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Abstract 

For several decades, the field of human neurophysiology has focused on the role played by 

cortical oscillations in enabling brain function underpinning behaviors. In parallel, a less visible but 

robust body of work on the stochastic resonance phenomenon has also theorized contributions of 

neural noise - hence more heterogeneous, complex and less predictable activity - in brain coding. 

The latter notion has received indirect causal support via improvements of visual function during 

non-regular or random brain stimulation patterns. Nonetheless, direct evidence demonstrating an 

impact of brain stimulation on direct measures of neural noise is still lacking. Here we evaluated the 

impact of three non frequency-specific TMS bursts, compared to a control pure high-beta TMS 

rhythm, delivered to the left FEF during a visual detection task, on the heterogeneity, predictability 

and complexity of ongoing brain activity recorded with scalp EEG. Our data showed surprisingly 

that the three non frequency-specific TMS patterns did not prevent a build-up of local high-beta 

activity. Nonetheless, they increased power across broader or in multiple frequency bands compared 

to control purely rhythmic high-beta bursts tested along. Importantly, non frequency-specific patterns 

enhanced signal entropy over multiple time-scales, suggesting higher complexity and an overall 

induction of higher levels of cortical noise than rhythmic TMS bursts. Our outcomes provide indirect 

evidence on a potential modulatory role played by sources of stochastic noise on brain oscillations 

and synchronization. Additionally, they pave the way towards the development of novel 

neurostimulation approaches to manipulate cortical sources of noise and further investigate their 

causal role in neural coding. 

 

 

Keywords:  Neural noise, Stochastic resonance, Neuromodulation, Non-invasive Brain 

Stimulation, Electroencephalography, Cognitive facilitation, Conscious visual perception, Visuo- 

spatial attention, Networks, Interhemispheric differences. 
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Introduction 

 Uncovering the neural basis of cognition demands a detailed characterization in time and 

space of the neural patterns encoding specific brain states and cognitive functions, as well as plausible 

mechanistic models supporting such associations. Traditionally, research effort has focused on 

characterizing the role of highly predictable and low complexity neural signals, known as brain 

oscillations, and has devoted efforts to exploring the coding role of some of their features such as 

frequency, phase or local and interregional coherence measures.  

In the domain of visuospatial attention, correlational studies in animal models (Buschman & 

Miller, 2007; Saalmann et al., 2007) and healthy humans (Gross et al., 2004; Hipp et al., 2011; 

Phillips & Takeda, 2009; Rodriguez et al., 1999) have associated fronto-parietal high-beta 

oscillations with a top-down allocation of spatial attention and the modulation of visual perception. 

Causal confirmation of such observations has come from rhythmic Transcranial Magnetic 

Stimulation (TMS) studies in which the entrainment of high-beta frequencies on the right Frontal 

Eye Field (FEF), a node of the bilaterally distributed dorsal attention network (Corbetta & Shulman, 

2002), and associated parietal systems enhanced visual sensitivity (Chanes et al., 2013; Quentin et 

al., 2015; Stengel et al., 2021; Vernet et al., 2019).  

Nonetheless, brain oscillations are not the only recordable neural signals with a potential to 

contribute to the top-down modulation of visual perception for incoming visual stimuli. Indeed, non 

frequency-specific, broader-band, less predictable and more complex activity, proven ubiquitous in 

EEG recordings and generally referred to as neural ‘noise’, has garnered increased attention, 

particularly with regards to its ability to enable cognitive processes underpinning human behavior. 

Particularly relevant for the field of visual perception, the framework posed by Stochastic Resonance 

(SR) theorized several decades ago that optimal levels of stochastic noise added to sub-threshold 

signals generated by non-linear systems may boost the saliency and detectability of weak stimuli (see 

Moss et al., 2004 for a review). Such initial hypotheses were substantiated by experimental evidence 

showing the benefits of externally added stochastic noise in signal detection by peripheral receptors 
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(Collins et al., 1996; Cordo et al., 1996; Douglass et al., 1993) or its influence on the processing of 

neural signals by cortical systems (Groen & Wenderoth, 2016; Iliopoulos et al., 2014; Kitajo et al., 

2003; Lugo et al., 2008; Manjarrez et al., 2007).  

Regarding coding strategies subtending top-down modulatory mechanisms for conscious 

visual detection, causal evidence has suggested dissimilarity in neural coding used by frontal areas 

of the right and left hemispheres. More specifically, at difference with findings in the right Frontal 

Eye Fields (FEF) showing increases of visual sensitivity with the entrainment of rhythmic 30 Hz 

activity, non frequency-specific TMS patterns delivered prior to target onset to its left counterpart 

resulted in unexpected visual perception improvements (Chanes et al., 2015). Inspired by the 

Stochastic Resonance framework, these results ignited speculation that non frequency-specific TMS 

bursts may enhance conscious perception by increasing levels of neural ‘noise’ in ongoing left frontal 

activity. However, electrophysiological analyses focused on non-predictable neural activity, instead 

of rhythmic oscillatory fluctuations, were required to verify such hypothesis and, on such basis, build 

an accurate interpretation of the causal role played by sources of internal ‘noise’ on brain function, 

including mechanisms enabling the top-down modulation of perception in attention orienting 

networks.  

We here applied concurrent TMS-EEG recordings and tested if, compared to pure high-beta 

30 Hz rhythmic activity, three different types of non frequency-specific TMS bursts (non-uniform 

rhythmic, random and irregular) all delivered pre-target onset during performance of a lateralized 

visual detection task on near-threshold targets, would differentially modulate patterns of neural 

activity occurring in left fronto-parietal nodes of the dorsal visuo-spatial attention network. Three 

specific predictions substantiated by specific planned analyses were made. First, we hypothesized 

that non frequency-specific TMS patterns would increase the power of oscillations in a broader range 

of frequencies than rhythmic high-beta bursts. Second, we predicted that the former broadband effects 

would also manifest as increases in the level of non-predictable activity, hence analyzed via measures 

of signal entropy and complexity extracted from the recorded EEG signals. Third and last, we 
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anticipated that well-dosed levels of neural noise induced by some but not all of the three non 

frequency-specific TMS (and certainly not with rhythmic TMS) would potentially drive 

improvements of visual perception in healthy participants. 

 

Materials and Methods 

 

Participants 

A group of 15 right-handed participants (9 women and 6 males) aged between 21 and 45 

years old (29 ± 6, mean ± SD) took part in the current study. Participants reported no history of 

neurological disorders and had normal or corrected-to-normal vision. All of them voluntarily 

consented to participate in the study and signed a consent form. The research protocol including all 

the interventions of this study (C08-45/C14-17) was sponsored by the INSERM (Institut National de 

la Santé et la Recherche Médicale) and approved by an Institutional Review Board, the Comité de 

Protection des Personnes (CPP), Ile de France V. 

 

Conscious visual detection paradigm 

Similar tasks have been employed in prior publications by our research group (see Chanes et 

al., 2013, 2015; Quentin et al., 2015; Vernet et al., 2019). The presentation of visual stimuli was 

controlled by an in-house MATLAB 2012b (Mathworks) script using the Psychotoolbox extensions 

(Brainard, 1997) and synchronized with the delivery of the TMS pulses (see Fig. 1A for a schematic 

representation of the sequence of events during a trial). Participants were seated with their eye’s 

canthi positioned 57 cm away from the center of a computer screen. Trials started with a fixation 

screen that displayed a central fixation cross (size 0.5x0.5o) and a right and left rectangular 

placeholders (6.0 x 5.5o, drawn 8.5° away from the center of the screen) indicating the potential 

location of a visual target later in the trial. After an interval randomly jittered between 1000 and 1500 

ms, the fixation cross became slightly larger (size 0.7x0.7°) during 66 ms to alert participants that 
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the target would soon appear on the screen. Following an inter-stimulus-interval of 233 ms, a vertical 

low-contrast Gabor stimulus (0.5o/cycle sinusoidal spatial frequency, 0.6o exponential standard 

deviation) could appear for 33 ms in the center of one of the two placeholders with equal probability 

(40% of trials with left target, 40% of trials with right target, 20% catch trials with no target). During 

a calibration block prior to the beginning of the experimental session, Gabor contrast was adjusted 

for each participant to reach 50% detection rates. 

Participants were presented with a response screen 1000 ms after the Gabor target offset. 

They were asked to perform a detection task in which they had to report whether they saw a target 

and, in the case of an affirmative response, where had the target appeared (left/right of the fixation 

cross). The response screen consisted in two arrow-like signs (“>>>” and “<<<”) displayed above 

and below the central fixation cross. Participants were asked to report which arrow pointed towards 

the placeholder (right or left) in which they saw the target. The location of the arrows (above or below 

the fixation cross) was randomized across trials, preventing participants from preparing their motor 

response prior to the onset of the response window. Participants responded with the index, middle 

and thumb fingers of their left hand by pressing the ‘d’ letter key to select the upper arrow, ‘c’ letter 

key for the lower arrow or the space bar to signal that they had not seen any target. The response of 

the participant ended the trial.  

