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Understanding the basis for cellular growth, proliferation, and function requires determining the contri-
butions of essential genes to diverse cellular processes. Here, we combined pooled CRISPR/Cas9-based 
functional screening of 5,072 fitness-conferring genes in human cells with microscopy-based visual-
ization of DNA, DNA damage, actin, and microtubules. Analysis of >31 million individual cells revealed 
measurable phenotypes for >90% of genes. Using multi-dimensional clustering based on hundreds of 
quantitative phenotypic parameters, we identified co-functional genes across diverse cellular activities, 
revealing novel gene functions and associations. Pooled live-cell screening of ~450,000 cell division 
events for 239 genes further identified functional contributions to chromosome segregation. Our work 
creates a resource for the phenotypic analysis of core cellular processes and defines the functional 
landscape of essential human genes.

For a human cell to grow, proliferate, and function, it must 
carry out a variety of essential cellular processes, including 
transcription, mRNA splicing, translation, vesicle trafficking, 
proteolysis, DNA replication, and cell division. CRISPR/
Cas9-based pooled genetic screens have revolutionized the 
ability to test the functional requirements for cell growth and 
proliferation by enabling the potent disruption of thousands 
of individual genetic elements in single experiments (1). 
However, most current screening approaches, including 
those based on fluorescence-activated cell sorting (FACS) of 
cell populations (2, 3), produce a single scalar measurement 
of barcode enrichment or depletion that summarizes the 
contributions of each perturbation to cellular phenotypes at 
the population level. In cellular fitness screens using these 
approaches, it is thus rarely possible to distinguish between 
essential genes that function in distinct cellular processes. 
To improve the differentiation of complex phenotypes, recent 
studies have combined pooled functional genetic screens 
with additional measurements at limited scales, including 
single-cell profiling of transcriptional cell states (4). Defining 
the specific contributions of essential genes to core cellular 
processes requires a quantitative analysis of complex 
cellular phenotypes, many of which can be directly visualized 
using microscopy. Leveraging the power of microscopy, 
recent work utilized targeted fluorophore photoactivation of 
cells exhibiting specific optical phenotypes to enable visual 
CRISPR screens (5–7). However, these approaches similarly 
produce a single enrichment score for each gene, with one 

predefined phenotype at a time. The ability to interrogate 
and systematically compare a large and diverse array of cell 
biological phenotypes simultaneously across thousands of 
genomic perturbations represents an important unmet goal 
for functional studies. Here we use optical pooled screening 
(8, 9) to combine large-scale Cas9-based targeting of 
essential genes with microscopy and image-based profiling 
of single-cell resolved cell biological phenotypes at a large 
scale (Fig. 1A).

A large-scale, image-based pooled CRISPR screen of 
essential genes	
To determine the functional contributions of essential genes 
in cultured human cells, we first defined a set of fitness-
conferring genes based on combined evidence from multiple 
Cas9- and transposon-based genetic screens (9–17; Fig. 
S1A-B; Methods). This approach defined a collection of 
5,072 genes that contribute to optimal cellular fitness, 
although we note that not every gene will be required for 
fitness in a given cell line. To create a library of CRISPR 
sgRNAs targeting this gene collection, we selected four 
sgRNA sequences per target gene from optimized sgRNA 
libraries (18–20), prioritizing guides with evidence of high 
on-target efficiency and low off-target activity (Methods). 
In addition, we selected 250 “non-targeting” sgRNAs that 
lack targets in the human genome as negative controls. 
Together, this constituted a library of 20,445 total sgRNAs.
We delivered the sgRNA library to HeLa cells containing 
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an integrated, doxycycline-inducible Cas9 construct (21) 
using the CROPseq-puro-v2 lentiviral vector that has an 
optimized sgRNA scaffold (8, 21, 22; Methods). Based on a 
trial image-based screen targeting 400 genes (Fig. S1C) and 
an analysis of sgRNA depletion from our library at 3 and 5 
days post-Cas9 induction (Fig. S1D), we defined a time point 
at 78 hours post-Cas9 induction to maximize observable 
phenotypes, balancing the time required for protein depletion 
with negative fitness effects that cause knockout cells to drop 
out of the population. For the primary image-based pooled 
screen, we fixed the cell population at 78 hours post-Cas9 
induction and amplified the sgRNA sequences in situ as 
described previously (Fig. 1A, B; 8). Following amplification, 
we stained and imaged cells for DNA (DAPI), DNA damage 
(γH2AX; anti-phospho-Ser139 H2AX antibody), microtubules 
(anti-α-tubulin antibody), and filamentous actin (phalloidin) 
(Fig. 1C). These stains were chosen to visualize diverse 
cell biological behaviors, including nuclear morphology, 
cell size, DNA damage response, cytoskeletal structures, 
cell cycle stage, and mitotic chromosome alignment.

Following the completion of phenotype imaging, we performed 
in situ sequencing-by-synthesis to identify the sgRNA present 
in each individual cell (Fig. 1A, C; Fig. S1E) (8), allowing us 
to directly assess the phenotypic consequences of disrupting 
each target gene. We extracted 1,084 phenotypic parameters 
from each individual cell image, including measurements 
of the intensity and subcellular distribution of each stain, 
colocalization of stains, and cellular and nuclear size and 
shape (Methods; Data S1). We identified interphase and 
mitotic cells as separable cellular states in our dataset with 
distinct baseline phenotypes. Thus, for phenotype analysis, 
we classified mitotic and interphase cells using a support 
vector classifier with a subset of extracted phenotype 
parameters and conducted downstream analyses separately 
(Methods; Fig. S1F). Together, this approach yielded 
microscopy images, extracted phenotypic measurements, 
and matched sgRNA identities for 31,884,270 individual cells 
with a median of 6,119 cells per gene target across each 
set of four sgRNAs (Fig. 1B; Data S1). Image montages and 
phenotypic parameters of interphase and mitotic cells are 
available for exploration through the companion interactive 

web portal (https://nematode.wi.mit.edu/vesuvius/).

Interphase nuclear phenotypes reveal established and 
novel regulators of genomic integrity
Maintaining genomic integrity is critical to ensuring proper 
cellular function, as DNA mutations and chromosome 
imbalances result in genome instability, misregulated 
gene expression, cell inviability, and oncogenic cell states. 
Cells utilize a range of DNA damage-sensors, DNA repair 
mechanisms, and cell cycle checkpoints to recognize and 
correct genomic aberrations and protect the genome against 
spontaneous DNA damage, DNA replication-induced errors, 
and chromosome segregation defects (24). To identify genes 
that are required for genome integrity, we analyzed nuclear 
phenotypic parameters in interphase cells from our screen 
that monitor DNA damage (mean γH2AX nuclear intensity) 
and total DNA content (integrated DAPI nuclear intensity; 
Fig. 1D, E). We defined summary phenotype scores for each 
gene target as the median robust z-score of cells relative 
to the local intermixed population expressing non-targeting 
control sgRNAs (Methods). Gene targets that displayed 
decreased γH2AX intensity in interphase cells included 
H2AX itself and ATR, which is involved in directing the γH2AX 
phosphorylation event (Fig. 1D). Reciprocally, of the 5,072 
genes targeted in the screen, we observed 1,693 genes 
whose disruption resulted in significantly increased γH2AX 
intensity (Methods). The top scoring hits included many 
factors with known roles in DNA replication (e.g., RRM1, 
PCNA, DNA Polymerase subunits, Primase subunit 1, DNA 
Ligase 1, RPA1/2/3, ORC and MCM2-7 subunits), DNA repair 
(e.g., RAD51, REV3L, ATAD5, DONSON, DTL, DDB1), and 
telomere protection (TERF1/2, RTEL1) (Fig. 1D). Many gene 
targets that caused increased DNA damage also resulted 
in increased DNA content (Fig. 1E), including most of the 
knockouts of DNA replication and repair factors listed above. 
Gene knockouts with increased γH2AX and DNA content 
were also enriched for spliceosome components (Fig. S2A-B), 
consistent with reports that disrupting mRNA splicing results 
in a DNA damage response (25). We observed an overall 
correlation between DNA damage and total DNA content (r = 
0.62), although some knockouts displayed strong increases 
in DNA content but less severe DNA damage (Fig. 1F). This 
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Fig. 1. Large-scale image-based pooled CRISPR screen identifies essential genes with roles in genome integrity. (A) Experimental workflow for 
the fixed-cell, image-based pooled CRISPR screen (also see Methods). (B) Histogram showing the number of cells analyzed for each gene target with an 
acquired phenotype image and single sgRNA sequence mapped in situ. (C) Example image from the pooled screen showing the phenotype stain channels 
(DNA, γH2AX, tubulin, and F-actin) together with a matched field-of-view of fluorescent in situ sequencing (Laplacian-of-Gaussian filtered) and cell seg-
mentation. Scale bar, 25 µm. (D) Volcano plot for mean nuclear γH2AX intensity across gene targets in the screen. Selected images from the screen show 
γH2AX staining for example cells to highlight specific targets whose knockout results in increased (green) or decreased (magenta) DNA damage relative to 
non-targeting control sgRNAs (orange; FDR<0.05). The median robust z-score was measured across cells with the same sgRNA, and aggregated to the 
gene level by taking the median of sgRNAs targeting the same gene (see Methods). The median robust z-score is plotted on a symmetric log scale (linear 
between -1 and 1). Raw P-values were computed by comparing gene targets to a bootstrapped null distribution of cells expressing non-targeting sgRNAs 
(see Methods), with false discovery rate (FDR) estimated using the Benjamini-Hochberg procedure. Scale bar, 10 µm. (E) Volcano plot as in (D) for inte-
grated nuclear DAPI intensity, along with example images of DAPI staining for gene knockouts that result in increased or decreased DNA content. Scale 
bar, 10 µm. (F) Scatter plot comparing the relationship between DNA damage and DNA content. A subset of gene knockouts result in particularly increased 
DNA content due to cell division failure; labeled genes are colored by functional category. Example images show tubulin (green) and DNA (magenta) to 
highlight polyploid and multinucleate cells. Scale bar, 10 µm. (G) Western blot (top) and quantification (bottom) confirming the presence of increased DNA 
damage based on cellular γH2AX levels for genes identified in the image-based pooled screen and PCNA as a positive control. Each sample represents a 
distinct cell line with an inducible Cas9 and stably-expressed sgRNA targeting either the indicated gene or a negative control single copy locus. Blue dots 
indicate independent γH2AX quantifications referenced to GAPDH and relative to the negative control.  
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includes many proteasome 20S core particle subunits and 
gene targets whose disruption prevents cytokinesis (AURKB, 
BIRC5, CDCA8, PRC1, KIF23, ECT2) or that allow cells 
to progress through cell division without segregating their 
chromosomes (ESPL1, TTK/Mps1, MAD2L1). Targeting 
each of these cytokinesis and chromosome segregation 
genes results in more cells with increased DNA content and 
nuclear area due to tetraploidy or multinucleation (Fig. 1F; 
Fig. S2C-E).

