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Abstract

Methods that use a linear genome reference for genome sequencing data analysis are reference
biased. In the field of clinical genetics for rare diseases, a resulting reduction in genotyping accuracy in
some regions has likely prevented the resolution of some cases. Pangenome graphs embed population
variation into a reference structure. While pangenome graphs have helped to reduce reference mapping
bias, further performance improvements are possible. We introduce VG-Pedigree, a pedigree-aware
workflow based on the pangenome-mapping tool of Giraffe (Sirén et al. 2021) and the variant-calling
tool DeepTrio (Kolesnikov et al. 2021) using a specially-trained model for Giraffe-based alignments.
We demonstrate mapping and variant calling improvements in both single-nucleotide variants (SNVs)
and insertion and deletion (INDEL) variants over those produced by alignments created using BWA-
MEM to a linear-reference and Giraffe mapping to a pangenome graph containing data from the 1000
Genomes Project. We have also adapted and upgraded the deleterious-variant (DV) detecting methods
and programs of Gu et al. into a streamlined workflow (Gu et al. 2019). We used these workflows
in combination to detect small lists of candidate DVs among 15 family quartets and quintets of the
Undiagnosed Diseases Program (UDP). All candidate DVs that were previously diagnosed using the
mendelian models covered by the previously published Gu et al. methods were recapitulated by these
workflows. The results of these experiments indicate a slightly greater absolute count of DVs are
detected in the proband population than in their matched unaffected siblings.

1 Introduction

Recent advances in genome sequencing technology are improving the accuracy of detecting genetic vari-
ants (Wenger et al. 2019). However, the use of a single genome reference for read alignment and variant
calling still presents a problem. A sequence mapping algorithm best aligns sequences to a reference when
those sequences are present in the reference. Where a sample’s genome deviates significantly enough from
the reference, reads will fail to map properly (Sherman et al. 2019). This reference bias can be reduced
using pangenome graphs. Pangenome Graphs represent multiple genomes as a series of variants (Garrison
et al. 2018). These graphs are further enhanced by incorporating haplotype information that is available
in phased genotype datasets. This haplotype information is embedded in a haplotype index (Sirén et al.
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2021). In previous work, we have found that mapping error, in both simulation and real-data experiments,
is reduced by using population variant data in pangenome graph references (Garrison et al. 2018; Sirén
et al. 2021).

Parent-child trios provide evidence of sequence transmission between generations. This helps to iden-
tify which variants in the child occurred as de-novo mutations, since these variants will generally be absent
in the parents. This information also helps to determine phasing orientation of heterozygotes in the child
which can aid in detecting compound-heterozygous candidate DVs. In typical clinical diagnostics, in
particular for the case of rare diseases, parental genomes are sequenced to help improve the chances of
successful clinical diagnosis of a proband (Clark et al. 2018).

The Undiagnosed Disease Program (UDP) of the National Human Genome Research Institute (NHGRI)
is charged with diagnosing previously undiagnosed individuals and discover new variants of clinical sig-
nificance (Gahl and Tifft 2011; Gahl, Markello, et al. 2012; Gahl, Mulvihill, et al. 2016; Gahl, Wise, et al.
2015; Splinter et al. 2018). In 2009 the UDP started examining cases that have remained undiagnosed after
previous exhaustive clinical examination. One part of their process involved sequencing the genomes of
patients, including some that included parents, an affected proband and one or more unaffected siblings.
Since the beginning of the UDP, they have seen more than 500 different disorders and achieved a diagnos-
tic success rate of over 30 percent, including the discovery of new disorders (Gu et al. 2019). Most of the
pediatric cases examined by the UDP over the past 10 years have already had negative diagnostic results
from clinical exomes. The UDP applies further technologies, including whole genome sequencing, RNA
sequencing, and SNP-chip analysis to more completely explore non-exonic and intergenic regions in an
attempt to solve negative exome cases (Gu et al. 2019). One of the more difficult tasks of gene discovery
is the detection of variants in highly polymorphic, repetitive, and incompletely-represented regions of the
genome, exactly where pangenome graphs can extend accuracy and precision.

In this paper we present VG-Pedigree, a software workflow for mapping and variant calling next
generation sequencing data. The workflow leverages pedigrees in genome graphs, and uses machine-
learning for variant calling. We also present a companion workflow for identifying candidate deleterious
variants which integrates an upgraded implementation of the candidate analysis workflow developed at the
UDP (Gu et al. 2019). These upgrades include software portability and usability enhancements, GRCh38
reference compatibility, updates to the population datasets and deleterious predictors used by the previous
version of the pipeline, and the incorporation of a new software module that detects mosaicism.

The UDP has applied this workflow to 15 pedigrees that contain a full quartet: one affected child
(Proband), one unaffected sibling and two unaffected parents. Of the probands that had a known diagno-
sis, the corresponding DVs that were detected based on the mendelian models covered by the previously
published candidate analysis workflow and were recapitulated by this workflow. The workflows are mod-
ular such that the candidate analysis workflow can be run by any set of alignments in the BAM format and
a joint-called pedigree dataset in the VCF format.

