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ABSTRACT 24 

In the past two years, the global research in combating COVID-19 pandemic has led to isolation 25 

and characterization of numerous human antibodies to the SARS-CoV-2 spike. This enormous 26 

collection of antibodies provides an unprecedented opportunity to study the antibody response to 27 

a single antigen. From mining information derived from 88 research publications and 13 patents, 28 

we have assembled a dataset of ~8,000 human antibodies to the SARS-CoV-2 spike from >200 29 

donors. Analysis of antibody targeting of different domains of the spike protein reveals a number 30 

of common (public) responses to SARS-CoV-2, exemplified via recurring IGHV/IGK(L)V pairs, 31 

CDR H3 sequences, IGHD usage, and somatic hypermutation. We further present a proof-of-32 

concept for prediction of antigen specificity using deep learning to differentiate sequences of 33 

antibodies to SARS-CoV-2 spike and to influenza hemagglutinin. Overall, this study not only 34 

provides an informative resource for antibody and vaccine research, but fundamentally advances 35 

our molecular understanding of public antibody responses to a viral pathogen.  36 
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INTRODUCTION 37 

From the beginning of COVID-19 pandemic, many research groups worldwide turned their 38 

attention to SARS-CoV-2 and, in particular, to the immune response to infection and vaccination. 39 

Over the past two years, thousands of human monoclonal antibodies to SARS-CoV-2 have been 40 

isolated and characterized [1, 2]. The major surface antigen to which antibodies are elicited is the 41 

SARS-CoV-2 spike (S) protein, which is a homotrimeric glycoprotein that facilitates virus entry by 42 

first engaging the host receptor ACE2 and then mediating membrane fusion [3, 4]. The S protein 43 

has three major domains, namely the N-terminal domain (NTD), receptor-binding domain (RBD), 44 

and S2 domain [5, 6]. Most studies on SARS-CoV-2 antibodies have focused on the 45 

immunodominant RBD [7], because neutralizing antibodies can be elicited to it with very high 46 

potency [8, 9]. Antibodies to the NTD and the highly conserved S2 domain have also been 47 

discovered, but usually exhibit lower neutralizing potency [10-16]. 48 

 49 

A common or public antibody response describes antibodies to the same antigen in different 50 

donors that share genetic elements that usually result in similar modes of antigen recognition. 51 

Deciphering public responses to particular antigens is not only critical for uncovering the 52 

molecular features of recurring antibodies within the diverse antibody repertoire at the population 53 

level, but also important for development of effective vaccines [17, 18]. A conventional approach 54 

to study public antibody responses is to identify public clonotypes, which are antibodies from 55 

different donors that share the same immunoglobulin heavy variable (IGHV) gene and with similar 56 

complementarity-determining region (CDR) H3 sequences [19-23]. While this definition of public 57 

clonotypes has improved our understanding of public antibody response, it generally ignores the 58 

contribution of the light chain. Moreover, our recent study has shown that a public antibody 59 

response to influenza hemagglutinin is driven by an IGHD gene with minimal dependence on the 60 

IGHV gene [24]. Therefore, the true extent and molecular characterization of public antibody 61 

responses remain to be explored. 62 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.26.470157doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.26.470157
http://creativecommons.org/licenses/by/4.0/


 4 

 63 

Although information of many human clonal antibodies to SARS-CoV-2 is now publicly available, 64 

it has been difficult to leverage all available information to investigate public antibody responses 65 

to SARS-CoV-2. One major challenge is that the data from different studies are rarely in the same 66 

format. This inconsistency imposes a huge barrier to data mining. The establishment of the 67 

coronavirus antibody database (CoV-AbDab) has enabled researchers to deposit their antibody 68 

data in a standardized format and has partially resolved the data formatting issue [2]. However, 69 

not every SARS-CoV-2 antibody study has deposited their data to CoV-AbDab. Furthermore, 70 

IGHD gene identities, nucleotide sequences, and donor IDs are not available in CoV-AbDab, 71 

which makes it challenging to study public antibody responses using CoV-AbDab. Thus, 72 

additional efforts must be made to fully synergize the information across many different SARS-73 

CoV-2 antibody studies to investigate and decipher public antibody responses. 74 

 75 

In this study, we performed a systematic literature survey and assembled a large dataset of 76 

human SARS-CoV-2 monoclonal antibodies with donor information. We then analyzed this 77 

dataset and uncovered many previously unknown antibody sequence features that contribute to 78 

public antibody responses to SARS-CoV-2 S. For example, we identified a public antibody 79 

response to RBD that is largely independent of the IGHV gene, as well as involvement of a 80 

particular IGHD gene in a public antibody response to S2. Our analysis also revealed a number 81 

of recurring somatic hypermutations (SHMs) in different public clonotypes.  82 

 83 

RESULTS 84 

Collection of SARS-CoV-2 antibody information 85 

Information for 8,048 human antibodies was collected from 88 research publications and 13 86 

patents that described the discovery and characterization of antibodies to SARS-CoV-2 (Figure 87 

S1, Data S1). Among these antibodies, which were isolated from 215 different donors, 7,997 88 
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(99.4%) react with SARS-CoV-2, and the remaining 51 react with SARS-CoV or seasonal 89 

coronaviruses. While 99.1% (7,923/7,997) SARS-CoV-2 antibodies in our dataset bind to S 90 

protein, 49 bind to N and 25 to ORF8. Epitope information was available for most SARS-CoV-2 S 91 

antibodies, with 5,002 to RBD, 513 to NTD, and 890 to S2. In addition, information on 92 

neutralization activity, germline gene usage, sequence, structure, bait for isolation (e.g. RBD, S), 93 

and donor status (e.g. infected patient, vaccinee, etc.), if available, was collected for individual 94 

antibodies. 95 

 96 

Epitope-dependent V gene usage bias in SARS-CoV-2 S antibodies 97 

To identify the sequence features in RBD, NTD, and S2 antibodies, we first performed an analysis 98 

on V gene usage. Our analysis identified several commonly used IGHV/IGK(L)V pairs among 99 

