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Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders that pose a significant
global health burden. Measures from graph theory have been used to characterise ASD-related
changes in resting-state fMRI functional connectivity networks (FCNs), but recently developed
geometry-inspired measures have not been applied so far. In this study, we applied geometry-
inspired graph Ricci curvatures to investigate ASD-related changes in resting-state fMRI FCNs. To
do this, we applied Forman-Ricci and Ollivier-Ricci curvatures to compare networks of ASD and
healthy controls (N = 1112) from the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset.
We performed these comparisons at the brain-wide level as well as at the level of individual brain re-
gions, and further, determined the behavioral relevance of region-specific differences with Neurosynth
meta-analysis decoding. We found brain-wide ASD-related differences for both Forman-Ricci and
Ollivier-Ricci curvatures. For Forman-Ricci curvature, these differences were distributed across 83
of the 200 brain regions studied, and concentrated within the Default Mode, Somatomotor and
Ventral Attention Network. Meta-analysis decoding identified the brain regions showing curvature
differences as involved in social cognition, memory, language and movement. Notably, comparison
with results from previous non-invasive stimulation (TMS/tDCS) experiments revealed that the
set of brain regions showing curvature differences overlapped with the set of brain regions whose
stimulation resulted in positive cognitive or behavioural outcomes in ASD patients. These results
underscore the utility of geometry-inspired graph Ricci curvatures in characterising disease-related
changes in ASD, and possibly, other neurodevelopmental disorders.
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INTRODUCTION

Autism spectrum disorder (ASD) is an umbrella term for a diverse group of clinical presentations of neurodevelop-
mental disorders such as Autism, Asperger’s syndrome, childhood disintegrative disorder and pervasive developmental
disorder not otherwise specified (PDD-NOS) [1]. ASD is characterized by difficulties in social interaction, speech and
non-verbal communication, restrictive/repetitive behaviors and varying levels of intellectual disability, and can also
be accompanied by neurological or psychiatric disorders [1, 2]. Being highly heritable [2, 3], the prevalence of ASD is
globally increasing, affecting 1 in 54 children aged 8 years in the United States [4] and 1 in 100 children aged under
6 years in India [5]. In 1990, ASD was declared as a disability in the United States. While an early diagnosis is key
for early intervention, an accurate and effective diagnosis of ASD is crucial [6]. In order to provide a proper diagnosis
and to better characterize the disorder, several studies have been undertaken to understand the pathophysiology and
neurobiology of ASD (see e.g. Lord et al. [2] for a comprehensive review).

Neuroimaging methods like diffusion tensor imaging, magnetic resonance imaging (MRI) and functional magnetic
resonance imaging (fMRI) are well recognised and enable us to understand structural and functional brain development
in people with ASD compared to typical development, and to identify the disrupted neural mechanisms underlying
ASD [7–10]. It also provides a means to validate clinical symptoms and cognitive theories of ASD neurobiologically
[2, 7, 11]. fMRI captures activations in different regions of the brain through the changes in blood oxygen levels (BOLD
signals) and the temporal correlations between these BOLD signals are referred to as functional connectivity in the
brain [12]. Distant regions in the brain are activated synchronously even during rest [13, 14] and they form the resting
state functional connectivity of the brain. Resting state functional MRI (rs-fMRI) studies that require participants to
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look at a blank screen with no task demands have been used to study resting state functional connectivity in the human
brain, and have been demonstrated to be a convenient paradigm to identify neuronal correlates of neuropsychiatric
disorders such as ASD [8, 11]. Alongside individual studies, data sharing initiatives like the Autism Brain Imaging
Data Exchange (ABIDE) have offered large datasets of rs-fMRI images, encouraging and accelerating research on
ASD [2, 11, 15].

Graph theory and network analysis provide objective, data-driven measures to analyse the topological architecture
and connectivity patterns (human ‘connectome’) in the human brain [11, 16–20] and can provide us with deeper
insights about the functional, structural and causal organization of the brain [20]. Remarkably, many previous studies
on ASD have utilized graph-theoretic analysis of rs-fMRI functional connectivity networks (FCNs) to differentiate
ASD from healthy [15, 21–29], and furthermore, some of these studies [15, 21, 27, 28] made use of the ABIDE I
dataset. These studies investigated network characteristics such as small-worldness, modularity, clustering, efficiency,
rich club organization and connection densities of the FCNs in ASD versus typical development, and reported abnormal
functional organization in ASD both globally and at the level of nodes.

In recent years there has been an increasing interest in the development of geometric tools for analyzing complex
networks [30], which enables the study of higher-order correlations in networks beyond pairwise interactions [31–33].
A fundamental concept in geometry is Ricci curvature [34], which quantifies the extent to which a space differs from
being flat. Various nonequivalent definitions of graph Ricci curvature have been proposed [35–39] with an aim to
capture the key properties of the classical Ricci curvature. Different notions of graph Ricci curvature have found
applications in diverse areas, such as differentiating gene co-expression networks of cancer cells and healthy cells [40],
identifying crashes and bubbles in financial networks [41, 42], and community detection in complex networks [43, 44].
Ollivier-Ricci curvature (ORC) [37] and Forman-Ricci curvature (FRC) [36, 38] are two widely used notions of graph
Ricci curvature.

Notably, graph Ricci curvatures have also been applied to structural and functional connectivity networks of the
human brain. Farooq et al. [45] applied ORC to brain structural connectivity networks to identify robust and fragile
brain regions in healthy subjects. They also show that ORC can be used to identify changes in brain structural
connectivity related to ASD and healthy aging. Simhal et al. [46] used ORC to measure changes in brain structural
connectivity of individuals with ASD before and after the infusion of autologous umbilical cord blood. ORC has also
been used to study differences in brain structural connectivity networks of cognitively impaired and non-impaired
multiple sclerosis patients [47]. Recently, Chatterjee et al. [48] used a version of FRC to determine the changes in
brain functional connectivity related to attention deficit hyperactivity disorder (ADHD). Additionally, FRC has been
used to analyze task-based fMRI data [49] as well as to predict intelligence of healthy human subjects [50]. Most of
these studies have also contrasted graph Ricci curvatures with standard network measures such as clustering coefficient
and node betweenness centrality, and showed that graph Ricci curvatures can provide new information about brain
connectivity organization. However, a systematic evaluation of the association between graph Ricci curvatures of
brain functional connectivity networks and the behavioral and cognitive symptoms of neurodevelopmental disorders
such as ASD is lacking.

In the present work, we expand the scope of curvature-based analysis for characterizing brain connectivity by
systematically applying graph Ricci curvatures to analyse abnormal functional connectivity network organization in
ASD. Notably, we have utilized fMRI images of 1112 subjects from the ABIDE-I dataset and implemented a uniform
preprocessing pipeline for each image in order to improve the reliability of our results. We employ FRC and ORC to
compare the FCNs of individuals with ASD relative to age-matched healthy controls, and evaluate the role of these
curvature measures as indicators of abnormal functional connectivity in ASD. For this purpose, we first analyze the
brain-wide changes in functional connectivity by comparing average edge curvatures across the two groups. Second,
we analyze the region-specific changes in functional connectivity by comparing node curvatures across the two groups.
Third, we interpret the results of node-level comparisons for each resting state network (RSN) separately, in terms
of the behavioral significance of brain regions showing differences in node curvature. Finally, we demonstrate a
correspondence between the set of brain regions with altered curvature in ASD patients and the set of brain regions
whose non-invasive stimulation with transcranial magnetic stimulation (TMS) [51] and transcranial direct current
stimulation (tDCS) [52] have been reported in the literature to have a positive effect on ASD symptoms.