The contrast of the visual target was adjusted to reach the individual threshold contrast for 

which each participant showed consistent 50% detection performance following a one-up/one-down 

staircase procedure. Gabor contrast and contrast steps were initially set at a level of 1 Michelson units 

of contrast and upon each reversal of response the contrast step was divided by two. Note that, 

regardless, the contrast of the target throughout the titration procedure was always kept between 1 

and 0.005 Michelson units of contrast. A consistent estimation of the 50% conscious detection 

threshold contrast was reached when, after five consecutive trials, target contrast varied by less than 

0.01 Michelson contrast units. The threshold was measured twice using this exact same procedure. 

If the two contrast thresholds differed by less than 0.01 Michelson contrast unit, the calibration block 
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was terminated and the contrast used for the rest of the experimental session was the average between 

the two thresholds. If this criterion was not fulfilled, the threshold was determined again until two 

consecutive titrations yielded contrasts that varied by less than 0.01 Michelson contrast units. During 

the calibration block, participants received only sham TMS (see below for details on the TMS 

procedure). 

Following the titration of Gabor contrast, participants underwent a training block in which 

they were given the opportunity to become familiar with stimulation by getting exposed to active 

TMS trials. The order of trials (leftward target, rightward target or catch trial with no target) and the 

stimulation condition (sham and active TMS, see below for details on the TMS procedure) was 

randomized for each sub-block of 20 trials. During the training block, at the end of each sub-block 

participants received feedback about some aspects of their performance, including the percentage of 

trials in which visual fixation was broken (see below for details on the procedure for control of 

centrale gaze fixation) and the percentage of incorrectly reported target positions. Participants were 

also alerted if their false alarm rate was higher than 50 %. The training block was terminated by the 

experimenter on the basis of individual performance. Experimental blocks were identical to training 

blocks except that participants received feedback only every two sub-blocks. Following the 

presentation of feedback on the screen, participants were allowed to take a short break (~2 minutes). 

Experimental blocks consisted of 7 sub-blocks (140 trials total) and lasted approximately 20 minutes 

each. 

 

Behavioral data analyses 

 The trials of the detection task were classified into different categories according to the 

different types of participant’s responses. Trials in which a target was present and participants 

correctly reported its presence and location were classified as a ‘Hit’, whereas when such a target 

was reported as ‘unseen’ they were classified as a ‘Miss’. Catch trials in which no target was 

displayed were counted either as a ‘False Alarm’ if participants reported the presence of a target or 
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as a ‘Correct Rejection’ if this was reported as ‘unseen’. Very rarely, participants correctly reported 

the presence of a target but signaled an incorrect (right or left) location for it. These trials were 

classified as ‘Errors’ and excluded from further analyses as it became impossible to determine if 

participants had seen a target in a location where no target had been presented (akin to a ‘False Alarm’ 

trial) or simply pressed the wrong key when asked to report the target location. 

Following the Signal Detection Theory (SDT) approach, on the basis of the rate of ‘Hit’ (H) 

trials and ‘False Alarm’ (FA) trials, we extracted separate measures of target perception and late-

stage decision-making processes when delivering a response  (Green & Swets, 1966; Stanislaw & 

Todorov, 1999). First, we computed perceptual sensitivity (d’), which is a bias free measure of a 

participant’s ability to distinguish the presence of a target from noise. Second, we calculated the 

decision criterion (c) and the likelihood ratio (b) which are both measures of the response bias of 

participants. Indeed, in case of doubt, participants might be biased to be more prone to indicate they 

saw a target (liberal decision making) or, on the contrary, to be more likely to respond they did not 

see any target (conservative decision making) independently of how well they perceived it. These 

outcome measures were calculated as follows: 

 

𝑑" = 	𝜙&'(𝐻) −	𝜙&'(𝐹𝐴) 

𝑐 = 	−
1
2 1𝜙

&'(𝐻) +	𝜙&'(𝐹𝐴)3 

𝛽 = exp	 8
𝜙&'(𝐻)9 −	𝜙&'(𝐹𝐴)9

2 : 

 

Where  𝜙&' is the inverse of the normal cumulative distribution function. To avoid infinite values, a 

null rate of false alarms was corrected to '
9;

  and a rate of hit trials of 1 was corrected to 1 − '
9;

 where 

N was the total number of trials on which each rate was calculated, following a well-established 

procedure (Macmillan & Creelman, 2004). 
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On the estimated values of d’, c and b, we performed a 2x2x4 repeated measure ANOVA 

with factors Visual Field (left, right visual target), TMS Condition (active, sham) and TMS Pattern 

(rhythmic, non uniform rhythmic, random, irregular, see below for details on TMS patterns). 

 

Control of central gaze fixation  

In order to ensure reliable central fixation during the visual detection task, the position of 

both eyes was monitored with a remote eye-tracking system (Eyelink 1000, SR Research, sampling 

rate 1000 Hz) throughout the experimental session. If at any point between the onset of the alerting 

cue and the target offset, participants’ gaze was more than 2° away from the center of the fixation 

cross, the trial was aborted, labeled as incorrectly fixated and any data associated with it was excluded 

from analyses. In such cases, participants were alerted that they had violated fixation requirements 

with a message on the screen and the trial was re-randomized within the remaining trials to complete 

the sub-block and re-tested ulteriorly. 

 

Transcranial Magnetic Stimulation and neuronavigation procedures 

Transcranial stimulation was delivered with a biphasic repetitive stimulator (SuperRapid2, 

Magstim) and a standard 70 mm diameter figure-of-eight TMS coil held tangentially on the skull 

over a region overlying the left Frontal Eye Field (FEF). TMS pulses were triggered via a high 

temporal resolution multichannel synchronization device (Master 8, AMPI, temporal resolution of 1 

µsec) using TTL pulses. The position of the coil was tracked throughout the experiment with a 

neuronavigation system (Brainsight, Rogue Research). To this end, the left FEF was localized on 

individual T1-weighted MRI scans (3T Siemens MPRAGE, flip angle=9, TR=2300 ms, TE=4.18 ms, 

slice thickness=1mm) and labelled as a 5 mm radius spherical region of interest centered on Talairach 

coordinates x=-32, y=-2, z=46 (Paus, 1996) (Fig. 1B). The TMS coil was angled tangentially to the 

skull and held in a position ensuring the shortest Euclidian distance between the center of the TMS 

coil and the cortical region of interest. The coil handle was oriented ~parallel to the central sulcus, at 
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a ~45° angle in a rostral to caudal and lateral to medial direction. Accurate coil positioning was 

monitored at all times during the experiment by an individual T1-3D MRI-based neuronavigation 

system which allowed investigators to keep the TMS coil within a ±3 mm radius from the center of 

the targeted cortical site, with identical angulation and tilting, throughout blocks and experimental 

sessions. 

 Sham stimulation was delivered through a round audio speaker (Mobi Wavemaster) attached 

to the upper flat surface of the TMS coil. During the simulation of a TMS pulse (i.e., the delivery of 

a sham TMS pulse), the speaker played a recording with the same acoustic properties as the 

characteristic clicking noise heard concomitantly with the delivery of an active magnetic pulse 

through a TMS coil. The audio file of a TMS pulse was generated by averaging the individual sound 

waveform of 100 single individual TMS pulse recordings (Aiwa CM-S32 stereo microphone). The 

envelope of the average waveform was then adjusted to emphasize high amplitude spikes at the 

beginning of the pulse so that, once replayed through our speaker, the sound became 

indistinguishable from the loud click produced by the TMS coil. The volume of the speaker was also 

adjusted to reproduce the same volume as an active TMS pulse. The precise onset timing of sham 

auditory pulses was handled by an in-house MATLAB script using the Psychotoolbox library 

extensions (Brainard, 1997), which was in control of the presentation of the events of the visual 

detection paradigm performed along. 

Four different TMS patterns (Fig. 1C), all comprised of 4 TMS pulses spanning a window of 

100 ms (between the onset of the 1st pulse and the 4th pulse) were delivered in our experiment: a 

rhythmic pattern with pulses regularly spaced in time to be delivered at a frequency of 30 Hz (i.e. 

with a fixed inter-pulse-interval of ~33 ms) and designed to entrain high-beta cortical oscillations 

(Stengel et al., 2021; Vernet et al., 2019), and 3 non frequency-specific patterns, referred to as non-

uniform rhythmic, random and irregular patterns, tailored to inject different levels of neural noise to 

neuronal assemblies hosted in the left FEF cortical region. 
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In the non frequency-specific TMS patterns, the timing of the 1st and 4th (hence last) pulse of 

each burst were kept identical to those of the rhythmic pattern. For the remaining patterns, the onset 

time of the two middle pulses (2nd and 3rd pulses) was shifted with regards to onset times in the 

rhythmic 30 Hz pattern to generate unequal inter-pulse intervals. In the non-uniform rhythmic pattern, 

the two middle pulses where anticipated and delayed by 9 ms, respectively. In the random pattern, 

the onset time of the 2nd and 3rd pulse was pseudo-randomly jittered to fall before or after their 

regular onset times in pure 30 Hz rhythmic patterns. Such jittering was constrained in two ways: first, 

in order to provide enough time for the TMS machine capacitors to recharge in-between pulses at the 

fixed TMS intensity employed in our experiments (see below for further details) a minimal inter-

pulse interval of 20 ms had to be respected. Second, to ensure random patterns would never produce 

a perfectly regular 30 Hz frequency, the two middle pulses of each 4 pulse-burst were shifted at least 

3 ms away from their onset time in the 30 Hz rhythmic pattern. Lastly, in irregular TMS patterns, 

the onset time of the two middle pulses (2nd and 3rd pulses) was set randomly within a 100 ms total 

burst duration, and respected the same limitations imposed to random patterns plus an additional 

constraint: the 3 inter-pulse intervals had to all have different durations. The onset times of the two 

middle pulses in irregular patterns were fixed for all trials. The rhythmic, non-uniform rhythmic and 

random patterns described above had been used in prior studies by our team (Chanes et al., 2013, 

2015; Quentin et al., 2015; Stengel et al., 2021; Vernet et al., 2019). For all TMS patterns, the last 

pulse was delivered 33 ms before the onset of the visual target on the computer screen. 

