website (support.10xgenomics.com/

spatial-gene-expression/datasets/), the Gene Expression Omnibus (GEO), or the Zenodo data por-

tals. Spots with less than 1000 UMIs and genes with less than 100 UMIs were removed before any 

analysis. Data were analyzed by combining the classical single-cell RNA-seq pipeline Pagoda2 

(Lake et al. 2018) with a latent Dirichlet allocation analysis step. Briefly, the top 1500 most variable 

genes were identified using the adjustvariance() function from Pagoda2 package, and the raw count 

data matrix containing only these genes was processed using the FitGoM() function from the 

CountClust package with a tolerance parameter set to 100 and the number of topics set to 5, 10, 15, 

or 20. For each number of topics, the BIC score was computed, and the number of topics displaying 

the lowest BIC or an elbow-like inflection was selected. The mixing matrix was then used for the 

next steps of analysis. A k-nearest-neighbor graph was built using the makeKnnGraph() function 

with parameter k set to 15 and using a cosine distance before performing a community detection 

analysis with the getKnnClusters() function with default parameters (corresponding to Louvain’s 

community detection (Blondel et al. 2008)). 

Spatial sampling analysis 

 To simulate spatial sampling strategies, we created a simple function that iteratively selects 

a random point on the sample, ‘draws’ a square with the sampled point at the center, and then 

checks whether this square overlaps with previously sampled squares. In case of overlap, the point 

is removed and a new point is sampled. A cluster was considered as detected by a given spatial 
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sampling (set of sampled FoVs) if more than T spots belonging to that cluster were located in the 

drawn squares. The threshold T was changed based on the type of data: It was set to 2 for Visium 

data, 50 for the IMC lymph node data, and 20 for the IMC breast cancer data. This sampling was 

repeated 50 times to obtain a robust estimate .  

 The model proposed in equation (1) was derived from the analysis of a homogenous Poisson 

point (HPP) process defined by a density parameter ƛ. The probability that a random square of size 

w contain no points is equal to exp(-ƛw2). A basic property of HPP processes is that the probability 

of finding no points in r independent (i.e., non-overlapping) squares is exp(-ƛrw2), and therefore the 

probability of finding at least one point is 1-exp(-ƛnw2). As we examined No different clusters (i.e., 

No different point processes), the mean number of detected clusters for a fixed number of squares 

N(r) is No =1-exp(-ƛrw2), thus justifying the use of equation (1). 

  In order to fit the model described in equation (1), we used the nls() function with the fol-

lowing starting values: No of 20 and 𝜏 of 5. The quality of the fit was estimated using cor() and pre-

dict() functions. Fitting equation (2) to the data was done by first applying a log10 transform to the 

data before performing a classical least square regression using the lm() R function. 

 In order to study the effects of clustering granularity on cluster recovery, we first computed 

the mean expression of each gene in each cluster, then built a hierarchical clustering tree using Eu-

clidean distance and Ward’s criterion. Then, using this tree, we iteratively merged the different clus-

ters. At each step, we performed a spatial sampling analysis. 

Lymph node section processing and IMC data acquisition  

 The two lymph node formalin-fixed, paraffin-embedded blocks were first cut into 5-µm 

thick sections. They were then dewaxed and rehydrated and subjected to a heat-induced epitope re-

trieval step for 30 minutes at 95 ºC in 10 mM Tris, pH 9.2, 1 mM EDTA. The sections were then 

incubated in blocking buffer (3% BSA in TBS-T) for 1 hour at room temperature, before incubation 

with antibodies (diluted in blocking buffer) overnight at 4 ºC. Nuclear staining was then performed 

by adding an iridium solution (5 nM) diluted in TBS (1:100 dilution) to the sample and incubating 

for 5 minutes. The samples were then washed three times (10 minutes per wash) in TBS and dried. 

Images were acquired using an Hyperion Imaging System with the ablation frequency set to 200 Hz 

and the ablation energy set to 6 dB with X and Y steps set to 1 µm. 
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IMC data pre-processing and analysis  

 The raw mcd files were processed using the Steinbock pipeline, version 0.70 (Windhager et 

al. 2021). In brief, the raw files were converted into tiff files, and the cells were segmented using a 

pre-trained neural network (Greenwald et al. 2021) using the H3K9ac channel as the nuclear chan-

nel and CD45RA/RO and Vimentin as the membrane channels. Default parameters were used for 

Mesmer with the exception of the —type parameter, which was set to ‘nuclei’. The mean channel 

intensity was then computed for each cell and exported as a text file, together with the location, the 

size, and other basic information on the cells. The single-cell IMC data were then analyzed using 

in-house R scripts (R version 4.0.3). Each channel was normalized by performing a Poisson regres-

sion between the total channel intensity and the cell size (in pixels); the Pearson’s residuals were 

extracted as the new scaled values. The cells were then clustered by first building a k-nearest-neigh-

bor graph with 15 neighbors (using cosine distance) and then clustered using Louvain’s community 

detection implemented in the igraph package with default parameters.  