METHODS

In this section, we describe the methodology used to construct, analyze and compare the resting state functional
connectivity networks (FCNs) of individuals with autism spectrum disorder (ASD) and healthy controls (HC), from
raw resting-state functional MRI (rs-fMRI) images acquired from the Autism Brain Imaging Data Exchange I (ABIDE-
I) project [15]. First, raw rs-fMRI data were spatially and temporally preprocessed using the CONN functional
connectivity toolbox [53]. Second, we parcellated the brain into 200 distinct regions of interest (ROIs) or nodes
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using the Schaefer atlas [54] and a 200 × 200 functional connectivity (FC) matrix was generated for each subject.
Third, we filtered the FC matrix using a maximum spanning tree (MST) based approach followed by sparsity-based
thresholding to construct FCNs for each subject. Fourth, we performed global- and local-level network analysis to
compare the FCNs in the ASD group and the HC group. Fifth, we interpreted the behavioral relevance of the results
from local analysis using Neurosynth-based meta-analysis [55, 56] and studied the relationship between node-level
network measures and clinical scores.

Participants and imaging dataset

From the ABIDE-I project [15], we obtained raw rs-fMRI and anatomical data for 1112 participants (age range
= 7−64 years, median = 14.7 years), out of which 539 individuals had autism spectrum disorder (ASD) and 573 were
age-matched healthy controls (HC). ABIDE-I project is an international effort by 17 imaging sites that have collectively
shared rs-fMRI, anatomical and phenotypic data. Further details such as MRI modalities and scan parameters are
available on the ABIDE website: http://fcon_1000.projects.nitrc.org/indi/abide.

Quality assessment and exclusion criteria before preprocessing

We used the following criteria to exclude subjects in ABIDE-I from this study. First, the subjects with missing
anatomical or functional files were excluded. Second, all subjects from the imaging site Stanford were excluded as
it is the only site with spiral image acquisition protocol. Third, all subjects from the imaging site Leuven-1 were
excluded due to unknown repetition times for the functional scans. Fourth, to assess the quality of the raw images
in ABIDE-I, we have used the information on raters’ decision available from the Preprocessed Connectome Project
(PCP) [58], and the subjects whose raw image quality was described as ‘fail’ by both the raters were excluded. Note
that we did not exclude the subjects based on IQ or match the cohorts for IQ in order to ensure that the results of
our analyses are generalizable to the typical ASD population [15, 59]. After removing subjects based on the quality
assessment (QA) checks and exclusion criteria described above, we were left with 494 subjects in the ASD group and
520 subjects in the HC group (Supplementary Table S1).

Raw fMRI data preprocessing

We used the CONN functional connectivity toolbox [53] to process the rs-fMRI data from ABIDE-I. Figure 1 is a
schematic summarizing the processing pipeline for rs-fMRI data used in this study. We have created a protocol video
providing a visual guide to rs-fMRI preprocessing using CONN toolbox which is available at: https://www.youtube.

com/watch?v=MJG8-oUsLqg

Spatial preprocessing

We performed motion correction, slice-timing correction, outlier detection, and structural and functional segmen-
tation and normalization. First, the functional images were co-registered to the first scan of the first session. The
SPM12 realign and unwarp procedure [60] was used to realign and motion correct the images using six rigid body
transformation parameters: three translations in x, y and z directions, and three rotations namely pitch, yaw and roll.
Second, the SPM12 slice-timing correction procedure [61] was used to temporally align the functional images. Third,
Artifact Detection Tools (ART)-based outlier detection was performed where acquisitions with framewise displace-
ment greater than 0.5 mm or global BOLD signal changes greater than 3 standard deviations were marked as outliers.
Fourth, segmentation and normalization [62] was carried out to normalize the images into the standard Montreal
Neurological Institute (MNI) space, and then, segment the brain into grey matter, white matter and cerebrospinal
fluid (CSF) areas. Raw T1-weighted volume of the anatomical image and mean BOLD signal of the functional images
were used as reference in this step. Subjects with bad image quality and signal dropouts in their scans or subjects
with registration or normalization errors were excluded from further analysis.
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FIG. 1. A schematic diagram summarizing the rs-fMRI processing pipeline employed in this study. The raw fMRI scans
undergo four steps in spatial preprocessing, namely, motion correction, slice-timing correction, outlier detection, and direct
segmentation and normalization. The raw structural MRI scans are normalized to the Montreal Neurological Institute (MNI)
space, and segmented into grey matter, white matter and cerebrospinal fluid (CSF) areas. In the temporal preprocessing or
denoising step, the BOLD time series of each voxel is extracted and the remaining physiological and motion confounds are
removed using linear regression. The confounds include white matter and CSF masks, subject-motion parameters and outlier
scans. The residual BOLD time series of each voxel undergoes a high-pass filtering at 0.008 Hz. The Schaefer atlas is used to
parcellate the brain into 200 regions of interest (ROIs) and the mean time series for each ROI is computed. Finally, Pearson
correlation coefficient is computed between all pairs of ROIs, resulting in a 200 × 200 functional connectivity (FC) matrix.
Thorough quality assessment (QA) checks were implemented both before and after preprocessing. In this figure, the head icon
under denoising section is made by Freepik from flaticon.com [57].
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Characteristics ASD Group HC Group
number of subjects 395 (44 female) 425 (78 female)
age (in years)
mean ± s.d. 15.6± 7.1 15.51± 6.23
range 7− 58 6− 57

handedness (n)
left 29 27
right 225 247
mixed 3 3
ambidextrous 1 0

ADI-R Social
mean ± s.d. 19.72± 5.25 −
range 7− 30 −

ADI-R Verbal
mean ± s.d. 15.95± 4.25 −
range 2− 26 −

TABLE I. Summary of demographic and clinical information for the 820 subjects from ABIDE-I project that fulfil the inclusion
criteria and were selected for network analysis in this study. 395 subjects belong to the autism spectrum disorder (ASD) group
and 425 subjects belong to the healthy control (HC) group. The subjects in both the groups are age-matched (p = 0.835).
Handedness data were missing for 137 ASD and 148 HC subjects. ADI-R social data were missing for 120 ASD participants.
ADI-R verbal data were missing for 119 ASD participants.

Denoising

After the spatial preprocessing of the raw rs-fMRI scans, the BOLD time-series associated with each voxel was
extracted using the CONN toolbox. Next, we performed temporal preprocessing or denoising using the CONN
toolbox to further reduce physiological or motion effects from the BOLD time-series. First, we implemented anatomical
component-based noise correction procedure (aCompCor), to simultaneously remove five potential noise components
[63] each from white matter and CSF areas, 12 potential noise components from estimated subject motion parameters
and their associated first-order derivatives [64], and one noise component from each of the identified outlier scans
(scrubbing) [65] in a single linear regression step. Second, a high-pass filtering was performed to remove temporal
frequencies below 0.008 Hz from the BOLD time-series.