RBD antibodies (Figure 1A), such as IGHV3-53/IGKV1-9 and IGHV3-53/IGKV3-20, which 100 

represent two known public clonotypes [25-30]. We also observed substantial enrichment of 101 

IGHV1-24 among NTD antibodies over the naïve baseline (Figure 1B), which was established by 102 

published datasets of antibody repertoire sequencing from 26 healthy donors [31-33]. IGHV1-24 103 

is in fact a known public antibody response that targets an antigenic supersite on NTD [10-13]. 104 

These observations illustrate that the gene usage pattern in our dataset is consistent with previous 105 

findings. Importantly, our dataset also enabled us to discover previously unknown patterns in gene 106 

usage. For example, IGHV3-30 and IGHV3-30-3 were highly enriched among S2 antibodies over 107 

baseline (Figure 1B). For our subsequent analyses, IGHV3-30-3 was also labeled as IGHV3-30, 108 

since IGHV3-30 and IGHV3-30-3 have an identical amino acid sequence in the framework 109 

regions, CDR H1 and CDR H2. V gene usage bias was also observed in the light chain. For 110 

example, IGKV3-20 and IGKV3-11 were most used among S2 antibodies, whereas IGKV1-33 111 

and IGKV1-39 were most used among RBD antibodies (Figure 1C). Overall, these results 112 

demonstrated that RBD, NTD, and S2 antibodies have distinct patterns of V gene usage.  113 

 114 
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CDR H3 analysis reveals public antibody response 115 

Although heavy and light chain V genes together encode four of the six CDRs, most of the 116 

antibody sequence diversity comes from the CDR H3 region due to V(D)J recombination. Since 117 

CDR H3 is typically an important determinant for binding and may even dominate the paratope 118 

[24, 34-37], characterization of CDR H3 sequences in S antibodies is essential for understanding 119 

the antibody response to SARS-CoV-2. Here, we aimed to examine the convergence of CDR H3 120 

sequences among S antibodies. Briefly, CDR H3 sequences with the same length were clustered 121 

by an 80% sequence identity cutoff. Only those clusters that contained antibodies from at least 122 

two different donors were subjected to further analysis. A total of 170 clusters were identified 123 

(Figure 2A and Data S1). Interestingly, antibodies within the same cluster often share the same 124 

binding region on the S protein (RBD, NTD, or S2), consistent with the notion that the CDR H3 125 

sequence has a critical role in determining the epitope that is recognized. 126 

 127 

The largest cluster (cluster 1) consisted of 139 antibodies from 57 donors (Figure 2B). Most of 128 

the antibodies in cluster 1 belonged to a well-characterized public clonotype to RBD that is 129 

encoded by IGHV3-53/3-66 and IGKV1-9 [25-27, 29, 30]. IGHV3-53/3-66, which is frequently 130 

used in RBD antibodies [28], was also enriched among antibodies in several other major CDR H3 131 

clusters (e.g. clusters 2, 4, 8, and 14). Antibodies that bind to quaternary epitopes by bridging two 132 

RBDs on the same spike are found in clusters 14 and 17 [38] (Figure S2). Notably, both clusters 133 

3 and 5, which target the RBD, contained a conserved disulfide bond (Figure 2B). Cluster 3 134 

represents another well-characterized public clonotype that is encoded by IGHV1-58/IGKV3-20 135 

[8, 9, 39, 40]. On the other hand, antibodies in cluster 5, which are largely encoded by IGHV3-136 

30/IGKV1-33, have not been extensively studied. Most antibodies within cluster 5 had relatively 137 

weak neutralizing activity, if any, despite having reasonable binding affinity (Table S1). This result 138 

suggests the existence of an RBD-targeting public clonotype that had minimal neutralizing activity. 139 
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Similar observation was made with RBD antibodies encoded by IGHV3-13/IGKV1-39, although 140 

most of these antibodies did not share a similar CDR H3 (Figure S3 and Table S2). 141 

 142 

Furthermore, we also discovered several S2-specific CDR H3 clusters (clusters 6, 9, and 11) that 143 

were predominantly encoded by IGHV3-30 with diverse IGK(L)V genes, suggesting a public 144 

heavy chain response to S2 (Figure 2B). Clusters 10 and 15 were also of interest to us. Cluster 145 

10 was featured by a very short CDR H3 (6 amino acids, IMGT numbering) and was encoded by 146 

IGHV4-59/IGKV3-20, which was a frequent V gene pair among the S2 antibodies. Cluster 15 was 147 

encoded by IGHV1-69/IGKV3-11, which was the most used V gene pair among the S2 antibodies. 148 

Therefore, clusters 10 and 15 represented two major S2 public clonotypes, despite their minimal 149 

neutralizing activity (Table S1). In contrast to RBD- and S2-specific clusters, all NTD-specific CDR 150 

H3 clusters had a relatively small size (Figure 2A), suggesting that the paratopes for most NTD 151 

antibodies are not dominated by CDR H3. 152 

 153 

A public antibody response dominated by the light chain and CDR H3 154 

While most clusters have a dominant IGHV gene, diverse IGHV genes were observed in cluster 155 