In addition to the established players in DNA replication 
and repair, we identified multiple gene targets with poorly 
established functional roles whose knockouts resulted in 
increased DNA damage. We noted that a substantial portion 
of these gene targets are present as multi-gene clusters 
within a single chromosome and therefore likely exhibit 
irreparable DNA damage as a result of sgRNAs targeting 
multiple loci (Fig. S2F). We also identified increased DNA 
damage following knockout of the E3 ubiquitin ligase subunits 
LRR1 and TRAIP, and the mitochondrial iron-sulfur cluster 
biogenesis gene ISCU. To confirm their roles in DNA damage, 
we generated cell lines with inducible Cas9 expression and 
a single sgRNA targeting the corresponding genes (21). 
Based on Western blotting, we noted a substantial increase 
in γH2AX levels following ISCU, LRR1, and TRAIP depletion, 
along with PCNA as a positive control, compared to a control 
sgRNA with a single target site (Fig. 1G). The effect of ISCU 
knockout is consistent with the requirement for iron-sulfur 
clusters in the enzymatic activity of proteins involved in 
DNA metabolism (26), and LRR1 and TRAIP have recently 
been reported to play roles in replisome disassembly (27). 
Together, this analysis highlights the importance of multiple 
genes in DNA replication and repair, and validates our 
image-based screening strategy to identify diverse players 
in genome integrity.

Identification of essential genes controlling cytoskeletal 
function
To direct cellular proliferation, structure, organization, 
and mechanical force production, cells rely on complex 
and dynamic cytoskeletal networks involving actin and 
microtubule polymers (28, 29). Our screen measured 
interphase cytoplasmic features for both filamentous-actin 
(F-actin) and microtubules, enabling the broad identification 
of essential genes involved in cytoskeletal processes and 
cellular organization. An analysis of interphase mean F-actin 
intensity revealed 460 gene knockouts with decreased 
intensity relative to non-targeting controls and 899 genes with 
increased intensity (Fig. 2A; Fig. S3A). Amongst these genes, 
we identified established factors required for regulating actin 
assembly and dynamics. For example, knockout of the 
actin depolymerization and severing factor cofilin (CFL1) 
or capping protein (CAPZB), which acts to block actin 
elongation, resulted in substantially increased actin polymer 
levels. In contrast, depletion of RHOA or ARHGEF7, which 
regulate the formation of actin fibers, resulted in strongly 
decreased actin levels. Although the Arp2/3 complex plays an 

established role in nucleating actin assembly, we found that 
its loss resulted in increased cellular actin intensity. However, 
this was coupled with a substantial decrease in interphase 
cell area (Fig. S3B). This suggests that disrupting selected 
components of the actin cytoskeleton also perturbs cellular 
adhesion, resulting in reduced cell-substrate contacts and an 
increase in mean cytoplasmic actin intensity due to altered 
cell shape. Indeed, we observed a similar phenotype for 
the adhesion components RAC1, Integrin subunits (ITGAV, 
ITGB1, and ITG5), TLN1, CRKL, ILK, and many others (Fig. 
S3B, C). The gene target whose loss resulted in the largest 
increase of mean F-actin intensity in both interphase and 
mitotic cells was the E3 ubiquitin ligase KCTD10, along with 
its partners CUL3 and RBX1 (Fig. 2A; Fig. S3D). Recent 
work implicated KCTD10 in restricting actin assembly during 
cell migration or developmentally-programmed cell fusion 
(30, 31), but our analysis suggests a general role for this E3 
ubiquitin ligase in regulating actin assembly.

We also identified multiple factors regulating interphase 
tubulin levels. Mean tubulin intensity was significantly 
decreased for 492 gene targets when compared to non-
targeting controls, including genes encoding tubulin proteins 
(TUBA1B/C, TUBB, TUBB4B), tubulin-specific chaperones 
(TBCC/D/E), and factors required for tubulin folding and 
complex assembly (CCT chaperonins/TRiC complex and 
prefoldin subunits; Fig. 2B). Reciprocally, we observed an 
increased mean tubulin intensity for 639 knockouts. However, 
as noted above, cytoplasmic proteins such as actin and tubulin 
may display increased mean stain intensity under conditions 
where cell area is reduced due to altered substrate adhesion 
(Fig. S3B, C, F). Thus, we compared actin and tubulin 
intensity to identify gene targets that selectively affect one 
stain (Fig. 2C). We observed substantially increased tubulin 
fluorescence, but not increased actin intensity, for Casein 
kinase I delta (CSNK1D), which has been suggested to 
regulate microtubule-associated proteins (32), and subunits 
of the CCR4-NOT complex (CNOT1/4/10/11), which functions 
in post-transcriptional mRNA regulation (33). Together, this 
analysis of interphase cytoplasmic actin and tubulin intensity 
reveals the contributions of diverse molecular players for 
roles in controlling cytoskeletal assembly and dynamics.

Analysis of morphological phenotypes reveals a tight 
correspondence between cellular and nuclear size
In addition to measuring stain intensity for each marker, we 
also measured multiple morphological parameters including 
nuclear and cellular area. We noted substantial differences 
in median interphase cell area across the different gene 
targets, ranging in segmented area from 319 µm2 to 583 
µm2 (Fig. 2D; Fig. S3G). Consistent with a required role for 
protein production in cell growth, targeting ribosome and 
ribosome biogenesis genes resulted in substantially reduced 
cell area (Fig. S3H). In contrast, gene targets with roles in 
DNA replication and repair, mRNA splicing, and proteasome 
function displayed increased cell areas (Fig. S3H), 
suggesting continued cell growth in the absence of further 
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Fig. 2. Identification of essential genes regulating cytoskeletal structures and cellular organization. (A) Volcano plot for mean cellular F-actin 
(phalloidin) intensity across gene targets in the screen. Selected images from the screen show phalloidin staining for example cells to highlight specific 
targets that result in increased (green) or decreased (magenta) cellular actin levels relative to non-targeting control sgRNAs (orange; FDR<0.05). The 
median robust z-score was measured across cells with the same sgRNA, and aggregated to the gene level by taking the median of sgRNAs targeting the 
same gene (see Methods). Raw P-values were computed by comparing gene targets to a bootstrapped null distribution of cells expressing non-targeting 
sgRNAs (see Methods), with false discovery rate (FDR) estimated using the Benjamini-Hochberg procedure. (B) Volcano plot as in (A) for mean cellular 
tubulin intensity, along with example images of tubulin staining for gene knockouts that result in increased or decreased tubulin levels. (C) Scatter plot 
comparing the relationship between actin and tubulin stain intensity highlights gene targets that selectively affect one cytoskeletal element. A subset of 
knockouts impact both actin and tubulin mean intensity measurements by disrupting cellular adhesion and decreasing the segmented cell area (see also 
Fig. S3B, C, F). Labeled genes are colored by functional category. (D) Scatter plot showing the comparison between cellular and nuclear area across gene 
targets. These morphological features are highly correlated across scales and conditions (r = 0.96). The median of area measurements was computed 
across cells with the same sgRNA and aggregated to the gene level by taking the median of sgRNAs targeting the same gene. Orthogonal regression was 
performed to identify gene targets that result in an altered nuclear:cytoplasmic area ratio (dotted line). Labeled genes are also highlighted in the distribution 
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division. Strikingly, we observed a strong correlation between 
cell area and nuclear area across all tested gene targets (r 
= 0.96; Fig. 2D). Prior work has suggested that cells actively 
regulate the size ratio between their nucleus and cytoplasm 
(34). Our analysis demonstrates that, across a wide range 
of cell sizes and functional perturbations, this relationship 
is closely maintained. Although we observed a clear 
relationship between nuclear size and cell size, we identified 
a limited number of gene targets whose depletion disrupted 
this coordinated scaling (Fig. 2D). A subset of gene targets 
displayed abnormally large nuclei for their given cell size, 
including RNA splicing factors (e.g., SMU1 and UBL5), the 
nuclear pore complex member NUP205, and DNA replication 
factors (e.g, PCNA, DDB1, RRM1). We also identified gene 
knockouts that displayed decreased relative nuclear size, 
including lamin B1 (LMNB1), the nucleocytoplasmic transport 
protein CSE1L, and the nuclear pore components NUP160 
and AHCTF1, consistent with roles in controlling nuclear 
integrity and function. Together, this analysis demonstrates 
that cell biological parameters from a large-scale screen can 
be used to reveal broader paradigms for the control of cell 
size and organization.

Phenotypic clustering of interphase cellular parameters 
defines co-functional genes
We next sought to take advantage of the full range of 
identifiable phenotypes in the rich image data from our 
screen to reveal additional gene activities required for cellular 
function. To define the phenotypic landscape of essential 
genes, we selected and aggregated 472 non-redundant 
parameters extracted from each interphase cell image to 
create a summary phenotypic profile for each gene target. 
We then analyzed these profiles in a high-dimensional space 
using the PHATE algorithm (35) and performed clustering to 
identify genes with similar phenotypes (Methods; Fig. 3A; 
Fig. S4A-C). Based on a comparison of knockout phenotypes 
to non-targeting guides, 4,665 of the 5,072 gene targets 
in our screen display a measurable interphase phenotype 
(Fig. S4A-B). Of the remaining 407 gene knockouts, only 55 
genes displayed strong fitness effects at 5 days post-Cas9 
induction based on sgRNA depletion from our library (Fig. 
S4B). Thus, the 352 genes without a measurable phenotype 
or fitness effect are likely not required for cellular fitness in 
HeLa cells at the tested time point following Cas9 induction.

From the PHATE clustering analysis, we noted clear 
functional relationships between the genes within a given 
cluster, allowing us to identify major clusters primarily 
composed of gene targets with roles in transcription, RNA 
processing, translation, protein degradation, DNA replication 
and damage response, cell cycle control, or other core 
cellular processes (Fig. 3A-E; Fig. S5; https://nematode.
wi.mit.edu/vesuvius/). Strikingly, the clustering behaviors 
also allowed us to distinguish high-resolution functional sub-

categories within each cellular process. For example, despite 
a shared role in translation, we identified separable clusters 
containing established 40S ribosome subunits (cluster 66), 
60S ribosome subunits (cluster 23), tRNA ligases and eIF2 
translation initiation subunits (cluster 14), distinct clusters 
for factors involved in 40S ribosome biogenesis (cluster 
136) and 60S ribosome biogenesis (cluster 15), and several 
others which included nucleolar proteins, RNA helicases, 
and additional factors involved in translation initiation or 
ribosome biogenesis (clusters 21, 112, 203, and 216; Fig. 
3B-C). Knockouts for the genes within each of these clusters 
resulted in reduced nuclear and cellular areas, but displayed 
differences in other cellular phenotypic parameters, such 
as actin and tubulin staining intensities, enabling distinction 
among these functional sub-categories (Fig. 3C). Similarly, 
we identified multiple clusters containing 26S proteasome 
subunits with phenotypic differences that allowed segregation 
of 20S core particle subunits (167) from the 19S regulatory 
particle ATPase (106) and non-ATPase components (213), 
as well as a cluster containing components of the COP9 
Signalosome (200), which controls ubiquitin-dependent 
processes (Fig. S5A). Finally, we observed multiple distinct 
clusters for the core transcriptional machinery, including 
TFIID subunits (192), RNA Polymerase II subunits (199), two 
clusters comprised of Mediator complex subunits, General 
Transcription Factors (GTFs), and mRNA export factors (8 
and 60), and separate clusters containing RNA Polymerase 
I (155) and RNA Polymerase III (45) components (Fig. 3D-
E). Interestingly, although our cellular imaging did not include 
membrane-targeted markers for cellular organelles, such as 
the Golgi or Endoplasmic Reticulum, we identified multiple 
distinct clusters comprised of vesicle trafficking components. 
For example, we identified a cluster (201) containing the 
coatamer subunits (COPA/B1/B2/G1/Z1, ARCN1), SNAP 
proteins (NAPA and GOSR2), and cholesterol biosynthesis 
proteins HMGCS1 and HMGCR, a second cluster (54) 
containing signal recognition particle (SRP19/54), ESCRT 
proteins (UBAP1, CHMP6, and VPS28), clathrin, and 
additional vesicle trafficking proteins, as well as a cluster 
(140) containing the exocyst complex (EXOC1/4/5/7) and 
glycosylation machinery (Fig. S5E). This suggests that 
specific cell morphological changes resulting indirectly from 
perturbing vesicle trafficking and organelle function can be 
detected by our extracted image parameters, beyond what is 
easily distinguishable by visual inspection.