Quality assessment and exclusion criteria after preprocessing

After preprocessing the raw fMRI data, we applied the following criteria to exclude participants from the analysis.
Subjects were excluded if the FC distribution deviated significantly from normal distribution, or if the FC distribution
showed a noticeable distance dependence [66]. We additionally excluded subjects that showed a noticeable correlation
between quality control (QC) variables and FC values, or if the QC-FC correlations showed a noticeable distance
dependence [66]. After removing subjects based on these exclusion criteria, we were left with 395 subjects in the ASD
group and 425 subjects in the HC group (Supplementary Table S1). The FC matrices of these remaining 820 subjects
were used for network analysis. The demographic and clinical information for these subjects from ABIDE-I included
in our study are summarized in Table I.

Atlas-based definition of nodes and functional connectivity matrix construction

A widely used approach for defining nodes in functional connectivity networks (FCNs) is to group closely related
neighboring voxels into cortical parcels, in order to obtain nodes with interpretable neurobiological meaning [67].
Furthermore, the use of brain parcellations also reduces the computational load of further analyses. In this study, we
used a predefined cortical parcellation atlas by Schaefer et al. [54], which is based on a gradient-weighted Markov
random field approach. While the Schaefer atlas is available at multiple resolutions, we considered the resolution that
parcellates the brain into 200 distinct regions of interests (ROIs) wherein each hemisphere comprises 100 ROIs. In
this parcellation, each ROI belongs to one of seven resting state networks (RSNs), namely, ‘visual’, ‘somatomotor’,
‘dorsal attention’, ‘salient ventral attention’, ‘limbic’, ‘control’, and ‘default’. Using the CONN toolbox, the time
series of each ROI was computed as the average of the time series of all the voxels that it contains. Subsequently,

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 28, 2021. ; https://doi.org/10.1101/2021.11.28.470231doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470231


6

Pearson correlation coefficient between the time series of every pair of ROIs was calculated in the CONN toolbox,
which resulted in a 200× 200 FC matrix for each subject.

Construction of sparsity-based functional connectivity networks

In the preceding subsection, we described the FC matrix which is a correlation matrix that can be represented as
a complete, weighted and undirected graph wherein the ROIs correspond to the nodes and the weights of edges are
given by the correlation values between ROIs. The construction of the FCN from the FC matrix of a subject includes
two steps, namely maximum spanning tree (MST) construction and sparsity-based thresholding.

First, to extract the most important edges from the FC matrix, we constructed its MST using Kruskal’s algorithm
[68]. The MST is a spanning tree of the weighted graph with maximum edge weight. Note that the MST for a
weighted graph with n nodes is an acyclic graph (more precisely, a tree) with (n−1) edges which is always connected.
Second, we used sparsity-based thresholding, wherein edges are iteratively added to the MST in decreasing order
of their correlation values, until a resulting network with the desired sparsity was obtained. Further, the resulting
network with desired sparsity was binarized by ignoring the edge weights before proceeding to compute the network
properties [23, 69].

Evidently, this choice of MST construction followed by sparsity-based thresholding to generate the FCNs ensures
that the constructed networks for different subjects are connected and have the same number of edges. Such networks
enable direct mathematical comparison of global and local network properties across subjects [23, 70, 71]. We remark
that this choice of MST followed by sparsity-based thresholding to construct FCNs from rs-fMRI images has been
used earlier by Achard et al. [72].

As there is no rationale for using a specific graph density, previous studies [23, 26, 28] have explored network
properties across a range of graph densities. In this work, we have studied the network properties over a wide range of
graph densities between 0.02 or 2% edges and 0.5 or 50% edges, with an increment of 0.01 or 1% edges. Thus, for each of
the 820 subjects from ABIDE-I considered in this study, we have constructed 49 unweighted and undirected networks.
In other words, we have generated 820×49 FCNs for 820 subjects across 49 graph densities or thresholds for this study,
and the constructed networks are available for download from: https://github.com/asamallab/Curvature-FCN-ASD.

Network-based analysis and statistical tests

As mentioned in preceding subsection, we constructed 49 unweighted and undirected networks with varying sparsity
from the FC matrix corresponding to each subject, and thereafter, each of the 49 networks for a subject was charac-
terized by computing discrete Ricci curvatures and other network properties. Specifically, we have focused here on two
discrete Ricci curvatures, namely Forman-Ricci curvature (FRC) [36, 38, 39] and Ollivier-Ricci curvature (ORC) [37].
Notably, the two discrete Ricci curvatures are naturally defined for edges in a network and capture different aspects
of the classical Ricci curvature [39]. Moreover, we have also explored here several standard global network measures
including average clustering coefficient, modularity [73], average shortest path length, average node betweenness cen-
trality, global efficiency [74] and average local efficiency [74]. In Supplementary Information, we describe the different
global and local network measures employed here to characterize the FCNs.

To compare the global properties of the FCNs across the two groups (ASD versus HC), we first computed the
average FRC of edges, average ORC of edges and seven other global network measures (including average clustering
coefficient, modularity, average shortest path length, average node betweenness centrality, global efficiency and average
local efficiency), for each of the 820× 49 networks corresponding to the FC matrices of 820 subjects across 49 graph
densities. To compare the node-level properties of the FCNs across the two groups (ASD versus HC), we computed
the node FRC and node ORC for each of the 200 nodes in each of the 820 × 49 networks corresponding to the FC
matrices of 820 subjects across 49 graph densities. Note that the node Ricci curvature is defined as the sum of edge
Ricci curvatures for the edges incident on that node [39] (see Supplementary Information). Additionally, we computed
two standard network measures, namely node clustering coefficient and node betweenness centrality.

For the global measures, we evaluated the differences between the two groups across the 49 graph densities in the
range 2−50% considered in this study by using a two-tailed two-sample t-test, and moreover, we used a false discovery
rate (FDR) correction [75] to correct for multiple comparisons and control the occurrence of false positives. Note that
the α for this FDR correction was set to 0.05. For the node-level measures, we first computed the area under the
curve (AUC) for a given node measure across the 49 graph densities considered in this study [26, 69]. Thereafter, we
used a two-tailed two-sample t-test to evaluate the differences between the two groups via AUCs of the node measures
for each of the 200 nodes in the network, and moreover, we used FDR correction to correct for multiple comparisons.
Note that the α for this FDR correction was set to 0.05.
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The computer codes for FRC and ORC are available at: https://github.com/asamallab/Curvature-FCN-ASD. The
other global network measures mentioned above for FCNs were computed using the Python package NetworkX [76].
Furthermore, the statistical tests were performed in Python packages SciPy [77] and statsmodels [78].

Neurosynth meta-analysis and relationship with clinical scores

We used Neurosynth meta-analysis decoding to interpret the results of the node-based network comparisons, in
terms of their behavioural relevance [56]. Corresponding to each node network measure studied here, we identified
a set of nodes (ROIs) that showed significant differences between the ASD and HC groups. For a set of nodes
with significant between-group differences for a network measure, we used Neurosynth meta-analysis tool [55] to find
terms related to cognition, perception and behavior corresponding to the centroid coordinates of each ROI in the set.
Further, we partitioned the set of identified ROIs which show significant between-group differences, by the 7 RSNs
in the Schaefer atlas, and thereafter, the frequency counts of the terms associated with the subset of identified ROIs
in a particular RSN were calculated. To determine statistical significance of these frequency counts, we calculated
the frequency counts of the same terms associated with an equal size set of randomly selected surrogate ROIs, and
thereafter, the z-score for the frequency counts of each term associated with the subset of original ROIs was calculated.
Subsequently, the z-scores were converted into p-values assuming a normal distribution and an FDR correction with
α equal to 0.05. This was done for each RSN separately, to identify those terms selectively associated with each of
the 7 RSNs.