  

Breast cancer IMC data re-analysis 

The SingleCellExperiment object containing single-cell information from 100 FoVs, each 

one derived from a different sample was downloaded from the Zenodo platform and analyzed using 

the following strategy: We first aggregated all cancer clusters (clusters 14 to 27) into a single cluster 

as the cancer clusters displayed a strong patient specificity. For each FoV, we progressively reduced 

the size of the image by factors of 1.1, 1.2, 1.5, 1.8, 2.2, 2.5, and 3 and computed the number of de-

tected clusters. We then performed a linear regression between the log transformed number of de-

tected clusters and the size of the reduced FoV using the lm() core function. FoVs with a low-quali-

ty model (R2 <0.9) were removed, and the slope of the regression was taken as the estimate of ⍺. If 

we combine equations (1) and (2) when considering a single FoV, we have: 

 N(1) = No *(1-exp(-1/𝜏)) (3) 

Therefore : log(1-N(1)/No) = (-1/𝜏) = - C/w𝜶 

as N(1)<<No, we have log(1-N(1)/No) ≃ - N(1)/No  
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log(N(1))≃ 𝜶log(w) + log(No) - log(C) 

thus justifying our regression-based approach. 

Computing the effect of 𝜶 on sampling strategy efficiency  

In order to compute the number of recovered clusters in breast cancer and cardiac tissue as a 

function of both r (number of regions) and w (width of FoV), we substituted equation (2) into equa-

tion (1): 

N(r,w) = No *(1-exp(-r*w𝜶/C)) 

In order to compare both samples, we dropped the No term. We then selected three total area values 

(1.6 mm2, 0.8 mm2, and 0.32 mm2) and computed N(r,w) for different ratios of r and w with a con-

stant r*w2 (total area) value. 
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Legends  
Figure 1: Use of spatial transcriptomic data to determine the optimal tissue sampling strategy 

for multiplexed imaging. (A) Analytical workflow used to simulate IMC of human tissues using 

spatial transcriptomic data. (B) Number of detected clusters vs. number of sampled regions for a 

bladder cancer Visium dataset with 400-µm FoVs. Each point corresponds to the mean number of 

recovered clusters across 50 similar simulations, and vertical bars correspond to standard error. The 

red dashed line corresponds to the fitted function. The horizontal dashed lines correspond to the to-

tal number of observed clusters (No; blue) and the actual number of clusters (Ntotal; grey). (C) Plot 

of 𝜏 for indicated samples from healthy and tumor samples. (D) Comparison of 𝜏 values from 

healthy and tumor samples. The p-value was computed using a Kruskal-Wallis rank test. (E) Left 

panel: Mean number of clusters detected vs. number of sampled regions for FoV widths ranging 

from 200 to 600 µm for the cerebellum Visium sample. Each point corresponds to the mean number 

of recovered cluster across 50 similar simulations, and vertical bars correspond to the standard er-

ror. Red dashed lines correspond to individual fits for each w value. Right panel: Relationship be-

tween 𝜏 and w for cerebellum sample. The dashed line corresponds to the linear regression after 

log10 transform. (F) Relationship between 𝜏 and w for the glioblastoma Visum sample. The dashed 

line corresponds to the linear regression after log10 transform. (G) Left panel: Proportion of clus-

ters recovered as a function of 𝜏 for a glioblastoma sample for indicated number of clusters. Each 

point corresponds to the mean number of recovered clusters across 50 similar simulations. For the 

sake of clarity, the error bars and fitted curves are not displayed. Right panel: Relationship between 

𝜏 and the number of clusters for a glioblastoma sample. The dashed line corresponds to a linear re-

gression. (H) Relationship between 𝜏 and the number of clusters for all studied samples. The dashed 

line corresponds to a linear regression. 
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Figure 2: Identification of a technology invariant measure of tissue complexity. (A) Experimen-

tal workflow to compare the results of spatial transcriptomic and IMC large-scale analysis. (B) Left 

panel: Number of recovered clusters vs. number of sampled regions for IMC lymph node data. Each 

point corresponds to the mean number of recovered clusters across 50 similar simulations, and ver-

tical bars correspond to the standard error. The red dashed line corresponds to the fitted function. 

The horizontal dashed lines correspond to number of observed clusters (No; blue) and the actual 

number of clusters (Ntotal; grey). Middle panel: Number of detected clusters vs. number of sampled 

regions for FoVs ranging from 200 to 500 µm for the IMC lymph node data from sample #1. Each 

point corresponds to the mean number of recovered cluster across 50 similar simulations, and verti-

cal bars correspond to the standard error. The red dashed lines correspond to individual fits for each 

w value. Right panel: Relationship 𝜏 and w for the IMC lymph node data form sample #1. The 

dashed line corresponds to the linear regression after log10 transform. (C) Left panel: Values of 𝜏 

for 400-µm width FoV for the Visium and IMC datasets for lymph node samples. Middle panel: 

Values of 𝜶 for the lymph node datasets. Right panel: Values of C for the lymph node datasets. (D) 

Comparison of 𝜶 values between the IMC breast cancer dataset and the five Visium breast cancer 

datasets. The p-value was computed using a Kruskall-Wallis test. (E) Estimation of sampling strate-

gy efficiency for breast cancer (left panel) and heart (right panel) Visium samples. The dashed lines 

correspond to the possible values taken for a fixed area surface. (F) Proportions of detected clusters 

when area imaged (indicated by solid, dashed, or dotted lines) was fragmented for breast cancer 

(red lines) and heart (grey lines) datasets. 

Supplementary Figure 1: (A) Distribution of R2 values for the saturation model described in equa-

tion (1) across the Visium datasets. (B) Distribution of R2 values for the power-law model described 

in equation (2) across the Visium datasets. (C) Approach used to estimate the impact of clustering 

granularity on 𝜏. (D) Relationship between 𝜏 and the number of clusters for the cerebellum sample. 

Supplementary Figure 2: (A) Plot of 𝜶 values from healthy and tumor samples. The p-value was 

computed using a Kruskal-Wallis rank test. (B) Approach used to estimate 𝜶 from a set of small 

IMC FoVs.
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