Together, our work demonstrates that phenotypic clustering 
using quantitative parameters extracted from cell images 
provides a fine-grained picture of the distinct functional 
contributions of specific protein sub-complexes to core 
cellular processes.
Phenotypic clustering provides novel insights into gene 
functions and pathway relationships
The coherent phenotypic similarity of co-functional gene 

of regression residuals (inset). Example images display DNA (magenta) and tubulin (green) staining for gene targets that result in increased or decreased 
cell and nuclear size. Scale bars, 10 µm.
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Fig. 3. Clustering of multi-dimensional interphase phenotypes reveals co-functional essential genes. (A) Two-dimensional representation of the 
interphase phenotype landscape of gene targets in the primary screen computed using PHATE (35) with hundreds of summary phenotype parameters, 
and then clustered to form groups of genes with similar phenotypes (see Methods). Each dot represents a single gene target, colored corresponding to 
the indicated functional category of grouped clusters. (B) Individual clusters of genes related to translation from (A) identify fine-grained sub-categories 
of gene function in ribosome biogenesis, translation initiation, and individual ribosome subunits. Functional descriptions of labeled cluster numbers 
summarize the roles of the contained gene targets. (C) Heat map of interphase knockout phenotypes corresponding to the translation clusters in (B) for a 
manually-selected subset of phenotype parameters. This highlights the phenotypic similarity of gene targets within functionally-coherent clusters, but clear 
distinctions between separate clusters despite broadly related roles in translation. All genes from each cluster are listed below. Parameters are presented 
as z-scores from the distribution of non-targeting sgRNAs, visualized on a symmetric log scale (linear between -1 and 1). (D) Individual clusters of genes 
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related to transcription from (A) indicate separate clusters for components of each type of RNA polymerase, TFIID, and related complexes. (E) Heat map 
as in (C) corresponding to the clusters in (D) highlighting the phenotypic similarities and differences that define each cluster of genes with transcriptional 
functions. (F) Heat map as in (C) of interphase clusters 37 and 217, demonstrating the phenotypic similarity between C7orf26 knockouts with those of the 
integrator complex. Hierarchical clustering (top) within these clusters using the correlation of high-dimensional phenotype profiles (see Methods) indicates 
particularly strong similarities between C7orf26 (red) and INTS10, and predicts that the uncharacterized gene C7orf26 is co-functional with established 
Integrator subunits. Hierarchical clustering within cluster 37 also implicates an association between mTOR signaling components and ER-Golgi transport 
factors. (G) Fluorescent image of human cells expressing GFP-C7orf26 demonstrates nuclear localization. Scale bar, 10 µm. (H) Mass spectrometry from 
an immunoprecipitation of GFP-C7orf26 in human cells relative to controls indicates that C7orf26 associates with subunits of the Integrator Complex.

8

targets within a given cluster is readily apparent based on the 
numerous observed clusters containing closely related, well-
characterized genes. Based on this behavior, the presence 
of additional genes within a phenotypic cluster provides a 
powerful prediction for their contributions to cellular function. 
Analysis of these clusters revealed unexpected connections 
between cellular processes. For example, cluster 37 contains 
the Conserved Oligomeric Golgi complex (COG2/3/4) and 
Trafficking Protein Particle complex (TRAPPC3/8/11), 
together with established mTOR signaling components 
including the mTOR complex 1 (MTOR, RPTOR, MLST8), 
RICTOR, RHEB, and GATOR2 complex components 
(SEH1L, WDR24; Fig. 3F). Although the regulation of mTOR 
signaling has focused on its association with the lysosome, 
this phenotypic clustering supports evidence of Golgi-
localized components playing a functional role in mTORC1 
regulation (36), or suggests a role for these Golgi-derived 
factors in lysosome biogenesis. Similarly, we found that the 
DICER1 ribonuclease and the microRNA microprocessor 
subunit DGCR8 clustered with exocyst complex subunits 
(cluster 140), instead of with other RNA-associated regulatory 
factors (Fig. S6A). This supports the association of DICER1 
with exosomes (37), but suggests a cell autonomous role 
rather than one facilitating cell-cell communication. Clustering 
also revealed phenotypic similarities between knockouts of 
the key signaling proteins KRAS and BRAF and multiple 
mitochondrial components, such as mitochondrial ribosome 
subunits and proteins involved in mitochondrial respiration 
(NADH dehydrogenase and Cytochrome) (cluster 149; Fig. 
S6B). KRAS and BRAF are mutated in a substantial fraction 
of cancers, although not in the HeLa cells used in this study. 
This clustering behavior highlights an important role for 
KRAS and BRAF signaling in maintaining normal metabolic 
homeostasis. Finally, although several clusters containing 
transcriptional regulators exhibited related phenotypes, we 
identified a cluster (121) with a distinct phenotypic profile 
that contains both of the master regulator Myc and Max 
transcription factors, along with multiple other transcriptional 
regulators (FOXN1, ILF3, SP2, ZBTB11, nuclear respiratory 
factor 2 genes GABPA and GABPB1), chromatin remodeling 
factors (ZMYND8, H3K36 methyltransferase SETD2), and 
E3 ubiquitin ligase components (KEAP1, DDA1; Fig. S6C). 
This suggests that these factors may either be specifically 
required for Myc expression (for example, see 38) or work 
with Myc to promote downstream expression at its target 
promoters.
Our clustering analysis further implicated poorly characterized 
gene targets in specific cellular activities. For example, we 
nominated C1orf131 as a putative nucleolar component 

involved in ribosome biogenesis based on its membership in 
cluster 21 (Fig. 3C), a prediction that was recently confirmed 
by others (39). Similarly, AKIRIN2 clustered with the 20S core 
particle proteasome subunits (cluster 167, Fig. S5A), and was 
recently described as a required proteasome nuclear import 
factor (40). In addition, HNRNPD was present in cluster 197 
together with METTL3 and METTL14 (Fig. S6B), which form 
the core heterodimer that writes m6A mRNA modifications, 
consistent with the emerging role of m6A modifications in 
promoting HNRNPD associations with mRNA (41). We also 
identified the uncharacterized gene C7orf26 in cluster 37 as 
displaying phenotypes closely related to those observed in 
knockouts of known subunits of the Integrator complex, an 
RNA endonuclease involved in RNA processing (42) present in 
clusters 37 and 217 (Fig. 3F). C7orf26 and Integrator complex 
knockouts resulted in reduced interphase tubulin intensity 
without corresponding changes in actin intensity. To evaluate 
this co-clustering relationship, we generated a cell line stably 
expressing GFP-C7orf26. This GFP-C7orf26 fusion localized 
to the nucleus (Fig. 3G), consistent with Integrator complex 
localization (43). Using affinity purifications coupled to mass 
spectrometry, GFP-C7orf26 pull downs specifically isolated 
multiple Integrator complex subunits, with particularly robust 
levels of INTS13, INTS10, and INTS14 (Fig. 3H; also see 
44). This is consistent with the strong phenotype similarity 
in our screen between C7orf26 and INTS10 knockouts (Fig. 
3F). INTS10, INTS13, and INTS14 were recently shown 
to comprise a functional subunit of the Integrator complex 
that associates the cleavage module with target RNA (45), 
suggesting C7orf26 may interact with this sub-complex. 
Thus, the phenotypic clustering of this dataset identifies 
established interacting partners and provides predictive 
insights to identify novel associations and co-functional 
players across key cell biological processes with the potential 
for many additional discoveries.

Analysis of mitotic phenotypes identifies requirements 
for proper cell division
We next analyzed the phenotypes observed in mitotic cells 
for each gene target. In total, 2.6% of the cells visualized 
in our microscopy-based screen were present in the mitotic 
phase of the cell cycle (median of 157 mitotic cells per gene 
target). In the presence of mitotic errors, cells activate the 
spindle assembly checkpoint and arrest in mitosis (46). 
Therefore, an increased fraction of obtained cell images 
that are identified as mitotic for a given gene (i.e., mitotic 
index) can reflect a mitotic disruption (Fig. 4A). We observed 
an increased mitotic index for gene knockouts targeting 
established components of the kinetochore and mitotic 
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spindle. In contrast, we observed a reduced mitotic index for 
components of the spindle assembly checkpoint, including 
MAD2L1, BUB1B, and TTK (Mps1).

Similar to our analysis of interphase cells, we next selected 
876 non-redundant measurements from the extracted 
image parameters of mitotic knockout cells, including the 
overlap of tubulin and DNA staining as a measure of mitotic 
chromosome alignment, and clustered gene targets with 
similar phenotype profiles (Fig. 4B; Fig. S4D-F; Methods). 
In addition, we conducted a manual visual analysis for 
each gene, with two individuals blindly and independently 
scoring image montages for the presence of mitotic defects. 
Overall, we found a strong correspondence between the 
automated and manual scoring (Fig. S7A, B). This combined 
analysis identified a wide range of established players in 
cell division, including factors with roles in cell cycle control, 
mitotic spindle assembly, kinetochore function, sister 
chromatid cohesion, and cytokinesis (Fig. 4B-D; Fig. S7C). 
From our computational analysis, we identified multiple 
mitotic clusters with functionally-related genes (Fig. 4B, C), 
despite decreased cell counts and increased morphological 
heterogeneity as compared to interphase cells. For example, 
we observed close clustering of CKAP5 and the entire 
Augmin complex (mitotic cluster M214), tubulin subunits with 
tubulin folding factors and the CCT chaperonin (M205), DNA 
replication factors (M34), factors required for chromosome 
alignment including kinetochore components (M11), and 
spindle and centrosome components (M109). In addition, we 
identified clusters for gene targets with established roles in 
mRNA splicing (M6 and M33), proteasome function (M88), 
and ribosome function (M0, M17, and M21) indicating that 
mitotic phenotype parameters are able to distinguish these 
functional categories. We found that this high-dimensional 
computational analysis provided a complementary but distinct 
measurement of mitotic phenotypes as compared to mitotic 
index (Fig. 4A). Visual analysis of cell image montages further 
allowed us to distinguish individual gene targets for their 
specific roles during mitosis (Fig. 4D; Fig. S7C). For example, 
we were able to detect reduced microtubule density following 
depletion of the tubulin chaperone TBCC, chromosome mis-
alignment following depletion of kinetochore components 

(e.g., CENP-C and Ska1) and additional factors (SMU1 
and CDK11A, amongst many others), monopolar spindles 
associated with the depletion of Kif11 or Plk4, and short 
mitotic spindles in knockouts of CKAP5 or Augmin subunits 
(e.g., HAUS6).

