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Abstract 

Recent meta-analytic studies of social cognition and the functional imaging of empathy 

have exposed the overlap between their neural substrates and heteromodal association 

areas. The ‘gradient model’ of cortical organization proposes a close relationship between 

these areas and highly connected hubs in the default mode network, a set of cortical areas 

deactivated by demanding tasks. Here, we used a decision-making task and representational 

similarity analysis with classic ‘empathy for pain’ visual stimuli to probe the relationship 

between high-level representations of imminent pain in others and the high end of the 

gradient of this model. High-level representations were found to co-localize with task 

deactivations or the transitions from activations to deactivations. These loci belonged to 

two groups: those that loaded on the high end of the principal cortical gradient and were 

associated by meta-analytic decoding with the default mode network, and those that 

appeared to accompany functional repurposing of somatosensory cortex in the presence of 

visual stimuli. In contrast to the nonspecific meta-analytic decoding of these loci, low-level 

representations, such as those of body parts involved in pain or of pain itself, were decoded 

with matching topics terms. These findings suggest that that task deactivations may set out 

cortical areas that host high-level representations, but whose functional characterization in 

terms of simple mappings is unlikely. We anticipate that an increased understanding of the 

cortical correlates of high-level representations may improve neurobiological models of 

social interactions and psychopathology. 
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The gradient model of brain organization in decisions 

involving 'empathy for pain' 

    

Introduction 

Understanding the cortical representation of mental states of others is of great importance 

when modelling social interactions and their dysfunction. Recent meta-analyses of 

neuroimaging studies of social cognition in man suggest the involvement of distributed 

cortical networks that include heteromodal association areas (Schurz et al., 2021), 

confirming observations of previous studies (Spreng, Mar, & Kim, 2008; Schurz, Radua, 

Aichhorn, Richlan, & Perner, 2014). These areas have been identified in connectivity 

studies as hubs of exchange of multisensory information (‘network hubs’, van den Heuvel 

& Sporns, 2013; see also Bassett & Bullmore, 2006; Sporns, Honey, & Kötter, 2007; Braga, 

Sharp, Lesson, Wise, & Leech, 2013), consistently with earlier neuroanatomical models of 

large-scale cortical organization (Goldman-Rakic, 1988; Mesulam, 1990). However, these 

insights on cortical organization have so far drawn on evidence from structural and 

connectivity studies, while their relevance for the interpretation of functional activity has 

remained largely unexplored (Avena-Koenigsberger, Misic, & Sporns, 2018). 

Recently, it has been shown that the large-scale organization of the cortex may be 

summarized by the principal decomposition of connectivity from resting state data 

(Margulies et al., 2016; Huntenburg, Bazin, & Margulies, 2018; Smallwood et al., 2021). This 

decomposition suggests the existence of a principal gradient of information processing with 

primary sensory areas at the one end and highly connected heteromodal association areas 

at the other (here referred to as the ‘gradient model’; Margulies et al., 2016; Smallwood et 

al., 2021). Confirming earlier observations (Buckner et al., 2009), these studies found the 

high end of this gradient to be partially coextensive with the default mode network, a set 

of cortical areas deactivated by cognitively demanding tasks (Shulman et al., 1997; Raichle 

et al., 2001). Because of their topological distance to primary sensory and motor areas, the 

hubs at the high end of the cortical gradient may be involved in computations that require 

decoupling from the environment, as in the creation of an internal mental space populated 

by high-level semantic representations (Binder et al., 1999; Buckner, Andrews-Hanna, & 

Schacter, 2008; Spreng, Mar, & Kim, 2008; Smallwood et al., 2013, 2021). However, it has 

also been argued that the distributed character of processing in heteromodal areas, due to 

their high connectivity, leads to functionality that defies simple characterization 

(Smallwood et al., 2021). A second gradient in the same decomposition places visual and 

sensorimotor areas at its opposite ends (Margulies et al., 2016). 

In the present study we employed visual stimuli used in the classic ‘empathy for pain’ 

neuroimaging literature (Jackson, Meltzoff, & Decety, 2005; for review, see Lamm, Decety, 

& Singer, 2011) to probe the cortical organization of representations of anticipated pain in 

others at high levels of abstraction. These stimuli show hands or feet in scenes in which 

injuries of different types are imminent (painful images), or control scenes where the same 
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situation does not imply a possible injury (neutral images). Our aim was to provide evidence 

for the embedding of these representations within the large-scale cortical organization of 

the brain described above, including their relationship with the default mode network 

probed by task deactivations, and their position within the cortical gradient defined by the 

gradient model. We intended to use this position to reciprocally inform the interpretation 

of function of cortical areas and of the nature of computations at the high end of the cortical 

gradient. 

Beside the widely used pain vs neutral contrast, we used two distinct approaches to 

characterize the cortical correlates of representations of pain. The first draws on a binary 

decision making design (Heekeren, Marrett, & Ungerleider, 2008; Rangel & Clithero, 2014) 

to identify areas associated with evidence for imminent physical pain in the visual stimuli. 

This choice was motivated by a previous study that located the neural correlates of evidence 

for decisions in an elementary social cognition task in the proximity of task deactivations 

(Viviani, Dommes, Bosch, & Labek, 2020), consistently with an involvement of the high 

end of the cortical gradient of the model. The decision making framework provides an 

explicit formulation of the high-level representations based on which decisions are made: 

the evidence for the decision (Heekeren et al., 2008; Shadlen & Kiani, 2013). These 

representations may be the furthest removed from the encoding of specific stimuli, as they 

may be directly translated into motor responses (Cisek, 2012), and are therefore candidates 

for being hosted at the high end of the cortical gradient. Furthermore, they emerge in a 

distributed network that integrates signals from different parts of the brain into a low-

dimensional criterion (Cisek, 2012; Fine, Yoo, Ebitz, & Hayden, 2021), as described by 

connectivity models (Viviani, Dommes, Bosch, & Labek, 2020). In the current study, 

participants were presented with two visual scenes and were asked to rate them with the 

question "which situation is more painful?" We assumed that evidence for decisions was 

large when one scene represented a painful situation and the other represented a non-

painful or neutral situation. In contrast, we reasoned that there was little evidence to decide 

between two images when both depicted the same type of situations (painful/painful or 

neutral/neutral). 