7 (Figure 2B-C). Most antibodies (42 out of 45) in cluster 7 used IGLV6-57, suggesting their 156 

paratopes are mainly composed of CDR H3 and light chain. S2A4, which is encoded by IGHV3-157 

7/IGLV6-57 [41], is an antibody in cluster 7. A previously determined structure of S2A4 in complex 158 

with RBD indeed demonstrates that its CDR H3 contributes 38% of the buried surface area (BSA) 159 

of the epitope, whereas the light chain contributes 53% (Figure 2D-E). Specifically, IGLV6-57 160 

forms an extensive H-bond network with the RBD (Figure 2F), whereas a 97WLRG100 motif at the 161 

tip of CDR H3 interacts with the RBD through H-bonds, π-π stacking, and hydrophobic 162 

interactions (Figure 2G). Although G100 does not participate in binding, it exhibits backbone 163 

torsion angles (Φ = −94°, Ψ = −160°) that are in the preferred region of Ramachandran plot for 164 

glycine, but in the allowed region for non-glycine (Figure S4). Consistently, this 97WLRG100 motif 165 
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is highly conserved in cluster 7 (Figure 2B). These results illustrate that our CDR H3 clustering 166 

analysis not only captured existing knowledge about public SARS-CoV-2 antibody responses, but 167 

was able to uncover recurring sequence features among SARS-CoV-2 antibodies that were 168 

previously unknown. 169 

 170 

IGHV3-30/IGHD1-26 is a recurring feature in S2 antibodies 171 

As a major contributor to CDR H3, the IGHD gene can also drive a public antibody response [24]. 172 

Consequently, we aimed to understand if there are any signature IGHD genes in SARS-CoV-2 S 173 

antibodies. While the frequency of most IGHD genes were within the baseline level, IGHD1-26 174 

was highly enriched among S2 antibodies (Figure 3A). These IGHD1-26 S2 antibodies were 175 

predominantly encoded by IGHV3-30 (Figure 3B), which is one of the most used IGHV genes 176 

among S2 antibodies (Figure 1B). In contrast, the IGK(L)V gene usage was more diverse among 177 

these IGHD1-26 S2 antibodies, although several were more frequently used than others (Figure 178 

3C), implying that this public antibody response to S2 is mainly driven by the heavy chain. 179 

Interestingly, 70% of these IGHD1-26 S2 antibodies had a CDR H3 of 14 amino acids, whereas 180 

only <20% of other S antibodies had a CDRH3 of 14 amino acids (Figure 3D). In fact, most 181 

members of clusters 6, 9, and 11 in our CDR H3 analysis above (Figure 2B) represented this 182 

public antibody response to S2. While CDR H3 is also encoded by the IGHJ gene, the distribution 183 

of IGHJ gene usage in these IGHD1-26 S2 antibodies did not show a strong deviation from that 184 

of other S antibodies in our dataset (Figure 3E). 185 

 186 

In our dataset, there were 110 IGHD1-26 S2 antibodies from 17 donors with a CDR H3 length of 187 

14 amino acids. Sequence logo analysis of these 110 antibodies revealed a conserved 188 

97[S/G]G[S/N]Y100 motif in the middle of their CDR H3 sequences (Figure 3F). In-depth analysis 189 

of the CDR H3 sequences from three representative IGHD1-26 S2 antibodies, namely P008_088, 190 

G32M4, and ADI-56059, further indicated that the conserved 97[S/G]G[S/N]Y100 motif was within 191 
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the IGHD1-26-encoded region (Figure 3G). Of note, P008_088, G32M4, and ADI-56059 were 192 

isolated from three different donors by three independent research groups [42-44]. While 193 

P008_088 and G32M4 were from SARS-CoV-2 infected individuals, ADI-56059 was from a 194 

SARS-CoV survivor. Although 87 out of these 110 IGHD1-26 S2 antibodies can cross-react with 195 

SARS-CoV, they generally have minimal neutralization activity (Table S3). Together, these 196 

results show that IGHV3-30/IGHD1-26 represents a public antibody response to a highly 197 

conserved epitope in S2. 198 

 199 

Recurring somatic hypermutations in public antibody responses 200 

Our recent study has shown that VH Y58F is a recurring somatic hypermutation (SHM) among 201 

IGHV3-53 antibodies to SARS-CoV-2 RBD [25]. Here, we aimed to identify additional recurring 202 

SHMs in other public clonotypes to SARS-CoV-2 S. In this analysis, antibodies from at least two 203 

donors that had the same IGHV/IGK(L)V genes and CDR H3s from the same CDR H3 cluster 204 

were classified as a public clonotype (Figure 4A). SHM that occurred in at least two donors within 205 

a public clonotypes was defined as a recurring SHM. Our analysis here only focused on major 206 

public clonotypes with antibodies from at least nine donors. This analysis led to the identification 207 

of several recurring SHMs in IGHV3-53/3-66-encoded public clonotypes that were previously 208 

characterized, including VH F27V, T28I, and Y58F [25, 45, 46] (Figure S5). We also identified 209 

many other previously unknown recurring SHMs in both heavy and light chains (Figure 4A-B), 210 

including VL S29R in a IGHV1-58/IGKV3-20 public clonotype that belongs to cluster 3 of our CDR 211 

H3 clustering analysis (Figure 2A-B). VL S29R emerged in 8 out of 26 (31%) donors that carried 212 

this IGHV1-58/IGKV3-20 public clonotype. 213 

 214 

Antibodies of this IGHV1-58/IGKV3-20 public clonotype bind to the ridge region of SARS-CoV-2 215 