Predicted roles in mitosis also emerged for poorly 
characterized genes based on co-clustering of genes with 
well-defined mitotic functions. In particular, we found that 
ZNF335 clustered with spindle proteins (including TACC3 and 
TPX2), gamma-tubulin complex proteins (TUBGCP2/3/6), 
and some proteasome (PSMD) subunits (cluster M109; Fig. 
4C). Examination of mitotic cells lacking ZNF335 suggested 
the presence of spindle defects (Fig. 4D). We confirmed this 
phenotype by generating a stable inducible knockout cell 
line for ZNF335, which displayed a substantially increased 
proportion of cells with monopolar spindles (Fig. 4E). 
Together, this suggests a role for ZNF335 in centrosome and 
spindle function, providing a potential explanation for why 
ZNF335 mutations are observed in human microcephaly 
(47), as is the case for many centrosome components 
(48). In addition, we identified dozens of genes with mitotic 
phenotypes, but less clear phenotypic clustering, that have 
not been implicated previously as having roles in cell division 
(see below). Together, this analysis validates pooled large-
scale image-based screening to identify complex interphase 
and mitotic phenotypes. 

A pooled live-cell imaging-based screen for mitotic de-
fects
Based on the large number of genes with unexpected mitotic 
phenotypes and the power of microscopy-based approaches 
to directly visualize these phenotypes in detail (49, 50), we 
performed a secondary pooled live-cell screen to analyze 
these factors further. First, we defined a list of 229 genes with 
unexpected mitotic phenotypes, and additionally selected 
10 positive control genes with established roles in diverse 
mitotic processes. We generated a lentiviral library of Cas9 
guides targeting these genes, with 2 sgRNAs per gene and 
50 non-targeting sgRNAs (526 total sgRNAs; see Methods). 
The sgRNA library was transduced into a HeLa cell line 
containing doxycycline-inducible Cas9 and a constitutively-

Fig. 4. Mitotic phenotypes uncover essential genes required for cell division. (A) Scatter plot showing mitotic index (proportion of mitotic cells) of 
the imaged cell population for each gene target compared to a summary score of mitotic phenotype strength computed by PHATE (35) high-dimensional 
analysis. The summary phenotype score is the mean PHATE potential distance to non-targeting control sgRNAs for each gene, normalized between 0 
and 1. This highlights the complementary but distinct information provided by computational analysis of image-based mitotic phenotypes. Labeled gene 
targets are colored by functional category and highlight factors with increased cell division defects. (B) Two-dimensional representation of the mitotic 
phenotype landscape of gene targets in the primary screen computed using PHATE with hundreds of summary phenotype parameters, and then clustered 
to form groups of genes with similar phenotypes (see Methods). Each dot represents a single gene target, colored corresponding to the indicated cluster. 
Functional descriptions of clusters summarize the roles of the contained gene targets. (C) Heat map of mitotic knockout phenotypes corresponding to 
the clusters in (B) for a manually-selected subset of phenotype parameters. This highlights the phenotypic similarity of gene targets within clusters and 
the ability to separate distinct mitotic functions. Furthermore, this analysis implicated the potential role of ZNF335 in mitotic spindle function. All genes 
from selected clusters are listed below. Parameters are presented as z-scores from the distribution of non-targeting sgRNAs, visualized on a symmetric 
log scale (linear between -1 and 1). (D) Example images of mitotic cells from the screen visualizing DNA (magenta) and microtubules (green) from gene 
targets selected in the computational and/or visual analysis highlight the diversity of identified mitotic phenotypes (see also Fig. S7C). Scale bar, 10 µm. 
(E) Left, immunofluorescence images showing individual cell lines stably expressing a single control sgRNA or a sgRNA targeting ZNF335. Right, bar plot 
of the corresponding fraction of mitotic cells with monopolar spindles; each data point represents one experiment with >100 cells. This demonstrates the 
reproducible strong effect of knocking out ZNF335 on spindle assembly. Images are deconvolved maximum intensity projections of fixed cells stained for 
microtubules (anti-alpha-tubulin) and DNA (Hoechst). Scale bars, 10 µm.
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expressed H2B-mCherry fusion to visualize chromatin 
(Fig. 5A). We conducted time-lapse imaging of the pooled 
cell population for 24 hours with time points at 10 minute 
intervals, after either 48 or 72 hours of Cas9 expression in 
separate experiments. Following the acquisition of the time-
lapse images, we immediately fixed the cell population and 
amplified the sgRNA sequences in situ to identify the gene 
targeted in each cell, as described for the fixed-cell screen 
(Fig. 5A; Methods). After tracking cell lineages through each 
time course and using a support vector classifier to identify 
mitotic cells, we obtained time-lapse movies for 451,434 
total cell division events, with a median of 1,381 division 
events per gene target (Fig. S8A-C; Data S3; Methods). 
This enabled us to generate time-lapse montages of tracked 
cells for each gene target, with each cell temporally aligned 
to mitotic entry (Fig. 5B-C; Movie S1; https://nematode.
wi.mit.edu/vesuvius/). Using this approach, we observed 
the expected phenotypes for positive controls (Fig. 5B), 
indicating that optical pooled screening provides an effective 
and scalable strategy for live-cell screening of complex cell 
biological phenotypes.

Using this automated live-cell analysis of cell division, for 
each gene we calculated the mean duration of division 
events, as well as the fraction of cells that enter mitosis 
during the time course (Fig. 5B). As expected based on the 
presence of mitotic defects in the primary screen, the majority 
of gene knockouts displayed an increased mitotic duration 
relative to non-targeting controls. In contrast, we detected 
a decreased mitotic duration for the established spindle 
assembly checkpoint component BUB1B. We were also 
able to distinguish gene targets with established or predicted 
roles in DNA replication or repair (e.g., DTL, LRR1, TICRR, 
MMS22L), based on their increased mitotic duration but 
reduced fraction of cells entering mitosis (Fig. 5B), indicative 
of defective mitotic entry. We next visually inspected each 
time-lapse montage for the presence of mitotic phenotypes, 
including lagging chromosomes or delayed chromosome 
alignment (Fig. 5C; Fig. S8D; Data S3). From these 
observed phenotypes, we selected 29 genes of interest to 
conduct targeted downstream analyses. In each case, we 
generated individual cell lines with a single sgRNA targeting 
the corresponding gene and conducted both fixed- and live-
cell microscopy to identify phenotypes for each individual 
gene knockout at higher spatial and temporal resolution (Fig. 
5D; Fig. S9A; Movie S2). The majority of the selected gene 
targets displayed clear defects in chromosome alignment 
and segregation. Of these genes, a subset displayed 

defects in bipolar spindle assembly, including short spindles 
(TCP1). We were also able to distinguish gene targets 
with roles in DNA replication or DNA damage (e.g., LRR1, 
TRAIP, ISCU, TICRR, MMS22L) which resulted in multipolar 
spindles or misaligned chromosomes (Fig. 5D; Fig. S9A). 
Unexpectedly, amongst the gene targets whose knockouts 
resulted in misaligned chromosomes, we identified two 
membrane-bound transporters - the plasma membrane-
localized aquaporin AQP7 and the sodium/potassium-
transporting ATPase ATP1A1 (Fig. 5D). AQP7 is the only 
aquaporin that is broadly essential for cellular viability in the 
DepMap database (12). AQP7 and ATP1A1 knockouts both 
displayed a reproducible delay in chromosome alignment 
and an extended mitotic duration, but we did not observe 
defects in bipolar spindle assembly (Fig. 5D) or kinetochore 
function (Fig. 6A, B). We propose that AQP7 and ATP1A1 
are required to create an internal cellular environment that 
promotes proper chromosome segregation.

To define the basis for observed mitotic phenotypes, 
we next tested the function of the kinetochore, the key 
player in mediating interactions between centromere DNA 
and microtubule polymers during cell division (51). In 
particular, we tested the localization of the inner kinetochore 
centromere-specific histone CENP-A and the outer 
kinetochore microtubule-binding protein Ndc80. Of the 29 
gene targets tested, the majority displayed only modest 
changes in the kinetochore recruitment of Ndc80, suggesting 
that kinetochore assembly is largely normal. In contrast, we 
observed a substantial reduction in Ndc80 localization for 
the CLP1, RNPC3, and LIN52 inducible knockouts (Fig. 6A; 
Fig. S9B). Similarly, we found that most knockouts did not 
strongly alter the levels of  CENP-A, with the exception of the 
LIN52 inducible knockout (Fig. 6B; Fig. S9C). Importantly, 
established knockouts that prevent proper CENP-A 
recruitment, including HJURP and CENP-A itself (52), do 
not affect Ndc80 recruitment at the tested time points (Fig. 
6A, B), suggesting that LIN52 is required for a process that 
contributes to both inner and outer kinetochore assembly. 
Thus, CLP1 and RNPC3 are required for robust outer 
kinetochore recruitment, likely through their established roles 
in mRNA processing, whereas LIN52 depletion compromises 
multiple aspects of kinetochore assembly. 

