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Abstract 

Visual discrimination of tissue during surgery can be challenging since different tissues appear similar 

to the human eye. Hyperspectral imaging (HSI) removes this limitation by associating each pixel with 

high-dimensional spectral information. While previous work has shown its general potential to 

discriminate tissue, clinical translation has been limited due to the method’s current lack of robustness 

and generalizability. Specifically, it had been unknown whether variability in spectral reflectance is 

primarily explained by tissue type rather than the recorded individual or specific acquisition conditions. 
The contribution of this work is threefold: (1) Based on an annotated medical HSI data set (9,059 

images from 46 pigs), we present a tissue atlas featuring spectral fingerprints of 20 different porcine 

organs and tissue types. (2) Using the principle of mixed model analysis, we show that the greatest 

source of variability related to HSI images is the organ under observation. (3) We show that HSI-

based fully-automatic tissue differentiation of 20 organ classes with deep neural networks is possible 

with high accuracy (> 95 %). We conclude from our study that automatic tissue discrimination based 

on HSI data is feasible and could thus aid in intraoperative decision making and pave the way for 

context-aware computer-assisted surgery systems and autonomous robotics. 
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1 Background 

Discrimination of tissue conditions, pathologies and critical structures from healthy surrounding tissue 

during surgery can be challenging given the fact that different body tissues appear similar to the 

human eye. While conventional intraoperative imaging is limited by mimicking the human eye, 

hyperspectral imaging (HSI) removes this arbitrary restriction of recording only red, green and blue 

(RGB) colors. HSI works by assigning each pixel of a conventional two-dimensional digital image a 
third dimension of spectral information. The spectral information contains the wavelength-specific 

reflectance intensity of every pixel. This results in a three-dimensional datacube with two spatial 

dimensions (x, y) and a third spectral dimension (λ). HSI has found application in diverse fields such 

as geology and maritime studies, agriculture, food industry, automated waste sorting [1, 2] and has 

recently been used during a NASA space mission on Mars. 

Over the last few years, there have been extensive efforts to implement HSI technology in healthcare. 

Examples of potential future clinical applications comprise the objective evaluation of tissue 

oxygenation and blood perfusion [3-6], inflammation and sepsis [7] or malignancy [8] as well as 

computer-assisted decision-making and automated organ identification [9]. These have the potential to 

support future developments such as intraoperative cognitive assistance systems or even 
automatization of robotic surgery. Despite the promising research, clinical translation of HSI-based 

automatic tissue differentiation has not yet been achieved. This may be attributed to a current lack in 

robustness and generalizability, which are the most important requirements for clinical application. In 

this regard, several open research questions remain. Specifically, variability of HSI measurements 

may result from the inherent differences between multiple tissue types under observation (desired 

effect), but also from inter-subject variability or variability in image acquisition conditions (both 

undesired). We are not aware of any prior work that has systematically investigated this important 

topic and we ultimately aim to provide a thorough understanding of hyperspectral organ data, illustrate 
the potential of HSI-based analyses and present solid baseline data that further studies can build 

upon. 

 

2 Results 
For automatic tissue characterization based on HSI data, the following two properties are highly 
desirable: First, spectra corresponding to different organs should differ substantially from each other. 

And second, spectra of the same organ should be relatively constant across image acquisition 

conditions and individuals. With this in mind and given the gap in literature pointed out in the section 

above, the contribution of this work is threefold: 

● Spectral fingerprints: We present the first comprehensive analysis of spectral tissue properties 
for a wide range of physiological organs and tissue types. Based on 9,059 images of 46 pigs 

and 17,777 annotations, we generate specific spectral fingerprints for a total of 20 organs. 
● Variance analysis: We show that the greatest part of spectral variance can be explained by 

organ differences. 
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● Machine learning-based organ and tissue classification with HSI: We demonstrate that a 

neural network can distinguish between organ classes with high accuracy (> 95%), suggesting 

that HSI has high potential for intraoperative organ and tissue discrimination 
 
 

2.1 Different organs feature unique spectral fingerprints 

This project provides insight on the spectral reflectance of 20 porcine organs in a total number of 

9,059 images within 46 animals (Figure 1). Our data shows that different organs feature characteristic 

spectra, which motivated us to refer to them as organ “fingerprints”. As seen in the gray pig-specific 

reflectance curves in Figure 1, variation in the spectral measurements may result not only from the 

organ, but also from the individuals and/or the specific measurement conditions. A key aim of this 

work was therefore to quantify the effect of the different sources of variation. 
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Figure 1 | Tissue atlas comprising spectral fingerprints of 20 abdominal and thoracic organs. 