After identifying the set of nodes (or ROIs) that showed significant between-group differences in FRC (or ORC),
we performed a post-hoc correlation analysis to find the relationship between FRC (or ORC) of the identified nodes
and clinical scores related to symptom severity in the ASD group. Specifically, we chose two clinical scores based on
the Autism Diagnostic Interview-Revised (ADI-R) scoring [79], which are: (i) ADI-R verbal and (ii) ADI-R social.
We measured the relationship between the node FRC (or the node ORC) and the ADI-R scores by computing the
partial correlations, with age and gender as covariates. Subsequently, we used an FDR correction with α equal to
0.05 to control the occurrence of false positives.

Identifying brain regions whose stimulation with non-invasive brain stimulation methods of ASD patients
resulted in positive behavioral and cognitive outcomes

We performed a literature search to identify scientific papers reporting the effect of non-invasive brain stimulation
(NIBS) on core symptoms of ASD, and then used results reported in these papers to identify those brain regions
whose stimulation resulted in positive behavioral and cognitive outcomes. Figure 2 summarizes the workflow we
employed to collect and classify the eligible articles. We used PubMed to perform the literature search. The search
query to PubMed reflected diagnosis of interest including ‘autism spectrum disorder’, ‘Asperger’s syndrome’, ‘autism’
and three major brain stimulation methodologies including ‘Transcranial magnetic stimulation’, ‘TMS’, ‘transcranial
direct current stimulation’, ‘tDCS’, ‘transcranial alternating current stimulation’, ‘tACS’. The search was performed
in October 2021 and the exact details regarding the search query are provided in Table II. The PubMed search
returned 235 articles.

We followed a three-stage procedure to further refine the list of 235 articles returned by the PubMed search. First,
we checked for papers missing from the corpus generated by the PubMed search, by scanning review articles on the use
of NIBS methods to study ASD. We also searched these review articles for potential databases of NIBS experiments on
ASD. Second, we filtered the articles based on title and abstract, based on relevance. We defined relevance according
to the following criteria. The inclusion criteria were: (1) studies on populations diagnosed with ASD, and (2) studies
that have used non-invasive brain stimulation techniques namely, TMS (and its variants such as rTMS), tDCS and
tACS, and (3) studies that have investigated the effect of NIBS on the core behavioral and cognitive symptoms of
ASD, and (4) studies that are peer-reviewed. The exclusion criteria were: (1) review articles, (2) articles presented
in languages other than English, (3) studies that did not perform NIBS, (4) studies that investigate new protocols
for NIBS, (5) studies that report no positive effects in ASD symptoms post NIBS, (6) studies whose target areas for
NIBS were not clearly reported, and (7) articles without access to full-text. Third, we classified the articles based on
their stimulation technique (TMS/ tDCS/ tACS) and checked the full text of the articles for relevance, according to
the same criteria as above. This process yielded 19 eligible articles for TMS, 12 eligible articles for tDCS and zero
articles for tACS.

We identified Barahona-Corraa et al. [81] as a database of TMS studies in ASD published before 2018, with data
collection guided by preferred reporting items for systematic reviews and meta-analysis (PRISMA) [80]. Similarly,
we identified Garcia-Gonzalez et al. [82] as a database of tDCS studies in ASD published before August 2019, also
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FIG. 2. Summary of the workflow employed to compile data from non-invasive brain stimulation (NIBS) experiments. The
workflow is presented according to PRISMA statement [80]. First, we identified 235 potential records from PubMed. Second,
we filtered the articles based on title and abstract. Third, we scanned review articles for more records and looked for existing
databases for additional data. After performing the above steps, we were left with 84 potential NIBS studies. Finally, we
classified the studies based on the stimulation technique (TMS/tDCS/tACS) and screened the studies individually for eligibility.
We were left with 19 TMS studies and 12 tDCS studies, which were used to extract experimental data.
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Search date Search query Search filters Source
October 18, 2021 ((transcranial magnetic stimulation) AND (autism)) OR

((transcranial magnetic stimulation) AND (Asperger))
OR ((transcranial magnetic stimulation) AND (PDD
NOS)) OR ((transcranial direct current stimulation)
AND (autism)) OR ((transcranial direct current stimu-
lation) AND (Asperger)) OR ((transcranial direct cur-
rent stimulation) AND (PDD NOS)) OR ((transcra-
nial alternating current stimulation) AND (autism)) OR
((transcranial alternating current stimulation) AND (As-
perger)) OR ((transcranial alternating current stimula-
tion ) AND (PDD NOS)) OR ((TMS) AND (autism)) OR
((TMS) AND (Asperger)) OR ((TDCS) AND (autism))
OR ((TDCS) AND (Asperger)) OR ((TACS) AND
(autism)) OR ((TACS) AND (Asperger))

year : no filter,
article attribute : no filter,
language : no filter,
age : no filter,
sex : no filter,
publication date: no filter

PubMed
(n = 235)

TABLE II. Detailed summary of the electronic search query on PubMed that we used to obtain our original corpus of articles
that perform non-invasive brain stimulation on ASD patients.

guided by PRISMA data collection. We utilized the data presented in these two databases along with the data that
we extracted from the eligible articles in our corpus, such as author, publication year, DOI, number of participants,
gender distribution, mean age, intellectual abilities, stimulation methodology and parameters, target areas, stimulation
schedule, behavioral and cognitive outcome measures, behavioral and cognitive results, and any adverse reactions for
the experiment group and the control group (if applicable). All the data collected are provided as Supplementary
Tables S5 and S6. From these data, we identified the set of brain regions whose stimulation using these NIBS methods
on ASD patients resulted in positive cognitive and behavioral outcomes.

Determining overlap between sets of regions identified from literature search of NIBS studies and those
identified with graph Ricci curvatures

We determined the overlap between the sets of regions identified from literature search of NIBS studies and the sets
of regions revealing ASD-related differences in graph Ricci curvatures of fMRI FCNs. The target areas described in
the NIBS studies were cortical regions in the brain that are specified by their respective Brodmann areas [83] while
we identified graph Ricci curvature differences in areas of the Schaefer 200 atlas. We used the MRIcron tool [84]
to map each of the Brodmann areas to Schaefer ROIs, by identifying the Brodmann area encompassing the MNI
centroid coordinates of each Schaefer ROI [85]. The mapping from Schaefer ROIs to the Brodmann areas is presented
in Supplementary Table S7. Next, we compiled the set of Brodmann areas that serve as target areas from the eligible
NIBS experiments and have shown a positive outcome, either behavioral or cognitive, as a result of stimulating that
region. We then identified the set of Schaefer ROIs that were mapped to these Brodmann areas. From this set of
Schaefer ROIs, we found the subset that yielded significant ASD-related differences according to the local graph Ricci
curvatures namely, FRC and ORC, as well as for clustering coefficient and node betweenness centrality.