2 Results

2.1 Overview of VG-Pedigree

VG-Pedigree goes through a number of stages before final variant calling (Fig. 1A). First, the set of short
reads in the parent-parent-child trio of the pedigree are mapped to a pangenome graph reference based
on the 1000 Genomes Project dataset, termed 1000GP, using VG Giraffe, and variants are then called
using DeepTrio (Fig. 1B) (Auton et al. 2015; Sirén et al. 2021). Next, variants in 1000 Genomes Project
haplotypes that appear missing in the DeepTrio-called variants are imputed. The resulting variant file
is phased using both alignment and pedigree information (Fig. 1C). A parental graph reference is then
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constructed using only the parental genotypes from the joint-called VCF file (Fig. 1D). A haplotype index
of this graph reference for VG Giraffe is generated from the phased genotypes of the parental samples.
Once this graph is constructed, the proband and siblings reads are re-mapped to this new parental graph
reference and variants are re-called using the new mappings (Fig. 1B). Finally, the newly-called variants
of the child and sibling samples are joint-called with the old parental variants to form the final joint-called
pedigree VCF.
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Figure 1. Toil-VG Pedigree workflow. Dotted lines indicate optional pathways in the workflow. (A) Overall
workflow diagram. (B) Single sample alignment and variant-calling workflow. (C) Trio joint-genotyping and phasing
workflow. (D) Parental graph construction workflow. (E) Workflow for preprocessing and annotation of pedigree
variants required for candidate analysis. (F) The candidate analysis workflow.

The candidate analysis workflow takes as input the set of alignments and variant calls from VG-
Pedigree and outputs a final set of candidate DVs for the proband. This is done through a series of filters
and annotations. First, SnpEff is used to annotate the type and function of variants within the joint-called
pedigree VCF file (Cingolani et al. 2012). The deleteriousness of these variants is predicted using the
Combined Annotation Dependent Depletion (CADD) software tool (Rentzsch et al. 2021) (Fig. 1E). Next,
a series of filtration and analysis methods are applied to the annotated variants and the workflow outputs
a set of candidate DVs for the proband (Fig. 1F). The methods applied in the candidate analysis workflow
are an implementation of the methods described in the Gu et al. study (Gu et al. 2019). In this paper,
we present enhancements to the methods and software of the candidate analysis workflow. An additional
module of the analysis workflow has also been developed which automatically detects the presence and
type of mosaicism in the designated proband. These methods and improvements together provide a more
complete and accurate dataset from which to discover rare variants that are causal to genetic diseases over
the previous iteration.

We evaluated performance of this workflow based on four main metrics. First, we evaluated the ability
of the workflow to accurately align reads to the correct position in a genome. Second, we assessed the
accuracy of variant calls based on those alignments. Thirdly, we looked at the ability of the analysis
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workflow to capture DVs in the proband population versus the unaffected sibling population. Finally, we
examined the runtime and costs of running this workflow using a commercial cloud environment.

2.2 Mapping Evaluation

Mapping was evaluated with both simulated and real sequencing data. The former considers measures
of mapping reads with a known position. This was done by simulating reads from haplotypes whose
corresponding path locations in the graph are known, so that we could identify when a read was mapped
to the correct location on the graph (see supplementary methods S1). Figure 2 illustrates the performance
of 10 million read pairs that are simulated from the Genome-in-a-Bottle (GIAB) HG002 version 4.2.1
high confidence variant sets (Zook 2020). We also examined stratified performance across regions of
interest using 100 million reads simulated from the GIAB high confidence regions. These regions were
all defined by GIAB: (the Global Alliance for Genomics and Health Benchmarking Team et al. 2019) low
complexity regions that comprise regions of low sequence variability, low mappability regions that are
made up of duplicated and paralogous sequence, the Major Histocompatibility Complex (MHC) which
is known for maintaining a high density of variation, 1000GP variant regions excluded from the GIAB
sample (1000GP-excluded), and, specifically for HG002, the complex medically relevant genes (CMRG)
included in a study by Wagner et al. (Wagner et al. 2021).

All conditions evaluated consist of the combination of a mapper and a reference (see supplementary
methods S2). The Giraffe-Parent condition used VG Giraffe (Sirén et al. 2021) to align reads to the
parental graph reference as produced by the workflow up to graph construction (Fig. 1D). The Giraffe-
1000GP condition used VG Giraffe to align reads to the pangenome reference. The Giraffe-Primary
condition used VG Giraffe to align reads to a linear graph reference as produced using only the hs38d1
reference with no variation. And the BWA-MEM-hs38d1 condition used BWA-MEM (H Li 2013) to align
reads to the hs38d1 human reference genome.

Figure 2 shows the receiver-operator-curves (ROC) of each tested mapper in all confident regions,
1000GP-excluded regions, low mappability regions, and MHC regions. The curves are stratified by map-
ping quality (MAPQ). In each evaluated region, Giraffe-Parent produced the highest F1, both for reads
with MAPQ60 and across all reads. When looking at 1000GP-excluded variants within stratified regions,
Giraffe-Parent produced the highest total F1 across low complexity regions (Fig. S1), low mappability
regions (Fig. S2), MHC regions (Fig. S3), and CMRG regions (Fig. S4).
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Figure 2. Mapping performance of 100 million read pairs simulated from HG002 high confident datasets. Four
different alignments are compared across four different regions and ROC curves are plotted with a log-scaled false
positive rate on the x-axis and a linear-scaled true positive rate on the y-axis with the mapping quality as the dis-
criminating factor. Green curves represent graph alignments against the parental graph reference constructed from
HG003 and HG004 illumina read graph alignments. Red curves represent alignments against the 1000GP graph
reference. Purple curves represent alignments to the primary GRCh38 linear graph reference. Blue curves represent
linear alignments against the hs38d1 reference using bwa-mem. (A) Alignments in GIAB v4.2.1 confident regions
(from 1 million simulated read set). (B) Alignments in non-1000GP confident regions (from 1 million simulated read
set). (C) Alignments in GIAB v4.2.1 low mappability regions (from 100 million simulated read set). (D) Alignments
in GIAB v4.2.1 MHC regions (from 100 million simulated read set).