RBD (Figure 5A), and can be robustly elicited by infection with antigenically distinct variants of 216 

SARS-CoV-2 [39, 47] and by vaccination [48, 49]. These antibodies are also able to potently 217 
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neutralize multiple variants of concern (VOC) [9, 48, 50]. We compared two previously determined 218 

structures of IGHV1-58/IGKV3-20 antibodies in complex with RBD [40, 51], where one has the 219 

germline-encoded VL S29 (Figure 5B) and the other carries a somatically mutated VL R29 (Figure 220 

5C). While neither VL S29 nor VL R29 directly interact with RBD, VL R29 is able to form a cation-221 

π interaction with VL Y32, which in turn forms a T-shaped π-π stacking with RBD-F486 and H-222 

bonds with RBD-C480 (Figure 5C). In the absence of SHM VL S29R, the rotamer adopted by VL 223 

Y32 does not permit these interactions to be formed. During our structural analysis, we discovered 224 

that VL S29R forms a salt bridge with another SHM VL G92D (Figure 5C), which can further 225 

stabilize the interactions between VL Y32 and with RBD. In fact, it is likely that VL S29R promoted 226 

the emergence of VL G92D, since VL G92D was found in four out of the 67 antibodies and all four 227 

that carried VL S29R (Figure 5D-E). This analysis substantiates the notion that recurring SHM 228 

can be found among antibodies within a public clonotype and further suggests the existence of 229 

common affinity maturation pathways that involve emergence of multiple SHMs in a defined order. 230 

 231 

Antigen identification by deep learning 232 

Since many sequence features of public antibody responses to the S protein can be observed in 233 

our dataset, we postulated that the dataset is sufficiently large to train a deep learning model to 234 

identify S antibodies. To provide a proof-of-concept, we aimed to train a deep learning model to 235 

distinguish between antibodies to S and to influenza hemagglutinin (HA). Among different 236 

antigens, HA was chosen here because there are a large number of HA antibodies with published 237 

sequences, albeit still lower than the published SARS-CoV-2 S antibodies. Here, 4,736 unique 238 

SARS-CoV-2 S antibodies and 2,204 unique influenza HA antibodies with complete information 239 

for all six CDR sequences were used (Data S2). Sequences for HA antibodies were retrieved 240 

from GenBank [52]. None of these antibodies have identical sequences in all six CDRs. These 241 

antibodies to S and HA were divided into a training set (64%), a validation set (16%), and a test 242 

set (20%), with no overlap between the three sets. The training set was used to train the deep 243 
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learning model. The validation set was used to evaluate the model performance during training. 244 

The test set was used to evaluate the performance of the final model. 245 

 246 

Our deep learning model has a simple architecture, which consisted of one encoder per CDR 247 

followed by three fully connected layers (Figure 6A). To evaluate the model performance on the 248 

test set, the area under the curves of receiver operating characteristic (ROC AUC) and precision-249 

recall (PR AUC) were used to measure the model's ability to avoid misclassification. While ROC 250 

AUC is popular evaluation metric [53], PR AUC is shown to be more informative for evaluating 251 

models that are trained with imbalanced datasets [54]. Model performance was the best when all 252 

six CDRs (i.e. H1, H2, H3, L1, L2, and L3) were used to train the model, which resulted in an 253 

ROC AUC and an PR AUC of 0.87 and 0.92, respectively (Figure 6B and Table S4). Interesting, 254 

a similar performance was observed when the model was trained by the three heavy-chain CDRs 255 

(i.e. H1, H2, and H3) (ROC AUC = 0.86, PR AUC = 0.91), indicating that the heavy chain 256 

sequence captures most of the information to distinguish between HA antibodies and S 257 

antibodies. A reasonable performance was also observed when the model was trained by the 258 

three light-chain CDRs (i.e. L1, L2, and L3) (ROC AUC = 0.77, PR AUC = 0.86). For other types 259 

of inputs that we have tested, including CDR H3 only, CDR L3 only, CDR H3+L3, CDR H1+H2, 260 

and CDR L1+L2, the ROC AUCs were between 0.72 and 0.83 and the PR AUCs were between 261 

0.82 and 0.90. These results imply that IGHV-encoded region (H1+H2), IGK(L)V-encoded region 262 

(L1+L2), and the V(D)J junctions (CDR H3 and CDR L3) are all informative for predicting antigen 263 

specificity. Overall, while our deep learning model had a relatively simple architecture, it was able 264 

to discriminate between antibodies to two different antigens based on primary sequences. 265 

 266 

A recent study reported 81 antibodies to SARS-CoV-2 RBD that were elicited by Beta variant 267 

infection [47]. While these 81 antibodies were not included in the dataset that we assembled (Data 268 

S1), they provided an opportunity to further evaluate the performance of our deep learning model. 269 
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Our deep learning model that was trained by all six CDRs (see above) successfully predicted that 270 

72 of the 81 (89%) antibodies as SARS-CoV-2 S antibodies (Figure 6C and Table S5). This 271 

result further demonstrates the possibility of predicting antibody specificity solely based on the 272 

primary sequence. 273 

 274 

DISCUSSION 275 

Through a systematic survey of published information on SARS-CoV-2 antibodies, we identified 276 

many molecular features of public antibody responses to SARS-CoV-2. The large amount of 277 

published information has allowed us to explore distinct patterns of germline gene usages in 278 

antibodies that target different domains on the S protein (i.e. RBD, NTD, and S2). Notably, the 279 

types and nature of public antibody responses to different domains appear to be quite different. 280 