Stomach (A=39; n=849), jejunum (A=44; n=1,546), colon (A=39; n=1,330), liver (A=41; n=1,454), 

gallbladder (A=28; n=526), pancreas (A=31; n=530), kidney (A=42; n=568), spleen (A=41; n=1,353), 
bladder (A=32; n=779), omentum (A=23; n=570), lung (A=19; n=652), heart (A=19; n=629), cartilage 

(A=15; n=586), bone (A=14; n=537), skin (A=43; n=2,158), muscle (A=15; n=560), peritoneum (A=28; 

n=2,042), vena cava (A=15; n=353), kidney with Gerota’s fascia (A=18; n=393), bile fluid (A=13; 

n=362). A indicates the number of animals; n indicates the number of measurements in total. Graphs 

depict mean reflectance (L1-normalized on pixel-level) of individual pigs (gray) as well as overall mean 

(blue) ±1 standard deviation (SD) (black) with wavelengths from 500 to 995 nm on the x-axis and 

reflectance in arbitrary units on the y-axis.  

 
2.2 Spectral similarity between organs is heterogeneous 

In order to illustrate the HSI variability resulting from individuals and measurement conditions, we 

applied t-distributed Stochastic Neighbor Embedding (t-SNE) [10] to our data (Figure 2). It shows that 

while certain tissue types such as spleen and liver form highly isolated clusters, other organs such as 

stomach, pancreas and jejunum have a tendency to overlap, indicating lower distinguishability.  
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Figure 2 | Visualization of spectral similarity with t-SNE as a non-linear multi-dimensionality 

reduction tool; one point represents the median spectrum within a region of interest (ROI) of one organ 

in one image of one pig. It can be seen that organs such as spleen and liver form isolated clusters 

while other organs such as jejunum greatly overlap with the rest. 

 

2.3 Organ is the most influential factor on the reflectance spectrum 

To quantify the effect of different sources of variation, we applied linear mixed models on a highly 
standardized subset of data obtained from 11 pigs (within P36 to P46 as illustrated in Supplementary 

Figure 1). The analysis was performed at first for all organs (Figure 3) and subsequently stratified by 

organ (Figure 4). In the analysis for all organs, at each wavelength the proportion of explained 

variation [11] in observed reflectance was decomposed into the components “organ”, “pig”, “angle”, 

“image” and “repetition”, where “angle” describes the proportion of variation explained by the angle 

between the organ surface and the camera optical axis, “image” describes the proportion of variation 

explained by different measurements taken from different organ positions in the same individual or 

variations in the annotated areas, and “repetition” describes the proportion of explained variation by 
multiple recordings of the same image under identical measurement conditions. 

 

Our analysis suggests that the main influencing factor on HSI data variation across wavelengths was 

the factor “organ” with an average proportion of explained variability of 83.3 %. The factor “image” 

explained 13.2 % of the variation on average while the other factors only explained negligible variation 

with 2.0 % for “pig”, 1.1 % for “angle” and 0.4 % for “repetition”. This suggests that HSI data is 

characteristic of organs much more than of the subjects under observation or other influencing factors. 

The percentage to which variance in reflectance was explained by the components was not constant, 

but varied slightly through different parts of the recorded electromagnetic spectrum. 
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Figure 3 | Sources of variation of hyperspectral data. (Proportion of) variability in reflectance 

explained by each factor using linear mixed models. Factors include “organ”, “pig”, “angle”, “image” 

and “repetition”. For each recorded wavelength, an independent linear mixed model was fitted with 

fixed effects for the factors “organ” and “angle” as well as random effects for “pig” and “image”. 

Variation across repetitions was given by the residual variation. The greater the proportion of 

variability for “organ”, the more reflectance can be seen as organ-characteristic. Shaded areas depict 

95 % (pointwise) confidence intervals based on parametric bootstrapping. The numbers represent the 

median across wavelengths. 