For all GIAB high confidence regions, Giraffe-Parent gave the most accurate alignments relative to
the other examined mappers. Giraffe-Parent also achieved the highest total of correctly mapped reads
in all but the CMRG regions, the highest total of reads mapped at MAPQ60 in low mappability MHC
and CMRG regions, and the highest average percent identity between aligned reads and the reference
sequence across all regions (Table S1). In the high confident 1000GP-excluded regions of the HG002
sample, Giraffe-Parent achieved the highest proportion of correctly mapped reads, MAPQ60 reads, and
average sequence identity (Table S2). Giraffe-Parent also produced the highest proportions of perfectly-
aligned and gaplessly-aligned reads, and the lowest proportion of soft-clipping reads across all examined
confident (Table S3) and 1000GP-excluded regions (Table S4).
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2.3 Variant Calling Evaluation

In addition to examining the mapping performance of the workflow we measured the accuracy of variants
called in each workflow. Here we use the version 4.2.1 release of the HG001, HG002 and HG005 truth-
set benchmarks as published by GIAB (Zook 2020). RealTimeGenomics vcfeval tool (Cleary et al.
2015) and Illumina’s hap.py haplotype aware variant comparison tool (Illumina/hap.py 2020) were used
when comparing the results of variants called using alignments of real reads to various combinations of
mappers and references. The mappers and references used include VG Giraffe against the 1000GP graph
(termed Giraffe-1000GP) VG Giraffe against the parental graph (Giraffe-Parent), BWA-MEM against the
linear hs38d1 reference (BWA-MEM-hs38d1), and Illumina’s Dragen platform version 3.7.5 (Illumina
2020; Hidden Treasures - Warm Up precisionFDA 2020; Truth Challenge V2: Calling Variants from Short
and Long Reads in Difficult-to-Map Regions precisionFDA 2020) against the linear hs38d1 reference
(Dragen-hs38d1) (see supplementary methods S3 and S4).

We used DeepTrio version 1.1.0 with trained child and parent models for variant-calling comparison
in HG002 and HG005 samples. Training used the Ashkenazi (HG002, HG003, HG004), Han Chinese
(HG005, HG006, HG007) and CEPH (HG001, NA12891, NA12892) trio alignments using the Giraffe-
1000GP method for model training (see supplementary methods S4.2). We left out chromosome 20 for
validation purposes. Supplementary Figure S10C-D and Supplementary Table S5 show the results of
training for HG002 and Supplementary Figure S11C-D and Supplementary Table S6 for HG005 results.
The total number of errors in chromosome 20 reduced from 1,070 to 1,051 (1.78%) and from 1,130 to 909
(19.56%) variants for HG002 and HG005, respectively.

We then assessed HG001 using the same training method for the model used in evaluating HG002 and
HG005. The models were re-trained with Giraffe-1000GP-aligned read data while the HG001, NA12891
and NA12892 samples were completely held out for validation purposes. The DeepTrio-called variants
achieve the highest accuracy (F1: 0.9976) using Giraffe-Parent (Table 1A-B). This represents a total
variant error (false positive and false negative) reduction of 4,844 variants between Giraffe-Parent and
BWA-MEM-hs38d1 relative to an error reduction of 2,925 variants between Giraffe-1000GP and BWA-
MEM-hs38d1. In the 1000GP-excluded variants, the Giraffe-Parent accuracy (F1: 0.9748) outperforms
Giraffe-1000GP (F1: 0.9717) by a greater margin than Giraffe-1000GP outperforms BWA-MEM-hs38d1
(F1: 0.9691). This reflects an error reduction of 3,210 variants between Giraffe-Parent and BWA-MEM-
hs38d1 relative to an error reduction of 1,481 variants between Giraffe-1000GP and BWA-MEM-hs38d1.
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Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,711,135 6,444 11,258 0.9983 0.9970 0.9976
Giraffe-1000GP 3,708,607 5,687 13,934 0.9985 0.9963 0.9974
BWA-MEM-hs38d1 3,705,297 5,532 17,014 0.9985 0.9954 0.9970
Dragen-hs38d1 3,704,307 4,586 18,001 0.9988 0.9952 0.9970

(A) DeepTrio HG001 All High Confident Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 285,663 5,222 9,468 0.9820 0.9677 0.9748
Giraffe-1000GP 283,261 4,422 11,997 0.9846 0.9591 0.9717
BWA-MEM-hs38d1 281,355 4,356 13,544 0.9848 0.9538 0.9691
Dragen-hs38d1 280,317 3,398 14,589 0.9880 0.9503 0.9688

(B) DeepTrio HG001 All High Confident Regions, 1000GP-excluded

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,710,974 8,234 11,439 0.9978 0.9969 0.9974
Giraffe-1000GP 3,705,842 8,751 16,704 0.9976 0.9955 0.9966
BWA-MEM-hs38d1 3,701,516 8,594 20,806 0.9977 0.9944 0.9960
Dragen-hs38d1 3,700,322 7,181 22,004 0.9981 0.9941 0.9961