Each TMS pattern was tested in separate experimental blocks in which active and sham trials 

were randomly interleaved (50% active and 50% sham TMS trials). Participants performed 2 

experimental sessions on two separate days (with an interval of a least 72 hours and a maximum of 

7 days between sessions) to avoid carry-over effects and accrue sufficient EEG datasets for each 

TMS condition. Experimental procedures were identical in both sessions. Following a titration 

procedure for target contrast and after a block of task familiarization and training, participants carried 

out 4 experimental blocks in which each of the four TMS patterns presented above was tested. The 
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order of TMS blocks for the two experimental sessions was counterbalanced across participants to 

avoid order-biases effects. 

TMS stimulation intensity was fixed for all participants at a level of 55% maximal simulator 

output. Note that intensity was not adapted to each individual’s resting motor threshold (RMT). This 

is because motor cortex excitability was shown to predict very poorly excitability estimates in other 

cortical areas (Kähkönen et al. 2005; Stewart et al. 2001). Additionally, this same TMS intensity 

level (corrected to compensate EEG electrode thickness) has induced, at the group level, signs of 

local entrainment, increases of inter-regional connectivity and impacted visual perception outcomes 

(Stengel et al., 2021; Vernet et al., 2019). In any case, to allow across-study comparisons, at the end 

of each session the individual RMT of hand motor responses were determined on the abductor 

pollicis brevis (APB) muscle of each participant for the left primary motor (M1) cortex, and 

documented as the TMS intensity yielding right thumb activation in about 50% of stimulation 

attempts (Rossini et al., 2015). The average RMT of our cohort of participants was 66 ± 9% (mean 

± SD) of the maximum stimulator output and our fixed TMS intensity translated into a stimulation 

intensity of 83 ± 12% (mean ± SD) of their individual motor thresholds. 

 

EEG recordings 

EEG signals were recorded concurrently with stimulation pulses by means of 60 scalp 

electrodes connected to two 32-channel long-range TMS compatible amplifiers (BrainAmp DC and 

BrainVision Recording Software, BrainProducts GmbH). TMS-compatible passive EEG electrodes 

(3 mm thick) mounted on a cap centered at the head vertex (Cz) were located on specific scalp sites 

according to the international 10-20 EEG system. A taped electrode on the tip of the nose served as 

a reference, whereas a ground lead was placed on the right earlobe. EOG signals were recorded from 

4 additional electrodes positioned on the left and right temples and above and below the left eye. 

Electrode impedances were monitored and kept below 5 kOhm throughout all sessions. EEG signals 

were digitized at a sampling rate of 5 kHz. 
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EEG artifact removal procedure 

EEG signals were analyzed with the FieldTrip toolbox (Oostenveld et al., 2011) running on 

MATLAB R2017b. EEG and EOG data were first epoched in a [-2 2] seconds window centered (t=0) 

on the onset time of the visual target. EEG traces from trials in which central fixation requirements 

were violated were automatically excluded. Additionally, the onset time of TTL trigger signals 

commanding the delivery of TMS pulses were automatically verified for each trial and rare events 

for which onset time proved temporally imprecise were excluded. Following visual inspection of all 

trials, those containing blinks and muscle artifacts were also eliminated from further analyses. After 

exclusions, an average number of 121 ± 14 (mean ± SD) viable trials per each TMS condition was 

retained for further steps 

Expectedly, the electromagnetic field generated by brief TMS pulses induced a high 

amplitude electrical artifact on our EEG signals which had to be removed from our datasets. To this 

end, data across a [-4, +12] ms window centered on the onset of each TMS pulse was removed and 

‘blank’ EEG epochs were filled with a shape-preserving piecewise cubic interpolation. To avoid any 

biases, the exact same artifact removal and interpolation procedure was applied to the EEG epochs 

of sham TMS trials. Once artifacts were removed, EEG signals were down-sampled to 500 Hz. Trials 

from all experimental conditions (i.e., active/sham trials for each of the 4 TMS tested patterns types) 

within each recording session were collected into two separate datasets. Then, two separate 

Independent Component Analyses (ICAs) corresponding to each experimental session were 

performed on the data. Such analysis did not artificially introduce any biases since trials gathered 

across all experimental conditions (4 TMS sham or active patterns) underwent the same ICA. Artefact 

components were identified based on the guidelines by Rogasch et al. (2014). This procedure enabled 

the removal of residual TMS artifacts lasting longer than 12 ms, which remained in EEG epochs after 

artifact cleaning and data interpolation processing steps. Components associated to eye movements, 
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electrode malfunction and 50 Hz power line artifacts were also eliminated. An average of 9 ± 3 (mean 

± SD) components (out of 60 total components) were removed from each individual dataset.  

Once the signal was calculated back to the electrode level, cleaned EEG datasets were 

separated into the following eight TMS experimental conditions: active/sham rhythmic TMS, 

active/sham non-uniform rhythmic TMS, active/sham random TMS and active/sham irregular TMS. 

Datasets evaluating the same TMS experimental condition from the two experimental sessions were 

combined for a common analysis. 

 

EEG outcome measures and analyses 

EEG signals were transformed into the time-frequency domain with a 3-cycle Morlet wavelet 

analysis computed on a [-500 +500] ms window (centered on visual target onset, t=0) for frequencies 

between 6 and 50 Hz. In the time-frequency domain, we calculated measures of Power and Inter-

Trial Coherence (ITC). ITC quantifies the level of oscillatory phase alignment across trials by 

averaging signal phase at each time-frequency point over all trials. Power was expressed in decibels 

(dB) relative to a baseline period of 2 oscillation cycles prior to the central alerting cue onset (i.e., 

the central cross becoming larger and preceding visual target onset by 233 ms). 

First, we focused our analysis on a frequency band ([25 35] Hz) and time window of interest 

([-133 0], t=0 visual target onset) and calculated the topographies for power and ITC across all the 

electrodes of our EEG grid. The frequency band of interest was centered on the 30 Hz frequency of 

our rhythmic TMS pattern and the time period of analyses included the 100 ms length of our 4 pulse 

TMS bursts. Second, we concentrated our analysis on a group of electrodes of interest (F1, F3, FC1, 

FC3 according to the 10-20 international EEG system) and calculated power and ITC over the 

complete time-frequency space. These specific scalp electrodes were selected since they were the 

closest to the center of the TMS coil targeting the left FEF. 

Next, we aimed at evaluating the level of ‘noise’ of an EEG signal, a measure which depends 

on the level of predictability of the signal. Indeed, a completely regular and predictable signal, such 
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as for example, a pure sinusoidal oscillation, has null ‘noise’ levels. A signal with several embedded 

frequencies, hence more heterogeneous and with broader band power spectrum, is more irregular or, 

in other words, more unpredictable and ultimately ‘noisier’ than the former. For instance, white noise, 

which is a completely random signal, has a flat power spectrum (i.e., equal contribution of all 

frequency bands) is totally unpredictable and considered very ‘noisy’. 

Three main measures were used in the current study to estimate the level of internal neural 

‘noise’ present in brain activity according to EEG signals recorded under the influence of our four 

different TMS stimulation patterns: Power peak-width, Sample Entropy (SE) and Multi-Scale 

Entropy (MSE) (Fig. 2).  

In the first of our approaches, we calculated the peak-width of the frequency band of 

oscillations enhanced during TMS (Fig. 2A). Such measure, which informs on the heterogeneity of 

the signals or, in other words, the variety of oscillation frequencies carried by EEG signals, was 

employed as a proxy of ‘noise’ (hence ‘unpredictability’). Accordingly, the ‘nosier’ a signal, the less 

frequency-tuned, the broader peak-width and vice-versa. To this end, we averaged the power 

spectrum over frequencies [6 45] Hz across the stimulation time window ([-133 0] ms, between the 

1st pulse of each burst and visual target onset, t=0). We then detected local maxima in the average 

power spectrum. The width of each local maximum, or peak, in the signal was calculated at half 

prominence. The prominence or height of a peak was determined relative to the lowest local 

minimum between a given peak and the next peak higher than the current one (Fig. 2A, bottom 

panel). 

Given the low signal-to-noise ratio of scalp EEG signals, reliable peaks could not be identified 

on individual datasets (Kiesel et al., 2008; Ulrich & Miller, 2001). Therefore, we calculated the 

average power spectrum during TMS stimulation on grand averages across participants. In order to 

estimate the variance in the measure of peak-width for our group of participants we applied the 

jackknife procedure, which, for a sample of N participants, computes for each i (i=1, …, N) the grand 

average signal over a subsample of N-1 participants by omitting participant i in the dataset. Peaks in 
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the power spectrum and their width were estimated for each of the N subsampled grand averages. 