To determine the basis for the phenotypes observed in LIN52 
knockouts, we next considered its functional relationships. 
Prior work found that LIN52 is a component of the DREAM 
complex, comprised of E2F family transcription factors, 
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Fig. 5. A pooled live-cell screen identifies gene targets required for mitotic progression. (A) Schematic of the experimental workflow for the live-cell, 
image-based pooled CRISPR screen using a cell line expressing an H2B-mCherry fusion (also see Methods). (B) Left, scatter plot comparing the fraction 
of cells that enter mitosis within the 24 hour time course and the mitotic duration of observed cell division events. This live-cell analysis identifies genes 
with defects in mitotic entry or progression. Labeled genes are colored by functional category. Right, example images of H2B-mCherry fluorescence from 
the live-cell screen at the indicated time points after mitotic entry for knockouts of established cell division components. Targeting the spindle assembly 
checkpoint gene BUB1B results in an acceleration of mitosis, whereas knockouts of AURKA, a key mitotic kinase, result in a mitotic arrest. (C) Example 
time course montages from the live-cell screen as in (B) demonstrating mitotic delay and mitotic defects for selected target genes. (D) Immunofluorescence 
images showing individual cell lines stably expressing a single sgRNA targeting each gene of interest to enable visualization of phenotypes at higher 
resolution across a single population (see also Fig. S9A). Images are deconvolved maximum intensity projections of fixed cells stained for microtubules 
(anti-alpha-tubulin) and DNA (Hoechst). Scale bars, 10 µm.
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Fig. 6. The Lin52 complex functions to promote proper kinetochore assembly and chromosome segregation. (A) Bar plot showing kinetochore-
localized intensity of the outer kinetochore microtubule-binding protein Ndc80 in the indicated inducible knockout cell lines. Ndc80 levels are substantially 
decreased for CLP1, RNPC3, and LIN52 knockouts, but not for other hit genes from the live-cell pooled screen. Each data point represents the median 
kinetochore signal of one experiment for >10 cells per gene target. Values are normalized relative to control cells from the same experiment. *P<0.01 by 
two-tailed independent T-test relative to control cells. (B) Bar plot showing kinetochore-localized intensity for the inner kinetochore centromere-specific 
histone CENP-A in the indicated inducible knockout cell lines. CENP-A intensity is significantly decreased for LIN52. Experiment design as in (A). *P<0.01 
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LIN9/37/52/54, MYBL1/2, RBL1/2, RBBP4, and TFDP1/2, 
which acts together with FOXM1 as a transcriptional regula-
tor for multiple cell cycle genes (53). In contrast, in our analy-
sis of interphase phenotypes from the primary screen, LIN52 
clustered with LIN9/37/54, RBBP4 and RBBP7 (cluster 46; 
Fig. 6C), but not with the other DREAM-related genes ana-
lyzed in our fixed-cell screen (MYBL2, TFDP1, E2F1, E2F3, 
E2F6, FOXM1). Similarly, in immunoprecipitation-mass 
spectrometry experiments we found that LIN52 associated 
with LIN9/37/54, RBBP4, and RBBP7, but not other estab-
lished DREAM complex proteins (Fig. 6D). Prior work has 
implicated RBBP4 and RBBP7 (also known as RbAp46 and 
RbAp48) in promoting centromere chromatin formation (54), 
but the basis for this role is unclear. Consistent with the phe-
notypic co-clustering and physical interactions, we observed 
chromosome misalignment, a mitotic delay, and substan-
tial changes to kinetochore assembly in knockouts of either 
LIN52, LIN9, or LIN54 (Fig. 6A, B, E, F, G; Fig. S9B, C; Movie 
S3). In contrast, we did not detect altered kinetochore protein 
levels or chromosome misalignment for FOXM1 knockouts 
and only observed a modest change in CENP-A and Ndc80 
localization in MYBL2 knockouts (Fig. 6A, B, E). RNA-se-
quencing analysis of LIN52, FOXM1, and MYBL2 knockout 
cell lines identified partially-overlapping sets of differential-
ly-expressed genes compared to a control sgRNA, but did not 
identify pervasive changes in the expression of centromere 
components that would explain the observed phenotypes 
(Fig. S9E). Thus, the combination of the physical and func-
tional interactions that we observed for LIN52 define a new 
functional module comprised of at least LIN52, LIN9, LIN37, 
and LIN54 that plays a role in centromere function, possibly 
through changes to underlying chromatin that promote the 
localization of both inner and outer kinetochore components. 

Pooled image-based screens define the phe-
notypic landscape of cellular functions
Together, our pooled microscopy-based analysis of tens of 
millions of individual knockout cells for thousands of essential 
and fitness-conferring human genes defines their functional 
contributions to diverse biological processes. By obtaining 
quantitative information for diverse image-based parameters 
that are directly comparable across a large cell population, 
this approach identifies co-functional gene targets with fine-
grained resolution to distinguish roles in specific cellular 
processes and protein complexes. Studies analyzing 
proteome-wide protein interactions and coordinated gene 

expression across biological contexts have previously defined 
large-scale molecular networks. The precision and breadth 
of the clustering behaviors reported here highlight the ability 
of quantitative image-based phenotypic profiling to provide a 
similar scale of functional information, with complementary 
but distinct insights. Although we focused primarily on 
aggregate behaviors across the population of imaged cells 
for each gene target, future studies leveraging the distribution 
of single-cell phenotypes will enable additional resolution 
and insights for understanding gene functions. In addition to 
providing an expansive and powerful resource for the analysis 
of phenotypes resulting from the disruption of essential genes 
in our companion interactive web portal (https://nematode.
wi.mit.edu/vesuvius/), this work provides multiple predictions 
for the contributions of incompletely characterized genes to 
fundamental cellular functions. We anticipate that this type of 
scalable and cost-effective cell biological genomic screening 
will enable future studies that will yield additional key insights 
across numerous cellular phenotypes and conditions.
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by two-sided independent T-test relative to control cells. (C) Heat map of primary screen interphase cluster 46 knockout phenotypes for a manually-
selected subset of parameters. This highlights the similarities between LIN52 and its previously defined interacting partners (red) with potential co-
functional chromatin factors (bold). Hierarchical clustering (top) was performed using the correlation of high-dimensional phenotype profiles (see Methods). 
Parameters are presented as z-scores from the distribution of non-targeting sgRNAs, visualized on a symmetric log scale (linear between -1 and 1). (D) 
Mass spectrometry analysis of an immunoprecipitation of GFP-LIN52 from mitotically-enriched human cells relative to controls, indicating that LIN52 
associates with a subset of expected factors, but not the entire DREAM complex. (E) Immunofluorescence images of microtubules (anti-alpha-tubulin) 
and DNA (Hoechst) in inducible knockout cell lines identify chromosome alignment defects for RUVBL1, RUVBL2, and the DREAM complex components 
LIN52 and MYBL2, but not FOXM1. (F) Bar plot showing kinetochore-localized intensity for the inner kinetochore centromere-specific histone CENP-A as 
in (B). LIN52, LIN9, and LIN54 each demonstrate a substantial decrease in CENP-A kinetochore localization. (G) Images from time-lapse fluorescence 
imaging of individual knockout cell lines expressing H2B-mCherry, demonstrating similar strong mitotic phenotypes for LIN52, LIN9, and LIN54. Also see 
Movie S3. Scale bars, 10 µm.
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MATERIALS AND METHODS

Library design and cloning
The primary screen library of fitness-conferring genes was defined based on evidence from multiple published sources. 
First, we used data from the Broad Institute DepMap project (11, 12, 15) to identify genes that are broadly fitness-conferring 
in a variety of cell lines. Specifically, we selected genes with a genetic dependency probability of >0.35 in at least 10% of 
the >600 tested cell lines (Fig. S1A, B), resulting in 3,991 selected genes. We subsequently chose 1,081 additional genes 
that had evidence of essentiality in at least 2 other published screens (10, 13, 14, 16–18). CRISPR sgRNA sequences were 
selected from published libraries (18–20), with simultaneous optimization of sgRNA performance (e.g., on- and off-target 
efficiency) and minimization of 5’ sequence length required to demultiplex all sgRNAs during in situ sequencing. In total, we 
selected 20,445 sgRNA sequences, including 4 sgRNAs each for the vast majority of gene targets and 250 non-targeting 
control sgRNAs, with a minimum Levenshtein distance of 2 between the leading 11-nucleotide 5’ sequence for all possible 
pairs of sgRNAs (Data S1). We note that, for some groups of genes with high sequence homology, it is not possible to 
design distinct targeting sgRNAs for each gene. For groups of genes where the full lists of possible sgRNAs collected from 
previously published libraries were identical, a single set of 4 sgRNAs was chosen to target these genes collectively. Two 
sgRNAs per gene were selected for the 239 genes in the live cell screen based on performance in the fixed-cell screen, 
in addition to 50 non-targeting guides selected using the 5’ sequence optimization described above. Targeting and non-
targeting sgRNA libraries were designed as separate subpools of synthesized oligo arrays (Agilent) and independently 
cloned into CROPseq-puro-v2 (Addgene #127458) as described previously (9).

For expression of fusion proteins, H2B (pKC96) was amplified from a template retroviral construct (55), while C7orf26 
(NP_076972.2; pKC509) and LIN52 (Q52LA3.1; pKC518) were human codon-optimized and synthesized (Twist Biosciences).  
Gene fragments were ligated into either an mCherry or EGFP pBABE-based vector (Addgene #44432). sgRNA constructs 
for individual inducible knockout cell lines were generated by primer annealing and ligation into sgOPTI (56; see Data 
S4). A control sgRNA with a single target site within the non-essential LBR gene was used for comparison of all follow-up 
experiments (HS1, 57).

Tissue culture
For a list of cells used in this study, see Data S4. HeLa and HEK293 cells were cultured in DMEM with sodium pyruvate and 
GlutaMAX (Life Technologies 10569044) or 2 mM L-glutamine supplemented with 10% heat-inactivated fetal bovine serum 
(Sigma F4135) and 100 U/mL penicillin-streptomycin (Thermo Fisher Scientific 15140122).

Virus production and transduction
Prior to lentiviral production of screening sgRNA libraries, the corresponding targeting and non-targeting plasmid pools 
were mixed (final non-targeting sgRNA pool fraction of 5% for the primary fixed-cell screen, 9.5% for the secondary live-
cell screen). Lentiviral production and transduction were performed as described previously for libraries (8, 9) or single 
targets (17). Retrovirus was generated by transfecting VSVG packaging plasmid and pBABE-based vectors containing 
H2B-mCherry, EGFP-C7orf26, or EGFP-Lin52 fusions into HEK293-GP cells with Effectene (Qiagen) for transduction as 
described previously (58). 

Fluorescence microscopy
All screening datasets were acquired using a Nikon Ti-2 inverted epifluorescence microscope with automated stage 
control, hardware autofocus, and an Iris 9 sCMOS camera (Teledyne Photometrics). All hardware was controlled using 
NIS-Elements AR, and a CELESTA light engine (Lumencor) was used for fluorescence illumination. In situ sequencing 
cycles were acquired using a 10X 0.45 NA CFI Plan Apo Lambda objective (Nikon MRD00105) and 2x2 pixel binning with 
the following laser lines, filters, and exposure times for each channel: DAPI (408 nm laser excitation with 0.8% power, 
custom Chroma dual-band 408/473 dichroic and emission filter set, 50 ms exposure), Miseq G (545 nm laser with 30% 
power and Semrock FF01-543/3 excitation filter, Chroma T555LPXR dichroic filter, Chroma ET575/30 emission filter, 200 
ms exposure), Miseq T (545 nm laser excitation with 30% power, Chroma T565LPXR dichroic filter, Semrock FF01-615/24 
emission filter, 200 ms exposure), Miseq A (635 nm laser excitation with 30% power, Chroma ZET635RDC dichroic filter, 
Semrock FF01-680/42 emission filter, 200 ms), Miseq C (635 nm laser excitation with 30% power, Chroma ZET635RDC 
dichroic filter, Semrock FF01-732/68 emission filter, 200 ms exposure). Fixed-cell primary screen phenotype images were 
acquired using a 20X 0.75 NA CFI Plan Apo Lambda objective (Nikon MRD00205) using DAPI (as before), FITC (473 nm 
laser excitation, custom Chroma 408/473 filter set), Alexa Fluor 594 (same settings as MiSeq T), and Alexa Fluor 750 (750 
nm laser excitation, Semrock FF765-Di01 dichroic filter, custom ET820/110 Chroma emission filter) fluorescence channels. 
For the live-cell secondary screen, timelapse phenotype images were acquired using the 20X objective lens, an mCherry 
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fluorescence channel (same settings as MiSeq T), and a microscope enclosure with temperature and CO2 control along with 
passive humidification (Okolab H201).

Immunofluorescence images of single knockout cell lines were taken on the Deltavision Ultra (Cytiva) system using a 
60x/1.42NA objective and deconvolution. For kinetochore component quantification, z-sections at 0.2 μm intervals were 
taken using a 100X/1.45NA objective. For time lapse imaging of individual inducible knockouts and EGFP fusion cell lines, 
we used a Nikon Eclipse microscope equipped with an ORCA-Fusion BT sCMOS camera (Hamamatsu) using a Plan Fluor 
20X/0.5 NA (live cells) or 40x/1.3NA (EGFP) objective lens.