(C) DeepVariant HG001 All High Confident Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 285,782 6,404 9,248 0.9781 0.9685 0.9733
Giraffe-1000GP 280,890 6,704 14,264 0.9767 0.9514 0.9639
BWA-MEM-hs38d1 279,005 7,010 15,926 0.9755 0.9457 0.9604
Dragen-hs38d1 277,765 5,610 17,173 0.9802 0.9415 0.9605

(D) DeepVariant HG001 All High Confident Regions, 1000GP-excluded

Table 1. VCFeval HG001 DeepTrio and DeepVariant Performance VCFeval performance of the graph-based
and linear-based pipelines with respect to HG001 GIAB v4.2.1 truth variant call sets stratified by (A) DeepTrio on
all HG001 regions, (B) DeepTrio on HG001 regions excluding 1000GP variants, (C) DeepVariant on all HG001
regions, and (D) DeepVariant on HG001 regions excluding 1000GP variants. All mapped reads were called using
DeepTrio and DeepVariant v1.1.0 genotyper using trained models. Best values in each column are highlighted in
bold text.

We also tested Giraffe-Parent using the default Deep-Trio version 1.1.0 models, which were not trained
with Giraffe alignments. We found that in using the HG005 and HG002 trios Giraffe-Parent or Giraffe-
1000GP with the default DeepTrio models outperforms the results achieved using standard BWA-MEM
(Table S7A-B). The same performance gains are observed for Giraffe-Parent in more difficult regions for
both HG002 and HG005 samples (Tables S8 and S9).

ROC curves for DeepTrio calls stratified by genotype quality also show performance gains. Figure
3 shows the ROC curves between the graph-based and linear-based alignment methods in HG001 for
all confident regions and 1000GP-excluded variants respectively. Supplementary Figures S10A-B and
S11A-B illustrates performance in the same regions but for the HG002, and HG005 samples using the
default DeepTrio models, respectively.
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Figure 3. ROC curves of DeepTrio variant calling performance of the graph-based and linear-based pipelines with
respect to HG001 GIAB v4.2.1 truth variant call sets stratified by (A) HG001 high confident whole genome regions
using trained DeepTrio models, (B) HG001 high confident whole genome regions excluding 1000GP variants using
trained DeepTrio models.

To compare the results of our trio-based pipeline to other calling methods we additionally tested the
non-trio based DeepVariant version 1.1.0 and Illumina’s Dragen platform version 3.7.5 variant callers,
using Giraffe pangenome and BWA-MEM linear reference mappings. This evaluation assesses gains in
variant calling accuracy brought by using trios vs. simply mapping to a linear reference, a population
based pangenome graph (Giraffe-1000GP), or to a graph containing the subject’s parental information
(Giraffe-Parent). Dragen, which uses an algorithm similar to that of GATK HaplotypeCaller, was used
to call variants against the hs38d1 reference for each set of alignments. Once again, Giraffe-Parent
produced the most accurate variant calls for HG002 and HG005. Giraffe-Parent produced the highest F1
score (0.9965) in all confident regions for HG002 (Table S10). This is in contrast with the F1 performance
of Giraffe-1000GP (0.9953) and BWA-MEM-hs38d1 (0.9940). Total error is reduced by 18,754 variants
between Giraffe-Parent and BWA-MEM-hs38d1 relative to an error reduction of 9,995 between Giraffe-
1000GP and BWA-MEM-hs38d1. For HG005, Giraffe-Parent produced the highest F1 score (0.9958) in
all confident regions (Table S11). This is in contrast with Giraffe-1000GP (F1: 0.9944) and BWA-MEM-
hs38d1 (F1: 0.9931). Total error is reduced by 20,724 variants between Giraffe-Parent and BWA-MEM-
hs38d1 relative to an error reduction of 10,489 between Giraffe-1000GP and BWA-MEM-hs38d1.

During evaluation of DeepVariant calls, like in our DeepTrio evaluations, we focused on using models
that were not trained with pangenome graph alignments of the samples used in evaluation. For HG001
alignments, a trained DeepVariant model was used in evaluating HG001 whole genome results. This model
was trained using just the Giraffe-1000GP-aligned HG002 and HG004 sample reads. For evaluations of
DeepVariant calls on HG002 and HG005 alignments, the default models of DeepVariant version 1.1.0
were used. In HG001, the Giraffe-Parent method achieves the highest accuracy (F1: 0.9974) representing
a total variant error reduction of 9,727 variants between Giraffe-Parent and BWA-MEM-hs38d1 relative
to an error reduction of 3,945 variants between Giraffe-1000GP and BWA-MEM-hs38d1 (Table 1C). For
HG002, the DeepVariant-called variants also achieves the highest accuracy (F1: 0.9970) using Giraffe-
Parent (Table S7C). This represents a total variant error reduction of 4,849 variants between Giraffe-
Parent and BWA-MEM-hs38d1 relative to an error reduction of 131 variants between Giraffe-1000GP
and BWA-MEM-hs38d1. Finally, for HG005, the Giraffe-Parent method produces the highest accuracy
(F1: 0.9966) representing a total variant error reduction of 8,009 variants between Giraffe-Parent and
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BWA-MEM-hs38d1 relative to an error reduction of 2,063 variants between Giraffe-1000GP and BWA-
MEM-hs38d1. (Table S7F).