RESULTS

The primary goal of this study is to evaluate the utility of two notions of graph Ricci curvature, namely Forman-
Ricci curvature (FRC) and Olivier-Ricci curvature (ORC), that have been recently ported to the domain of complex
networks, as indicators of abnormal topological organization in resting state functional connectivity networks (FCNs)
of individuals with autism spectrum disorder (ASD). For this purpose, we analysed spatially and temporally prepro-
cessed rs-fMRI images of 395 individuals with ASD and 425 healthy controls (HC) as described in Methods section.
Subsequently, 200 regions of interest (ROIs) or nodes were defined in the brain using the Schaefer atlas, and a 200×200
functional connectivity (FC) matrix was generated for each subject by computing the Pearson correlation coefficient
between the time-series of all pairs of nodes. Thereafter, by combining maximum spanning tree (MST) and sparsity-
based thresholding, we constructed FCNs over a wide range of graph densities between 0.02 or 2% edges and 0.5 or
50% edges, with an increment of 0.01 or 1% edges (see Methods). In a nutshell, we generated and analyzed 49 FCNs
for each of the 820 subjects in the ABIDE-I dataset considered in this study.
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FIG. 3. Comparison plots of global changes in functional connectivity networks (FCNs) as captured by network measures
between 395 subjects with autism spectrum disorder (ASD) and 425 age-matched healthy controls (HC). Each network measure
was compared over a wide range of graph densities between 0.02 (i.e., 2% edges) and 0.5 (i.e., 50% edges), with an increment
of 0.01 (i.e., 1% edges). The shaded regions in each plot indicate statistically significant differences (p < 0.05, FDR-corrected)
between the two groups at the corresponding graph densities on the x-axis. Even though the differences are not explicit from
the plots (e) and (f), the directionalities are programmatically verified. (a) Average Forman-Ricci curvature (FRC) of edges is
significantly reduced in the ASD group across graph densities 5% - 50%. It is evidently the most visually observable difference
among all the other network measures studied. (b) Average Ollivier-Ricci curvature (ORC) of edges is significantly reduced
in the ASD group across graph densities 6% - 23% and 34% - 50%. (c) Average clustering coefficient is significantly reduced
in the ASD group across all graph densities (2% - 50%). (d) Modularity is significantly reduced in the ASD group across all
graph densities (2% - 50%). (e) Average shortest path length is significantly reduced in the ASD group across graph densities
5% - 31%. (f) Average node betweenness centrality is significantly reduced in the ASD group across graph densities 5% - 31%.
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Brain-wide changes in functional connectivity networks

To investigate the differences in the global organization of FCNs between the ASD and HC groups, we computed the
average edge FRC and average edge ORC across the 49 FCNs across the graph densities 2% - 50% for each subject.
To compare the average edge curvatures at each graph density between the ASD and HC groups, we employed a
two-tailed two-sample t-test followed by FDR correction (see Methods). In Figure 3a and Figure 3b, we show the
differences in average edge FRC and average edge ORC, respectively, between the ASD and HC groups across the
graph densities 2% - 50%. We find that average edge FRC is significantly lower (p < 0.05, FDR-corrected) in the ASD
group compared to the HC group in the graph density range 5%-50% (Figure 3a). Similarly, we find that average
edge ORC is lower (p < 0.05, FDR-corrected) in the ASD group compared to the HC group albeit the differences
were insignificant (p > 0.05, FDR-corrected) in the graph density ranges 2%-5% and 24%-33% (Figure 3b). Although,
the directionality of the differences with the two discrete Ricci curvatures is the same for the two groups, that is,
average edge curvature in the ASD group is lower than that in the HC group, it is important to emphasize that the two
discrete Ricci curvatures capture different aspects of the classical Ricci curvature, and thus, cannot serve as alternative
measures across different types of networks. Specifically, ORC captures the volume growth property of the classical
Ricci curvature whereas FRC captures the geodesic dispersal property [39]. While ORC has a deeper correspondence
with the classical Ricci curvature, FRC is based on a simple combinatorial expression which is significantly faster to
compute in larger networks. After comparing the average edge curvatures between FCNs of ASD and HC groups,
we find that the statistical test (t-test followed by FDR correction) yielded lower p-values after FDR correction for
average edge FRC compared to average edge ORC across most of the considered graph densities (Supplementary
Table S2). In other words, the differences between FCNs for the two groups are more pronounced for the average
edge FRC than average edge ORC.

To gain a deeper understanding of the altered global organization of FCNs between the ASD and HC groups, we
also compared six other global network measures, namely, average clustering coefficient, modularity, average shortest
path length, average node betweenness centrality, global efficiency and average local efficiency. We find that the
average clustering coefficient is significantly lower (p < 0.05, FDR-corrected) in the ASD group compared to the HC
group in the graph density range 2%-50% (Figure 3c). Moreover, our results for clustering coefficient are consistent
with results from previous studies that have employed graph-theoretic measures to analyze resting state FCNs in ASD
[23, 26, 28]. Thereafter, we find that the modularity of the FCNs is significantly reduced in the ASD group compared
to the HC group in the graph density range 2%-50% (Figure 3d), and our results are consistent with the results from
previous studies [23, 28]. Further, we find that the average shortest path length of the FCNs is significantly lower
in the ASD group compared to the HC group in the graph density range 5%-31% (Figure 3e), and our results are
consistent with results from previous studies [23, 26]. Lastly, we find that average node betweenness centrality is
significantly lower in the ASD group compared to the HC group in the density range 5% - 31% (Figure 3f).

Furthermore, we have computed two global measures that characterize how efficiently information is exchanged
within a network, namely global efficiency and average local efficiency. We find that global efficiency is significantly
higher (p < 0.05, FDR-corrected) in the ASD group compared to the HC group in the graph density range 4% - 31%
(Supplementary Figure S1a). Note that the direction of the effects observed for global efficiency is opposite to the
direction of effects observed for average shortest path length (Figure 3e), as global efficiency is defined as the average
of reciprocal shortest path lengths between all pairs of nodes in a network. Moreover, our results for global efficiency
are consistent with the results from previous studies [23, 26, 28]. We find that average local efficiency is significantly
lower in the ASD group compared to the HC group in the graph density range 2%-50% (Supplementary Figure S1b).
Note that the results for average local efficiency are similar to the results of average clustering coefficient (Figure 3c),
since the two network measures are closely related to each other. Moreover, our results for average local efficiency are
consistent with results from previous studies [23, 26, 28].

Region-specific changes in functional connectivity networks

Given the significant differences in FRC and ORC of the entire brain between the ASD group and the HC group, we
evaluated node-level curvature differences in the FCNs, and determined how these differences are distributed across
the 7 resting state networks (RSNs) in the brain. For this purpose, we first computed node FRC and node ORC for
all the 200 nodes, across the 49 FCNs with graph densities 2% - 50% for each subject. Second, to identify the set
of nodes that show significant differences between the ASD and HC groups, we compared the area under the curve
(AUC) of the node FRC and the node ORC for each node using a two-tailed two-sample t-test followed by FDR
correction (see Methods).