The second approach took stock of the evidence that semantic representations of 

stimuli are encoded in the cortex as vectors of activity in a local high-dimensional space 

(Haxby, Connolly, & Guntupalli, 2014), whose directions vary in each individual. To seek 

evidence of the pattern of activity associated with the property of stimuli we used a 

searchlight-based representational similarity analysis approach (RSA, Kriegeskorte, Mur, & 

Bandettini, 2008). This approach seeks evidence of the encoding of constructs and of 

semantic properties of stimuli by assessing the concordance of the representational 

similarity of these properties and the pattern of covariance in the brain signal elicited in 

each trial. We computed the representational similarity of each trial for recognizable figural 

elements of the images (such as feet or hands) as well as in terms of high-level features 

related to the final criterion for the decision (the imminent possibility of pain, i.e. the 

criterion to compute the evidence for a decision in the trial). To date, the RSA approach has 

been prevalently applied to overt features of the stimuli, rather than to latent abstract 

properties involved in the task (Freund, Etzel, & Braver, 2021). 
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Based on these considerations, we formulated the hypothesis that the high-level 

representations elicited by the evidence for decisions would co-localize with task 

deactivations (taken as proxies of highly connected hubs) and areas at the high end of the 

gradient model, consistently with their high degree of abstractness. We also hypothesized 

that encoding of simple categories, such as body parts, would be located in more upstream 

areas, due to their more concrete character. We had no information from previous studies 

to form hypotheses on the RSA of the criterion for decisions (the imminent possibility of 

pain), but we assumed it to be located near evidence areas. These hypotheses matched the 

cortical gradient to stages of information processing. 

Methods 

Participants 

The fMRI study was conducted at the Psychiatry and Psychotherapy Clinic of the 

University of Ulm, Germany, after approval by the Ethical Review Board. Healthy 

participants (N = 50) were recruited through local announcements and admitted to the 

study after providing written informed consent. One participant was excluded due to failure 

to record responses during the scan, leaving N = 49 for the final sample (mean age 24.7, 

standard deviation 5.1, range 19-47; 26 women). 

Experimental design 

Participants were shown two pictures of right hands or feet in situations of anticipated 

physical pain or neutral outcomes (source: Jackson et al., 2005). In each trial participants 

were instructed to decide which situation in the two pictures could lead to the most painful 

outcome. We selected images from the original study showing hands or feet with equal 

frequency in each outcome and matching the type of injury causing pain (Figure 1A). 

Pictures were displayed side by side for 2.5 sec. After this time, blue dots appeared under 

the pictures to indicate participants could communicate their decision by pressing the left 

or right button, depending on the side of the anticipated painful outcome.  If after 1.5 sec 

no button was pressed, the trial was declared as a miss. Trial onsets were generated with a 

Poisson interval schedule of mean intensity of a trial every 14.75 sec, bounded to a minimal 

interarrival time of 13 sec. 

To investigate the neural correlates of evidence for decisions in an interpersonal 

context, we looked for a signal associated with the evidence for a decision, as in sensory-

based decision making studies (Heekeren, Marrett, Bandettini, & Ungerleider, 2004). To 

form trials where evidence for decisions was high, we paired painful with neutral pictures 

as decision options. We paired painful with painful or neutral with neutral images to form 

low evidence trials. There were all combinations of outcomes (12 trials painful/neutral, 6 

trials painful/painful, 6 trials neutral/neutral). Lateralization of pictures showing painful 

outcomes was balanced across the painful/neutral trials. The contrast of interest, 

representing high vs low evidence, subtracted the activity of painful/painful and 

neutral/neutral trials from the painful/neutral trials. The allocation of pictures to these 

combinations was swapped between participants such that in the overall sample the same 

pictures occurred in the painful/neutral and in the painful/painful or neutral/neutral 

combinations. Because the contrast high evidence vs low evidence contained the same 
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images in the two conditions that form this contrast, it was not confounded by intrinsic 

properties of the images, such as their salience, the presence of imminent pain itself, or by 

any other property that was not matched between painful and neutral images. 

 
Figure 1. A: Examples of images from Jackson et al. (2005), showing trial arrangements leading to trials with 

high evidence for decisions (one image painful, one neutral) and trials with low evidence (both images of the 

same type). Note that this design makes it possible to select trial mages so that in the contrast for decision 

evidence the same images are involved in both terms of the contrast. B: representational similarity maps used 

in the study (rearranged to highlight structure). C: boxplot of linear predictions of right-side choice (random 

effects of trials) in mixed trials and painful/painful or neutral/neutral trial (left), and density of predicted 

probabilities of choice of right side for trials in the two conditions of the experiment (right). 

The decision making design is validated by numerous functional imaging studies (for 

review, see Heekeren et al., 2008). The time course of neural activity in decision making 

tasks is well characterized by sequential sampling models, in which evidence for the 

available options is accumulated up to a boundary indicating sufficient evidence for one 

option (Gold & Shadlen, 2002; Heekeren et al., 2008; Shadlen & Kiani, 2013; for 

neuroimaging studies, see Ploran et al., 2007; Lim, O'Doherty, & Rangel, 2011; Wheeler et 

al., 2015). Here, we only focus on the existence of a neuroimaging signal correlated with 

the evidence for decisions. In functional imaging studies of perceptual decision making, the 

contrast used to detect neural activity associated with evidence for decisions is referred to 

as the “easy vs difficult” decisions contrast (Figure 1A), because when the evidence for 

decisions is large the decision is easy (Heekeren et al., 2004, 2008). 

Data were collected in a Prisma 3T scanner (Siemens, Erlangen) using a T2*-sensitive 

echo-planar imaging sequence (TR/TE 1970/36 msec, bandwidth 1776 Hz/pixel, GRAPPA 

acceleration factor 2, 32 transversal slices acquired in ascending order, slice thickness 2.5 

mm with a slice gap of 0.625 mm, field of view 192 with matrix size 64, giving in-planar 

voxel size 3x3 mm). In each participant, 182 scans were acquired after reaching 

equilibration giving a total scan duration of 6 min. 

Statistical analysis of behavioural data 

Behavioral data were analyzed with the freely available statistical software R 

(http://www.R-project.org/) using the package lme4 (version 1.1-26, function glmer, Bates, 
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Mächler, Bolker, & Walker, 2015). To demonstrate the tendency to consistently choose one 

of the options, a logistic regression model where choice of the right side button was 

arbitrarily coded as ‘success’ was fitted with an intercept and trials (identified by the 

combination of pictures of the trial) as random effects. The variance of the random effect 

indicates the tendency to depart from equal probability choices for right or left. To compute 

significance of the increased variance of trials with painful/neutral images (indicating a 

tendency to consistently choose right or left in high evidence trials), relative to trials with 

painful/painful or neutral/neutral images (low evidence trials), a likelihood ratio test was 

computed between a model with one random effect for all trials and a model with 

heteroscedastic random effects for high and low evidence trials. The density in Figure 1C 

was computed on random effects of fitted choice probabilities with the package ggplot2 

(Wickham, 2009) using a Gaussian kernel with bandwidth 0.08. 