Breaking down the analysis to SNPs and INDELs reveals the same trend. The Giraffe-Parent produced
the highest F1 scores in HG002 in all examined regions except for the CMRG genes, where Dragen-
hs38d1 achieves a higher accuracy in INDELs (F1: 0.959108) relative to Giraffe-Parent (F1: 0.958785)
(Tables S12 S13 S14 S15 S16, and S17). Similar statistics are observed in HG005, where Giraffe-Parent
alignments produce the highest F1 in all SNPs and INDELs across all confident regions (Tables S18 S19
S20 S21 S22).

2.4 Candidate Analysis Evaluation

The last evaluation investigates the workflows ability to identify DVs that are relevant to clinical disorders.
We ran the workflow on 15 nuclear pedigrees of at least 4 individuals in size. Out of the UDP set of
50 cohorts with identified candidate variants, a set of 15 cohorts were randomly chosen. The 15 cohorts
include 15 probands and 22 unaffected siblings comprising 18 females and 19 males. 11 of the UDP
probands from these cohorts that have a known genetic diagnosis had their causal variants recapitulated
by this workflow. The list of Mendelian models detected include homozygous recessive, de-novo, hem-
izygous, X-linked, mitochondrial, and compound-heterozygous genotypes. Of the 12 examined probands
that have a diagnosis attributed to a CLIA-validated variant, 5 were identified with de-novo dominant non-
synonymous changes in an exonic region, 2 had a de-novo dominant frameshift in an exonic region, 2
had compound-heterozygous variants where both were non-synonymous changes in exonic regions, and
1 had a compound-heterozygous variant with a non-synonymous change in an exon and a change in an
intronic/splice-site region. Supplementary Table S23 shows the number and type of candidate variants
detected by the workflow for all 37 individuals.

We compared the number and type of clinically-relevant variants that are identified between the af-
fected proband population and their matched unaffected sibling population to indirectly evaluate the
pipelines ability to identify DVs. This analysis runs in two steps. First, for each family, the affected
offspring are set as the proband in the workflow and the unaffected offspring are set as the unaffected
siblings. Then for the second step, for each family, the unaffected offspring are set as the proband and the
affected offspring are set as the unaffected siblings. Finally, the set of candidate DVs from the probands in
the first step are compared against the set of candidate DVs from their matched unaffected siblings in the
second step.

There is an expected baseline load of rare deleterious variants that all individuals inherit due to de-novo
mutation and inefficient selection against segregating variants (Henn et al. 2015). Given a large enough
sample set, we expect the median number of rare deleterious variants in the proband population to be
slightly different from the median number of rare deleterious variants in the unaffected sibling population.
Due to two factors, the probands level of genetic burden is hypothesised to be slightly greater than that
of their unaffected siblings: all probands in this analysis currently show phenotypic expression of their
disease, and the unaffected siblings are of similar age.

Figure 4A shows the distribution between these two populations in the 15 pedigree cohort sample
set. Figure 4B shows the distribution of differences in the candidate DVs between the matched proband
and siblings. X-linked recessive candidate DVs were excluded from both populations in order to improve
comparability between male and female samples. Compound-heterozygous candidate pairs and candidate
alleles that occupy the same locus are also counted as one candidate for the purposes of this comparison.
The number of candidate DVs in the proband population are significantly different from their matched
unaffected siblings set of candidate DVs (Wilcoxon signed-rank test p-value=0.03).

In addition, we ran the workflow on 4 undiagnosed cases that have previously shown a negative or
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Figure 4. Proband-sibling pairwise candidate analysis results on 15 nuclear families of at least quartet in size,
comprising a population of 15 probands and 22 siblings. Plot (A) shows the average number of candidate variants
between the probands and sibling populations. The proband population holds an average of 14.53 CVs while the
sibling population has an average of 12.77 CVs. A one-tailed Wilcoxon signed-rank test of the hypothesis that the
probands have greater numbers of candidate variants than their matched siblings produced a p-value of 0.0333. (B)
The distribution of proband - sibling candidate variant list size differences. (C) A mosaic region identified by the
workflow (red box) overlaid with the snp-chip B allele frequency plot for a UDP sample.
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inconclusive clinical exome and negative commercial genome assay results. From these samples, we have
produced a number of candidate DVs. Of the 4 cases, 2 have candidate DVs that match their phenotypic
profile and are being examined for clinical function, the other 2 cases are undergoing further investigation.
One of the 2 cases had an identified mosaic region on chromosome 7 detected by the candidate analysis
workflow (Figure 4C). Further phenotypic and candidate DV details are omitted to protect patient privacy.
Supplementary Tables S24 and S25 shows the number and type of candidate variants detected by the
workflow.

2.5 Runtime Evaluation

The workflows examined are runnable on the Terra platform (Terra 2021). When running on a quartet with
30 to 35x coverage paired read data, the workflow takes a little more than 8000 CPU hours for a total cost
of approximately $100 (Table S26). The VG-Pedigree pipeline makes up the majority of the computation
at about 8000 CPU hours and costs $92-95, while the candidate analysis workflow runs in about 200 CPU
hours costs $3-5. Costs can vary based on the load of the cloud compute system and the availability of
lower-cost preemptable nodes.