 

When stratifying by organ, the variance in reflectance was decomposed into the same components 
except “organ”. According to Figure 4, “angle” and “repetition” explain a negligible portion of the 

variance in all organs. For “pig” and “image”, differences between organs are present. For organs 

where all lines are close to zero (e.g. spleen), there is essentially no heterogeneity in reflectance 

between different images and pigs, thus these organs show the most pronounced organ-characteristic 

spectral signatures. On the other hand, organs with greater levels of explained variance for the 

components “pig” and “image” consequently had less organ-characteristic spectral signatures, such as 

lung with a comparatively high mean value of 0.0054 for variation explained by “pig”. Organ classes 

with the highest cumulative levels of variance curves explained by factors other than “organ” and 
therefore the least organ-characteristic spectral signatures across observations were lung and skin 

(Supplementary Text 4 and Supplementary Table 1). 

 

For some organs, such as the gallbladder, reflectance varied strongly between pigs (value for “pig” 

comparatively high), but little within a pig (value for “image“ comparatively low). Thus, reflectances 

measured for gallbladders were heterogeneous across individual pigs. On the other hand, for other 

organs, heterogeneity within pigs (i.e. between images of the same pig) was much larger (value for 

“image” high) than between pigs (value for “pig” low), e.g. for skin. Thus, reflectance measured for skin 
tends to be homogeneous across individual pigs, but a single image of skin may be unreliable due to 

the heterogeneity within one pig.  
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Figure 4 | Sources of variation of hyperspectral data stratified by organ. Explained variation 

analysis stratified by organ using linear mixed models. For each organ and wavelength, independent 

linear mixed models were fitted with fixed effects for “angle” and random effects for “pig” and “image”. 

Variation across repetitions is given by the residual variation. Shaded areas depict 95 % (pointwise) 

confidence intervals based on parametric bootstrapping. The numbers on each subplot represent the 

median across wavelengths. Model fit was singular for skin and spleen for some wavelengths (spleen: 

520–585 nm; skin: 800–810, 845 and 870–885 nm) for which curves were linearly interpolated 

(dashed boxes). 

 
2.4 Machine learning can leverage spectral information to classify tissue with high accuracy 

A deep learning-based approach was used to classify the annotations of 20 organ classes from the 

spectra presented above with an average accuracy of 95.4 % ± 3.6 % across pigs on a hold-out test 

set. Misclassification only occurred for 486 out of 9,895 annotations in the test set (Figure 4). While 16 

out of the 20 organ classes were classified with an average sensitivity of ≥ 90 % across all pigs, the 

smallest average sensitivity across pigs was obtained for the organ classes gallbladder (74.0 %) and 

heart (73.9 %), which were on average across pigs most often confused with bladder and kidney, 

respectively.  
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Figure 4 | Results of deep learning-based organ classification. a, confusion matrix which was 

generated for a hold-out test set comprising 9,895 annotations from 5293 images of 8 pigs that were 

not part of the training data. Confusion matrices were calculated and column-wise normalized (i.e. 

divided by the column sum) per pig based on the absolute number of (mis-)classified annotations. 

These normalized confusion matrices were averaged across pigs while ignoring non-existent entries 
(e.g. due to missing organs for one pig). Each value in the matrix thus depicts the average fraction of 

annotations which were labeled as the column class and predicted as the row class. Numbers in 

brackets depict the standard deviation across pigs. Zero values are not shown in the confusion matrix 

in order to improve visibility. Since multiple organs can appear on the same image, the number of 

annotations exceeds the number of images. b, exemplary image with multiple organ annotations by an 

expert. c, organs classified through deep learning. 
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3 Discussion 
Visual discrimination and evaluation of biological tissue is not trivial, as different tissues and body 

structures often appear similar to the human eye. Because conventional optical imaging during 

surgery only differentiates red, green and blue by mimicking human vision, its intraoperative benefit is 

sometimes limited. HSI, not being subject to this restriction and encompassing significantly more 

information, is an exceptional imaging modality with great potential for tissue identification and 
evaluation. Although its current use in medicine is on a constant rise, the full potential of this imaging 

modality has not been exploited. This may be attributed to open research questions concerning 

robustness and generalizability of HSI data. 