Statistical analysis of neuroimaging data 

Functional imaging data were preprocessed with the freely available software SPM12 

(www.fil.ion.ucl.ac.uk/spm) running on Matlab (The MathWorks, Natick, MA). In the 

main analysis, brain data were realigned, registered to a MNI template (2 mm isotropic 

resampling size), and smoothed (FWHM 8 mm). At the first level, the brain signal was 

modelled by convolving a box-car function corresponding to the trials (2.5 sec) with a 

canonical BOLD function. Trials of three types were coded as separate regressors: trials with 

a painful and a neutral scene, trials with both painful scenes, and trials with both neutral 

scenes. Further confounder regressors were six head movement displacements estimated 

from realignment, and four regressors for denoising (Behzadi, Restom, Liau, & Liu, 2007). 

Denoising is indicated in RSA (described below) as it may improve detection power 

(Charest, Kriegeskorte, & Kay, 2018). The denoising confounder regressors were obtained 

from the first four principal components of the data in the voxels classified as belonging to 

the lateral ventricles, white matter, and bone in the segmentations conducted by SPM12 as 

part of the registration procedure. The number of denoising regressors was based on the 

results reported by Kay, Rokem, Winawer, Dougherty, & Wand (2013). Data and regressors 

were high-pass filtered (128 sec). Serial dependency of observations was modelled with an 

AR(1) autoregressive term fitted to pooled residuals. Two contrasts were computed: trials 

with painful and neutral scenes vs trials with scenes of the same type (evidence for 

decisions) and trials with only painful vs trials with only neutral scenes (standard contrast 

pain vs control). After estimating the model in each voxel separately at the first level using 

the SPM12 software, contrast volumes from each subject were brought to the second level 

to account for the random effect of subjects. Inference was obtained using a permutation 

method (8000 resamples) to correct for multiple testing at the voxel and cluster level (cluster 

definition threshold, p < 0.001). 

The RSA was conducted on non-smoothed data in volumes in the original space (i.e., 

non-registered) from coefficient estimates of a model in which each trial was modelled as a 

separate regressor (Kriegeskorte et al., 2008), with the same confounding covariates and 

autoregressive term as in the main model. We then formed the correlation matrices of the 

estimated model coefficients in a searchlight sphere (diameter 8 mm, 256 voxels) prior to 

computing the partial correlation of the off-diagonal terms of this matrix with those of the 

similarity matrices characterizing the trial according to the properties of the stimuli. The 
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properties of the trials that were used in the RSA were the anticipation of pain or no 

anticipation for each of the shown pictures, the body parts in the pictures (hands or feet) 

and the evidence for the decision (high or low evidence decisions, as a confounder; see 

Figure 1B). The searchlight sphere was computed with the appropriate function in the 

SPM12 software (spm_searchlight). We used a partial correlation approach to adjust for 

possible confounders (high or low evidence for decisions) in the RSA for body parts and 

imminent pain and to counter possible bias due to the non-orthogonality of the BOLD-

convolved regressors in the design matrix (for details, see Viviani, 2021). Correlation values 

from the RSA were then registered with the parameters computed for the main analysis 

(resampling voxel size, 2 mm isotropic) and brought to the second level, where they were 

smoothed (FWHM 4 mm) and processed in one-sample t-tests using permutation (8000 

resamples) to correct for multiple tests at the voxel and cluster level (cluster definition 

threshold, p < 0.001). 

Coordinates in text, figures and tables of the main and the representation similarity 

analyses are expressed in the Montreal Neurological Institute (MNI) standard space. 

Overlays of statistical parametric maps were obtained with the software package MRIcroN 

(Chris Rorden, freely available at https://people.cas.sc.edu/rorden/mricron/index.html). 

Decoding analysis 

The decoding analysis was obtained with the online tool available at the Neurosynth site 

(https://www.neurosynth.org, Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). The 

topics terms shown in the Results were obtained from the first 50 associations generated by 

the decoder after removing all anatomical terms and semantic redundancies (for example, 

‘tactile’ and ‘touch’ were considered equivalent). 

The average load on the principal gradient of cortical organization defined by 

connectivity was based on the data of Margulies et al. (2016), publicly available at the 

NeuroVault.org site (Gorgolewski et al., 2015) at the web site identifier 

https://identifiers.org/neurovault.image:31997. The significant clusters of the effect of 

evidence, of the pain vs neutral contrast, and of the RSAs of body parts and imminent pain 

were resampled on the space of the gradient data. Because of their intrinsically lower spatial 

resolution and/or smoothing, these clusters overstep the boundaries of the cortical mantle. 

To compute the average load on the main connectivity gradient, they were masked for the 

voxels where the gradient is present in the principal gradient data. 

Results 

Behavioral data 

There were an average of 0.53 missed trials per participant in mixed trials and of 0.90 in 

pain/pain or neutral/neutral trials. This difference was significant (Poisson regression with 

repeated measurements, z = 2.13, p = 0.018, one-tailed). Furthermore, in mixed trials, 

participants gave the correct response in an average of 83.7% of trials (95% confidence 

interval 79.5-87.1), indicating that participants were executing the task and identifying the 

correct response. 
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Pain/pain or neutral/neutral trials had no clear correct answer, preventing the 

computation of an equivalent statistic. To show the difference in the existence of a clear 

answer in the two types of trial, we fitted a random effects logistic regression where we 

modelled two separate random components for the mixed and the pain/pain or 

neutral/neutral trials. When choices are random, the linear predictor of a logistic regression 

model hovers around zero, while trials with a tendency to generate a right or a left choice 

inflate the random component of the trial type as linear predictions for trials are 

correspondingly positive or negative. The variance of the random effect of mixed trial was 

8.2, of pain/pain or neutral/neutral trials 2.1 ( 2

(1)  = 6.1, p = 0.013), confirming that mixed 

trials were prevalently associated with high evidence decisions (“easy decisions” in the 

perceptual decision-making literature) in contrast to trials with pain/pain or neutral/neutral 

images. Figure 1C shows a box plot of the linear predictions in the two types of trials, and 

the density of fitted trial probabilities of right-side choice. The boxplot shows the larger 

dispersion of linear predictions in mixed trials, as participants were more consistently 

choosing one of the scenes on the right or left. The density of fitted probabilities in mixed 

trials is bimodal, meaning that there was a tendency to select a right or left response, while 

the density of pain/pain or neutral/neutral trials has one mode at about 50% chance of right 

or left choice. However, there were a few mixed trials where participants were not entirely 

consistent in selecting one option, and several pain/pain or neutral/neutral trials where 

participants were expressing a clear preference. There was no difference in the dispersion 

of the random effects for pain/pain vs neutral/neural trials ( 2

(1)  < 0.01, n.s.). 