In Figure 4 and Supplementary Figure S2, we show the nodes or regions that exhibit significant differences
(p < 0.05, FDR-corrected) in FRC and ORC, respectively, between the ASD and HC groups. We identify 83 re-
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FIG. 4. Visual representation of 83 nodes or regions in the brain that are significantly different (p < 0.05, FDR-corrected)
between individuals with autism spectrum disorder (ASD) and healthy controls (HC), as captured by Forman-Ricci curvature
(FRC) of the nodes in the functional connectivity networks (FCNs) of the subjects. The nodes are defined using the Schaefer
atlas and each node belongs to one of 7 resting state networks (RSNs) as listed in the figure legend. We find that identified
nodes are mainly concentrated within the default network, somatomotor network, and salient ventral attention network. This
figure was created using BrainNet Viewer [86].

gions that show significant between-group differences in FRC and 14 regions that show significant between-group
differences in ORC. For FRC, the significant regions are spread across the 7 RSNs. However, they are mainly
concentrated within 3 RSNs namely, default network (26 significant regions), somatomotor network (30 significant re-
gions) and salient ventral attention network (13 significant regions). In the default network, RH Default pCunPCC 2
(7,−49, 31), RH Default PFCdPFCm 6 (28, 30, 43) and LH Default pCunPCC 2 (−5,−55, 27) showed the lowest
FDR corrected p-values. In the somatomotor network, LH SomMot 7 (−47,−9, 46), RH SomMot 7 (58,−5, 30)
and LH SomMot 10 (−39,−24, 58) showed the lowest FDR corrected p-values. In the salient ventral attention net-
work, RH SalVentAttn TempOccPar 2 (60,−38, 17), RH SalVentAttn Med 3 (9, 4, 65) and RH SalVentAttn PrC 1
(51, 4, 40) showed the lowest FDR corrected p-values. For ORC, the significant regions are concentrated within the
2 RSNs namely, default network and somatomotor network. In the default network, regions LH Default Temp 3
(−56 − 6,−12), LH Default PFC 4 (−13, 63,−6), and RH Default Temp 5 (52,−31, 2) exhibited the lowest FDR
corrected p-values. In the somatomotor network, the region, LH SomMot 3 (−37,−21, 15) exhibits the lowest FDR
corrected p value. Detailed information about the abbreviations of region names can be found at: https://github.

com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal [54]. Thus, our
node-level results for FRC and ORC suggest that the nodes or brain regions showing significant differences were not
distributed evenly across the 7 RSNs, but were concentrated within the default network, somatomotor network and
salient ventral attention network.

After applying both FRC and ORC to resting state FCNs in ASD and HC groups, we find that the between-group
differences in FRC of the FCNs are more pronounced compared to ORC, both at the global level as well as at the
level of nodes. Therefore, we mainly focus on the nodes identified using FRC in further analyses. We reiterate that
the two discrete Ricci curvatures capture different aspects of the classical Ricci curvature, and thus, neither of the
two measures can be treated as an alternative to the other.
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FIG. 5. Visual representations of nodes or regions in different resting state networks (RSNs) that are significantly different
(p < 0.05, FDR-corrected) between individuals with autism spectrum disorder (ASD) and healthy controls (HC) as captured by
Forman-Ricci curvature (FRC) of the nodes, and the corresponding word clouds depicting the behavioral relevance of the nodes
identified in each RSN. The size of the terms in each word cloud indicates their frequency count. Note that size of the terms
in each word cloud are scaled separately and thus the frequency counts cannot be compared across word clouds. (a) Nodes in
the default network that show significant differences in FRC, and the corresponding word cloud. The nodes identified in the
default network are associated with tasks related to social cognition and memory. (b) Nodes in the somatomotor network that
show significant differences in FRC, and the corresponding word cloud. The nodes identified in the somatomotor network are
associated with tasks related to movement. (c) Nodes in the salient ventral attention network that show significant differences
in FRC, and the corresponding word cloud. The nodes identified in the salient ventral attention network are associated with
tasks related to movement and language. In this figure, the visualizations of brain regions are created using BrainNet Viewer
[86] and the word clouds are generated using wordclouds.com [87].
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Behavioral relevance of region-specific changes using meta-analysis decoding

As discussed previously, we identify 83 significant regions that show significant between-group differences in FRC.
Subsequently, we partitioned the set of significant brain regions according to their respective RSNs and determined
the behavioral relevance of the significant regions in each RSN using Neurosynth meta-analysis (see Methods). The
Neurosynth analysis enables identifying the behavioral relevance of the significant regions in an RSN more rigorously
than just assuming it as the putative functional role of that RSN. The first step in the Neurosynth analysis involves
identifying terms relating to cognition, perception and behavior for each significant brain region in a given RSN. The
second step involves calculating the frequency counts for all the terms in an RSN. The third step involves thresholding
the frequency counts of these terms with respect to the frequency counts associated with equivalent null models (see
Methods).

We limit the interpretation of results from Neurosynth analysis only to default network, somatomotor network
and salient ventral attention network, since a considerable number of regions are detected in these RSNs. The high
number of regions with significantly different FRC in these RSNs makes the interpretation of results from these RSNs
more robust to the occurrence of false positives. Another reason for considering the above-mentioned RSNs is that
the regions identified in these RSNs are nearly bilaterally symmetrical. Figure 5 shows the significant brain regions
separately for each of the three RSNs and the associated word clouds highlighting the behavioral relevance of the
significant regions in each RSN. Supplementary Table S3 lists the significant brain regions and the terms associated
with all seven RSNs.

The word cloud for the default network shows terms associated with social cognition (Figure 5a), such as ‘theory-
of-mind’, ‘social’, ‘social recognition’, ‘social cognition’, ‘person’, ‘personal’ and ‘personality traits’. In the default
network, we can also find terms associated with memory (Figure 5a) such as ‘memory’, ‘memories’, ‘memory retrieval’,
‘retrieval’ ‘recollection’, ‘remember’, ‘autobiographical memory’, ‘episodic memory’ and ‘subsequent memory’. For the
somatomotor network, we find terms associated with movement (Figure 5b), such as ‘motor’, ‘motor tasks’, ‘motor
performance’, ‘movements’ ,‘coordination’, ‘limb’, ‘arm’, ‘hand movements’, ‘handed’, ‘finger’, ‘finger movements’,
‘finger tapping’, ‘tapping’ , ‘index finger’, and ‘force’. Finally for the salient ventral attention network, we find terms
associated with movement (Figure 5c), such as ‘motor’, ‘motor function’, ‘motor control’, ‘eye movement’, ‘tapping’,
‘mental imagery’, ‘imagery’ and ‘mirror’. For the salient ventral attention network, we also find terms associated with
language (Figure 5c), such as ‘phonological’, ‘speech’, ‘production’, ‘speech production’, ‘orthographic’, ‘articulatory’,
‘pseudo-words’ and ‘listened’.

To summarize, the regions with significantly different curvature values in each of the studied RSNs show clear
behavioral relevance and are associated with social cognition (in default network), memory (in default network),
movement (in somatomotor network and salient ventral attention network) and language (in salient ventral attention
network).

We have also evaluated the node-level differences in two standard network measures namely, clustering coefficient and
node betweenness centrality. Notably, ORC is related to clustering in networks [39]. We identify 78 brain regions that
show significant differences (p < 0.05, FDR-corrected) in clustering coefficient, and 4 brain regions that show significant
differences (p < 0.05, FDR-corrected) in node betweenness centrality (Supplementary Table S4). The brain regions
identified by clustering coefficient are concentrated in three RSNs namely, default network, somatomotor network and
salient ventral attention network (Supplementary Figure S3). Further, we computed the overlap between sets of signif-
icant brain regions identified by each of the four node-level network measures used in our study. First, we found 8 brain
regions that are commonly identified by both FRC and ORC, namely, LH SomMot 1 (−51,−5,−2), LH SomMot 3
(−37,−21, 15), LH Default PFC 4 (−13, 63,−6), RH SomMot 3 (38,−13, 14), RH DorsAttn Post 2 (52,−60, 9),
RH SalVentAttn FrOperIns 2 (46,−3,−4), RH SalVentAttn TempOccPar 2 (60,−38, 17) and RH Default Temp 2
(61,−13,−21). Second, we found 71 brain regions that are commonly identified by FRC and clustering coefficient.
Third, we found 5 brain regions that are commonly identified by ORC and clustering coefficient. Fourth, we found
that 1 brain region is commonly identified by FRC and node betweenness centrality. Fifth, we found 2 brain regions
that are commonly identified by ORC and node betweenness centrality. We do not find any brain regions that are
commonly identified by clustering coefficient and node betweenness centrality.