Fixed-cell optical pooled CRISPR screen
For the fixed cell screen, HeLa-TetR-Cas9 (A7) cells were transduced with the 20,445 sgRNA library in CROPseq-puro-v2 
and selected with 2 μg/mL puromycin (Thermo Fisher Scientific A1113803) for 4 days. Cas9 expression was induced with 2 
μg/mL doxycycline for 78 hours, and the cell library was seeded into eight 6-well glass-bottom plates (Cellvis P06-1.5H-N) at 
a density of 300,000 cells per well (~30,000 cells/cm2) 48 hours prior to fixation. Cells were fixed with 4% paraformaldehyde 
in PBS for 30 minutes, followed by in situ amplification as described previously (8, 9). After rolling circle amplification, cells 
were stained with rabbit anti-gamma H2A.X (phospho S139) antibody (Abcam ab81299, 1:2000 dilution in PBS with 3% BSA) 
for 1 hour at room temperature. Cells were washed twice with PBS-T (PBS with 0.05% Tween-20), then stained with mouse 
anti-alpha-tubulin-FITC antibody (Sigma F2168, 1:500 dilution), goat anti-rabbit antibody disulfide-linked to Alexa Fluor 594 
(Invitrogen 31212, Thermo Fisher Scientific A10270, custom conjugation; 1:500 dilution), and Alexa Fluor Plus 750 Phalloidin 
(Thermo Fisher Scientific A30105, 1:1000 dilution) in PBS with 3% BSA for 45 minutes at room temperature. After washing 
with PBS-T three times, well plates were replaced with 200 ng/mL DAPI in 2X SSC and imaged for cellular phenotypes using 
the microscope configuration described above with 4 z-slices at 1.5 μm intervals. Following phenotype imaging, Alexa Fluor 
594 was cleaved from disulfide-linked antibodies by incubating cells in 50 mM TCEP in 2X SSC for 1 hour at room temperature, 
followed by three washes with PBS-T. Finally, 11 cycles of in situ sequencing-by-synthesis were performed as described 
previously (8, 9). In parallel with the optical pooled screen, cells expressing the same sgRNA library were induced with 1 μg/
mL doxycycline, and then doxycycline media was refreshed every day for 2 more days. Cells were harvested on days 0 (pre-
induction), 3, and 5 post-Cas9 induction and genomic DNA was extracted using PureLink (Invitrogen). sgRNA sequences were 
then PCR amplified using Q5 hotstart (NEB) with primers oDF344 (ACACGACGCTCTTCCGATCTtcttgtggaaaggacgaaac) 
and oDF112 (CTGGAGTTCAGACGTGTGCTCTTCCGATCaagcaccgactcggtgccac) before addition 
of index barcodes and sequencing on an Illumina HiSeq using sequencing primer oKC651 
(ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcttgtggaaaggacgaaacaccg).

Live-cell optical pooled CRISPR screen
HeLa-TetR-Cas9 cells expressing an H2B-mCherry fusion protein (cKC556) were transduced with the live-cell screening 
library of 526 sgRNA sequences. Cells were selected with 2 μg/mL puromycin (Thermo Fisher Scientific A1113803) for 3 
days. Cas9 expression was induced with 2 μg/mL doxycycline for 48 (day 3 time course) or 72 hours (day 4 time course) 
prior to the beginning of live-cell imaging, and cells were seeded into 6-well glass-bottom plates (Cellvis P06-1.5H-N) at a 
density of 300,000 or 350,000 cells per well (~35,000 cells/cm2) 24 hours prior to imaging. Each time course was performed 
in three batches on separate days. Immediately before imaging, cells were washed once with PBS, and then replaced with 
imaging media consisting of phenol red-free DMEM with L-glutamine and HEPES (Thermo Fisher Scientific 21063029) 
supplemented with 10% heat-inactivated fetal bovine serum (Sigma F4135) and 100 U/mL penicillin-streptomycin (Thermo 
Fisher Scientific 15140122). Live-cell imaging was performed using the microscope configuration described above and 2 
z-slices spaced at either 4 or 5 μm intervals. Cells were imaged for 24 hours at 10 minute time intervals, immediately fixed 
with 4% paraformaldehyde in PBS for 30 minutes, then processed through in situ amplification and sequencing-by-synthesis 
following the same protocol as the fixed-cell screen.

Screening image analysis
In situ sequencing spots were identified and barcode sequences extracted using our previously described workflow (8, 9, 
59). In addition, phenotype images were acquired at a higher magnification than in situ sequencing images, and thus the 
datasets were computationally aligned to match cell identities. This alignment was completed by computing the Delaunay 
triangulation of nuclei centroids for each phenotype and sequencing image tile, and then comparing triangulations between 
images from the two datasets to find matching tiles and cell identities.
Phenotype images from both screens were first maximum intensity projected to compress z-slices into a single plane, 
and then a retrospective flat-field correction was applied to reduce effects from uneven illumination (60). Nuclei were 
semantically segmented by applying a local intensity threshold to the DAPI channel and then performing morphological 
operations to remove aberrant holes and particles. Individual nucleus instances were then segmented using the watershed 
algorithm. In the fixed-cell phenotype data, semantic segmentation of cytoplasmic foreground was achieved by thresholding 
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a Gaussian-filtered copy of the phalloidin (actin) channel (sigma of 3 pixels), followed by morphological operations. Cell 
instances were identified by applying the watershed algorithm with nuclear segmentations as seeds. Phenotype parameters 
were extracted from nuclear and cellular segmentations for each channel by implementing CellProfiler-based features and 
additional measurements as Python functions operating on scikit-image RegionProperties objects (61). Image segmentation, 
phenotype feature extraction, and in situ sequencing analysis were performed in parallel on a per-image tile basis using the 
Snakemake workflow manager (62).

Fixed-cell screen phenotype analysis
After aligning the phenotype and sequencing datasets, a subset of features were transformed to approximate normal 
distributions (see Data S2). All features for each cell were then normalized using the median and median absolute deviation 
of the population of cells carrying non-targeting sgRNAs within the same well (robust z-score). This internal control 
procedure was used to reduce batch effects between wells and plates that may be caused by intensity differences or cell 
density effects. Mitotic and interphase cells were identified using a support vector classifier (scikit-learn (63) svm.SVC 
implementation, default parameters) with a subset of 182 features (Fig. S1F; Data S2). Cell-level measurements were then 
re-normalized from the raw data as before, but within interphase and mitotic cells separately.

Summary phenotype measurements were computed for each gene target by taking the median of z-scored parameters for 
all cells targeted by a single sgRNA sequence, then aggregating to the gene level by taking the median across sgRNAs 
targeting the same gene. Raw p-values for a subset of summary parameters were computed by comparing gene scores to 
null distributions of corresponding bootstrapped summary scores from cells expressing non-targeting sgRNAs. Separate 
null distributions were defined for each gene target by first performing 100,000 cell sampling repetitions to produce a 
distribution of bootstrapped non-targeting sgRNA scores for each cell sample size of the targeting sgRNAs. These guide-
level null distributions were then correspondingly sampled 100,000 times for each group of sgRNAs targeting the same 
gene and aggregated to produce gene-level null distributions with matched cell and guide sample sizes. The Benjamini-
Hochberg procedure was applied to obtain the reported FDR q-values. An FDR threshold of 0.05 was used for defining 
significance for all parameters, with effect size thresholds additionally used for mean nuclear γH2AX intensity, set by the 2.5 
and 97.5 percentiles of the non-targeting sgRNA scores.

For the high-dimensional analysis, pairs of features with a Pearson correlation greater than 0.9 were iteratively excluded and 
additional features known to be uninformative were removed, resulting in a set of 472 features for the interphase dataset 
and 884 features for the mitotic dataset. Further feature redundancies were reduced by applying principal component 
analysis (PCA) and retaining the components that explain 95% of the variance in the datasets (103 components for the 
interphase data, 530 components for the mitotic data). The PHATE manifold learning and visualization algorithm (35) was 
then used to produce two-dimensional representations of the phenotypic landscape of gene targets (default parameters 
except n_pca=None). To cluster knockout phenotypes, the PHATE diffusion operator affinity graph was supplied as input to 
the Leiden algorithm, which optimizes cluster modularity (64). The Leiden resolution parameter was chosen by analyzing 
the robustness of clustering solutions to the subsampling of gene-level data with varying resolution (resolution = 10 for 
interphase dataset, resolution = 9 for mitotic dataset; Fig. S4C, F). In parallel with the computational phenotype analysis, 
two individuals independently scored mitotic phenotypes from the primary screen by visually inspecting montages of mitotic 
cells from each gene target and assigning a phenotype severity score from 1 to 9 (Fig. S7A, B). During this process, the 
scoring individuals were blinded to the gene identities associated with each montage of cells.

Live-cell screen phenotype analysis
Following nuclear segmentation of the time lapse data, cells were tracked across frames using the TrackMate implementation 
of the linear assignment problem approach to particle tracking (65, 66). The cost of linking nuclei in consecutive frames was 
set as the squared distance between centroids, with maximum linking distance set to 60 pixels (~18 μm). Track gaps up to 
2 frames were allowed, in addition to track merges and splits. Tracked cell lineages that did not last for the full 24 hour time-
course were excluded from analysis.

The sgRNA assigned to each tracked cell lineage in the phenotype data was determined by matching cell identities between 
the in situ sequencing images and the final time point of the time course. Similar to the fixed-cell screen, individual cell 
feature measurements were normalized using the median and median absolute deviation of the non-targeting control cell 
population from the same well and time point to reduce batch effects and correct for temporal intensity variations. Interphase, 
mitotic, and apoptotic cells were classified using a support vector machine (scikit-learn svm.SVC, linear kernel) with a 
subset of 81 features (Fig. S8A; Data S3). However, due to the difficulty of separating mitotic and apoptotic cells based 
on H2B-mCherry fluorescence alone, these categories were later combined into a single, broad “mitotic” bin. Cell division 
events were defined as a contiguous sequence of at least 2 frames of mitotic-classified cells immediately followed by a split 
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in the track into 2 daughter cells (Fig. S8B). Also included as cell division events were continuous sequences of mitotic cells 
that start in the first frame or reach the end of the acquired time course, if the observed mitotic duration was at least as long 
as the average mitotic duration of non-targeting control cells in the same well. Mitotic duration was measured as the time 
difference between the first and last frame of the cell division event. The fraction of cells entering mitosis was calculated as 
the fraction of tracked lineages containing at least one cell division event as defined above. Since many genes exhibited a 
stronger phenotype at either the Day 3 or Day 4 time point, likely due to differences in protein depletion timing, the strongest 
phenotype was selected for plotting in Fig. 5B by selecting the time course with the highest absolute difference in mitotic 
duration compared to the mean of non-targeting sgRNAs.