Neuroimaging data 

Evidence for decisions 

In the functional imaging data analysis we first looked at the neural correlates of evidence 

for decisions. As in Heekeren et al. (2004), we contrasted high vs low evidence decisions, 

i.e. the trials where one scene was painful and the other neutral vs trials where both scenes 

were of the same type. This contrast revealed a sparse network of areas involving the 

motor/premotor and somatosensory cortex, extending medially to the posterior cingulum 

(Figure 2A and Table A1 in the Appendix). More anteriorly, the middle/posterior insula, 

and the anterior cingulum/ventromedial prefrontal cortex (vmPFC) were also involved. On 

the lateral aspect of the brain, the middle temporal gyrus/temporoparieal junction were also 

strongly associated with evidence for decisions (areas PGa and PFm in the histological 

classification by Caspers et al., 2006). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 28, 2021. ; https://doi.org/10.1101/2021.11.28.470235doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470235
http://creativecommons.org/licenses/by/4.0/


 8  

 
Figure 2. A: parametric maps, contrast high vs low evidence decision (thresholded at p < 0.01 for illustration 

purposes), overlaid on a template brain. B: the same contrast, displayed together with task activations (yellow) 

and deactivations (light blue, same threshold). 

Several of these areas (such as the posterior cingulum and the vmPFC) are typically 

associated with the default mode network. We therefore looked at task deactivations, 

represented in light blue in Figure 2B. One can see that the effect of evidence for the 

decision, detected by the high vs low evidence decision contrast, involved task deactivations 

not only in areas classically associated with the default mode network, but also in the insula 

and in the motor/premotor cortex. In the insula, the association with evidence for decisions 

was located at the transition between the activated anterior insular and the middle and 

posterior portions. In the motor/premotor cortex, the same association overlapped with task 

deactivations, especially marked in the medial face, extending anteriorly towards the task 

active premotor cortex. 

For completeness, we should mention that there were effects in the opposite direction 

(contrast high vs low evidence decisions), involving task-activated cortex in the inferior 

frontal gyrus and the intraparietal sulcus (see Table A2 in the Appendix). These are known 

effects, elicited by increases in the difficulty of cognitive tasks (e.g., Rypma, Prabhakaran, 

Desmond, Glover, & Gabrieli, 1999) and involved in stimulus-response mapping (Bode & 

Haynes, 2009; Woolgar, Thompson, Bor, & Duncan, 2011). They may represent attentional 

and executive processes required by the decision making task that are complementary to 

the activity elicited by high evidence decisions (for a discussion, see Heekeren et al., 2008). 

Since they are not the focus of the present study, we will not comment on them further. 

Contrast pain vs neutral images 

One question we wanted to address was the relationship of the effects of evidence for 

decisions with those emerging from a more traditional contrast of painful vs neutral stimuli. 

Because the trials with difficult decisions contained two images of the same type (painful 

or neutral), they could be used to estimate this contrast. The main effects of this contrast 

were localized in the SII/inferior parietal cortex (areas PFop, PFt, and OP1 in the 
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classification by Caspers et al., 2006), anterior to the parietal effects of evidence and without 

substantial overlap (Figure 3 and Table A3 in the Appendix). An additional effect of the 

traditional contrast was in the middle insula. While some very limited overlap with the 

effects of evidence was observed here, most of the activity of the traditional contrast was 

located ventrally to the effect of evidence. There was no relation with any of the other 

effects of evidence documented in Table A1. 

 

Figure 3. A: parametric t map of the contrast 

painful images vs neutral (illustration threshold p 

< 0.01), overlaid on a template brain. B: the same 

contrast (blue color), displayed together with the 

effect of evidence for decisions (as in Figure 2). 

Representational similarity analysis 

We then turned to the investigation of representations using the RSA approach. Because 

the scenes of impending pain figured either hands or feet, with equal frequency across the 

experiment, we first computed the RSA associated with these body parts to validate the 

effectiveness of our approach (for more details, see Viviani, 2021). This analysis resulted in 

only one significant cluster of representational activity (MNI x, y, z: 54, 64, 2, right 

middle temporal gyrus, BA 37, t = 6.09, p = 0.001, peak level corrected, p = 0.006, cluster 

level corrected, 645 voxels; see Figure 4A). This cluster matched the right association area 

for the term ‘body’ in the automated meta-analytic tool Neurosynth (Figure 4B, Yarkoni et 

al., 2011; a similar map is generated by the term ‘hand’). This cluster was located at the 

lateral end of the large swath of task activity emanating from visual areas in the posterior 

occipital cortex (task activation at 54, 64, 2: t = 9.64, p < 0.001). 

 

Figure 4. A: parametric t map of the RSA 

analysis for hands/feet (illustration thres-

hold p < 0.01), overlaid on a template brain. 

B: Neurosynth rendering for the term 

‘body’, association test FDR p < 0.01. 

We then looked at the representation of pain, based on the distinction between 

impending pain and neutral images presented in the trials. This similarity map captured the 

presence or absence of images containing the criterion based on which choices were made. 

A similarity map for evidence for decisions was used as a confounder and partialled out 
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(Figure 1B). This analysis showed extensive bilateral associations in the primary and 

associative sensory cortex (Figure 5A, Table A4). 

 

Figure 5. A: Parametric map of the 

RSA for pain (in blue-green), and 

B: the same map, shown with the 

contrast high vs low evidence 

decision (the same as shown in 

Figure 2, in blue-yellow), overlaid 

on a template brain. Both contrasts 

were thresholded at p < 0.001 for 

illustration purposes. 

When shown together with the neural correlates of evidence for the decision (Figure 

5B), the involvement of the somatosensory cortex in the RSA for imminent pain appeared 

to complement the prevalently motor involvement of evidence for decisions on the other 

side of the central sulcus. In the most ventral part, they reached the painful vs neutral effects 

of a traditional contrast in sensory association cortex, but were much more extensive than 

this latter. 