For example, convergence of CDR H3 sequences can be readily identified in the public antibody 281 

responses to RBD and S2. In contrast, the public antibody response to NTD seems to be largely 282 

independent of the CDR H3 sequence. Furthermore, an IGHD-dependent public antibody 283 

response was enriched against S2, but not RBD or NTD. Together, our study demonstrates the 284 

diversity of sequence features that can constitute a public antibody response against a single 285 

antigen. 286 

 287 

The public antibody response to SARS-CoV-2 has also been examined by a recent data mining 288 

study that focused on identifying public clonotypes [55]. This previous study defined public 289 

clonotypes as antibodies with the same IGHV/IGHJ/IGK(L)V/IGK(L)V genes and high similarity of 290 

CDR H3 [55]. While multiple public clonotypes were identified using this stringent definition [55], 291 

the characterization of public antibody response is likely far from comprehensive. A public 292 

antibody response may not always involve a defined pair of IGHV/IGK(L)V genes, especially when 293 

either IGHV or IGK(L)V gene-encoded residues only make a minimal contribution to the paratope. 294 

In fact, a well-characterized public antibody response to the highly conserved stem region of 295 
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influenza hemagglutinin has a paratope that is entirely attributed to the IGHV1-69 heavy chain 296 

[56-59]. IGHV3-30/IGHD1-26 antibodies to S2 in our study may represent a similar type of 297 

IGK(L)V-independent public antibody response, although it still needs to be confirmed by 298 

structural analysis. On the other extreme, RBD antibodies that are encoded by IGLV6-57 with a 299 

97WLRG100 motif in the CDR H3 represent a public response that is largely independent of IGHV 300 

gene usage. Given the diverse types of public antibody responses to SARS-CoV-2 S, we need to 301 

acknowledge the limitation of using the conventional strict definition of public clonotype to study 302 

public antibody responses. 303 

 304 

Public antibody response to different antigens can have very different sequence features. For 305 

example, IGHV6-1 and IGHD3-9 are signatures of public antibody response to influenza virus [24, 306 

60-62], whereas IGHV3-23 is frequently used in antibodies to Dengue and Zika viruses [63]. In 307 

contrast, these germline genes are seldom used in the antibody response to SARS-CoV-2 as 308 

compared to the naïve baseline (Figure 1B-C and Figure 3A). Since the binding specificity of an 309 

antibody is determined by its structure, which in turn is determined by its amino acid sequence, 310 

the antigen specificity of an antibody can theoretically be identified based on its sequence. This 311 

study provides a proof-of-concept by training a deep learning model to distinguish between SARS-312 

CoV-2 S antibodies and influenza HA antibodies, solely based on primary sequence information. 313 

Technological advancements, such as the development of single-cell high-throughput screen 314 

using the Berkeley Lights Beacon optofluidics device [64] and advances in paired B-cell receptor 315 

sequencing [65], have been accelerating the speed of antibody discovery and characterization. 316 

As more sequence information on antibodies to different antigens is accumulated, we may be 317 

able in the future to construct a generalized sequence-based model to accurately predict the 318 

antigen specificity of any antibody.  319 

 320 
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In summary, the amount of publicly available information on SARS-CoV-2 antibodies has provided 321 

invaluable biological insights that have not been readily obtained for other pathogens. One reason 322 

is that the COVID-19 pandemic has gathered scientists from many fields and around the globe to 323 

work intensively on SARS-CoV-2. The parallel efforts by many different research groups have 324 

enabled SARS-CoV-2 antibodies to be discovered in unprecedented speed and scale that have 325 

not been possible for other pathogens. We anticipate that knowledge of the molecular features of 326 

the antibody response to SARS-CoV-2 will keep accumulating as more antibodies are isolated 327 

and characterized. Ultimately, the extensive characterization of antibodies to the SARS-CoV-2 S 328 

protein may allow us to address some of the most fundamental questions about antigenicity and 329 

immunogenicity, as well as how the human immune repertoire has evolved to respond to specific 330 

classes of viral pathogens that have coexisted with humans for hundreds to thousands of years. 331 

 332 

MATERIALS AND METHODS 333 

Collection of antibody information 334 

Information on the monoclonal antibodies is derived from the original papers (Supplementary 335 

Table 1). Sequences of each monoclonal antibody are from the original papers and/or NCBI 336 

GenBank database (www.ncbi.nlm.nih.gov/genbank) [52]. Putative germline genes were 337 

identified by IgBLAST [66]. Some studies isolated antibodies from multiple donors, but the donor 338 

identity for each antibody was not always clear. For example, some studies mixed B cells from 339 

multiple donors before isolating individual B cell clones. Since the donor identity cannot be 340 

distinguished among those antibodies, we considered them from the same donor with “_mix” as 341 

the suffix of the donor ID. In addition, the PBMCs of SARS-CoV survivors in three separate studies 342 

were all from NIH/VRC [12, 44, 67]. Since it is unclear If they are the same SARS-CoV survivor, 343 

the same donor ID “VRC_SARS1” was assigned to them to avoid overestimation of public 344 

antibody response. the neutralization activity of a given antibody was only measured at a single 345 

concentration, 50% neutralization activity or below was classified as non-neutralizing. We also 346 
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downloaded the CoV-AbDab [2] in September 2021 to fill in any additional information. As of 347 