Structural properties of tissue cause differences in spectral characteristics that might be significant 

enough for use in proper organ differentiation and other clinical applications. However, existing 

literature on spectral measurements has mainly focused on specific biological pigments such as 

hemoglobin, porphyrin and melanin [12, 13], and has hardly addressed the complexity of spectral 
characteristics across various tissues and organs. Moreover, past works have often focused on optical 

scattering instead of reflectance or absorbance and therefore provided data of limited practical 

applicability, have investigated ex-vivo material, featured low wavelength resolution or performed 

measurements with incompatible, incomparable and outdated technology that does not allow for 

comparison between different studies [14]. Despite its necessity as a foundation for advanced studies, 

as of yet, no systematic database or investigation of reflectance spectra for a variety of physiological 

organs in a larger cohort existed.  

Categorical requirements for such a spectral medical HSI database serving as a reference work are 

precision, uniformity and comparability of the measuring device, which has been demanded by the 

HSI community in previous years [15]. While in former decades HSI could not be found in medicine, 

there have been extensive efforts to implement this technology in healthcare over the last years. 
However, most of the initially developed HSI systems were self-made prototypes and homebuilt 

solutions from various institutions all over the world, varying in spectral resolution and range as well as 

utilized detectors and optical components [15-25]. While highly interesting insights for various medical 

applications were obtained with these provisional solutions, they were lacking standardization and 

reproducibility [15], rendering sustainable large clinical trials and systematic multicenter research 

impossible. A great variety of devices could be observed in terms of spectral resolution, detectors, 

dispersive devices and spectral regions covered by different devices reaching from 200 nm up to 2500 
nm [15].  

The HSI camera system used in this project is the first commercially available and medically certified 

system meeting the aforementioned demands. While previous and less standardized HSI systems 

were efficient for the investigation of specific and isolated research questions, reproducibility and 

generalizability of commercially available systems noticeably promoted an increase in research efforts 

regarding HSI. An indicator of these increased research efforts can be seen in the rise of the number 

of research projects over the last few years including animal studies with rats [26] and pigs [6, 27-29], 

conference papers [30, 31], narrative reviews [32-34] and other publications [35, 36]. With this new 
system and its advantages, special focus has again been put on early clinical trials with explorative 
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character [1, 37-52]. However, there are novel possibilities that have not been exploited yet. These 

primarily include spectral characterization of biological tissue and the complementation of a large 

medical HSI database with machine learning and deep learning. Some studies have already spectrally 

characterized single aspects of biological tissue such as the differences between specific cancer 

entities and their related physiological tissue [53]. However, these studies were most often conducted 

with non-reproducible setups or sometimes done in-vitro without measuring tissue perfusion, which 

might be acceptable for specific bradytrophic tissues, but leads to limitations in applicability to the 
majority of typically well-perfused organs [54]. Moreover, most of the existing studies so far only 

highlight specific medical aspects and do not sufficiently broaden the general understanding of 

spectral tissue characteristics. 

 

The principles of spectral tissue differentiation have already successfully been proven, however only in 

laparoscopic surgery with sparse multispectral information and, most importantly, in fewer organ 

classes [55, 56]. The question driving the present study was whether these spectral differences would 

be strong enough to be detected by an HSI system and subsequently consistent enough to 
characterize organs and make organ differentiation feasible.   

For the very first time, HSI was applied with the aim of (1) systematically characterizing spectral 

properties of different tissue types in a porcine model, (2) analyzing to which extent these spectra are 

influenced by organ or tissue type compared to undesired effects such as inter-subject variability and 

variations in image acquisition conditions and (3) demonstrating that automatic machine learning-

based tissue classification even with an unusually high number of classes can be achieved with high 

accuracy. A total number of 20 different porcine organs were recorded with HSI. The resulting 

database comprises 9,059 recordings with 17,777 annotated organ regions. 
Spectral fingerprints of these organs were extracted in Figure 1 and t-SNE was chosen to visually 

assess the distinguishability of the respective HSI spectra (Figure 2). While Euclidean distances have 

to be interpreted cautiously in illustrations from high-dimension reduction tools, clustering and overlap 

give a good hint at the differentiability of the underlying spectra. It was now essential to evaluate to 

what extent differences in reflectance could be attributed to the organ or alternatively to the individual 

pig or noise from other defined and undefined factors as this would determine the general utility of HSI 

data.  