Decoding analysis 

To situate the areas identified in the study within the existing corpus of neuroimaging data, 

we looked at these four effects (evidence for decisions, contrast pain vs neural, RSA for body 

parts, RSA for imminent pain) with the automatic decoding tool provided by the 

Neurosynth website (see Methods for details). The decoding analysis, shown in Figure 6A, 

confirmed that the effect of evidence for decisions involved mainly areas associated in 

previous studies with somatosensory and motor functions, together with the related body 

representations, and with the default mode network. An additional set of topics terms 

identified by the decoding analysis involved social cognition/theory of mind. The RSA of 

imminent pain was substantially a subset of these terms, centered on somatosensory and 

motor functions. In contrast, the pain vs neutral contrast and the RSA of body parts were 

decoded with topics terms that were specifically related to the content of the present 

analyses. The pain vs neutral effect identified topics terms associated with pain, 

somatosensory function, and, less specifically, with negative emotion. The topics term 

‘empathy’ was also elicited by this decoding, presumably in connection with ‘empathy for 

pain’ studies. As anticipated in Figure 4, the RSA of body parts identified topic terms 

associated with visual encoding and identification of body parts. 
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Figure 6. A: Decoding analysis of the effects of evidence for decisions and the contrast pain vs neutral images 

(top), and of RSA of imminent pain and body parts (bottom). DMN: default mode network; TOM: theory of 

mind. B: Average load of significant clusters on connectivity gradient component. CGC load: average load on 

connectivity gradient component: L, R: left, right. The anatomical labels refer to the peak of the cluster (from 

www.talairach.org). For more information about the clusters and their peaks, see the Tables in the Appendix. 

Average load on connectivity gradient component 

To verify the position of the areas identified in our analysis within the main gradient of 

cortical organization defined by connectivity (Margulies et al., 2016), we computed the 

mean component values of this gradient for statistically significant clusters (Figure 6B). This 

gradient is anchored at one end to areas serving mainly sensory and motor functions, and 

at the other end to heteromodal association areas serving abstract cognitive functions 

involving the default mode network. We found that the clusters associated with evidence 

for decisions were characterized by high cortical gradient loadings, with the exception of 

the sensorimotor cluster, which loaded on the other end of the gradient. The clusters 

identified by the pain vs neutral contrast were also located toward the low end of this 

gradient. An exception was the cluster in the right inferior frontal gyrus, which however 

may not be selectively associated with the representation of pain. Finally, both RSAs gave 

clusters at the low end of the gradient, as appropriate for sensory representations. 

Discussion 

In the present study we used a decision-making paradigm and RSA to shed light on the 

relationship between high-level cortical representations of anticipated pain in others, and 

in turn the relationship of both to task deactivations and the default mode network. Our 

aim was to verify the consistency of an interpretive model that draws a qualitative 

distinction between activity in low-end cortical modules, which may be modularly 

organized, and at the high end of the cortical gradient model, where distributed 

computations at a higher level of abstraction are hosted. 
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We used a decision-making paradigm as a strategy to make explicit the most abstract 

representations that the brain must compute to execute the task. Areas associated with 

evidence of decisions were among those reported in perceptual decision making (the 

posterior cingulum/precuneus, the posterior temporal gyrus and adjacent parietal areas, 

Heekeren et al., 2004), preference-based decision making (the posterior cingulum, the 

vmPFC, Clithero & Rangel, 2014) and social decision making (the posterior cingulum, the 

middle insula, Viviani, Dommes, Bosch, Stingl, & Beschoner, 2018). Recruitment of 

perceptual decision-making areas was consistent with the use of visual stimuli, and of those 

of social decision making with the criterion used in the decision. Crucially, these areas were 

co-located with task deactivations, or at the boundary between task activations and 

deactivations (in the posterior part of the brain), replicating the results of Viviani et al. 

(2020). 

Confirming our first hypothesis, some of these task deactivations involved the typical 

locations associated with the default mode network: the vmPFC and the posterior cingulum, 

the temporoparietal junction, and loaded at the high end of the gradient model. The 

involvement of the default mode network was confirmed by the meta-analytic decoding 

approach. This finding is consistent with the notion that the representations computed as 

evidence for deciding between options are hosted in the highly connected network located 

coextensively or in proximity of the default mode network, and that are identified by the 

cortical gradient model as convergence hubs. Furthermore, the close association with task 

deactivations and the default mode network distinguished the areas associated with decision 

evidence from those elicited by a classic pain vs neutral contrast, or the RSA of body parts, 

confirming our second hypothesis. 

However, not all areas that were here associated with evidence for decisions followed 

this pattern. The sensorimotor cortex, in particular, is not part of the default mode network 

and is not located at the high end of the principal gradient component. However, its 

recruitment is reported in studies of perception-based decision making that have 

demonstrated the emergence of a signal associated with evidence for decisions in the motor 

areas, among others (Gold & Shadlen, 2002; Shadlen & Kiani, 2013), leading to the inclusion 

of these areas in the network associated with evidence for decisions (Cisek, 2012). 

Furthermore, sensorimotor areas are characterized by poor long-range connectivity in 

studies based on diffusion tractography (Hagmann et al., 2008; Gong et al., 2009). However, 

the sensorimotor areas are included among the highly connected hubs in functional 

connectivity studies (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006), confirming 

a role in the connectivity core. In the principal decomposition of connectivity data, the 

sensorimotor areas and the adjacent parietal operculum constitute the terminal end of the 

second component of the cortical gradient (Margulies et al., 2016). 

Likewise, in the insula, a key area for encoding pain sensation (Lamm et al., 2011; 

Timmers et al., 2018; Jauniaux et al., 2019; Peyron & Fauchon, 2019; Soyman et al., 2021) 

but not part of the default mode network, the locus associated with evidence for decisions 

was located in the middle portion, half-way between the active anterior and the mildly 

deactivated middle/posterior portions. The task deactivation gradient in the anterior-

posterior direction follows connectivity gradients reported in the insula (Cerliani et al., 

2012; see also the third gradient component in Margulies et al., 2016). However, for both 
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posterior insula and somatosensory cortex, the interpretation of task deactivations is made 

difficult by activity decrements due to the visual modality of stimuli presentation (Langner 

et al., 2011). 

When using RSA, we found that representations of imminent pain, which were not 

evidence for decisions but the criterion based on which this evidence could be computed, 

were co-localized in the sensorimotor cortex and in the sensory association area. The 

decoding analysis of these areas confirmed the prevalent association with motor and sensory 

tasks of previous studies. There are two possible interpretations of this finding. One is that 

the prevalent localization of its peaks in the sensory cortex and the extension into sensory 

association areas is a clue to the role of these areas in the representation of empathy for 

pain. Considerable evidence links the sensory association area to decoding emotional 

expressions in others (Adolphs, Damasio, Tranel, Cooper, & Damasio, 2000; Keysers, Kaas, 

& Gazzola, 2010). Another interpretation is that this cortex may be representing 

information for the decision generically, much like the motor cortex represents information 

about the choice to be taken irrespective of the features that determine this choice. In favor 

of this latter interpretation are the results of a recent RSA analysis of a classic cognitive 

Stroop task, which found a similar correlate of cognitive control in this region (Freund, 

Bugg, & Braver, 2021), even if emotion recognition played no role in that study. Together 

with motor or premotor areas, the postcentral sensory cortex also appears in studies of 

categorization applying machine learning approaches (Li, Ostwald, Giese, & Kourtzi, 2007; 

Davis & Poldrack, 2014; Braunlich & Seger, 2016) or tracking distance to decision 

boundaries (Seger, Braunlich, Wehe, & Liu, 2015) that required discrimination between 

abstract patterns or food categories. 