3 Discussion

There is growing evidence that rare variants have the effect sizes, diversity and abundance necessary to
explain a substantial portion of human genetic load (Hernandez et al. 2019; Simons et al. 2014; X Li et
al. 2017). Pedigrees can help resolve harder-to-study regions by giving orthogonal evidence in the form
of Mendelian inheritance to enhance the statistical power and phasing accuracy to categorize compound-
heterozygote and de-novo variation from a list of called variants (Shugart et al. 2012; Peng et al. 2013;
Roach et al. 2010; Sul et al. 2016). Graph-based approaches leverage additional variation information dur-
ing read mapping to mitigate the problems of alignment to complex regions of the genome (Garrison et al.
2018; Sirén et al. 2021). The methods and software developed in this project are designed to maximize
the biological information available to detect and interpret individual-level variation. The software devel-
oped is scalable so that it can easily run on high performance compute clusters that support common batch
systems like Slurm (Yoo et al. 2003) or Kubernetes (Production-Grade Container Orchestration 2021).
It is publicly accessible in the toil-vg GitHub repository and in WDL format which is published in the
Dockstore repository (O’Connor et al. 2017; Voss et al. 2017).

Alignment performance of short-sequenced reads is improved across all examined confident regions in
the GIAB samples. This translates to better coverage, mapping quality and greater variant calling accuracy
in these regions. All examined UDP cases that have a known genetic diagnosis based on the Mendelian
models covered by the previously published candidate analysis workflow (Gu et al. 2019) have their causal
variants recapitulated by this workflow. The candidate analysis evaluation indicates detectable differences
in the number of candidate DVs identified between the affected and unaffected offspring populations. This
result shows a similar trend to that of the analysis done on exome datasets from a larger sample set, which
also showed a statistically significant difference (Gu et al. 2019). The main improvement in this analysis
over the previous analysis is that this analysis covers the whole genome including intronic and intergenic
regions.

A number of areas can be improved within this workflow. One example is the training model used in
DeepTrio. Our training used a very limited number of benchmark samples, which was limited further to
leave benchmark data for testing and development. Given these limitations, there is room to improve the
DeepTrio model when additional well-sequenced and diverse benchmark samples become available.
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Variant calls from graph-based alignments are prone to error due to the conversion of the native graph
alignment map (GAM) format output from VG alignments to the linear reference BAM format. Informa-
tion about the exact path of reads is lost during this projection step which can result in reads appearing
different from the linear reference genome when the variant is already present in a path in the graph refer-
ence.

Structural Variants are an important component to the set of rare variants that contribute to disease
(Weischenfeldt et al. 2013; Abel et al. 2020). In previous work, there have been efforts to tailor pangenome
graphs and variant caller algorithms to improve the accuracy of detecting structural variants (Sirén et
al. 2021). Another avenue to improve this workflow is to apply pangenome graphs with incorporated
structural variant information as a module that runs concurrently to the VG-Pedigree workflow.

Further runtime improvements could also be made. The workflow takes about 1.5 days and approx-
imately 8000 total CPU hours at a cost of about $100 to process one family. This is moderately expen-
sive and slow relative to traditional methods, which have well-tuned hardware acceleration solutions and
years of work optimizing computation time. GPU acceleration or field-programmable-gate-array (FPGA)
implementations of the graph alignment algorithm could substantially accelerate the computation of the
graph-based algorithms.

There are a number of refinements that could be made to the most expensive parts of this workflow.
Reference construction of the parental graph could be improved by altering and pruning the haplotype
index with the haplotypes discovered by the trio-backed phasing stage of the pipeline. The use of graph-
based variant callers would remove the need to surject alignments to linear BAM files and therefore main-
tain potentially more information that could be used to produce more accurate calls.

New pangenome graphs are continuously being updated and tested as more population variation is
characterized. The Telomere-to-Telomere genome project (T2T) has recently released a genome reference
which exhaustively captures the centromeric and telomeric sequence better than the previous GRCh38
version of the human genome (Nurk et al. 2021). The Human Pangenome Reference Consortium (HPRC)
is a group of research institutions that are tasked with the development of a pangenome reference using the
latest methods and data. By characterizing regions of the genome not well represented by existing variant
datasets, the pangenome references developed by the HPRC that incorporate new T2T sequences should
further improve the performance and accuracy of the workflows presented in this paper.

4 Methods

4.1 VG Pedigree Workflow

Pangenome graphs provide a framework for leveraging genomic variation information to create a better-
informed mapping procedure than that provided by a linear genomic reference. The workflow presented
here goes through a number of stages (Fig. 1A). The first stage establishes parental haplotypes to construct
a parental-backed graph reference. It takes short reads from a trio and aligns each to a population-informed
graph reference. We use a graph based on the 1000 Genomes dataset (Auton et al. 2015; Sirén et al. 2021).
It is still the largest and most diverse set of phased genotypes available to the public with broad consent.
The 1000GP graph is based on the hs38d1 human reference genome and the 1000 Genomes Project
phase 3 variant set, and is available in a publicly accessible Google Cloud bucket.