Since such measures are based on grand averages over a pool of participants and thus vary at each 

iteration only by a single individual, estimations made with this method have a very low error 

variance, therefore the standard error has to be corrected according to the following formula:  

 

𝑠. 𝑒. = 	√𝑁 − 1	× 	𝑠𝑡𝑑 

 

Where s.e. is the corrected standard error and std corresponds to the standard deviation of the 

jackknife subsampled measures. To test for significance, t- and F-statistics also had to be corrected 

for the reduced error variance in the following way (Ulrich & Miller, 2001): 

 

𝐹CDEE = 𝐹 (𝑁 − 1)9⁄  

𝑡CDEE = 𝑡 (𝑁 − 1)⁄  

 

 An identical analysis was conducted on ITC peak-width (see Supplementary Results). 

In our second approach, we computed, in the time-domain, the Sample Entropy (SE), a direct 

measure of entropy which is a metric of disorder of the contents of a system, and Multi-Scale Entropy 

(MSE), which is based on the former but directly evaluates signal complexity (Costa et al., 2002, 

2005). Indeed, a measure of ‘complexity’ differs from a measure of ‘entropy’ or ‘noise’ in that neither 

a completely regular or predictable signal, such as a pure oscillation (with null or very low entropy), 

nor, paradoxically, a completely random and unpredictable signal (with maximal entropy levels) such 

as white noise, exhibit high complexity. Indeed, both signals contain very poor information because 

they are governed by very simple laws. 

Sample Entropy (SE) identifies repeating patterns within a signal. Two time points are 

considered similar if they are within a distance r of each other and thus, for any pattern of m 

consecutive time points [u1, u2, …, um] in the signal another sequence [v1, v2, …, vm] is considered a 
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repetition of the first pattern if ½v1 – u1½ ≤ r, ½v2 – u2½ ≤ r, …,½vm – um½ ≤ r respectively. In other 

words, a sequence of consecutive time points is considered a repetition of a pattern if each time-point 

in the sequence is within a distance r from the corresponding time point in the pattern (Fig. 2B, 

sequences marked in red are repeated). The search for repeating patterns in the signal is done for each 

sequence of m consecutive time points in the data (excluding self-matches) and yields the probability 

Um(r) that two sequences of m time points are within a distance r of each other. The same calculation 

can be performed for patterns of m+1 time points.  Sample Entropy (SE) is then defined as: 

 

𝑆𝐸(𝑚, 𝑟) = 	− ln
𝑈OP'(𝑟)
𝑈O(𝑟)  

 

This measure represents the conditional probability that, knowing that a pattern is repeated for m 

consecutive time points, it will also be repeated for m+1 time points. Essentially, SE evaluates the 

probability that the m+1 time point can be predicted when following a known pattern of m time 

points. The lower this probability, the less predictable a signal is and the higher its entropy.  

 Signal complexity is evaluated by repeating the measure of Sample Entropy at several time 

scales of a signal. The signal at time scale t is the original signal averaged inside non-overlapping 

time windows of length t (Fig. 2C, upper panel). In this context, signal complexity, as evaluated by 

Multi-Scale Entropy, is represented as the evolution of the Sample Entropy across time scales. 

Accordingly, a very predictable signal will have low Sample Entropy values at all scales. 

Additionally, a signal such as white noise, that is very unpredictable, will have very high Sample 

Entropy at low time scales however, when long stretches of data are averaged for higher time scales, 

the random signal that is white noise will average to a constant signal at 0 and will exhibit very low 

values of Sample Entropy. Only complex time series that exhibit, information-wise, a very rich and 

unpredictable signal over varied temporal scales will show high Sample Entropy values at all time 

scales. Therefore, a signal that exhibits higher Sample Entropy values at a majority of time scales 

compared to another signal can be considered relatively more complex (Costa et al., 2005).  
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In our study, to reduce the dimensionality of the Multi-Scale Entropy value and compare 

signal complexity estimates over the whole EEG electrode array across different TMS patterns, we 

calculated the area under the profile of Sample Entropy values along time-scales. We accepted the 

assumption that a higher area under the Sample Entropy profile of EEG signals reflected higher 

Sample Entropy at a majority of time scales and therefore indicated a higher degree of signal 

complexity. We referred to the area under the Sample Entropy profile as the Multi-Scale Entropy 

(MSE) measure (Fig. 2C, lower panel). 

We calculated Sample Entropy and Multi-Scale Entropy from EEG epochs during the 

stimulation time window [-133 0] ms (between the 1st TMS pulse and visual target onset, t=0) for 

each EEG grid electrode. Considering that values of Sample Entropy at each time scale are more 

reliable for longer signals we computed Multi-Scale Entropy on EEG epochs recorded at 5 kHz 

sampling rate, hence with the highest number of available data points. We set Sample Entropy 

parameters at m=2 and r as 15% of the signal standard deviation (Costa et al., 2005). Since EEG 

epochs associated to TMS stimulation were too short to yield reliable values of Sample Entropy at 

the higher scales (non-finite values of Sample Entropy), analyses presented in the current study 

included up to 9 scales (even if up to 14 scales were calculated).  

 

EEG statistical analyses 

For both topographical and time-frequency maps of power, ITC and MSE, we performed 

comparisons between active and sham trials for each TMS patterns as well as direct two-by-two 

comparisons between active trials across the 4 TMS pattern types: rhythmic, non-uniform rhythmic, 

random and irregular. Each pair was compared with two-tailed paired Student’s t-tests. Comparisons 

between topographical maps were performed for each EEG electrode whereas those between time-

frequency maps were calculated for each time-frequency point within [6 45] Hz and across a time 

window of [-300 200] ms (visual target onset t=0). Cluster-based permutation tests, used to correct 

for multiple comparisons, were performed on clusters of neighboring electrodes or time-frequency 
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points that exceeded the significance threshold (alpha = 0.01) in paired t-tests and assigned a statistic 

which was the sum of T-statistics of each point of the cluster.  

A non-parametric permutation test (10000 permutations, Montecarlo sampling method) was 

applied to cluster statistics. The statistical analyses displayed in figures 3, 4, 5, 6 and 8 show clusters 

that exceeded the threshold for significance (alpha=0.05) for the two-sided permutation test. Full 

details on the statistical results (including cluster extents, T-statistic and p-value) are provided in the 

Supplementary Materials (see Tables S1, S2, S3, S4 and S5). Any effect observed on any EEG signal 

is likely to last over several time points and spread over adjacent electrodes, hence cluster-based 

permutations is a highly sensitive method to correct for multiple comparisons in this type of data 

because it is adapted to a high degree of correlation in time and space (Maris & Oostenveld, 2007). 

However, there is currently no consensus on how to apply cluster-based permutations to interaction 

effects for ANOVA analyses (Edgington & Onghena, 2007; Suckling & Bullmore, 2004), therefore 

pairwise comparisons were performed between TMS experimental conditions. 

Statistical analyses on the peak-width for power increases between our 4 active TMS patterns 

were carried out with a one-way repeated measures ANOVA with factor TMS pattern (rhythmic, 

random and irregular). The non-uniform rhythmic pattern had to be excluded from such analysis 

because its power spectrum exhibited two frequency peaks and therefore could not be fairly 

compared in terms of level of EEG ‘noise’ with the remaining 3 patterns which featured a single 

frequency peak in their power spectrum. 
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Results 

 

Impact of non frequency-specific TMS patterns on high-beta oscillations 

We first tested the impact of 30 Hz rhythmic and the three non frequency-specific TMS 

patterns (non-uniform rhythmic, random and irregular) on highly predictable and regular high-beta 

oscillations. To this end, we examined modulations of high-beta power ([25 35] Hz) for all scalp 

electrodes during the stimulation window ([-133 0] ms centered on target onset, t=0) (Fig. 3).  

Our analyses revealed that, as expected, active stimulation with 30 Hz patterns significantly 

increased high-beta power compared to sham stimulation. Surprisingly however, the three active non 

frequency-specific bursts also showed significant increases of high-beta power, even if they did not 

contain 30 Hz motifs embedded in their temporal structure (Fig. 3A) Moreover, direct two-by-two 

comparisons of active TMS conditions failed to reveal significant differences in high-beta power 

during stimulation between rhythmic, non-uniform rhythmic, random and irregular active TMS 

patterns, suggesting that all four TMS patterns did not differ with regards to their ability to entrain 

30 Hz oscillations (Fig. 3B). See supplementary table S1 for full details on the statistical results for 

all comparisons. 

We also analyzed the degree of phase-locking for high-beta activity during stimulation by 

calculating inter-trial coherence (ITC) at this specific frequency band (25-35Hz). As reported above 

for oscillation power, a comparison between active and sham TMS patterns revealed significant 

increases of high-beta phase-locking for all EEG grid electrodes during the 30 Hz rhythmic and also 

for the three non frequency-specific patterns tested in our study (Fig. 4A). However, this time, direct 

comparisons between TMS patterns showed that not all patterns demonstrated statistically equivalent 

effects on ITC. Instead, the random pattern showed significantly lower high-beta ITC than active 30 

Hz rhythmic, non-uniform rhythmic and irregular bursts. Additionally, two isolated grid electrodes 

(FCz and F2) displayed significantly higher ITC levels of for active irregular patterns compared to 
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the active 30 Hz rhythmic condition (Fig. 4B). See supplementary table S2 for full details on the 

statistical outcomes for all comparisons. 

Taken together, these analyses suggest that the non frequency-specific TMS patterns, 

designed not to contain high-beta rhythms in their temporal structure were all able to increase high-

beta power and, for a majority of stimulation conditions, also high-beta ITC as strongly as a pure 30 

Hz rhythmic TMS stimulation (specifically designed to entrain high-beta cortical oscillations) did.  