In contrast to the generic roles attributable to areas here associated to evidence for 

decisions, the RSA of a concrete feature of the visual scenes, the displayed body parts, 

matched the visual association area for the topics term ‘body’ in the meta-analytic decoding. 

It also closely replicated the findings of Jackson et al. (2005), obtained with the same 

stimulus material using a traditional contrast approach. This portion of the lateral occipital 

cortex that has been univocally associated with encoding task-relevant visual object features 

in conventional studies (Edelman, Grill-Spector, Kushnir, & Malach, 1998; Downing, Jiang, 

Shuman, & Kanwisher, 2001; Grill-Spector, Kourtzi, & Kanwisher, 2001; Braunlich, Liu, & 

Seger, 2017). This area was also activated by the task, in contrast to those involved in 

evidence for decisions. Likewise, the effects of the contrast pain vs no pain involved the 

anterior inferior parietal /somatoform association area, as in meta-analyses of ‘empathy for 

pain’ studies (Timmers et al., 2018; Jauniaux, Khatibi, Rainville, & Jackson, 2019). Hence, 

in interpreting function, the issue arises if the same criteria should be applied to upstream 

perceptual areas, which compute increasingly abstract features but are still related to the 

perceptual modality involved, and to downstream areas linked together by long-range 

connectivity and involving, according to the gradient model, the default mode network. In 

a computational perspective, it has been suggested that downstream areas may coordinate 

to provide low-dimensional priors or schematic information to disambiguate signal from 

upstream areas (Hinton & Zemel, 1994; Friston, 2005). What may characterize them, 

relative to feedback involving the extraction of features within a sensory modality (Rao & 

Ballard, 1999), is that the computation emerges from the interaction with other network 
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hubs, recruited as appropriate, thus appearing in studies with heterogeneous content and 

defying a simple functional characterization. 

Models proposed in the literature to explain recruitment of vmPFC, found here to be 

associated with evidence for decisions and part of the default mode network (Shulman et 

al., 1997), exemplify these interpretive challenges. Studies of preference-based decision-

making tasks have proposed vmPFC to compute the integrated value and costs of a choice 

into a single summary criterion  (Levy & Glimcher, 2012; Rangel & Hare, 2010), irrespective 

of whether participants made the choices for themselves or another person (Kross, Berman, 

Mischel, Smith, & Wager, 2011). Recent analyses of the literature, however, have proposed 

a more general role for vmPFC, not limited to the computations of subjective value 

(Rudebeck & Murray, 2014; Wilson, Takahashi, Schoenbaum, & Niv, 2014; Ciaramelli, De 

Luca, Monk, McCormick, & Maguire, 2019; Mack, Preston, & Love, 2020; Zhou, Gardner, 

& Schoenbaum, 2021), consisting in selecting the information, hosted elsewhere, that is 

relevant to compute predictions of the consequences of responses. Our finding is consistent 

with these revised models, especially with views of the role of the orbitofrontal cortex in 

decision making that emphasize its role in computing a predictions of future outcomes 

(Rudebeck & Murray, 2014). In the stimulus set used in the present study, the pictures 

suggested an injury about to happen, but no actual injury was shown. In contrast, vmPFC 

was not associated with evidence for decisions in a social cognition task in which all 

relevant information was contained in the facial expression of the displayed individuals 

(Viviani et al. 2018). These findings are consistent with vmPFC providing top-down 

disambiguating schematic information, where the disambiguation consists of the 

computation of a predictive criterion. 

More posteriorly, the evidence for decisions was associated with activity in the 

temporoparietal junction and posterior temporal areas at the boundary to task deactivations. 

This involvement was responsible for the inclusion of theory of mind terms in the decoding 

analysis of this contrast (Caspers, Zilles, Laird, & Eickhoff, 2010). This finding is consistent 

with the model advanced by Schurz et al. (2021), according to which the cortical substrates 

of social cognition largely overlap with the default mode network/heteromodal association 

areas of the gradient model (Schilbach, Eickhoff, Rotarska-Jagiela, Fink, & Vogeley, 2008; 

Spreng et al., 2008). In the interpretive perspective adopted here, however, functional 

attributions of the temporoparietal junction would differ from those of more upstream areas 

such as the lateral occipital cortex, here recruited for the representation of body parts, or 

the somatosensory association cortex, associated with the representation of pain. Instead, 

its recruitment may be seen as evidence of activation of schematic or conceptual 

information (Murphy et al., 2018; Smallwood et al., 2021), determined dynamically in 

interaction with other high-level connected cortical nodes. In the right temporoparietal 

junction, this may be schematic spatial and visual information to identify target stimuli 

(Shulman, Astafiev, McAvoy, d'Avossa, & Corbetta, 2007); in the left, integration of 

semantic information (Lanzoni et al., 2020). 

Similar considerations may apply to the posterior cingulum/retrosplenial cortex, 

recruited here by the evidence for decisions, and a hub of numerous long-range connections 

with diverse cortical regions (Hagmann et al., 2008; Leech, Braga, & Shard, 2012; van den 

Heuvel & Sporns, 2013). This recruitment has been interpreted by some, including 
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ourselves, as the neural correlate of psychic pain (O'Connor, 2012; Labek et al., 2017), 

following consistent findings in several studies (Gündel, O'Connor, Littrell, Fort, & Lane, 

2003; Kersting et al., 2009; Labek et al., 2017). However, this area is also recruited together 

with vmPFC by studies of subjective preference in the appetitive domain (Clithero & 

Rangel, 2014; Viviani et al., 2019). A more general proposal about the function of this area 

is attentional redirection in the presence of stimuli of behavioural significance (Pearson, 

Heilbronner, Barack, Hayden, & Platt, 2011; Leech & Sharp, 2014). Rather than with a 

simple mapping between cortical areas and emotional content, these findings are consistent 

with accounts that emphasize the high level of conceptual elaboration of emotional 

information when detected in the default mode network (Satpute & Lindquist, 2019). 