September 2021, there were 2,582 human SARS-CoV-2 antibodies in CoV-AbDab. Information 348 

in the finalized dataset was manually inspected by three different individuals. For antibodies that 349 

were shown to bind to S1 but not RBD, they were classified as NTD antibodies. Due to having 350 

identical nucleotide sequences, IGKV1D-39*01 was classified as IGKV1-39*01, IGHV1-68D*02 351 

as IGHV1-68*02, IGHV1-69D*01 as IGHV1-69*19, IGHV3-23D*01 as IGHV3-23*01, and IGHV3-352 

29*01 as IGHV3-30-42*01. 353 

 354 

Analysis of germline gene usages 355 

Non-functional germline genes were ignored in our germline gene usage analysis. Except for the 356 

analysis presented in Figure 1, IGHV3-30-3 was classified as IGHV3-30 since they have identical 357 

amino-acid sequence in the framework regions, CDR H1, and CDR H2. To establish the baseline 358 

germline usage frequency, published antibody repertoire sequencing datasets from 26 healthy 359 

donors [31, 32] were downloaded from cAb-Rep [33]. Putative germline genes for each antibody 360 

sequence in these repertoire sequencing datasets from healthy donors were identified by were 361 

identified by IgBLAST [66].  362 

 363 

CDR H3 clustering analysis 364 

Using a deterministic clustering approach, antibodies with CDR H3 sequences that had the same 365 

length and at least 80% amino-acid sequence identity were assigned to the same cluster. As a 366 

result, CDR H3 of every antibody in a cluster would have >20% difference in amino-acid sequence 367 

identity with that of every antibody in another cluster. A cluster would be discarded if all of its 368 

antibody members were from the same donor. The number of antibodies within a cluster was 369 

defined as the cluster size. Sequence logos were generated by Logomaker in Python [68]. For 370 

each cluster, epitope assignment was performed using the following scoring scheme. Briefly, 371 

there were three scoring categories, namely “RBD”, “NTD”, and “S2”. 372 
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• 1 point was added to category “RBD” for each antibody with an epitope label equals to 373 

“S:RBD” or “S:S1”. 374 

• 1 point was added to category “NTD” for each antibody with an epitope label equals to 375 

“S:NTD”, “S:S1”, “S:non-RBD”, or “S:S1 non-RBD”. 376 

• 1 point was added to category “S2” for each antibody with an epitope label equals to 377 

“S:S2”, ” S:S2 Stem Helix”, “S:non-RBD”. 378 

The category with >50% of the total points would be classified as the epitope for a given cluster. 379 

If no category had >50% of the total points, the epitope for the cluster would be classified as 380 

“unknown”. 381 

 382 

Identification of recurring somatic hypermutation (SHM) 383 

In this study, a public clonotype was classified as antibodies from at least two donors that had the 384 

same IGHV/IGK(L)V genes and CDR H3s from the same CDR H3 cluster (see “CDR H3 clustering 385 

analysis” above). For each antibody, ANARCI was used to number the position of each residue 386 

according to Kabat numbering [69]. The amino-acid identity at each residue position of an 387 

antibody was then compared to that of the putative germline gene. CDR H3, CDR L3, and 388 

framework region 4 in both heavy and light chains were not included in this analysis. Insertions 389 

and deletions were also ignored in this analysis. SHM that occurred in at least two donors within 390 

a public clonotype was defined as a recurring SHM. 391 

 392 

Deep learning model for antigen identification 393 

Model construction 394 

The deep learning model consisted of two networks, namely multi-encoder (ME) and a stack of 395 

multi-layered perceptrons (MLP). The CDR amino-acid sequences were taken as input and 396 

passed to ME. Specifically, each CDR amino-acid sequence was described by a 21-letter 397 

alphabet vector 𝒙""⃗ = (𝑥!, 𝑥", … , 𝑥#$!, 𝑥#), 𝑥 ∈ 	ℝ#, where L represented the length of sequence, and 398 
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𝑥 represented the amino acid category. Each of the 20 canonical amino acids was one category, 399 

whereas all the ambiguous amino acids were grouped as the 21st category. Before passing to 400 

ME, inputs were tokenized at the amino-acid level and processed by zero padding, so that the 401 

embedding layers represented the character-level tokens (i.e. amino acids) and the size of each 402 

input was the same. Subsequently, the inputs were mapped to the embedding vectors with 403 

additional dimension 𝑑. The sinusoidal positional encoding vectors were added to the embedding 404 

vectors to encode the relative position of tokens (i.e. amino acids) in the sequence. Each 405 

embedding vector, 𝒙""⃗ ∈ 	ℝ#×&, with size of 𝐿 × 𝑑, was passed into transformer encoder layer by 406 

self-attention mechanism to learn the sequence feature [70]. All learned sequence features were 407 

then concatenated together and passed to multi-layered perceptron (MLP). Each MLP layer 408 

contained leaky rectified linear unit (ReLU) activations to avoid the vanishing gradient. Dropout 409 

layers were placed after each MLP block to avoid model overfitting [71]. The final output layer 410 

was followed by a sigmoid activation function to predict the probability of different classes. The 411 

prediction losses were calculated by binary cross-entropy loss. 412 

 413 

Training detail 414 

SARS-CoV-2 S antibodies and influenza HA antibodies with complete information for all six CDR 415 

sequences were identified. Sequences of each antibody were from the original papers (Data S2) 416 

or NCBI GenBank database (www.ncbi.nlm.nih.gov/genbank) [52]. If all six CDR sequences were 417 

the same between two or more antibodies, only one of these antibodies would be retained. After 418 

filtering duplicates, there were 4,736 antibodies to SARS-CoV-2 and 2,204 to influenza HA. The 419 