 

Frequency-specificity of oscillatory entrainment by TMS patterns 

We then explored the hypothesis that the three non frequency-specific TMS patterns (non-

uniform rhythmic, random and irregular) increased oscillations across a broader frequency band than 

30 Hz rhythmic TMS patterns. This outcome would contribute to indirectly substantiate their ability 

to entrain less predictable and more complex, hence more ‘noisy’, internal neural activity in left 

frontal systems. To this end, for a group of selected leads (scalp electrodes F1, F3, FC1 and FC3) 

located in the vicinity of the targeted left FEF region, we examined modulations of power and ITC 

over a broader frequency range ([6 45] Hz). Additionally, we assessed power and ITC over a longer 

time window ([-500 500] ms centered on visual target onset) to test if oscillatory modulations were 

restricted to the time period of stimulation. 

Comparisons between active TMS patterns and their associated sham conditions revealed, 

during the delivery of 30 Hz rhythmic patterns and also for the three non frequency-specific bursts, 

increased oscillation power (Fig. 5A) and ITC (Fig. 6A) in a broad frequency band, which was not 

strictly limited to 30 Hz. Direct two-by-two comparison of oscillation power during active 

stimulation showed no significant differences in the frequency bands modulated by the 3 non 

frequency-specific patterns compared to the rhythmic pattern (Fig. 5B, first row, signal between the 

two vertical red dotted lines indicating the stimulation window). However, direct two-by-two 

comparisons of ITC showed that compared to the active rhythmic TMS condition, active irregular 

TMS increased phase-locking across a band extending to the low-beta range (12-20 Hz) (Fig. 6B). 
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We also noticed that, similarly to what was shown on the topography (Fig. 4B), active random bursts 

increased high-beta (~30 Hz) phase-locking to a lesser degree than rhythmic, non-uniform rhythmic 

or irregular TMS patterns (Fig. 6B). For full details on the statistical outcomes reported in this 

section refer to supplementary tables S3 and S4. 

In order to specifically estimate the heterogeneity of the entrained oscillations, which we used 

as a proxy for changes in the level of internal neural noise, we quantified the width of the frequency 

band showing power increases caused by TMS stimulation. A jackknife procedure was used to 

identify peaks on the grand-average power spectrum over the whole stimulation window ([-133 0] 

ms, t=0 ms corresponding to visual target onset) and the width of these peaks was extracted (Fig. 

7A). Notice that for active rhythmic, random and irregular patterns, a single high-beta frequency 

peak (at ~28 Hz, ~27 Hz and ~28 Hz, respectively) was identified in the power spectrum. 

Nonetheless, for non-uniform rhythmic TMS, in addition to the peak reliably identified at a high-beta 

frequency (~31 Hz), 12 out of 15 iterations of the jackknife procedure also revealed a second peak, 

this time in the low-beta range (~15 Hz). 

Peak-width values for power increases were compared with a one-way ANOVA. However, 

for the non-uniform rhythmic TMS condition, the presence of two separate peaks prevented us from 

estimating a single value of power peak-width. Therefore, we judged that this TMS condition could 

not be compared directly to the other three featuring power peaks at a single frequency band and, 

accordingly, it was not included in the ANOVA. Statistical results showed significant differences 

across active rhythmic, random and irregular stimulation patterns (F(2,41) =3.309, MSE=0.13, 

p<0.05, after correction for reduced error variance from the jackknife procedure). Planned two-tailed 

paired Student t-test showed that active irregular TMS increased oscillation power in a significantly 

broader band than 30 Hz rhythmic (T(14) = 2.68, p<0.01, corrected for reduced error variance by 

jackknife procedure) or random TMS bursts (T(14) = 2.016, p<0.05, corrected for reduced error 

variance by jackknife procedure) (Fig. 7B). An identical analysis performed on peak-width for ITC 

increases during stimulation yielded similar statistical results (see Supplementary Materials, Fig. S1). 
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This analysis suggests that non frequency-specific TMS patterns differed from uniform 

rhythmic stimulation with regards to the width of the frequency band they were able to modulate. 

Non frequency-specific TMS patterns increased cortical oscillations amplitude in a wider beta band 

or in two distinct low-beta and high-beta frequency bands.  

 

Modulation of signal complexity by non frequency-specific TMS activity 

To confirm our conclusions on the modulation of internal neural noise levels contained in 

EEG signals by non frequency-specific TMS patterns, we turned to two more direct measures of 

‘noise’ based this time on an assessment of the predictability and regularity of EEG signals during 

stimulation: Sample Entropy (SE) and Multi-Scale Entropy (MSE). Multi-Scale Entropy specifically 

estimates the complexity of a signal by calculating Sample Entropy at several time scales in which 

the signal can be decomposed. Both measures were computed in the time-domain on EEG epochs 

associated to the TMS delivery window ([-133 0] ms, t=0 visual target onset) for all grid electrodes.  

The level of Sample Entropy raised gradually across time-scales (note steeper increases for 

active compared to sham TMS patterns) (Fig. 8A, here illustrated for electrodes F1, F3, FC1, FC3, 

located directly under the stimulation coil, but the same gradual increase is observed for all 

electrodes). This pattern of across-scale Sample Entropy characterizes a ‘complex’ signal which is 

irregular and non-predictable over multiple time-scales (Costa et al., 2002, 2005; Zhang, 1991). In 

order to reduce the dimensionality of our measure, for subsequent analyses we calculated for each 

participant, each stimulation condition and each electrode the area under the across-scale Sample 

Entropy profile and used this measure as an across-scale integrated estimate of Multi-Scale Entropy 

which we represented as EEG topographic maps (Fig. 8B). 

Comparisons between active vs. sham trials revealed that non frequency-specific TMS 

patterns increased Multiple Sample Entropy in clusters of EEG contacts located over fronto-parietal 

regions. More specifically, active random stimulation increased Multi-Scale Entropy in a small 

cluster of right frontal electrodes, whereas non-uniform rhythmic and irregular active stimulation 
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showed a more widespread topography extending to parietal electrodes. Active non-uniform rhythmic 

stimulation over the left FEF increased Multi-Scale Entropy in right frontal and bilateral parietal 

electrodes. Conversely, active irregular stimulation increased Multi-Scale Entropy over bilateral 

frontal and right parietal electrodes. Finally, in contrast with non frequency-specific patterns, 30 Hz 

rhythmic stimulation significantly increased Multi-Scale Entropy in miscellaneous electrodes located 

along the edge of the EEG grid, but failed to identify significant clusters of more than 3 electrodes.  

These results suggest differences between 30 Hz rhythmic and the three non frequency-

specific TMS patterns with regards to the modulation of Multi-Scale Entropy. However, direct two-

by-two comparisons failed to show any significant differences in Multi-Scale Entropy between any 

of the four active TMS patterns probed in our study (Fig. 8C). See supplementary table S5 for full 

details on the statistical comparisons reported in Figures 8B and C. 

 

Impact on visual detection performance 

As in prior studies (Chanes et al., 2013, 2015; Vernet et al., 2019), we explored the impact of 

30 Hz rhythmic and the three non frequency-specific TMS conditions on conscious visual detection 

performance. To this end, we estimated potential changes of perceptual sensitivity (d’) across 

stimulation pattern types. We also explored shifts in response bias via decision criterion (c) and 

likelihood ratio (b) measures, both influenced by late perceptual decision-making processes.  

Repeated-measures 2x2x4 ANOVAs with factors Visual Field (left, right), TMS Condition 

(active, sham) and TMS Pattern (rhythmic, non-uniform rhythmic, random, irregular) for perceptual 

sensitivity (d’) or likelihood ratio (b) did not yield any main effect or significant interaction (p>0.05). 

Our analyses, revealed however, a main effect of TMS condition on decision criterion 

(F(1,223)=9.154, MSE=0.136, p<0.05) suggesting that compared to sham TMS patterns, active TMS 

stimulation lowered decision criteria, hence made participants provide more liberal detection 

responses (i.e. be more likely to respond that a target was present on the screen in case of doubt). No 

main effect of TMS Pattern, nor interactions between TMS Condition and TMS Pattern was 
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significant for decision criterion c (p>0.7), indicating that decision criterion remained unmodulated 

by the temporal distribution of the pulses present in any type of active TMS bursts. 

 

Discussion 

We here aimed to investigate using non-invasive brain stimulation the modulation of internal 

neural noise in a left frontal region of the human brain, the left FEF, and explore potential top-down 

contribution of this cortical area to neurophysiological coding processes subtending the modulation 

of conscious visual perception. We did so by assessing the impact of episodic non frequency-specific 

TMS bursts on scalp EEG signals during a lateralized visual detection task for near-threshold stimuli. 

Our study extends to the neurophysiological domain prior behavioral evidence showing unexpected 

causal contributions of non frequency-specific left frontal activity to increases of visual sensitivity, 

which remained to be further validated and characterized by mean of combined TMS-EEG recordings 

(Chanes et al., 2015).  