Linear mixed models could show that the largest proportion of the spectral reflectance variability was 

attributed to the factor “organ” instead of “pig”, “angle”, “image” and “repetition”. This suggests that 

contributions from inter-individual differences and image acquisition conditions were dominated by 
organ differences. While image acquisition conditions such as illumination were highly standardized, 

artificial over-standardisation was consciously avoided in order to still comply with conditions in the 

real operative room. Of the other factors accounting for spectral reflectance variability, “image” was 

the most relevant one, which indicates, that different regions on the same organ have spectral 

differences. Possible explanations for this finding are inhomogeneous distribution of connective 

tissues, blood vessels and fibrosis within each organ, different levels of contained blood volumes due 

to tension on the tissue surface or peristalsis. This insight explicitly for the influencing factor “image” is 

highly relevant when considering possible real-life intraoperative applications and trials, as it - 
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depending on the depth of the analysis - implies the necessity to record different areas of the organ 

under investigation as we did. 

 

A machine learning algorithm had an average accuracy of over 95 % in an independent test set for 

identifying organ classes on pre-annotated regions, making this work a solid proof of concept for 

automatic tissue classification with machine learning based on HSI data. It is to be considered that 

automatic semantic scene annotation, however, might still present another challenge.  
The number of organ recordings is heterogeneous throughout the dataset, which is due to the fact that 

recordings were done during diverse additional compatible surgical experiments. Moreover, we only 

considered the median spectrum of one pre-annotated region in one recording, thus ignoring texture 

information that may further improve organ identification. Notably, excellent classification results could 

already be achieved despite limiting the neural network input to organ reflectance without texture 

information. Organs with similar cellular composition such as stomach and jejunum showed similar 

reflectance spectra, but could still be differentiated well. Misclassifications mainly occurred between 

bladder and gallbladder, kidney and heart or vena cava and bone. 
 

Besides the investigation of physiological organs, the systematic investigation of pathological states is 

of likewise importance and need to include tissue ischemia, stasis, inflammation and malignancy. The 

fact that these unphysiological organ states cannot be purposely induced in patients for ethical 

reasons necessitates the use of a large animal model with human-like features and known spectral 

tissue properties and marked the reason for choosing a porcine model for the present study.  

For proper interpretation of the results of this work, certain limitations inherent to HSI technology have 

to be taken into account. One limitation is the relatively low temporal resolution of current HSI systems 
with only one recording every 30 seconds and around seven seconds of recording time each. While 

more compact and faster devices are under development [57], currently this limitation narrows down 

possible fields of application. However, it does not undermine the validity of the data presented in this 
work. In fields of application that require a higher temporal resolution, but not necessarily fine-grained 

wavelength resolution, multispectral imaging (MSI) offers a solution [4, 58]. These applications might 

include near video-rate imaging and can most probably be substantially refined when taking insights 

from HSI research into consideration.  

Another limitation of HSI is the generally short and wavelength-dependent penetration depth of light in 

biological tissue. Increasing penetration depths between 700 and 1,000 nm had to be taken into 

account when measuring tissue with a thickness of less than several millimeters such as the 
omentum. Therefore, it was ensured by visual inspection that the omentum was only measured at 

sites with sufficient thickness. Photoacoustics, as a technology that is able to penetrate more deeply 

into biological tissue, might help to yield additional information when used complementarily to HSI [59]. 
Further limitations arise due to the spatial resolution of only 680 x 480 pixels (width x height). Organs 

with smaller surface areas, e.g. the gallbladder, were harder to annotate than others, since fewer 

pixels were available. Therefore, the sizes of annotated regions are imbalanced between organs with 

smaller and larger surface areas. However, small sizes of annotations were successfully compensated 
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by choosing a large number of recordings. Besides the technological limitations, we did not investigate 

variability resulting from camera variations and the presented tissue identification relied on pre-

annotated regions of interest (ROIs). Variability resulting from camera variations and performance on 

machine learning-based semantic identification will have to be addressed in future studies. 

 

This work is the first to systematically investigate spectral properties and relations of organs within a 

large cohort of organ classes and individuals. By using a highly standardized approach, we were able 
to extract the spectral fingerprints for each organ and investigate factors influencing the spectral 

properties. We were able to provide evidence that the recorded tissues and not the individual animal 

or the recording conditions were the most influential factor for the electromagnetic spectrum, which is 

of utmost importance when trying to assess the possible value of HSI for medical applications. This 

study can be seen as a reference work paving the way for spectral organ evaluation, which requires 

precise knowledge of spectral characteristics of physiological tissue. Possible future applications 

based on these results include augmentation of computer-assisted decision-making, intraoperative 

cognitive assistance systems or even automatization of robotic surgery. It can be expected that our 
main finding of organ-dependent reflectance patterns will be confirmed in human data. To firmly 

establish HSI in clinical medicine, a translation of this study to human data will be essential. 