GFP immunoprecipitation and Mass-spectrometry
IP-MS experiments were performed as described previously (67). EGFP-C7orf26 and EGFP-LIN52 cells were mitotically 
enriched with 10μM STLC overnight, harvested and washed in PBS and resuspended 1:1 in 1X Lysis Buffer (50 mM HEPES, 
1 mM EGTA, 1 mM MgCl2, 100 mM KCl, 10% glycerol, pH 7.4) then frozen in liquid nitrogen. Cells were thawed after addition 
of an equal volume of 1.5X lysis buffer supplemented with 0.075% Nonidet P-40, 1X Complete EDTA-free protease inhibitor 
cocktail (Roche), 1 mM phenylmethylsulfonyl fluoride, 20 mM beta-glycerophosphate, 1 mM sodium fluoride, and 0.4 mM 
sodium orthovanadate. Cells were then lysed by sonication and cleared by centrifugation. The supernatant was mixed with 
Protein A beads (Biorad) coupled to rabbit anti-GFP antibodies (Cheeseman lab) and rotated at 4°C for 1 hour. Beads were 
washed five times in wash buffer (50 mM HEPES, 1 mM EGTA, 1 mM MgCl2, 300 mM KCl, 10% glycerol, 0.05% NP-40, 1 mM 
dithiothreitol, 10 µg/mL leupeptin/pepstatin/chymostatin, pH 7.4). After a final rinse in wash buffer without detergent, bound 
protein was eluted with 100 mM glycine pH 2.6. Eluted proteins were precipitated by addition of 1/5th volume trichloroacetic 
acid at 4°C overnight. Precipitated proteins were reduced with TCEP, alkylated with iodoacetamide, and digested with 
mass-spectrometry grade Lys-C and trypsin (Promega) using S-Trap (Protifi) according to the manufacturer’s instructions. 
Peptides were separated by liquid chromatography and analyzed on an Orbitrap Elite mass spectrometer (Thermo Fisher). 
Data were analyzed using Proteome Discoverer Software (Thermo Fisher). 

Western Blotting
Cells expressing individual sgRNAs were induced in 1 μg/mL doxycycline for 3 days before lysis in Laemmli buffer and 
incubation at 95°C for 5 min. Samples were separated by SDS-PAGE and semi-dry transferred to nitrocellulose. Membranes 
were blocked for 30 min in blocking buffer (5% BSA in TBS with 0.1% Tween-20) before incubation with anti-phospho-H2A.X 
(Ser139) antibody (Millipore clone JBW301) at 1:1000 dilution followed by HRP-conjugated secondary antibody (Kindle 
Biosciences) at 1:5000 dilution. To detect GAPDH as a loading control, HRP-conjugated antibody (ab185059) was applied 
at 1:20,000 dilution. Membranes were imaged with a KwikQuant Imager (Kindle Biosciences) and quantified using Image 
Studio software (LI-COR). 

Arrayed imaging experiments with inducible knockout cell lines
Inducible knockout cell lines for immunofluorescence were seeded on poly-L-lysine (Sigma-Aldrich) coated coverslips and 
fixed in PHEM with 4% formaldehyde for 10 min at 37°C (microtubule staining) or ice cold methanol. Coverslips were 
washed with PBS, permeabilized with 0.2% Triton X-100 in PBS, and blocked in Abdil buffer (20 mM Tris-HCl, 150 mM 
NaCl, 0.1% Triton X-100, 3% bovine serum albumin, 0.1% NaN3, pH 7.5). Anti-alpha-tubulin (DM1A, Sigma; 1:3000 dilution), 
anti-CENP-A (Clone 3-19, Invitrogen; 1:1000 dilution) and anti- “Bonsai”/NDC80 (68; 1 µg/mL) antibodies in Abdil buffer 
were used for primary staining. Cy2- and Cy5-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories) 
were diluted 1:500 with 1 µg/mL Hoechst-33342 (Sigma-Aldrich) in Abdil for subsequent staining. Slides were mounted with 
ProLong Gold Antifade (Invitrogen) prior to imaging using the microscope configuration described above.

For quantifications of Ndc80 and CENP-A kinetochore stain intensity, sections of cells were maximum intensity projected 
and cropped in Fiji (69). Integrated fluorescence intensity of mitotic kinetochores was measured with a custom pipeline 
in CellProfiler (70). The median intensity of a 5-pixel wide region surrounding each kinetochore was used to background 
subtract each measurement.

For time lapse analysis of individual knockout cell lines, cells were induced in 12-well polymer-bottomed plates (Cellvis) 
with 1 μg/mL doxycycline for 3 days, refreshing doxycycline media each day. On day 3 or 4 post-Cas9 induction, cells were 
moved to CO2-independent media (Gibco) supplemented with 10% FBS, 100 U/mL penicillin and streptomycin, and 2 mM 
L-glutamine before imaging using the microscope configuration described above. 

RNA-sequencing of inducible knockout cell lines
Inducible knockout cells were seeded in 1 μg/mL doxycycline, and doxycycline media was refreshed each day for 3 days 
before harvest of a mitotically-enriched cell population by shake-off. Cells were washed in PBS before snap-freezing 
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pellets of 100,000 cells in liquid nitrogen. Cells were lysed with 1X TCL buffer (Qiagen) supplemented with 1% beta-
mercaptoethanol. Smart-seq2 was performed as described previously (71) to prepare libraries for sequencing on an Illumina 
NovaSeq or MiniSeq. Transcript counts were quantified using kallisto (72) with default parameters and Gencode release 
21. Differential expression analysis was performed using edgeR (73) with default settings; comparisons to control samples 
were completed using the exactTest function. The Benjamini-Hochberg procedure was used to estimate FDR to identify 
differentially expressed genes (FDR < 0.05, effect size > 2-fold change).
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Fig. S1. Optimization of image-based pooled screening for the definition of essential gene function. (A) Histogram of median 
dependency probability across cell lines in the DepMap dataset, indicating the threshold chosen (0.35) for defining individual essential 
cell lines for each gene in (B). (B) Number of genes identified as essential for at least the specified fraction of tested cell lines in DepMap. 
Genes that were essential in at least 10% of tested cell lines were selected for the screen, in addition to those selected from additional 
sources (see Methods). (C) Scatter plot showing the results from small-scale screens of 400 gene targets. This compares the fraction of 
mitotic cells with phenotypic defects for established cell division factors at 3 and 4 days post-Cas9 induction. Overall, mitotic phenotypes 
were more commonly observed at the earlier time point. (D) Scatter plot showing mean change in abundance within the 20,445 sgRNA 
primary screen library at 3 and 5 days post-Cas9 induction, each time point relative to pre-induction (day 0). N=2 screen replicates were 
performed, averaged across sgRNAs targeting the same gene. Orange indicates non-targeting control sgRNAs. Many gene targets begin 
to drop out of the population at day 5 due to fitness defects. Based on this data and from (C), 78 hours post-Cas9 induction was chosen 
as the fixation time point for our image-based screen to maximize observable phenotypes. (E) Boxplot demonstrating in situ sequencing 
quality in our fixed-cell image-based pooled screen. Sequencing quality was consistent across the eight imaging plates, with the majority 
of imaging tiles exceeding 50% of cells with sequencing reads that uniquely match a single sgRNA sequence from the library. N = 1,665 or 
1,998 imaging tiles in each plate column. (F) Confusion matrix demonstrating performance of the support vector classifier in distinguishing 
interphase and mitotic cells, 5-fold cross-validation with N=2,514 manually annotated cell images.
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Fig. S2. Analysis of interphase nuclear phenotypes. (A) Bar graph indicating over-representation of KEGG pathways among gene 
targets exhibiting decreased or increased nuclear γH2AX mean intensity. *FDR<0.05 (B) Bar graph of over-representation analysis results 
as in (A) among gene targets with decreased or increased nuclear DNA (DAPI) integrated intensity. *FDR<0.05 (C) Scatter plot showing 
summary gene scores (see Methods) for mean nuclear γH2AX intensity compared to nuclear area, showing a subset of gene knockouts 
with increases in both γH2AX and nuclear area. Summary γH2AX scores are plotted on a symmetric log scale (linear between -1 and 1) 
and labeled genes are colored by functional category. (D) Scatter plot showing summary gene scores for integrated nuclear DNA (DAPI) 
intensity compared to nuclear area as in (C). DNA content is relatively constant across gene targets exhibiting a range of cell areas, 
although a subset demonstrates increased nuclear area and DNA. Summary DAPI scores are plotted on a symmetric log scale (linear 
between -1 and 1) and labeled genes are colored by functional category. (E) Bivariate histograms of integrated nuclear DNA intensity and 
mean nuclear γH2AX intensity, displaying single-cell distributions for all cells expressing non-targeting sgRNAs (top left) and selected 
gene targets. Knockouts of genes that regulate chromosome segregation or cytokinesis result in more cells with increased DNA content, 
but only modest increases in γH2AX intensity. Histogram bins containing a fraction of total cells for a given gene target that is less than 
1 in 104 cells are not displayed. (F) Cumulative distribution plots of mean nuclear γH2AX intensity (DNA damage phenotype) for subsets 
of sgRNAs sequences with increasing numbers of genomic target sites. Non-targeting control sgRNAs and sgRNAs targeting a single 
genomic locus (blue) include the vast majority of sgRNAs in the library and displayed minimal DNA damage on average in the screen. 
In contrast, sgRNAs with increasing numbers of target sites (orange, green, and red) displayed distribution shifts toward increasing DNA 
damage. Tick marks above the plot indicate individual sgRNA phenotype scores, which are the median robust z-scores measured across 
all cells with a given sgRNA. Genomic target sites are the number of cutting frequency determination (CFD) bin 1 matches (see 19).
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Fig. S3. Analysis of interphase cytoskeletal phenotypes. (A) Bar graph indicating over-representation of KEGG pathways among gene 
targets with decreased or increased mean cellular actin (phalloidin) intensity in interphase cells. *FDR<0.05 (B) Scatter plot indicating 
summary gene scores (see Methods) for mean cellular actin intensity compared to cell area. A subset of gene knockouts display increased 
actin staining together with decreased cell area due to disrupted cellular adhesion. Labeled genes are colored by functional category. 
(C) Bivariate histograms of mean cellular actin intensity and cellular area, displaying single-cell distributions for all cells expressing non-
targeting sgRNAs (left) and selected gene targets. Knockouts of genes that regulate cellular adhesion (e.g., ITGAV) show a distribution 
of cells shifted toward lower cellular area and correspondingly increased mean actin intensity. Histogram bins containing a fraction of 
total cells for a given gene target that is less than 1 in 104 cells are not displayed. (D) Scatter plot comparing mean cellular actin intensity 
summary scores between interphase and mitotic cell populations, indicating factors that robustly affect actin structures throughout the cell 
cycle. (E) Bar graph of over-representation analysis results as in (A) for gene targets demonstrating decreased or increased mean cellular 
tubulin intensity. *FDR<0.05 (F) Scatter plot showing summary gene scores for mean cellular tubulin intensity compared to cell area as in 
(B). Similar to actin, a subset of gene knockouts display increased tubulin staining in combination with decreased cell area. (G) Volcano 
plot for interphase cell area across gene targets in the screen, showing a wide range of decreased (magenta) and increased (green) cell 
areas (FDR<0.05). Raw P-values were computed by comparing gene targets to a bootstrapped null distribution of cells expressing non-
targeting sgRNAs (see Methods), with false discovery rate (FDR) estimated using the Benjamini-Hochberg procedure. (H) Bar graph of 
over-representation analysis results as in (A) for gene targets that result in decreased or increased cell area.
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Fig. S4. PHATE analysis of multi-dimensional phenotypes. (A) Two-dimensional representation of the interphase phenotype landscape 
of gene targets in the primary screen using PHATE (35; see Methods). Data points are colored by the mean potential distance to non-
targeting control sgRNAs computed by PHATE for the interphase phenotype profiles, normalized between 0 and 1. Gene targets with 
increasing phenotype strength intuitively radiate outward from a dense region containing non-targeting sgRNAs. (B) Bivariate histogram 
showing the joint distribution of image-based interphase phenotype strength from (A) together with the strength of knockout fitness effect 
in the screening cell line (mean change in sgRNA abundance within the library after 5 days of Cas9 induction, n=2 screen replicates 
averaged across sgRNAs targeting the same gene). >90% of gene targets exhibit a measurable interphase phenotype in the image-based 
screen (potential distance greater than the 95th percentile of non-targeting sgRNAs). Of the remaining 407 genes, only 55 demonstrate 
a meaningful fitness effect in the tested cell line (log2 fold change abundance less than the 5th percentile of non-targeting sgRNAs). 
Labeled genes are those that display a fitness effect and no interphase phenotype, but do show a measurable mitotic phenotype in (E). 
(C) Boxplot illustrating selection of the Leiden clustering (64) resolution parameter for interphase phenotypes. For 20 repetitions at each 
resolution, 90% of gene targets were sampled without replacement and clustered using PHATE and Leiden algorithms in series. Each 
sampled cluster solution was then compared to the full dataset clusters using adjusted mutual information (top) and adjusted Rand index 
(bottom). The dotted line indicates the chosen resolution, selected based on the plateau in robustness of clustering solutions. (D) Two 
dimensional representation of the mitotic phenotype landscape of gene targets as in (A), colored by the mean potential distance to non-
targeting control sgRNAs computed by PHATE for the mitotic phenotype profiles. (E) Bivariate histogram showing the joint distribution 
of image-based mitotic phenotype strength from (D) together with the strength of knockout fitness effect in the screening cell line as in 
(B). The threshold for measurable mitotic phenotypes is the 95th percentile of potential distance among non-targeting control sgRNAs. 
Labeled genes indicate those that display a fitness effect and mitotic phenotype, but do not exhibit an interphase phenotype in (B). (F) 
Boxplot illustrating selection of the Leiden clustering resolution parameter for mitotic phenotypes using the same procedure as (C). A 
resolution parameter of 9 was chosen in part due to the increased presence of single-gene clusters with resolution ≥10 (bottom).
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Fig. S5. Interphase phenotypes enable detailed clustering of specific functional categories. Two-dimensional PHATE 
representations of interphase phenotype clusters and corresponding heat maps of a manually-selected subset of specific parameters for 
a broad range of functional categories, as in Fig. 3. Distinct and coherent phenotypes are observable for genes involved in processes 
such as (A) protein degradation (including the recently-characterized gene AKIRIN2; (B) RNA processing; (C) DNA replication and 
DNA damage; (D) cell cycle function; (E) actin cytoskeleton and cellular adhesion; and (F) nuclear pore function and protein folding. 
Numbers indicate individual interphase cluster identities. All genes from selected clusters are listed below each heatmap. Parameters 
are presented as z-scores from the distribution of non-targeting sgRNAs, visualized on a symmetric log scale (linear between -1 and 1).
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Fig. S6. Interphase cluster analysis reveals novel functional associations for established factors. Two-dimensional PHATE 
representations of interphase phenotype clusters and corresponding heat maps of a manually-selected subset of specific parameters, 
as in Fig. 3. (A) Gene targets involved in vesicle trafficking and related processes exhibit distinct image-based phenotypes, despite the 
absence of membrane-targeted phenotype stains in the screen. Targeting DICER1 and the associated factor DGCR8 unexpectedly 
results in a phenotype similar to exocyst complex knockouts. (B) Additional clusters identify a co-functional role of HNRNPD and m6A 
modifications, as well as a relationship between mitochondrial function and KRAS/BRAF signaling. (C) Transcriptional regulators show 
interrelated phenotypes, with an apparent unique phenotype for cluster 121 containing MYC and MAX, suggesting the presence of 
additional MYC-associated factors.
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Fig. S7. Computational and manual scoring show strong agreement for mitotic phenotypes. (A and B, top) Two-dimensional 
PHATE representations of mitotic phenotypes, colored by manual phenotype severity scores independently assigned by two individuals 
using anonymized gene names. (A and B, bottom) Box plots demonstrating strong agreement between manual phenotype scores and 
computational phenotype strength (mean potential distance to non-targeting sgRNAs from mitotic PHATE analysis, normalized between 0 
and 1. (C) Example images of mitotic cells from the primary screen visualizing DNA (magenta) and microtubules (green) from gene targets 
selected in the computational and/or visual analysis highlight the diversity of identified mitotic phenotypes (see also Fig. 4D). Control 
images are reproduced from Fig. 4D. Scale bar, 10 µm.
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Fig. S8. Optical pooled screening for live-cell mitotic phenotypes. (A) Confusion matrix demonstrating performance of the support 
vector classifier in distinguishing interphase, mitotic, and apoptotic cells from the live-cell screen. 5-fold cross-validation with n=2,514 
manually annotated cell images. Due to the relative difficulty of differentiating mitotic and apoptotic cells from H2B-mCherry fluorescence 
alone, the mitotic and apoptotic classes were combined after inference (precision and recall after combining classes indicated by brackets). 
(B) Criteria for identifying a cell division event in the live-cell screen analysis. Cell lineages that were not tracked across the entire time 
course were excluded. (C) Histograms of the total cell lineages acquired (top) and cell divisions observed (bottom) across both day 3 and 
day 4 time courses for each gene target. (D) Example images of H2B-mCherry fluorescence from the live-cell screen at the indicated time 
points after mitotic entry for selected gene targets. Each displayed knockout demonstrates increased mitotic duration and chromosome 
alignment defects relative to the non-targeting control sgRNA. Control images are reproduced from Fig. 5B. Scale bar, 10 µm.