In summary, we found that high-level representations related to the decision task 

were organized in a distributed network, as in models and data regarding decision making 

studies. Furthermore, they appeared to involve two types of task deactivations: one related 

to areas typically associated with the default mode network, as postulated by the gradient 

model, the other to areas that may have been repurposed to host representations of 

relevance for the task at hand. Accordingly, activity attributable to evidence formation 

appeared to involve at least two cortical gradients defined by connectivity, suggesting that 

our initial hypothesis, involving the principal gradient only, was too simplistic. In 

agreement with recent proposals (Margulies et al., 2016; Smallwood et al., 2021), we argued 

that the functional characterization of these areas in terms of simple mappings is unlikely, 

especially considering proposals in the literature on the abstract nature of high-level 

representations and the distributed character of their computations. This contrasts with the 

more univocal interpretation of areas representing more elementary categories, such as 

body parts, or of areas identified by the subtraction of signal in neutral from pain images. 

Future studies may be able to characterize the role of the connected core network of 

distributed hubs in clinical models. This issue arises from the observation that personality 

disorders, in particular, may be associated with changes in empathic processes (Ripoll, 

Snyder, Steele, & Siever, 2013; Luyten & Fonagy, 2015; Sosic-Vasic et al., 2019) and poor 

representations of interpersonal events (Skodol et al., 2011). Furthermore, it has been noted 

that areas located at or in proximity of task deactivations are often recruited in tasks of 

emotion regulation (Viviani, 2013), suggesting a role in controlling the encoding of 

representations of social and emotional relevance (Viviani, 2014; Messina, Sambin, 

Beschoner, & Viviani, 2016). Hence, insights from connectivity studies may facilitate the 

integration of models of semantic processing with the clinical neuroscience literature.  

Data availability 

Parametric maps of the results of this study are available at the NeuroVault site (web 

identifier https://identifiers.org/neurovault.collection:11616). 

Software availability 

The SPM12 add-on software used to compute the RSA using the partial correlation 

approach is available in a public repository (https://github.com/roberto-viviani/rsa-rsm.git). 
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Appendix 

Neuroimaging data, contrasts 

Table A1. Contrast high vs low evidence decisions 

Cl. # Location MNI coord. t 
p 

(uncorr.) 

p peak 

(corr.) 
k 

p clust. 

(corr.) 

1 R Anterior Cingulate (BA 24/32) 6  42   8 5.543 < 0.0001 0.014 1017 0.002 

 R Medial Frontal Gyrus 10  42 -10 5.489 < 0.0001 0.017   

 L Anterior Cingulate -6  34   6 4.687 < 0.0001 0.184   

 R Medial Frontal Gyrus (BA 11) 10  60   4 4.408 < 0.0001 0.359   

 R Superior Frontal Gyrus (BA 11) 12  50 -18 3.530 0.0005 0.971   

2 R Insula 36   6  10 5.453 < 0.0001 0.019 202 0.060 

3 L Superior Temporal Gyrus (BA 21) -62 -48  10 5.434 < 0.0001 0.021 917 0.003 

 L Supramarginal Gyrus (BA 22) -54 -56  24 4.684 < 0.0001 0.186   

 L Middle Temporal Gyrus (BA 21) -58 -36  -2 4.605 < 0.0001 0.225   

 L Middle Temporal Gyrus -48 -36   0 3.726 0.0003 0.905   

 L Middle Temporal Gyrus -64 -30  -8 3.588 0.0004 0.956   

4 R Precentral Gyrus (BA 6) 46  -8  58 4.797 < 0.0001 0.135 1276 0.001 

 R Precentral Gyrus (BA 4) 38 -26  56 4.521 < 0.0001 0.276   

 R Precentral Gyrus (BA 4) 40 -22  66 4.232 < 0.0001 0.503   

 R Postcentral Gyrus (BA 1) 50 -26  58 4.222 < 0.0001 0.512   

 R Precentral Gyrus (BA 6) 36 -12  66 4.067 < 0.0001 0.649   

 R Postcentral Gyrus (BA 3) 28 -36  60 3.843 0.0002 0.834   

 R Middle Frontal Gyrus (BA 6) 26 -12  64 3.840 0.0002 0.836   

 R Sub-Gyral 28 -14  44 3.669 0.0003 0.928   

 R Sub-Gyral 16 -36  62 3.400 0.0007 0.991   

5 L Culmen -36 -52 -28 4.837 < 0.0001 0.122 340 0.021 

 L Culmen -28 -44 -32 4.347 < 0.0001 0.405   

 L Declive -16 -56 -18 3.779 0.0002 0.874   

 L Lingual Gyrus (BA 19) -16 -62 -10 3.522 0.0005 0.973   

6 L Cingulate Gyrus (BA 23/24) -2  -4  42 4.637 < 0.0001 0.208 150 0.096 

 R Medial Frontal Gyrus (BA 6) 4  -8  54 3.640 0.0003 0.941   

7 R Cingulate Gyrus (BA 23) 4 -26  44 4.122 < 0.0001 0.600 261 0.037 

 R Paracentral Lobule (BA 4) 14 -32  54 3.830 0.0002 0.842   
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 L Paracentral Lobule (BA 4) -6 -32  52 3.502 0.0005 0.978   

8 R Supramarginal Gyrus (BA 40) 54 -50  30 4.231 < 0.0001 0.505 155 0.091 

 R Inferior Parietal Lobule (BA 40) 50 -52  46 3.384 0.0007 0.992   

9 R Precentral Gyrus 54  -8  14 4.190 < 0.0001 0.541 201 0.061 

 R Insula 44 -24  20 3.725 0.0003 0.905   

 R Postcentral Gyrus (BA 43) 52 -18  18 3.610 0.0004 0.949   

 R Inferior Parietal Lobule (BA 40) 50 -32  22 3.527 0.0005 0.972   

 R Inferior Parietal Lobule 58 -26  24 3.357 0.0008 0.994   

 R Inferior Parietal Lobule 50 -34  28 3.351 0.0008 0.994   

 R Inferior Parietal Lobule 60 -28  22 3.350 0.0008 0.994   

The table shows peaks at least 10mm apart of all clusters with significance at least p < 0.1, cluster level-corrected 

(cluster definition threshold: p < 0.001). Cl. #: cluster number; MNI coord: coordinates in Montreal Neurological 

Space; k: cluster extent, in 2x2x2 mm voxels; p clust. (corr.), significance level, corrected at cluster level using a 

permutation test; p peak (corr.), significance level, corrected at peak level using a permutation test. R, L: right, 

left. Anatomical labels were obtained from www.talairach.org. 