 

 

4 Methods 
 
4.1 Animal anaesthesia & surgical procedure 

This animal study was approved by the Committee on Animal Experimentation of the regional council 

of Baden-Württemberg in Karlsruhe, Germany (G-161/18 and G-262/19). All animals used in the 

experimental laboratory were managed according to German laws for animal use and care, and 

according to the directives of the European Community Council (2010/63/EU) and ARRIVE guidelines 

[60]. Data of 46 pigs was included in the analyses. 

Experimental animals were operated under general anaesthesia with extensive monitoring including 
invasive blood pressure measurement. Midline laparotomy was performed to access the abdominal 

cavity. Ligaments around the liver and the hepato-gastric ligament were dissected and visceral organs 

mobilized, including the removal of the coverage of the kidneys while carefully sparing vessels. 

Scissors, electrocautery and bipolar vessel-sealing devices were used. A suprapubic catheter was 

inserted into the bladder. After surgery, pigs were euthanized with a lethal dose of i.v. potassium 

chloride solution.  

 

4.2 Hyperspectral Imaging 
The hyperspectral datacubes were acquired with the TIVITA® Tissue system (Diaspective Vision 

GmbH, Pepelow, Germany), which is a push-broom scanning imaging system and the first 

commercially available hyperspectral camera for medicine. It provides a high spectral resolution in the 

visible as well as near-infrared (NIR) range from 500 nm to 995 nm in 5 nm steps resulting in 100 
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spectral bands. Its field of view contains 640 x 480 pixels with a spatial resolution of approximately 

0.45 mm/pixel (Figure 5). The distance of the camera to the specimen is controlled via a red-and-

green light targeting system. Six halogen lamps directly integrated into the camera system provide a 

uniform illumination. Recording takes around seven seconds. 
 

 
Figure 5 | Hyperspectral camera system. a, visualization of a three-dimensional hyperspectral 

datacube with x and y as spatial dimensions and z as hyperspectral dimension. The recorded 

reflectance information content of one pixel is visualized as an example. b, TIVITA® Tissue with kind 

approval from Diaspective Vision.  

 

4.3 Image acquisition, annotation and processing 

Images were recorded with a distance of 50 ± 5 cm between camera and organs. In order to prevent 
distortions of the measured reflectance spectra due to stray light, the tissue recordings were made 

while lights in the room were switched off and curtains were closed. While the majority of pig 

recordings was done in a generic approach in order to accurately represent intraoperative reality, 

recordings for the mixed model analysis were done with a highly standardized protocol for a subset of 

11 pigs (8 to 9 pigs per organ) (between P36 and P46 as indicated in Supplementary Text 1). This 

standardized protocol includes recordings of 3 repetitions of exactly the same surgical scene 

(“repetition” effect) from 3 different angles (“angle” effect) (perpendicular to the tissue surface, 25° 

from one side and 25° from the opposite side) for 4 different organ positions / situs / situations 
(“image” effect) resulting in a total of 36 recordings for each of the 20 organs (8 to 9 pigs per organ) in 

a total of 11 pigs. Recordings for bile fluid were performed when applied and soaked onto 5 stacked 

surgical compresses, ensuring that there is no influence from the background. For a more extensive 

overview of the dataset and a schematic recordings protocol for the standardized subset please refer 

to Supplementary Figure 1 and Supplementary Figure 2. 

All of the 9,059 recorded images were sorted into the 20 respective organ folders and manually 

annotated resulting in 17,777 organ annotations (as several organs could be contained within one 

image). A precise annotation protocol can be found in Supplementary Text 5. Annotations were done 
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by one medical expert and then verified by two other medical experts. In case of improper annotation, 

the annotation was redone collectively for that specific recording.  