By calculating conventional EEG estimates of oscillation amplitude (power) and phase 

locking (ITC), we here showed that, surprisingly, none of the three non frequency-specific TMS 

patterns prevented a build-up of rhythmic cortical activity in the hight-beta range. In fact, rather 

paradoxically, the three stimulation patterns increased the power and aligned the phase of high-beta 

oscillations as much as 30 Hz rhythmic patterns (Thut et al., 2011b; Vernet et al., 2019). However, 

analyses also revealed that all three non frequency-specific patterns increased the power of left frontal 

oscillations across broader frequency bands, not necessarily restricted to ~30 Hz. Non uniform 

rhythmic bursts induced a bimodal distribution of power in the high- and low-beta frequency bands, 

whereas, compared to rhythmic patterns, irregular bursts significantly increased phase locking 

within a wider band extending towards the low-beta range. Finally, a specific measure sensitive to 

levels of internal neural noise in EEG signals, Multi-Scale Entropy, suggested that the three types of 

non frequency-specific TMS patterns induced brain activity of higher complexity than rhythmic high-

beta TMS bursts. Taken together, these outcomes suggest that non frequency-specific TMS patterns 
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generate more heterogeneous broadband activity, and less predictable and more complex neural 

signals than a pure high-beta 30 Hz frequency.  

Short bursts of arrhythmic or random TMS had been previously employed in multiple studies 

as control conditions to isolate the impact of frequency-specific components contained in rhythmic 

TMS bursts (Albouy et al., 2017; Chanes et al., 2013, 2015; Quentin et al., 2015; Stengel et al., 2021; 

Thut et al., 2011b; Vernet et al., 2019). However, their effect on ongoing electrophysiological signals 

and their potential cognitive contribution remained to be characterized in further detail by means of 

concurrent TMS-EEG recordings. Prior evidence has shown that the addition of optimal levels of 

peripheral noise (i.e. not too high but not too low levels of ‘dosed’ noise) to rhythmic visual stimuli 

could result in an enhancement of cortical oscillations entrained at this same frequency (Mori & Kai, 

2002; Srebro & Malladi, 1999). Hence, plausibly, the three non frequency-specific patterns tested in 

our study could have acted similarly. Indeed, pulse onset timings emulated very closely a pure 30 Hz 

frequency. However, quite minor time shifts of the two middle pulses within a 4-pulse episodic TMS 

burst were likely responsible for adding noise to an underlying high-beta rhythmic activity. 

The distribution of oscillation power across frequency bins from the power spectral density 

(PSD) analysis has been previously employed as a measure of entropy in electrophysiological signals 

(Rezek & Roberts, 1998). Frequencies distributed across a large number of frequency bins 

characterize unpredictable signals featuring higher entropy levels. This is in contrast with the 

synchronization of local oscillators at a single regular frequency during alpha or high-beta stimulation 

(Lin et al., 2021; Stengel et al., 2021; Thut et al., 2011a; Vernet et al., 2019) which gives rise to 

regular and predictable oscillating signals of very low entropy, within a single and narrow power 

peak. In this framework, EEG recordings in the present study showed that, compared to rhythmic 

bursts, the delivery of non frequency-specific TMS to the left frontal cortex resulted in higher levels 

of signal entropy, hence higher levels of neural noise. This conclusion was further strengthened by a 

second metric of neural noise, estimating changes of signal entropy over several time-scales, known 

as Multi-Scale Entropy (MSE). Higher values of Multi-Scale Entropy characterize a signal that is not 
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random but complex and rich in information at several time-scales (Costa et al., 2002, 2005; Zhang, 

1991). Accordingly, in our study, only non frequency-specific TMS patterns increased Multi-Scale 

Entropy over large clusters of scalp EEG contacts, compared to sham stimulation. Most interestingly, 

increases of signal complexity proved most significant for electrodes overlying right frontal and 

bilateral parietal regions, instead of those closest to the targeted left FEF site. The limited spatial 

resolution of scalp EEG precludes pinpointing the precise localization of the neural sources 

responsible for such effects on signal complexity. However, since the left FEF is an important node 

of a bilaterally distributed dorsal fronto-parietal network contributing to top-down attentional 

orienting (Corbetta et al., 2008), it is plausible that changes in signal complexity were enabled 

throughout this network as attentional processes occur during the time window in which TMS bursts 

were delivered, between the onset of the alerting cue and the appearance of the visual target (Gross 

et al., 2004; Kastner et al., 1999).  

To the best of our knowledge, the outcomes of the current study offer first-time evidence that 

short TMS bursts locally modulate internal neural noise levels in a cortical site manipulated 

transcranially via focal neurostimulation. Furthermore, they provide experimental support in favor 

of the ability of TMS patterns with different types of temporal irregularities to induce distinct levels 

of internal cortical noise. Such effects could be considered similar to those hypothesized for 

transcranial Random Noise Stimulation (tRNS), a current-based stimulation technology able to 

mimick white noise signals (Terney et al., 2008), which for nearly a decade has been employed to 

explore and modulate different aspects of brain function. Transcranial RNS technology operates on 

the principle that by varying the amplitude of a randomly alternating current, different levels of neural 

noise can be cortically evoked (Groen et al., 2018; Groen & Wenderoth, 2016). In spite of some 

significant advantages compared to TMS (e.g., lower cost, ease of use, high portability and possibility 

of multi-site stimulation), tRNS suffers from the same limitations as other transcranial current 

stimulation (tCS) approaches; notably its low temporal and spatial resolution and a rather weak 

electrical field magnitude (Bikson et al., 2010; Datta et al., 2012; Nitsche et al., 2008). Additionally, 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469553doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469553
http://creativecommons.org/licenses/by/4.0/


 -28- 

concurrent tCS-EEG recordings remain very challenging and effective cleaning methods to remove 

electrical artifact generated by scalp-delivered electrical currents still rather controversial (Noury et 

al., 2016; Noury & Siegel, 2018). Consequently, compelling EEG evidence confirming the ability of 

tRNS to manipulate internal noise in ongoing neural signals is yet to be reported. In this scenario, the 

ability of non frequency-specific TMS bursts to operate focally and to induce time-circumscribed 

effects on EEG signals impacting specific behaviors holds particular promise to investigate coding 

strategies based on the generation and modulation of internal neural noise.   

The Stochastic Resonance (SR) theory, presented decades ago, provides an insightful 

framework in which to further develop a mechanistic hypothesis for the TMS-EEG outcomes here 

reported. This body of evidence poses that the injection of optimal levels of noise in non-linear 

systems can boost the level of information carried by a signal (see Moss et al., 2004 for a review) 

and hence improve signal processing. Providing experimental support to this explanation, facilitatory 

effects of noise have been demonstrated at multiple levels of the nervous system. For example, the 

external addition of noise has shown to improve signal transduction through membrane ions channels 

(Bezrukov & Vodyanoy, 1995) and single cell responses to sensory stimuli (Collins et al., 1996; 

Cordo et al., 1996; Douglass et al., 1993; Jaramillo & Wiesenfeld, 1998). Moreover, in cortical 

regions, the episodic addition of stochastic noise to weak peripheral sensory stimuli increased evoked 

responses recorded by EEG (Srebro & Malladi, 1999) and enhanced cortical activity at the frequency 

in which such stimuli were delivered (Manjarrez et al., 2002; Mori & Kai, 2002). Lastly, at the 

behavioral level, the addition of noise to ongoing cortical activity facilitated the detection of weak 

sensory stimuli (Groen & Wenderoth, 2016; Iliopoulos et al., 2014; Kitajo et al., 2003; Manjarrez et 

al., 2007) and led to improvements in coding of higher cognitive processes such as decision-making 

or memory (Groen et al., 2018; Usher & Feingold, 2000). 

 Although our TMS-EEG measures showed an impact of stimulation on internal noise levels, 

we failed to replicate prior improvements of visual sensitivity driven by two of our three non 

frequency-specific TMS bursts (non-uniform rhythmic and random) delivered to the left FEF (Chanes 
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et al., 2015). Several reasons could account for this outcome. First, detection improvements for visual 

stimuli with the addition of stochastic noise have been shown to follow an inverse U-shaped curve 

(Collins et al., 1996; Simonotto et al., 1997). Accordingly, the addition of proper levels of noise 

drives detection improvements, whereas quantities slightly below or above have either no effect or a 

detrimental impact on neural signals, and hence may fail to significantly modulate behavioral 

performance. Most importantly, prior literature strongly suggests that the optimal levels of external 

noise to drive behavioral improvements vary substantially across individuals (Iliopoulos et al., 2014; 

Kitajo et al., 2003), and that the presence of high levels of ongoing internal noise may weaken 

facilitatory phenomena tied to Stochastic Resonance (Aihara et al., 2008).  On this basis, we cannot 

rule out the possibility that fixed patterns of noise carried by some of the tested non frequency-

specific TMS patterns (non-uniform rhythmic, irregular and random) might have been either too low 

or too high to improve visual perception in individual participants, due to differences in their 

individual level of ongoing internal noise. Moreover, even if noise was induced in a range susceptible 

to engage behavioral improvement, inter-individual variability in the required levels of optimal noise 

could have extended the facilitatory effect to some or all of our three non frequency-specific TMS 

patterns, cancelling off statistical differences between them at the group level (Groen & Wenderoth, 

2016).  