Subsequently, we determined if there is a relationship between the curvature of brain regions that showed significant
differences and clinical scores for symptom severity in ASD patients. To do this, we related the curvature of just
the brain regions which showed significant differences in each RSN with the behavioral function associated with that
RSN, as determined by the Neurosynth meta-analysis decoding. We performed this analysis with the curvature values
and symptom severity of only the ASD patients, not the healthy controls. First, we used ADI-R social score as
a measure of social cognition and related this score with the curvature of regions in the default network. Second,
we used ADI-R verbal score as a measure of language and related this score with the curvature of regions in the
salient ventral attention network. To test the relationship between curvature values and clinical scores, we computed
partial correlations with age and gender as covariates, followed by FDR correction to control the occurrence of false
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positives (see Methods). We chose the ADI-R scores among all the possible clinical scores because they are available
for the most number of participants (n = 275) in the ASD group and the ADI-R social and ADI-R verbal scores are
appropriate means to capture symptom severity in autism compared to other clinical scores [88]. Note that we also
found movement-related terms in somatomotor network (Figure 5b) and salient ventral attention network (Figure 5c).
However, we did not include any movement-related scores in our analysis since such scores were only available for a
few participants in the ASD group.

We did not find any nodes that showed significant correlations between the curvatures (FRC and ORC) and
clinical scores after FDR correction. Prior to FDR correction, FRC for the node LH Default Temp 1 (−47, 8,−32)
in the default network was positively correlated with ADI-R social score (r = 0.122, p = 0.044), FRC for the node
LH SalVentAttn ParOper 1 (−56,−40, 20) in the salient ventral attention network was positively correlated with
ADI-R verbal score (r = 0.136, p = 0.025), and ORC for the node RH Default Temp 2 (61,−13,−21) in the default
network was positively correlated with ADI-R social score (r = 0.138, p = 0.022).

We also repeated the analysis for the brain regions with significantly different clustering coefficient values in the 2
RSNs namely, default network and salient ventral attention network. These brain regions show behavioral relevance
and are associated with social cognition and memory in default network, and movement and language in salient ventral
attention network (Supplementary Figure S4). Thus, we correlated the clustering coefficient values of significant brain
regions in default network with the ADI-R social score and the clustering coefficient values of significant brain regions
in salient ventral attention network with the ADI-R verbal score. In this analysis for clustering coefficient, we did
not find any significant correlations with both ADI-R social scores and ADI-R verbal scores after FDR correction.
To sum up, the discrete Ricci curvatures and standard network measures show no evidence for a relationship with
symptom severity in ASD patients.

Validation of region-specific changes in graph Ricci curvatures using experimental evidence from non-invasive
brain stimulation studies

We identified 83 brain regions that show between group differences in FRC and 14 brain regions that show between
group differences in ORC. We assessed the ability of curvature measures to identify brain regions that are clinically
relevant in ASD, by comparing to results from NIBS studies on ASD patients. Specifically, we performed a literature
survey to identify the set of brain regions whose non-invasive stimulation using TMS or tDCS yielded positive effects
on ASD symptoms. Then, we compared this set of brain regions to those with altered local graph Ricci curvature
values in resting-state fMRI FCNs of ASD patients.

The studies employing TMS have reported positive effects in ASD symptoms after stimulating 4 target regions,
namely, premotor cortex, dorsolateral prefrontal cortex (DLPFC), pars triangularis, and pars opercularis. The studies
employing tDCS have reported positive effects in ASD symptoms after stimulating 2 target regions, namely, DLPFC
and left primary motor cortex. Note that the target regions in these experiments are cortical regions that are defined
differently from the ROIs (or nodes) defined in our study that are a part of the Schaefer 200 parcels atlas [54].
Therefore, in order to compare the results of our node-level analysis with the effects of stimulating the target regions,
we mapped the Brodmann areas that correspond to target regions [83, 89] to the 200 Schaefer ROIs (see Methods
and Supplementary Table S7).

Based on the data collected from previous NIBS experiments (Supplementary Tables S5 and S6), we identified
five target regions that show evidence for improvement in behavioral or cognitive symptoms associated with ASD
following TMS or tDCS, namely, premotor cortex, pars triangularis, pars opercularis, DLPFC and left primary motor
cortex. These five target regions correspond to Brodmann areas 6, 45, 44, 9, 46 and 4, respectively. Note that DLPFC
comprises two Broadman areas, 9 and 46 [89]. We found these Brodmann areas to encompass 31 ROIs (or nodes) in
the Schaefer 200 parcels atlas. Out of these 31 ROIs, 18 ROIs also show significant ASD-related differences in FRC
and 13 ROIs show significant ASD-related differences in clustering coefficient. None of these 31 ROIs show significant
ASD-related differences in ORC or node betweenness centrality. A visual representation of these ROIs is provided in
Figure 6. Notably, the 18 ROIs with significant ASD-related differences in FRC are a superset of the 13 ROIs with
significant between-group differences in clustering coefficient. In other words, using evidence from NIBS experiments,
we found that FRC is able to identify regions that are clinically relevant in ASD, that are not identified by standard
network measures. Table III lists the target regions that show improvement in clinical symptoms associated with ASD
following TMS or tDCS, the corresponding ROIs in the Schaefer atlas that show significant between-group differences
in nodal network measures, the network measure that captured the differences, and the experimental studies that
report the effects.
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FRC

FRC & NIBS.

CC

CC & NIBS

NIBS: Regions associated with improvements in ASD symptoms, based on evidence from NIBS experiments 
FRC: Regions with significant between-group differences in Forman-Ricci curvature
CC: Regions with significant between-group differences in clustering coefficient

NIBS

FRC & NIBS

FRC & CC & NIBS

a.

c.

b.

FIG. 6. Visual representation of nodes or regions with significant between-group differences in node-level network measures
that exhibit improvements in clinical symptoms of ASD when stimulated, based on evidence from published NIBS experiments
on subjects with ASD. (a) We found 31 nodes with experimental evidence out of which 13 nodes are identified by both FRC
and clustering coefficient and 5 nodes are identified only by FRC. (b) 83 nodes identified by FRC out of which 18 nodes have
experimental evidence. (c) 78 nodes identified by clustering coefficient out of which 13 nodes have experimental evidence.
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Target region Schaefer ROI Network measure

Premotor cortex (BA 6)

RH SalVentAttn PrC 1 FRC
LH SomMot 7

FRC, CC

LH SomMot 12
LH SalVentAttn Med 3
RH SomMot 10
RH SomMot 11
RH SalVentAttn Med 3
RH SomMot 14

Pars Triangularis (Part of Broca’s area) (BA 45)
RH Cont PFCl 3

FRC
RH Cont PFCl 6

Pars Opercularis (Part of Broca’s area) (BA 44) RH DorsAttn PrCv 1 FRC, CC

Dorsolateral prefrontal cortex (BA 9 and BA 46)

LH Default PFC 11
FRC

RH Default PFCdPFCm 5
LH Default PFC 9

FRC, CC
RH Default PFCdPFCm 6

Left primary motor cortex (left M1) (BA 4)
LH SomMot 6

FRC, CCLH SomMot 10
LH SomMot 15

TABLE III. The list of the target brain regions that show improvement in clinical symptoms associated with ASD following TMS
or tDCS procedure, the corresponding ROIs in the Schaefer atlas that show significant between-group differences in node-level
network measures, the network measure that captured the differences (Forman-Ricci curvature (FRC), clustering coefficient
(CC)), and the experimental studies that report the effects. Detailed methodology and reported effects of the experimental
studies are presented in Supplementary Tables S5 and S6.