For t-SNE and the machine learning analysis, spectral information was previously L1-normalized at 

pixel-level for increased uniformity. All of the other analyses (including the structured model from 

Supplementary Text 2 and Supplementary Figure 3) required unprocessed reflectance values from 

the original datacubes. After annotation, the wavelength-specific annotation-wise median was 

automatically calculated over every pixel included in the annotation. These median annotation-wise 
spectra (previously either L1-normalized or not) represented the basic data format that all analyses in 

this paper were based upon. Calculation of the mean (and SD) integral of the organ reflectance curves 

of individual animals (Supplementary Text 3 and Supplementary Figure 4) was performed to 

quantify overall brightness or amount of light that is reflected by the organ in relative units; greater 

values indicate greater reflectance intensity. Although this quantification of the overall level of the 

reflectance curve and therefore the area under the curve is influenced by the distance between 

camera and tissue, the standardization of this distance reduced this influence, rendering this integral a 

valuable information. 
 

4.4 t-SNE 

t-distributed Stochastic Neighbor Embedding (t-SNE) [10] is a machine learning method commonly 

used to reduce the number of dimensions of high-dimensional data and was used to visualize the 

characteristic reflectance spectra of each pig organ. This non-linear multi-dimensionality reduction tool 

has already proven valuable for the analysis of HSI and mass spectrometry data [61] and was chosen 

for visualization as it has shown particular promise for biological samples in the past [62, 63]. The 

algorithm aims at modelling manifolds of high-dimensional data, and produces low-dimensional 

embeddings that are optimized for preserving the local neighbourhood structure of the high-

dimensional manifold [10]. In comparison to linear methods like PCA [64] and LDA [65], t-SNE 

preserves more relevant structures of datasets that have non-linear features. For these reasons, t-

SNE was used for dimensionality reduction. 

 

Before optimizing the parameters of t-SNE, the dataset was prepared in the following manner: One 
characteristic reflectance spectrum was obtained for each annotation by calculating the median 

spectra from the (previously on pixel-level L1-normalized) spectra of all pixels in the 

annotation. Consequently, each data point represents the reflectance of one organ in one image of 

one pig. The two-dimensional visualization of the reflectance spectrum of the complete dataset was 

optimized by performing a random search of the following parameters:   

- Parameter 1: The early exaggeration, which controls how tight natural clusters in the original 

space are in the embedded space and how much space will be between them. 50 random 

integer values were sampled in the range [5; 100]. 
- Parameter 2: The learning rate, which is used in the optimization process. 100 random integer 

values were sampled in the range [10; 1000]. 
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- Parameter 3: The perplexity, which is related to the number of nearest neighbors for each 

data point to be considered in the optimization. 50 equidistant integer values were sampled 

uniformly in the range [2; 100]. 

The early exaggeration was the first parameter optimized by visual inspection of the two-dimensional 

representation of the dataset. The learning rate was then optimized in the same manner while keeping 

the early exaggeration constant. Subsequently, the perplexity was optimized by keeping the other two 

parameters constant. The optimal values for each of the parameters were 34 for the early 
exaggeration, 92 for the learning rate and 30 for the perplexity. 

 

4.5 Linear mixed models 

Independent linear mixed models were used for an explained variation analysis in order to evaluate 

the effect of the influencing factors on changes in the spectrum. The (proportion of) explained variance 

was obtained using the empirical decomposition of the explained variation in the variance components 

form of the mixed model [11].  

For the first approach, for each wavelength, an independent linear mixed model was fitted with fixed 
effects for “organ” and “angle” as well as random effects for “pig” and “image”. More precisely, for 

each wavelength the following model was fitted (suppressing the wavelength index): 

"#$%#&'()&#!"# = + + -".()!"#$ / + ().%#!"#$ 0 + 1! + 2!" + 3!"# 

for repetition k=1,…,3 of image j=1,…,ni of pig i=1,…, 11 (with ni the number of images of pig i ranging 

from 84 to 228 and ∑ )! = 1944%%
!&% ).  + is an intercept, -".()!"#$  is a row vector of length 19 indicating 

the organ of observation ijk (with arbitrary reference category “stomach”) and / is a vector of 

corresponding fixed organ effects. Similarly,  0 are fixed effects for angle (“25° from one side” and “25° 

from the opposite side” for reference category “perpendicular to the tissue surface”). 1! ∼ 9(0, <'2) and 

"!" ∼ 9(0, <(2) are random pig and image effects, respectively, assumed to be independently normal 

distributed with between pig variation #!2  and between image variation #"2 . Residuals $!"# ∼ 9(0, <)2)  
capture the variability between repeated recordings of the same image. 
The proportion of variability in reflectance explained by each factor was derived as in [11]. “Repetition” 

depicts the residual variability, which is here the within image variability (i.e. across replications). 95 % 

pointwise confidence intervals based on parametric bootstrapping with 500 replications indicate the 

uncertainty in estimates. 