In any case, the lack of significant pattern-specific perceptual outcomes must encourage a 

search for approaches and metrics guiding the customization of external noise levels able to boost 

internal neural signals, improve cortical processing and ultimately enhance visual performance. To 

this regard, the use of longer TMS bursts made of more than four pulses or, when behaviorally 

relevant, delivered at slower TMS frequencies could provide additional freedom to tailor the structure 

of a burst across a continuum between complete pulse onset randomness and pure and perfectly 

regular rhythmic oscillations. Higher flexibility to titrate noise levels would allow individualization 

of non frequency-specific TMS patterns, leading to lower inter-subject variability, and a more robust 

impact on visual performance at the group level. 
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Overall, in this study, we probed hypotheses concerning the impact of non frequency-specific 

TMS bursts on brain activity assessed with EEG signals (Chanes et al., 2015). We brought evidence 

that such patterns increased the bandwidth of local neural oscillations and generated signals of lower 

predictability and higher complexity in the targeted left frontal regions (FEF) and interconnected left 

and right fronto-parietal cortical sites. Together with previously published studies demonstrating a 

causal impact of short TMS patterns on visual detection performance (Chanes et al., 2013, 2015; 

Stengel et al., 2021; Vernet et al., 2019), the current results also support an asymmetry of coding 

strategies between the left and right dorsal attentional systems for the top-down modulation of 

conscious visual perception; with evidence of a causal role of high-beta oscillations in right fronto-

parietal systems (Chanes et al., 2013; Stengel et al., 2021; Vernet et al., 2019) and the contribution 

of ‘dosed’ levels of neural noise (or non-predictable activity patterns) in left hemisphere homotopic 

networks (Chanes et al., 2015, current results). This anatomical and functional model would need to 

be further validated ideally with an ad hoc experiment assessing frequency-specific and non 

frequency-specific TMS patterns on both the left and right FEF in the same population of participants, 

hence remains at this point speculative. 

Importantly, we should not fall into the pitfall of considering oscillations and neural noise as 

two segregated classes of opposite - or mutually excluding - brain activity patterns involved in 

cognitive coding. Early evidence supporting Stochastic Resonance theory reported counter-

intuitively that the addition of noise could result in unexpected increases of highly regular and 

predictable activity (Mori & Kai, 2002; Srebro & Malladi, 1999). Hence on the basis of this 

framework and considering the current data, we here aim to conceptualize both oscillations and 

neural noise as two neurophysiological strategies representing the ends of a long continuum 

contributing to common modulatory mechanisms of brain activity. Accordingly, in physiological 

conditions, both the entrainment of oscillations or the increase of internal neural noise may jointly 

contribute to enhance or suppress cerebral coding strategies enabling specific cognitive or behavioral 

events. Likewise, during non-invasive brain stimulation, external bursts of rhythmic or non 
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frequency-specific stimulation interact with ongoing patterns of internal neural noise levels within 

the targeted cortical region. Consequently, net modulatory effects depend on the balance between 

internal and externally added sources of noise. Since cortical neural noise levels have been shown to 

vary greatly between individuals, those with naturally higher cortical noise levels are less likely to 

show stochastic resonance-like improvements of stimulus detection with the addition of external 

noise (Aihara et al., 2008). We here speculate that similar effects might be at play in left and right 

dorsal fronto-parietal attention networks, which we manipulated in this and prior studies, respectively 

(Chanes et al., 2013, 2015; Stengel et al., 2021; Vernet et al., 2019). In neural networks with a higher 

level of ongoing neural noise level, the entrainment of regular cortical oscillations (i.e., signals with 

scarce noise) would most contribute to improvements of visual detection. However, in the opposite 

scenario, i.e., sites and networks with very low levels of ongoing neural noise, it is the addition of 

non-predictable activity that would be more prone to induce stochastic resonance-like improvements 

of signal detection and be most likely to affect behavioral outputs. Doubtless, the identification of 

reliable measures of ongoing internal neural noise levels throughout cortical areas which could be 

used to dose external noise levels via brain stimulation will provide a basis to further validate this 

hypothetical physiological model. 

In conclusion, using non-invasive causal approaches we here demonstrated the ability of non 

frequency-specific brain stimulation bursts to modulate levels of neural noise, measured in terms of 

frequency heterogeneity (Frequency Peak Width), predictability (Sample Entropy) and signal 

complexity (Multiscale Sample Entropy). Yet, at difference with prior observations (Chanes et al., 

2015), we were unable to show significant pattern-specific modulations of visual performance 

outcomes. This is likely due to inter-individual differences in internal noise levels, an outcome 

emphasizing the need to customize interventions according to ongoing internal noise levels. On the 

basis of our findings and their present and future implications, our study encourages further work in 

at least three different directions: first, to better characterize the role of neural noise in interaction 

with oscillatory activity in the processing of cortical signals and the coding of specific cognitive 
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events, identifying the sources and mechanisms of internal neural noise;  second, to further explore 

the ability of well-dosed transcranially-induced neural noise to facilitate visual perception outcomes 

by boosting attentional orienting networks, and further understand its underpinning mechanisms; 

third and last, to develop reliable estimates and online monitoring of ongoing levels of internal noise 

in order to enable the customization of non frequency-specific brain stimulation patterns, accounting 

for individual variability. 
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Figure 1. Visual detection task, targeted cortical region and TMS patterns. (A) Visual detection 
task performed by participants. After a period of fixation, a central cross became slightly larger to 
alert participants of an upcoming event. Then active or sham patterns of 30 Hz rhythmic or three non 
frequency-specific TMS were delivered to the left FEF prior to the presentation of a visual target (a 
near threshold 50% visibility Gabor) that could appear for a brief period of time (33 ms) at the center 
of a right or left placeholder. Participants were requested to indicate whether they did perceive a 
target or not (no/yes), and, when they consciously reported to have seen it, indicate where it appeared 
(right/left). Notice that in 20% of the trials (catch trials), no target was presented in any of the 
placeholders. (B) Coronal, axial and sagittal MRI sections from the frameless stereotaxic 
neuronavigation system showing the localization of the targeted left FEF (Talairach coordinates X=-
32, Y=-2, Z=46) on a T1-3D MRI of a representative participant. (C) Schematic representation of 
the TMS patterns employed for active and sham stimulation. 30 Hz rhythmic pattern (designed to 
entrain oscillatory activity at the input frequency) and the three non frequency-specific TMS patterns 
(non-uniform rhythmic, random and irregular 4-pulse bursts) designed to locally generate different 
levels of neural noise in the left FEF. 
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Figure 2: Outcome measures used to evaluate neural noise levels induced by TMS patterns in 
EEG signals. (A) Width and number of peaks in the power spectrum of EEG time series within a 
time window of interest including TMS delivery. Peaks are local maxima in the power spectrum. 
Peak width is calculated at the half-prominence. Peak prominence is the difference between the local 
maximum and the smallest local minimum between this local maximum and the next higher local 
maximum. (B) Sample Entropy is estimated in a time series by counting repeating patterns of length 
m and m+1 in the signal. In the middle panel, all dots labelled in blue are within a distance r of each 
other, the same applies to dots labelled in green and orange. A repeating motif (in the example 
represented, a sequence of blue, green and orange dots) is identified when the same sequence (blue, 
green, orange) re-appears later in the signal (repeated motifs are marked in red). A ratio of probability 
of repeating patterns of length m and repeating patterns of length m+1 is then computed as an 
estimation of the entropy of the signal. (C) Multi-Scale Entropy estimates changes of Sample Entropy 
across several time scales. Time scales are estimated by averaging the signal inside non-overlapping 
time windows of varying length (upper panel). The shape of the Sample Entropy curve across time 
scales (lower panel, black line) informs on the Multi-Scale Entropy content of the signal. A single, 
lower dimensionality value of Multi-Scale Entropy was estimated by calculating the area under the 
Sample Entropy curve (lower panel, green area). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469553doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469553
http://creativecommons.org/licenses/by/4.0/


 -35- 

 