CDR sequences were identified by IgBLAST and PyIR [66, 72]. This dataset was randomly split 420 

into a training set (64%), a validation set (16%), and a test set (20%). The training set was used 421 

to train the deep learning model. The validation set was used to evaluate the model performance 422 

during training. The test set was used to evaluate the performance of the final model. There was 423 

no overlap of antibody sequences among the training set, validation set, and test set. The Adam 424 
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algorithm was used to optimize the model. The following hyper-parameters were used for model 425 

training: 426 

• CDR embedding size: 256 427 

• The number of attention heads for self-attention on CDR feature learning: 4 428 

• The number of encoder layer for CDR encoder: 4 429 

• Size of stacking MLP layers: 512, 128, and 64 430 

• Learning rate: 0.0001 431 

• Batch size: 256 432 

 433 

Using the same training set, validation set and test set, the model performance of using the 434 

following inputs was compared: 435 

1. CDR H1 + H2 436 

2. CDR L1 + L2 437 

3. CDR H3 438 

4. CDR L3 439 

5. CDR H3 + L3 440 

6. CDR H1 + H2 + H3 441 

7. CDR L1 + L2 + L3 442 

8. CDR H1 + H2 + H3 + L1 + L2 + L3 443 

 444 

Performance Metrics 445 

For evaluating model performance, S antibodies and HA antibodies were considered “positive” 446 

and “negative”, respectively. False positives (FP) and false negatives (FN) were samples that 447 

were misclassified by the model while true negatives (TN) and true positives (TP) were correctly 448 

classified one.  The following metrics were computed to evaluate model performance: 449 
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𝑎𝑐𝑐𝑢𝑎𝑟𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
																											(1) 450 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
																																																		(2) 451 

𝑟𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
																																																									(3) 452 

In addition, we also used the receiver operating characteristic (ROC) curve and precision-recall 453 

(PR) curve to measure the model's ability to avoid misclassification [53, 54]. Area under the curves 454 

of ROC (i.e. ROC AUC) and PR (i.e. PR AUC) were computed using the "keras.metrics" module 455 

in TensorFlow [73]. 456 

 457 

DATA AVAILABILITY 458 

The assembled SARS-CoV-2 antibody dataset is in Data S1. The dataset for constructing and 459 

testing the deep learning model is in Data S2. 460 

 461 
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Custom python scripts for all analyses have been deposited to https://github.com/nicwulab/SARS-463 

CoV-2_Abs. 464 
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 773 

Figure 1. Analysis of V gene usage in SARS-CoV-2 S antibodies. (A) The frequency of 774 

different V gene pairings between heavy and light chains are shown for SARS-CoV-2 S antibodies 775 

to RBD, NTD, and S2. The size of each datapoint represents the frequency of the corresponding 776 

IGHV/IGK(L)V pair within its epitope category. Only those antibodies where both IGHV and 777 

IGK(L)V information is available for both heavy and light chains was included in this analysis. (B) 778 

The IGHV gene usage in antibodies to NTD, RBD, and S2 are shown. Only those antibodies with 779 
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IGHV information available were included in this analysis. (C) The IGK(L)V gene usage in 780 

antibodies to NTD, RBD, and S2 are shown. Only those antibodies with IGK(L)V information 781 

available were included in this analysis. (B-C) Error bars represent the frequency range among 782 

26 healthy donors [31-33].  783 
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 784 

Figure 2. Convergent CDR H3 sequences among SARS-CoV-2 S antibodies. (A) CDR H3 785 

sequences from individual antibodies were clustered using a 20% cutoff (see Materials and 786 

Methods). The epitope of each CDR H3 cluster is classified based on that of its antibody 787 

members. Cluster size represents the number of antibodies within the cluster. (B) The V gene 788 

usage and CDR H3 sequence are shown for each of the 16 CDR H3 clusters of interest. For each 789 

of the CDR H3 cluster of interest, the CDR H3 sequences are shown as a sequence logo, where 790 

the height of each letter represents the frequency of the corresponding amino-acid variant (single-791 

letter amino-acid code) at the indicated position. The dominant germline V genes (>50% usage 792 

among all antibodies within a given CDR H3 cluster) are listed. Diverse: no germline V genes had 793 

>50% frequency among all antibodies within a given CDR H3 cluster. HC: heavy chain. LC: light 794 

chain. (C) IGHV usage in cluster 7 is shown. Different colors represent different donors. Unknown: 795 

IGHV information is not available. (D) An overall view of SARS-CoV-2 RBD in complex with 796 

IGLV6-57 antibody S2A4 (PDB 7JVA) [41], which belongs to cluster 7, is shown. The RBD is in 797 

white with the receptor binding site highlighted in green. The heavy and light chains of S2A4 are 798 

in orange and yellow, respectively. (E) Percentages of the S2A4 epitope that are buried by the 799 
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light chain, heavy chain (without CDR H3), and CDR H3 are shown as a pie chart. Buried surface 800 

area (BSA) was calculated by PISA (Proteins, Interfaces, Structures and Assemblies) at the 801 

European Bioinformatics Institute (https://www.ebi.ac.uk/pdbe/prot_int/pistart.html) [74]. (F-G) 802 

Detailed interactions between the (F) light and (G) heavy chains of S2A4 and SARS-CoV-2 RBD. 803 