Alignment of the parent-child trio to the 1000GP graph goes through a number of steps that split and
merge read alignments to enable distributed computation (Fig. 1B, Supplementary Fig. S5). This greatly
reduces time spent aligning reads, which is a major bottleneck for the workflow. Afterwards, each chunked
alignment is projected back to the linear genome reference coordinate space and corrected for duplicates
and missing mate information and indels are realigned using ABRA2 (Mose et al. 2019). Following
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alignment, samples in the trio are variant-called, producing a per-sample gVCF genotype called file. A
trio-based DeepVariant extension (Poplin et al. 2018), Google’s DeepTrio (Kolesnikov et al. 2021), is
used to call variants in this workflow. DeepTrio first generates images based on the alignments between
the parent and child reads. Then the DeepTrio variant caller is run concurrently to call gVCFs for each
contig for each sample in the trio. The gVCFs are next joint-called with the Glnexus package (Yun et al.
2020) in order to merge and recall potentially uncalled variants in the trio. Joint-calling gVCFs enhances
DeepVariant-based calls by reexamining trio variant sites that were confidently called in one sample but
not another. The joint-called trio VCF is then divided by autosomal and sex-chromosomal contigs, with
the mitochondrial contig only preserving the maternal set of called genotypes and the Y chromosomal
contig preserving the paternal set of called genotypes.

A number of different schemes for phasing these variants were explored using combinations of Eagle
(Loh et al. 2016), WhatsHap (Martin et al. 2016), and SHAPEIT4 (Delaneau et al. 2019). Supplementary
Table S27 illustrates the performance of combinations of these programs when phasing the GIAB HG002
sample. Supplementary Table S28 shows phasing performance for the GIAB Ashkenazi trio with respect to
GRCh38- or GRCh37-based graph alignments. Using Eagle followed by WhatsHap produced the largest
blocks of phased variants while maintaining a switch error rate close to, or better than, the method with the
largest median haplotype block size from this list: WhatsHap in combination with SHAPEIT4. Following
the alignment and variant calling step, a phasing sub-pipeline is run on these contig VCFs using the Eagle-
WhatsHap phasing method (Fig. 1C, Fig. S6). Missing genotypes are imputed using Eagle version 2.4.1
(Loh et al. 2016). Finally the contig VCFs are phased with trio- and read-backed methods using WhatsHap
(Martin et al. 2016). That final set of contig VCFs are then filtered down to just the parental genotype sets
and passed into the graph construction workflow.

Following the phasing stage of the workflow, the phased variants from that step and a linear reference
in FASTA are passed as input into the graph construction step (Fig. 1D, Fig. S7). VG mappers use a variety
of indexes (Sirén et al. 2021). To facilitate this need, the construction workflow generates a combination
of indexes based on the requirements of the VG Giraffe mapper.

After constructing the parental graph, the offspring reads can be realigned to it. GVCFs are called
from offspring alignments to the parental graph reference. (Fig. 1B, Fig. S5). Finally, variants are jointly
called, once again with the Glnexus package (Yun et al. 2020), by combining previously-computed gVCFs
of the 1000GP-aligned parents with gVCFs derived from the parental graph-aligned offspring.

The methods developed here for the VG-Pedigree workflow are implemented in the software frame-
work toil-vg under the ‘toil-vg pedigree‘ subcommand which makes use of the TOIL workflow engine
(Vivian et al. 2017) for cloud-based and cluster-compute systems and is available on GitHub at https:
//github.com/vgteam/toil-vg. The workflow is also made available in WDL format in the Dock-
store (O’Connor et al. 2017; Voss et al. 2017) repository at https://dockstore.org/workflows/
github.com/vgteam/vg_wdl/vg-pedigree-giraffe-deeptrio:master.

4.2 Candidate Analysis Workflow

A primary endpoint goal for this workflow is variant detection to identify likely causes of the genetic
disorders in the UDP cases. Traditional variant filtration techniques narrow down a set of variants, but
they are usually not exhaustive enough to narrow the list down to an actionable number of variants without
truncation (Pedersen et al. 2021; Kobren et al. 2021). Further, they often do not specialise in the detection
of compound-heterozygous candidates in non-coding regions. Traditionally, a large proportion of work is
needed to validate the clinical functionality for each variant (Baldridge et al. 2017). Given this downstream
cost, this workflow focuses on reducing that cost by minimizing the number of variants that need to be
examined in the final list. The analysis workflow takes in a very large set of variants and filters them
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by examining a series of variant attributes each of which follows an order of most-certain to least-certain
true-positive data types (Fig. 1F).

Additional improvements and features were added to this implementation of the methods developed
in the Gu et al. study. In this paper, we have adapted all components and annotations used by the work-
flow to be compatible with the GRCh38 reference genome coordinate system. The CADD engine soft-
ware suite has been updated to version 1.6 which incorporates greater accuracy in determining deleterious
variants located in splice sites and introns (Rentzsch et al. 2021). We have also updated the population
annotation dataset to use GnomAD v3.1 which has incorporated a larger proportion of samples produc-
ing more accurate and exhaustive population allele frequencies (Karczewski et al. 2020). The maximum
minor allele frequency (MAXMAF) calculation implemented in the population/deleterious-
backed variant filtration module was altered to use a binomial instead of a poisson distri-
bution (Fig. S8D). A critical bug was patched that was found to erroneously output X-linked candidate
variants for females. We implemented a new module that automatically detects the presence, location and
type of copy number variant (CNV) mosaicism in the proband.

The alignment and variant calling workflow output is processed with various annotation programs
before they are able to be passed as input into the candidate analysis workflow. Post processing the final
datasets comprises SnpEff annotation, indel-realignment, and converting to a one variant per row format
that has pedigree consistent indels, for each of the samples in the pedigree (Fig. 1E, Fig. S9). The CADD
(Rentzsch et al. 2021) software suite is used in this analysis workflow to predict the deleteriousness of
a given variant. Any variants that are unique to the CADD database in the joint VCF have a deleterious
score calculated by the software.