ARTICLE PREPRINT

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2021. ; https://doi.org/10.1101/2021.11.28.470116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470116
http://creativecommons.org/licenses/by-nc/4.0/


Cont
rol
TRAIP

ZBTB17
ISCU

FOXM1
GAK

LE
NG8

PCBP1

MMS22L

ATP1A
1

RUVBL2

RUVBL1
LR

R1

KANSL3

KANSL1

PAXBP1
DHX9

AQP7
TUT1

FOXD4L1
TICRR

MYBL2
RNPC3

WDR33
TCP1

KAT8
BRF2

RBM42
CLP

1
LIN

52

CENP-A
HJU

RP
0.0

0.5

1.0

−4 −2 0 2 4

0.0

2.5

5.0

7.5

10.0

−4 −2 0 2 4 −4 −2 0 2 4

LIN52 knockout FOXM1 knockout MYBL2 knockout

log2 fold change log2 fold change log2 fold change

-lo
g 10

FD
R

Down-regulated genes

LIN52

MYBL2

FOXM1

250
18

37

PTTG1

CDKN3
PIMREG

2

B C

Knock out target

R
el

at
iv

e 
N

dc
80

 in
te

ns
ity

Cont
rol
TRAIP

ZBTB17
ISCU

FOXM1
GAK

LE
NG8

PCBP1

MMS22L

ATP1A
1

RUVBL2

RUVBL1
LR

R1

KANSL3

KANSL1

PAXBP1
DHX9

AQP7
TUT1

FOXD4L1
TICRR

MYBL2
RNPC3

WDR33
TCP1

KAT8
BRF2

RBM42
CLP

1
LIN

52

CENP-A
HJU

RP
0.0

0.5

1.0

1.5

* * ***

ZB
TB

17

LE
N

G
8

B
R

F2
C

on
tr

ol

W
D

R
33

K
AT

8

Microtubules DNA Microtubules DNAMicrotubules DNA

PA
XB

P1

D
H

X9

M
M

S2
2L

A

Knock out target

R
el

at
iv

e 
C

EN
P-

A 
in

te
ns

ity

**

* **

D

EIF3J-DT
KPNA2
LGALS1
MXD3
PHF19
VPS25
METTL7A
ARL6IP1
SNHG19
SNORA73A
TRIM59
SNHG3
ARHGEF39
HMGB3

Cell division
kinetochore

NUF2
CENPF

CCNB1 NEK2
MKI67 JPT1
CDC20 AURKA
PSRC1 CKS1B
CCNB2 KIF4A
LIN52 NUSAP1
BIRC5 UBE2C
NCAPD2 PRC1
SNHG3 TOP2A
PLK1 KIF2C
BUB3 CDC25B

Other

CENPF

NUF2

PC
B

P1

FO
XD

4L
1

R
U

VB
L1

R
B

M
42

G
A

K

R
U

VB
L2

GFP-Lin52
Interphase

Mitosis

E

* *
** **

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2021. ; https://doi.org/10.1101/2021.11.28.470116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470116
http://creativecommons.org/licenses/by-nc/4.0/


Fig. S9. Targeted analysis of mitotic phenotypes. (A) Immunofluorescence images of individual cell lines stably expressing a single 
sgRNA targeting each gene of interest to confirm live-cell pooled screen phenotypes and enable visualization at higher resolution across 
a single population. Images are deconvolved maximum intensity projections of fixed cells stained for microtubules (anti-alpha-tubulin) 
and DNA (Hoechst). Scale bar, 10 µm. (B) Bar plot showing kinetochore-localized intensity of the outer kinetochore microtubule-binding 
protein Ndc80 in inducible knockout cell lines for all 29 genes pursued from the live-cell screen, along with CENP-A and HJURP controls. 
Each data point represents the median kinetochore signal of one experiment for >10 cells per gene target. Values are normalized relative 
to negative control cells from the same experiment. *P<0.05 by two-sided independent T-test relative to negative control cells, Bonferroni-
adjusted. (C) Bar plot of kinetochore-localized intensity for the inner kinetochore centromere-specific histone CENP-A in inducible 
knockout cell lines; experiment design as in (B). *P<0.01 by two-tailed independent T-test relative to control cells. (D) Fluorescence 
images of human cells expressing GFP-LIN52, indicating LIN52 nuclear localization in interphase cells and non-specific localization in 
mitotic cells. Scale bar, 10 µm. (E) RNA-seq analysis of DREAM complex-related inducible knockout cell lines in a mitotically-enriched 
population (see Methods). Targeting LIN52 and FOXM1 resulted in many differentially expressed genes compared to cells expressing 
the HS1 control sgRNA, while MYBL2 knockouts displayed minimal transcriptional effects in the tested cell population (top). Disruption of 
LIN52 resulted in 37 unique down-regulated genes relative to FOXM1 and MYBL2, including several genes involved in cell division and 
the kinetochore components NUF2 and CENPF. However, the down-regulation of these genes alone is unlikely to explain the strong effect 
of LIN52 knockout on both CENP-A and Ndc80 localization.
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OTHER SUPPLEMENTAL MATERIALS

Movie S1. Example time lapse montages from the secondary live cell screen.

Movie S2. Example time lapse images of individual knockout cell lines.

Movie S3. Time lapse movies showing Lin52 complex knockout phenotypes.

Data S1. CRISPR sgRNA sequences used in this study. 

Data S2. Primary screen results and extracted image features. 

Data S3. Secondary screen results and extracted image features. 

Data S4. Cell lines used in this study.
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