Table A2. Contrast low vs high evidence decisions 

Cl. # Location MNI coord. t 
p 

(uncorr.) 

p peak 

(corr.) 
k 

p clust. 

(corr.) 

9 L Inf. Frontal/ Sub-Gyral (BA 45) -40  28  18 5.721 < 0.0001 0.009 356 0.018 

16 L Precuneus (BA 7) -20 -70  48 4.968 < 0.0001 0.089 457 0.012 

 L Precuneus (BA 7) -24 -64  38 4.313 < 0.0001 0.424   

  L Superior Parietal Lobule (BA 7) -12 -68  66 4.156 < 0.0001 0.557   

18 L Inferior Parietal Lobule (BA 40) -36 -46  50 4.573 < 0.0001 0.240 166 0.076 

 L Sub-Gyral (BA 40) -34 -42  40 3.730 0.0003 0.893   

The table shows peaks at least 10mm apart of all clusters with significance at least p < 0.1, cluster level-corrected 

(cluster definition threshold: p < 0.001). Cl. #: cluster number; MNI coord: coordinates in Montreal Neurological 

Space; k: cluster extent, in 2x2x2 mm voxels; p clust. (corr.), significance level, corrected at cluster level using a 

permutation test; p peak (corr.), significance level, corrected at peak level using a permutation test. R, L: right, 

left; Inf: inferior. Anatomical labels were obtained from www.talairach.org. 
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Table A3. Contrast painful vs neutral images within difficult decisions 

Cl. # Location MNI coord. t 
p 

(uncorr.) 

p peak 

(corr.) 
k 

p clust. 

(corr.) 

1 L Postcentral Gyrus -60 -24  24 8.588 < 0.0001 <0.001 2648 <0.001 

 L Insula -38   4  -4 6.735 < 0.0001 <0.001   

 L Insula -38   0  12 6.169 < 0.0001 0.002   

 L Inferior Frontal Gyrus (BA 6/24) -54   6  22 5.796 < 0.0001 0.007   

 L Postcentral Gyrus -52 -34  56 5.245 < 0.0001 0.041   

 L Insula -38 -12  -4 4.682 < 0.0001 0.192   

2 R Postcentral Gyrus (BA 2) 66 -22  28 6.396 < 0.0001 0.002 813 0.003 

 R Postcentral Gyrus 62 -24  44 5.738 < 0.0001 0.009   

 R Inferior Parietal Lobule 60 -34  48 4.933 < 0.0001 0.096   

3 R Inferior Frontal Gyrus (BA 45) 48  46   4 6.703 < 0.0001 <0.001 377 0.021 

 R Middle Frontal Gyrus (BA 10) 42  60   2 4.047 < 0.0001 0.669   

4 R Sub-Gyral 40 -12 -10 5.425 < 0.0001 0.023 226 0.056 

 R Parahippocampal Gyrus (BA 34) 24  -4 -16 4.514 < 0.0001 0.283   

 R Sub-Gyral 38  -4 -10 4.392 < 0.0001 0.369   

 R Putamen 30 -12  -8 3.804 0.0002 0.864   

5 L Extra-Nuclear -22  -6 -12 4.996 < 0.0001 0.080 170 0.087 

 L Sub-Gyral -28 -14 -12 3.532 0.0005 0.971   

 L Parahippocampal Gyrus (BA 34) -30   4 -18 3.393 0.0007 0.992   

The table shows peaks at least 10mm apart of all clusters with significance at least p < 0.1, cluster level-corrected 

(cluster definition threshold: p < 0.001). Cl. #: cluster number; MNI coord: coordinates in Montreal Neurological 

Space; k: cluster extent, in 2x2x2 mm voxels; p clust. (corr.), significance level, corrected at cluster level using a 

permutation test; p peak (corr.), significance level, corrected at peak level using a permutation test. R, L: right, 

left. Anatomical labels were obtained from www.talairach.org. 

Neuroimaging data, representational similarity analysis 

Table A4. RSA analysis category ‘pain’ 

Cl. # Location MNI coord. t 
p 

(uncorr.) 

p peak 

(corr.) 
k 

p clust. 

(corr.) 

1 L Postcentral Gyrus -44 -20  48 7.316 < 0.0001 < 0.001 2809 < 0.001 

 L Postcentral Gyrus -50 -22  28 4.693 < 0.0001 0.072   

 L Sub-Gyral -44 -16  22 3.710 0.0003 0.636   

2 R Postcentral Gyrus 44 -22  44 5.308 < 0.0001 0.012 1553 < 0.001 

 R Precentral Gyrus (BA 6) 32 -22  72 3.355 0.0008 0.894   

3 L Inferior Frontal Gyrus (BA 44) -58  12  26 3.806 0.0002 0.555 214 0.092 

The table shows peaks at least 10mm apart of all clusters with significance at least p < 0.1, cluster level-corrected 

(cluster definition threshold: p < 0.001). Cl. #: cluster number; MNI coord: coordinates in Montreal Neurological 

Space; k: cluster extent, in 2x2x2 mm voxels; p clust. (corr.), significance level, corrected at cluster level using a 

permutation test; p peak (corr.), significance level, corrected at peak level using a permutation test. R, L: right, 

left. Anatomical labels were obtained from www.talairach.org. 
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Average connectivity gradient component load 

Table A5. Average connectivity component load of significant clusters 

Map Cl. # Location Peak MNI coord. CGC 

high vs low evidence 1 R Anterior Cingulate (BA 24/32) 6  42   8 2.827 

 3 L Superior Temporal Gyrus (BA 21) -62 -47  10 2.224 

 4 R Precentral Gyrus (BA 6) 46  -8  58 -5.187 

 7 R Cingulate Gyrus (BA 23) 4 -26  44 1.484 

painful vs neutral 1 L Postcentral Gyrus -60 -24  24 -3.068 

 2 R Postcentral Gyrus 66 -22  28 -1.569 

 3 R Inferior Frontal Gyrus (BA 45) 48  46   4 1.930 

RSA pain 1 L Postcentral Gyrus -44 -20  48 -4.787 

 2 R Postcentral Gyrus 44 -22  44 -4.728 

RSA body 1 R Middle Temporal Gyrus (BA 37) 54 -64 -2 -3.415 

Map: contrast or RSA analysis from which the map was obtained; Cl. #: cluster number; MNI coord.: coordinates 

in Montreal Neurological Space; CGC: average connectivity gradient component load. R, L: right, left. 

Anatomical labels were obtained from www.talairach.org. Connectivity gradient component data from 

Margulies et al. (2016). 
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