Hydrogen bonds and salt bridges are represented by black dashed lines. The color coding is the 804 

same as panel D.  805 
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 806 

Figure 3. Enrichment of IGHD1-26 in SARS-CoV-2 S2 antibodies. (A) The IGHD gene usage 807 

in NTD, RBD, S2 antibodies is shown. Error bars represent the frequency range among 26 healthy 808 

donors. (B) IGHV gene usage and (C) IGK(L)V gene usage among IGHD1-26 S2 antibodies is 809 

shown (n = 157). (D) The distribution of CDR H3 length (IMGT numbering) in IGHD1-26 S2 810 

antibodies (n = 157), non-IGHD1-26 S2 antibodies (n = 533), and other non-S2 S antibodies that 811 

do not target S2 (n = 5,090), are shown. (E) The IGHJ gene usage among IGHD1-26 S2 812 

antibodies (n = 157) and other S antibodies with well-defined epitopes (n = 5,623) is shown. (F) 813 

The CDR H3 sequences for IGHD1-26 S2 antibodies (n = 110) are shown as a sequence logo. 814 

(G) Amino acid and nucleotide sequences of the V-D-J junction are shown for three IGHD1-26 815 

S2 antibodies [42-44]. Putative germline sequences and segments were identified by IgBlast [66] 816 

and are indicated. Somatically mutated nucleotides are underlined. Intervening spaces at the V-817 

D and D-J junctions are N-nucleotide additions. 818 
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 819 

Figure 4. Recurring somatic hypermutations (SHMs) in SARS-CoV-2 S antibodies. (A-B) For 820 

each public clonotype, if the exact same SHM emerged in at least two donors, such SHM is 821 

classified as a recurring SHM. Only those public clonotypes that can be observed in at least nine 822 

donors are shown. (A) Recurring SHMs in heavy chain V genes. (B) Recurring SHMs in light 823 

chain V genes. X-axis represents the position on the V gene (Kabat numbering). Y-axis represents 824 

the percentage of donors who carry a given recurring SHM among those who carry the public 825 

clonotype of interest. For example, VL S29R emerged in 8 donors out of 26 donors that carry an 826 

public clonotype that is encoded by IGHV1-58/IGKV3-20. As a result, VL S29R (IGHV1-58/IGKV3-827 

20) is 31% (8/26) within the corresponding clonotype. Of note, since each public clonotype is also 828 

defined by the similarity of CDR H3 (see Materials and Methods), there could be multiple 829 

clonotypes with the same heavy and light chain V genes (e.g. IGHV3-53/IGKV1-9). The CDR H3 830 

cluster ID for each clonotype is indicated with a prefix “c”, following the information of the V genes. 831 
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For heavy chain, SHMs that emerged in at least 40% of the donors of the corresponding clonotype 832 

are labeled. For light chain, SHMs that emerged in at least 20% of the donors of the corresponding 833 

clonotype are labeled.  834 
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 835 

Figure 5. Structural analysis of a recurring SHM in the IGHV1-58/IGKV3-20 public 836 

clonotype. (A) An overall view of SARS-CoV-2 RBD in complex with the IGHV1-58/IGKV3-20 837 

antibody PDI 222 (PDB 7RR0) [51]. The RBD is shown in white, while the heavy and light chains 838 

of the antibody are in dark and light green, respectively. The ridge region (residues 471-491) is 839 

shown in pink, with F486 highlighted as sticks. (B-C) Structural comparison between two IGHV1-840 

58/IGKV3-20 antibodies that either (B) carry germline residues VL S29/G92 (COVOX-253, PDB 841 

7BEN) [40] and (C) somatically hypermutated residues VL R29/D92 (PDI 222, PDB 7RR0) [51]. 842 

SARS-CoV-2 RBD is in white, while antibodies are in yellow (COVOX-253) and green (PDI 222). 843 

Somatically mutated residues are labeled with bold and italic letters. The T-shaped π-π stacking 844 

between RBD-F486 and VL Y32 is indicated by a purple dashed line. Hydrogen bond and salt 845 

bridge are represented by black dashed lines. (D) Sequence logo of VL residues 29, 32, and 92 846 

among 67 IGHV1-58/IGKV3-20 RBD antibodies are shown. (E) Numbers of antibodies in the 847 

IGHV1-58/IGKV3-20 public clonotype carrying the germline-encoded variant at VL residues 29 848 

and 92 (S29, G92), as well as VL SHM S29R and G92D (red) are listed. Of note, one antibody in 849 

this IGHV1-58/IGKV3-20 public clonotype carries S29/N92 and another carries S29/V92. 850 

However, they are not listed in the table here.  851 
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 852 

Figure 6. Antigen identification by deep learning. (A) A schematic overview of the deep 853 

learning model architecture. (B) For evaluating model performance, S antibodies and HA 854 

antibodies were considered “positive” and “negative”, respectively. Model performance on the 855 

test set was compared when different input types were used. Of note, the test set has no 856 

overlap with the training set and the validation set, both of which were used to construct the 857 

deep learning model. True positive (TP) represents the number of S antibodies being correctly 858 

classified as S antibodies. False positive (FP) represents the number of HA antibodies being 859 

misclassified as S antibodies. True negative (TN) represents the number of HA antibodies being 860 

correctly classified as HA antibodies. False negative (FN) represents the number of S 861 
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antibodies being misclassified as HA antibodies. See Materials and Methods for the calculations 862 

of accuracy, precision, recall, ROC AUC, and PR AUC for the training and test sets. (C) The 863 

antigen specificity of 81 RBD antibodies from Reincke et al. [47] were predicted by a deep 864 

learning model that was trained to distinguish between S antibodies and HA antibodies. 865 
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