DISCUSSION

Graph Ricci curvatures have not been previously applied to study altered resting-state functional connectivity in
ASD. In the present work, we used two notions of graph Ricci curvature, namely Forman-Ricci curvature (FRC)
and Ollivier-Ricci curvature (ORC) to compare the resting-state FCNs of individuals with ASD relative to healthy
controls. To the best of our knowledge, this is the first work involving the application of multiple notions of graph Ricci
curvature to analyse brain connectivity. We found that average edge curvature can effectively be used to compare the
whole-brain functional connectivity of individuals in the ASD and HC groups. Additionally, we studied the differences
in node curvature between the two groups and identified specific regions in the brain responsible for altered functional
connectivity in ASD.

We acquired rs-fMRI scans of 1112 participants as provided by the ABIDE-I project [15]. The large sample size
of the ABIDE-I dataset offers substantial statistical power, thereby increasing the reliability of the reported results
[2, 11, 15]. We preprocessed each scan using the CONN functional connectivity toolbox [53], implementing thorough
quality assessment (QA) checks both before and after preprocessing. For each participant, we generated a 200× 200
functional connectivity (FC) matrix using Schaefer atlas [54] and constructed FCNs with a broad range of edge
densities using a maximum spanning tree (MST) followed by sparsity-based thresholding. A MST is particularly
useful for network-based analyses since it ensures that the resulting network is always connected. Similar network
construction approaches involving spanning trees have previously been used for financial networks [41, 42] and brain
FCNs [72].

After comparing the average edge curvatures of the FCNs in the ASD and HC groups, we found reduced average
FRC and average ORC in individuals with ASD. Similar analysis using standard network measures revealed reduced
average clustering coefficient, reduced modularity, reduced average path length, reduced average node betweenness
centrality, increased global efficiency and reduced average local efficiency. All the standard network measures except
node betweenness centrality have previously been used to study brain-wide changes in functional connectivity in ASD
[23, 26, 28], and our results are in agreement with previous findings. However, the changes in graph Ricci curvatures
have not previously been studied for FCNs in ASD. Our results illustrate the sensitivity of graph Ricci curvatures,
especially FRC, in discriminating the resting state FCNs of individuals with ASD compared to HC.

After comparing the node curvatures of the FCNs in the ASD and HC groups, we identified 83 brain regions that
are significantly different in FRC and 14 brain regions that are significantly different in ORC between the two groups.
Both FRC and ORC commonly identify 5 regions. Moreover, we found that these regions are bilaterally symmetrical
and mainly concentrated in 3 RSNs namely, default network, somatomotor network and salient ventral attention
network. Previously, Farooq et al. [45] have used ORC to compare structural connectivity networks of individuals
with ASD relative to HC, and showed that regions with significant difference in ORC are present in visual, dorsal
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attention, ventral attention areas and temporal lobe. Our results from comparing ORC of resting state FCNs in ASD
reveal regions in visual network, dorsal attention network, salient ventral attention network, and additional regions
in default network, somatomotor network and limbic network.

As a post hoc analysis, we performed Neurosynth meta-analysis to interpret the behavioral relevance of the brain
regions in each RSN with significant differences in curvature. The Neurosynth analysis reveals specific cognitive
functions associated with the regions identified in a given RSN, which can then be used to test hypotheses about how
node curvatures relate to behavioral scores. Among the regions with significant differences in curvature, we found
that the regions in default network are related to memory and social cognition, the regions in somatomotor network
are related to movement and the regions in salient ventral attention network are related to movement and language.
Notably, Farooq et. al [45] have used ORC to compare structural connectivity networks of individuals with ASD
relative to HC, and showed that regions with significant difference in ORC are related to semantic memory, socially
relevant memories, emotions and visual perception.

Thereafter, we determined if there is a relationship between the curvature of brain regions that showed significant
differences and ADI-R scores for symptom severity in ASD patients. We found that discrete Ricci curvatures and
standard network measures show no evidence for a relationship with symptom severity in ASD patients. Our results
are in agreement with previous graph-theoretic studies on FCNs in the ABIDE dataset, which also report moderate or
no correlation between node-level network measures and symptom severity scores for the ASD group [26, 27, 29, 90].
Notably, Keown et al. [27] have carefully chosen high quality fMRI images from ABIDE-I dataset and computed
global and node-level measures on the resulting FCNs. They reported no significant correlations between the network
measures and symptom severity scores for the ASD group, and further cautioned about the interpretation of their
results, as the correlation analysis could be confounded by site differences in age ranges. We would also like to
emphasize that the ADI-R scores used in our study were unavailable for 120 out of 395 participants in the ASD group.

We demonstrate that graph Ricci curvatures identify regions whose stimulation using non-invasive technologies,
e.g. TMS, have been shown to result in a positive effect on ASD symptoms of patients. To our knowledge, this is the
first instance of external validation of the clinical significance of regions identified by local graph-theoretic measures
with respect to the literature on experiments with non-invasive stimulation technologies. We further note that the
set of regions identified by other local graph-theoretic measures, e.g. clustering coefficient, which overlap with those
regions identified by non-invasive stimulation, are a subset of the set of regions identified by FRC which overlap with
regions identified by non-invasive stimulation. These results commend the use of graph Ricci curvatures to generate
hypotheses about the clinical significance of brain regions in conditions such as ASD, which can then be tested by
stimulating these regions with non-invasive technologies, e.g. TMS [85, 91, 92].

There was a significant difference in the IQ scores between the ASD and HC groups, which introduces a potential
confound to our analysis. Previous studies involving graph-theoretic analysis of rs-fMRI scans in the ABIDE dataset
have matched the groups on IQ scores [27, 28, 90]. However, we choose to include all subjects in our analysis rather
than sub-selecting ASD subjects according to IQ, since sub-selecting would make ASD cohort less representative and
the results of our analyses would be less generalizable to the typical ASD population [59]. Confining the analysis to
IQ-matched ASD patients would include only high-functioning ASD patients in the analyses, hence, our results would
not be generalizable to ASD subjects whose cognitive functioning is more severely affected. In addition, we have not
included IQ as a covariate while comparing the global and local network measures across groups. However, Dennis et
al. [59] have shown that using IQ as a matching variable or covariate during studies of neurodevelopmental disorders
could lead to anomalous findings about neurocognitive function.

To sum up, we find that geometric notions of graph Ricci curvature can be effectively used to determine global
and node-level changes in functional connectivity networks of individuals with ASD. We have also shown that the
node-level changes captured by FRC could be clinically significant. The methods used in the present work could
further be explored to study functional connectivity networks in other atypical populations. Additionally, since graph
Ricci curvatures are fundamentally defined on edges, future studies could be aimed at devising edge-based methods
to analyze brain functional or structural connectivity.
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