Figure 3. Impact of rhythmic and non frequency-specific TMS patterns on left frontal high-
beta oscillation power. Topographical maps representing data in the [25 35] Hz frequency band 
during stimulation (time window [-133 0] ms centered on visual target onset). (A) Comparisons of 
high-beta power between active (first row) and sham (second row) TMS bursts for each pattern type 
(30 Hz rhythmic, and 3 non frequency-specific patterns: non-uniform rhythmic, random and 
irregular). The bottom row shows the outcomes of pairwise (active vs. sham TMS) cluster-based 
statistical permutation tests. Bolded electrodes represent clusters of contacts that reached statistical 
significance (p<0.05). (B) Direct two-by-two comparisons of high-beta Power between the different 
active TMS patterns. Colored maps represent distribution of Power over the scalp for all four TMS 
patterns (30 Hz rhythmic, non-uniform rhythmic, random and irregular). Uncolored maps display the 
results of the cluster-based statistical permutation tests for the pairwise comparison of active trials in 
the two topographical maps represented at the top of the column and the left of the row. Notice that 
no EEG contacts showed statistically significant differences (p>0.05) in any of the comparisons. Both 
30 Hz rhythmic TMS and the three non frequency-specific TMS patterns increased amplitude of high-
beta oscillations over the whole scalp during active stimulation compared to sham.  
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Figure 4. Impact of rhythmic and non frequency-specific TMS patterns on left frontal high-
beta oscillatory phase alignment. Topographical maps representing data in the [25 35] Hz 
frequency band during stimulation (time window [-133 0] ms centered on visual target onset). (A) 
Comparisons of inter-trial coherence (ITC) between active (first row) and sham (second row) TMS 
bursts for each pattern type (30 Hz rhythmic, and 3 non frequency-specific patterns: non-uniform 
rhythmic, random and irregular). The bottom row shows the outcomes of pairwise (active vs. sham 
TMS) cluster-based statistical permutation tests. Bolded electrodes represent clusters of contacts that 
reached statistical significance (p<0.05). (B) Direct two-by-two comparisons of ITC levels between 
the different active TMS patterns. Colored maps represent distribution of ITC over the scalp for all 
four TMS patterns (30 Hz rhythmic, non-uniform rhythmic, random and irregular). Uncolored maps 
display the results of the cluster-based statistical permutation tests for the pairwise comparison of 
active trials in the two topographical maps represented at the top of the column and the left of the 
row. Bolded EEG electrodes represent EEG contacts or clusters of EEG contacts for which 
differences reached statistical significance (p<0.05). Both 30 Hz rhythmic TMS and the three non 
frequency-specific TMS patterns increased phase-alignment of high-beta oscillations over the whole 
scalp during active stimulation compared to sham. Direct pairwise comparisons of ITC between 
active TMS patterns revealed that random TMS achieved lower increases of high-beta inter-trial 
phase-locking than the other three active TMS patterns.  
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Figure 5. Frequency-specific modulation of cortical oscillations power by rhythmic and non-
frequency-specific TMS patterns in left frontal regions. Time-frequency maps in a cluster of left 
frontal electrodes (F1, F3, FC1, FC3) closest to the center of the stimulation coil. Time is centered 
on the onset of the visual target (dotted grey vertical line). The two red dotted vertical lines signal 
the first (-133 ms) and last (-33 ms) TMS pulses of the burst. The black dotted horizontal line 
indicates the frequency (30 Hz) of the rhythmic TMS pattern. (A) Comparisons of high-beta power 
between active (first row) and sham (second row) TMS for each stimulation pattern (30 Hz rhythmic, 
and three non frequency-specific patterns: non-uniform rhythmic, random and irregular). The bottom 
row shows the results of pairwise (active vs. sham TMS) cluster-based statistical permutation tests. 
Black clusters indicate time-frequency points for which comparisons reached statistical significance 
(p<0.05). (B) Direct two-by-two comparisons across the 4 types of active TMS patterns. Colored 
maps represent time-frequency maps of power for all TMS patterns (30 Hz rhythmic, non-uniform 
rhythmic, random and irregular). Black and white maps show the outcomes of the cluster-based 
statistical permutation tests for pairwise comparisons between active TMS trials for the two time-
frequency maps represented at the top of the column and the left of the row. Black clusters indicate 
time-frequency points for which comparisons reached statistical significance (p<0.05). Both 30 
rhythmic TMS and the 3 non frequency-specific TMS patterns increased amplitude of cortical 
oscillations over a wide frequency band during active compared to sham stimulation.  
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Figure 6. Frequency-specific modulation of oscillatory phase-alignment by rhythmic and non-
frequency-specific TMS patterns in left frontal regions. Time-frequency maps in a cluster of left 
frontal electrodes (F1, F3, FC1, FC3) closest to the center of the stimulation coil. Time is centered 
on the onset of the visual target (dotted grey vertical line). The two red dotted vertical lines signal 
the first (-133 ms) and last (-33 ms) TMS pulses of the burst. The black dotted horizontal line 
indicates the frequency (30 Hz) of the rhythmic TMS pattern. (A) Comparisons of inter-trial 
coherence (ITC) between active (first row) and sham (second row) TMS for each stimulation pattern 
(30 Hz rhythmic, and three non frequency-specific patterns: non-uniform rhythmic, random and 
irregular). The bottom row shows the results of pairwise (active vs. sham TMS) cluster-based 
statistical permutation tests. Black clusters indicate time-frequency points for which comparisons 
reached statistical significance (p<0.05). (B) Direct two-by-two comparisons across the 4 types of 
active TMS patterns. Colored maps represent time-frequency maps of ITC for all TMS patterns (30 
Hz rhythmic, non-uniform rhythmic, random and irregular). Black and white maps show the 
outcomes of the cluster-based statistical permutation tests for pairwise comparisons between active 
TMS trials for the two time-frequency maps represented at the top of the column and the left of the 
row. Black clusters indicate time-frequency points for which comparisons reached statistical 
significance (p<0.05). Both 30 rhythmic TMS and the 3 non frequency-specific TMS patterns 
increased phase-alignment of cortical oscillations over a wide frequency band during active 
compared to sham stimulation. However, the active irregular TMS patterns achieved higher 
increases of oscillatory phase-locking in the low-beta band than the active 30 Hz rhythmic TMS 
pattern. Also note that the random TMS pattern phase-locked cortical oscillations trial-to-trial to a 
significantly lower degree than the remaining active TMS patterns.  
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Figure 7. Width of power peak increases during 30 Hz rhythmic TMS compared to the three 
non frequency-specific TMS patterns delivered in a left frontal region. (A) Time-frequency maps 
in a cluster of left frontal electrodes (F1, F3, FC1, FC3) closest to the center of the stimulation coil 
during active stimulation trials represented for each stimulation pattern (30 Hz rhythmic, and three 
non frequency-specific patterns: non-uniform rhythmic, random and irregular). The two red dotted 
vertical lines signal the first (-133 ms) and last (-33 ms) TMS pulses of the burst. The black dotted 
horizontal line indicates the frequency (30 Hz) of the rhythmic TMS pattern. Right marginal graphs 
of each time-frequency panel display the average power spectrum over the whole window of TMS 
delivery. Colored lines show the width of the peaks of oscillations power as detected with a jackknife 
procedure. (B) Comparison of width of peaks of power increase (expressed in Hz) during active 
stimulation between uniform rhythmic and non frequency specific (random and irregular) TMS. The 
so called non-uniform rhythmic TMS pattern is not presented in the figure, because its power 
spectrum during active TMS revealed two distinct peaks (~30 Hz and ~15 Hz, panel A) and such 
outcomes could not be directly compared to those displaying only a single peak in the high-beta range 
(~30 Hz). Notice that error bars represent the standard error corrected for the reduced error variance 
obtained from the jackknife procedure. One-way ANOVA analysis yielded a significant main effect 
of TMS pattern. Notice that irregular TMS patterns increased cortical oscillations in a significantly 
wider frequency band than uniform rhythmic or random TMS patterns. Results of the post-hoc t-tests 
are indicated as follows: ** p < 0.01, * p < 0.05. 
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Figure 8. Modulation of EEG signal complexity by rhythmic and non frequency-specific TMS 
patterns in left frontal regions. (A) Bar plot of Sample Entropy (SE) across time scales for left 
frontal electrodes (F1, F3, FC1, FC3) closest to the center of the TMS stimulation coil. Box-plot 
color codes identify each of the 4 TMS pattern tested in the study (Blue: 30 Hz rhythmic TMS, and 
three non frequency-specific patterns, Orange: random TMS, Green: non-uniform rhythmic TMS, 
and Red: irregular TMS). The solid colors indicate bar plots for active TMS condition, whereas 
‘pastel’ or less saturated colors identify box-plots associated to each of the sham TMS patterns. 
Notice that the estimated values of SE increases across time-scales for all TMS patterns in both active 
and sham TMS trials. This suggests that EEG time series contain a measure of unpredictability and 
noise at several time-scales, which is the hallmark of a complex signal. (B) Comparisons between 
active TMS (1st row) and sham TMS (2nd row) topographical maps of the areas under the curve of 
SE across time-scales, a measure entitled MSE (Multi-scale entropy), are shown for each TMS 
pattern (30 Hz rhythmic, and the 3 non frequency-specific patterns: non-uniform rhythmic, random 
and irregular). The bottom row shows the results of pairwise (active vs. sham TMS) cluster-based 
statistical permutation tests. Bolded EEG electrodes represent clusters of sensors that reached 
statistical significance (p<0.05). Non frequency-specific TMS increased MSE in clusters of left 
frontal and bilateral parietal EEG contacts. Comparison between active and sham rhythmic TMS 
pattern showed only sporadic significant differences in isolated EEG leads. (C) Direct two-by-two 
comparisons of MSE between the different active TMS patterns. Colored maps represent distribution 
of MSE over the scalp for all four TMS patterns (30 Hz rhythmic, non-uniform rhythmic, random 
and irregular). Uncolored maps display the results of the cluster-based statistical permutation tests 
for the pairwise comparison of active trials in the two topographical maps represented at the top of 
the column and the left of the row. Notice that no EEG contacts showed statistically significant 
differences (p>0.05) in any of the comparisons. 
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Figure 9. Impact of rhythmic and non frequency-specific left frontal TMS patterns on 
conscious visual detection performance. Modulation of (A) perceptual sensitivity (d’) and (B) 
decision criterion (c) by active TMS patterns (in red) compared to sham TMS patterns (in blue). Data 
is presented for each TMS pattern (30 Hz rhythmic TMS and the 3 non frequency-specific TMS 
patterns: non-uniform rhythmic, random and irregular) separately for targets displayed in the left and 
the right visual fields (LVF and RVF, respectively). Boxes are drawn from the 25th to the 75th 

percentile and the horizontal line marks the median. Whiskers are drawn between the minimum and 
maximum data points, excluding any outliers. Black dots indicate individual measures. Note that no 
specific effects of rhythmic or non frequency-specific TMS patterns were revealed by our analyses 
on d’ or decision criterion. Nonetheless, the delivery of any of these 4 active TMS patterns, regardless 
of their temporal structure, lowered decision criterion (significant main effect of TMS condition) 
rendering participants less conservative when having to decide if a near threshold target had been 
presented or not.  
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