For the second approach with stratification by organ, independent linear mixed models were fitted for 

each organ and wavelength with fixed effects for “angle” as well as a random effect for “pig” and 

“image”, i.e for each organ and wavelength the same model as given above was fitted excluding 

covariate “organ”. The explained variation of each factor was depicted [11]. “Repetition” depicts the 
residual variation, which is here the within image variability (i.e. across replications). 95 % pointwise 

confidence intervals based on parametric bootstrapping with 500 replications indicate the uncertainty 

in estimates. Curves were linearly interpolated if model fit was singular. All linear mixed model 

analyses were based on image-wise organ-specific median reflectance spectra that were obtained by 

calculating the median spectrum of all pixel spectra within one annotation.  
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4.6 Machine Learning 

Prior to training our deep learning network, we systematically split the dataset comprising 46 pigs 

(9,059 images with 17,777 annotations) into a training dataset consisting of 38 pigs (3,766 images 

with 7,882 annotations) and a disjoint test set consisting of 8 pigs (5,293 images with 9,895 

annotations) as indicated in Supplementary Figure 1. These 8 test pigs were randomly selected from 

the 11 standardized pigs (P36-P46) with the only criterion that every organ class is represented by at 

least one standardized pig in the test as well as in the training dataset. This criterion could not be 
fulfilled anymore when selecting more than 8 standardized pigs. 

The hold-out test set was used only after the network architecture and all hyperparameters had been 

fixed. Leave-one-pig-out cross-validation was performed on the training dataset and the predictions on 

the left-out pig were aggregated for all 38 folds (46 minus 8) to yield the validation accuracy. The 

hyperparameters of the neural network were optimized in an extensive grid search such that the 

validation accuracy was maximized. Once the optimal hyperparameters were determined, we 

evaluated the classification performance on the hold-out test set by ensembling the predictions from 

all 38 networks (one for each fold) via computing the mean logits vector (the input values to the 
softmax function, see below) followed by the argmax operation to retrieve the final label for each 

annotation.  

The deep learning-based classification was performed on the median spectra computed from the L1-

normalized spectra of all pixels in the annotation masks resulting in 100-dimensional input feature 

vectors. 

The deep learning architecture was composed of 3 convolutional layers (64 filters in the first, 32 in the 

second, and 16 in the third layer) followed by 2 fully connected layers (100 neurons in the first and 50 

in the second layer). The activations of all five layers were batch normalized and a final linear layer 
was used to calculate the class logits. Each of the convolutional layers convolved the spectral domain 

with a kernel size of 5 and was followed by an average pooling layer with a kernel size of 2. The two 

fully connected layers zeroed out their activations with a dropout probability of ?. All non-linear layers 

used the Exponential Linear Unit (ELU) [66] as activation function. 

We chose this architecture as it provides a simple yet effective way to analyze the spectral 

information. The convolution operation acts on the local structure of the spectra and we used a 

relatively small kernel size and stacked 3 layers to increase the receptive field while being 

computationally efficient [67]. The two fully connected layers make a final decision based on the global 

context. The advantage of this approach is that it combines local and global information aggregation 

while still being computationally efficient since the entire network only uses 34,300 trainable weights. 
The softmax function was used to provide the a posteriori probability for each class. We used the 

Adam optimizer (β1= 0.9, β2= 0.999) [68] with an exponential learning rate decay (decay rate of " and 

initial learning rate of %) and the multiclass cross-entropy loss function. In order to meet class 

imbalances, we included an optional weight of the loss function according to the number of training 

images per class and sampled instances for the batches either randomly or oversampled such that 

each organ class had the same probability of being sampled. Both design choices were investigated in 

the hyperparameter grid search. 
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We trained 10,000,000 samples per epoch for 10 epochs with a batch size of 9. In an extensive grid 

search, we determined the best-performing hyperparameters: dropout probability ?∗ = 0.2	(? ∈

{0.1,0.2}), learning rate %∗ = 0.0001	(F ∈ {0.001, 0.0001}), decay rate "∗ = 0.9	(2 ∈ {0.75, 0.9, 1.0}), 

batch size 9∗ = 20,000	(9 ∈ {20,000, 40,000}), a weighted loss function and no oversampling. 
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