The analysis portion of the workflow examines and filters the pedigree variant file in the context of
Mendelian inheritance, alignments against the parental-based graph reference, population variant fre-
quency, and predictions of variant effects on gene function and expression (Gu et al. 2019) (see supple-
mentary methods S5). Using these filters generates a set of variants that are further filtered by examining
the BAM files for sequence and alignment noise surrounding each variant (Gu et al. 2019). This produced
a final short list for clinical examination. The workflow then cleans up the resulting candidate list of
identifiable errors and artifacts. Typical candidate lists produced by this pipeline consist of 10-50 variants
(Tables S23 and S24). These lists include compound-heterozygous variants located in non-coding regions
of the genome.

One new implementation of the workflow is the detection of CNV mosaicism. Mosaicism is a genetic
event where a single sample possesses multiple populations of cells that possess different proportions
of variants. The goal of the program is to detect stretches of phased variants that show consistent and
significant evidence for deviation in allele depth (AD) contributed by the mother and father. The first step is
to phase a set of heterozygous genotypes in the proband by examining the parental genotypes. The phasing
done here is more stringent than in the previous method described in the vg pedigree workflow because we
are looking for a sequence of easily phasable SNPs and so the procedure is rule-based instead of WhatsHap
which is based on statistical models. A given genotype in the proband is phaseable if three conditions are
met: at least one parent has a homozygous genotype, neither parent shares the same genotype, and both
alleles are called in both parents genotypes. If a large enough proportion of genotypes are phased in this
way, the program examines regions of sufficient length for consecutive stretches of allele balance deviation.
A sliding window of 10,000 phased genotypes is used to scan each chromosome and find the boundaries
of the mosaic region. For each SNP within this window, the AD of one parent is subtracted from the AD of
the other parent. A t-test is applied to the list of AD differences within the window to test if the distribution
is significantly different from the null model of no difference. If the t-test statistic is greater than the input
threshold, then a region of possible mosaicism is detected and subsequently logged in a separate file for
further examination. This threshold was determined empirically against mosaic-positive samples obtained
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by the UDP. This differs from traditional CNV callers in that this program incorporates trio information to
look for partial deletion or duplication events at megabase scales at a continuous level of granularity.

This program can also determine three types of mosaicism: uniparental isodisomy-disomy, trisomy-
disomy, and monosomy-disomy. In uniparental isodisomy-disomy mosaicism the individual has popula-
tions of cells where a proportion of their genome shares both copies from only one of their parents, and
the rest of their cells have inherited a copy from both parents. These types of mosaics are detected by ex-
amining the total read depth of the child and parents within the candidate mosaic region. If the proportion
of total read depth between the child and parents are the same, and the proportion of ADs of the phasable
SNPs between the child and parents are not the same, then the program will classify the mosaic region as
uniparental isodisomy-disomy.

In trisomy-disomy mosaicism, the individual has populations of cells where a proportion of their
genome has inherited both copies from one of their parents and the rest of their cells have inherited a
copy from both parents. If the proportion of total read depth in the child is greater than their parents, then
the region is classified as trisomy disomy mosaicism. Alternatively, in monosomy-disomy mosaicism, the
individual inherits only one copy from only one parent in some of their cells, and the rest of their cells
inherit one copy from each parent. In this case, if the total read depth in the child is less than that of their
parents, then the region is classified as monosomy disomy mosaicism.

All modules have been implemented in software containers to improve portability and interoperabil-
ity with other workflow engines (Kane and Matthias 2018; Schulz et al. 2016). The candidate analysis
workflow is implemented within the toil-vg software package under the toil-vg analysis subcom-
mand. The candidate analysis workflow is also available in WDL format in the Dockstore repository at
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main.

Code Availability and Data Access

Both the VG-Pedigree workflow and the candidate analysis workflow are implemented in the software
workflow engine TOIL (Vivian et al. 2017) for cloud-based and cluster-compute systems under the soft-
ware framework toil-vg. They are callable using the toil-vg pedigree and toil-vg analysis
subcommands, respectively. toil-vg is available on GitHub at https://github.com/vgteam/toil-
vg. The workflows are also made available in WDL format in the Dockstore (O’Connor et al. 2017) repos-
itory at https://dockstore.org/workflows/github.com/vgteam/vg_wdl/
vg-pedigree-giraffe-deeptrio:master and https://dockstore.org/workflows/
github.com/cmarkello/bmtb_wdl/bmtb:main.

Input data used in the mapping evaluation, variant calling evaluation and runtime evaluation are all
publicly available and listed in the scripts posted in the github repository: https://github.com/
cmarkello/vg-pedigree-paper. Input data used in the candidate analysis evaluation experiments
have been or are being submitted to the database of Genotypes and Phenotypes (dbGaP).

Scripts for reproducing the methods for graph construction can be found in https://github.
com/cmarkello/vg-pedigree-paper/tree/main/scripts/graph_construction.
Scripts for reproducing the mapping evaluation experiments can be found in https://github.com/
cmarkello/vg-pedigree-paper/tree/main/scripts/wgs_mapping_simulation.
Scripts for reproducing the real-data mapping and variant calling evaluation can be found in
https://github.com/cmarkello/vg-pedigree-paper/tree/main/scripts/
wgs_mapping_experiments and
https://github.com/cmarkello/vg-pedigree-paper/tree/main/scripts/
wgs_calling_experiments, respectively.
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