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Abstract:  16 

 17 

 Enterococcus faecium has emerged as an important nosocomial pathogen, which is 18 

increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland 19 

exhibits a recalcitrant vancomycin resistant bloodstream infection rate compared to other 20 

developed countries. A set of 28 vancomycin resistant isolates was sequenced to construct a 21 

dataset alongside 61 other publicly available Irish genomes. This dataset was extensively 22 

analysed using in-silico methodologies and uncovered distinct evolutionary, coevolutionary, 23 

and clinically relevant population trends. These results suggest that a stable (in terms of 24 

genome size, GC%, and number of genes), yet genetically diverse population (in terms of gene 25 
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content) of Enterococcus faecium persist in Ireland with acquired resistance arising via plasmid 26 

acquisition (vanA) or to a lesser extent, chromosomal recombination (vanB). Population 27 

analysis described five clusters with one cluster partitioned into four clades which transcend 28 

isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and 29 

chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative 30 

resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for 31 

multidrug resistance, widespread chromosomal point-mutation mediated resistance, and 32 

chromosomal harboured arsenals of virulence factors. Comparative phagomics revealed a core 33 

prophagome of three prophages throughout the dataset. Interestingly, a potential difference in 34 

biofilm formation strategies was highlighted by coevolutionary analysis, suggesting 35 

differential biofilm genotypes between vanA and vanB isolates. These results highlight the 36 

evolutionary history of Irish Enterococcus faecium isolates and may provide an insight into 37 

underlying infection dynamics in a clinical setting.    38 

 39 

Introduction:  40 

 41 

 The genus Enterococcus (Firmicutes; Bacilli; Lactobacilli; Enterococcaceae) are 42 

commonly observed in diverse biomes such as soil, surface water, wastewater, and as 43 

commensal inhabitants of the higher chordate (inclusive of human) gastrointestinal (GI) tract, 44 

vaginal tract, and epidermis (1,2). Two species, Enterococcus faecium and Enterococcus 45 

faecalis, are aetiological of a cohort of moderate to severe conditions when migrated from the 46 

gastrointestinal tract, especially in the immunocompromised or convalescing host (3,4). Both 47 

E. faecium and E. faecalis migration can lead to caries, cellulitis, cholecystitis, cystitis, 48 

endocarditis, endodontits, periodontitis, peri-implantitis, postoperational peritonitis, sepsis, 49 

and neonatal meningitis (5–8). The clinical significance of these species was amplified as 50 
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antimicrobial resistance (AMR) began to evolve and disseminate throughout diverse 51 

environments (2,9).  52 

Vancomycin is the drug-of-last-resort for recalcitrant infections with diverse resistance 53 

profiles (10), inclusive of the prominent nosocomial pathogen, methicillin-resistant 54 

Staphylococcus aureus (MRSA) and E. faecium (11,12). In recent years, vancomycin 55 

resistance has been observed in a number of human pathogens, often resulting in clinical 56 

complication and extended hospital stay (6,13–16). Ireland has one of the highest vancomycin 57 

resistant E. faecium (VRE) rates in Europe where 38.4% of blood stream infection isolates 58 

displaying resistance (ECDC: https://atlas.ecdc.europa.eu/). In particular, nosocomial VRE 59 

infection are of concern due to the rapid dissemination throughout this environment (4,15,17). 60 

Vancomycin resistance genes have been detected both on the chromosome and mobile 61 

elements (mobilome) and often accompanies other resistance genotypes (6,18–20). Commonly 62 

observed vanA mobilome co-resistance phenotypes are observed towards tetracycline, 63 

erythromycin, and aminoglycosides (21–24). Additionally, E. faecium almost ubiquitously 64 

displays chromosomal-mediated resistance to aminoglycosides (via AAC(6')-Ii), macrolides 65 

(via efmA, efrAB and msrC), and fluoroquinolones (via gyrA and parC mutations or 66 

upregulation of efflux), rifamycin (via efrAB), and to clindamycin, quinupristin-dalfopristin, 67 

and dalfopristin (via lsaA) (6,9,24–26). 68 

 In many countries, including the Republic of Ireland, vancomycin resistance is 69 

prominently derived from plasmid mediated vanA, and less commonly from chromosomal 70 

mediated vanB (2,27,28). Both vanA and vanB are D-Ala-D-Ala ligases (EC: 6.3.2.4) and 71 

confer resistance by constructing D-Ala-D-Lac as an alternative substrate during peptidoglycan 72 

synthesis, thus reducing vancomycin-peptidoglycan binding affinity (29–31). Aside from their 73 

associated genomic location (mobilomal vs chromosomal), vanA also confers resistance to 74 
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teicoplanin (another glycopeptide antibiotic) whereas vanB has not been observed to induce 75 

this effect (32–34).  76 

 Metal and biocide resistance is of growing concern in a plethora of environments, and 77 

especially in clinical settings (35). Correlations have been reported between metal resistance 78 

and drug resistance in pathogenic bacteria, suggesting a potential co-evolutionary pressure on 79 

both mechanisms (36–38). A range of metals are employed in healthcare for their intrinsic 80 

antimicrobial properties, for example silver embedded plasters and copper plated door handles 81 

(39–41). Previous studies have reported chromosomal mediated resistance to copper, silver, 82 

selenium, and hydrogen peroxide in E. faecium, suggesting a growing resistance to passive 83 

protection strategies (42–44).  84 

 Further to their resistance mechanisms, Enterococcus spp. employ a small cohort of 85 

effective virulence factors during pathogenesis, allowing for adhesion, biofilm formation, 86 

invasion, immunomodulation, and the synthesis of secreted toxins, enzymes, and peptides 87 

(such as bacteriocins) into local environments to inhibit competition (9,45,46). Biofilm 88 

formation is of critical importance in vancomycin resistant Enterococcus (VRE) infections, 89 

due to difficulty of clearance and reduced antimicrobial penetration rates (42,47).  90 

 When isolated from human samples, the average E. faecium genome contains 91 

2,765 ± 187 genes, yet the pangenome contained 12,457 when sampled from 161 genomes (26). 92 

These results, and other pangenomic analyses (e.g. (48)) illustrate the genomic plasticity and 93 

evolutionary capacity of E. faecium. While a major proportion of this variance is attributed to 94 

mobile genetic elements (49), to our knowledge, no study has been conducted on chromosomal 95 

pangenomic variance, so the extent of mobilome enticed variance is not fully elucidated. The 96 

integration of phages (prophages) into bacterial chromosomes can introduce genetic novelty 97 

(50–52). While a wide array of Enterococcus phages have been identified (53,54), and parasite-98 
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host co-evolutionary trajectories have been explored (55), phage impact on symbiotic co-99 

evolutionary trajectory has yet, to our knowledge, been explored.  100 

 The aims of this study were to compare the pan-genomes, mobilomes and chromosomes 101 

of the available genome sequences of vancomycin resistant or susceptible E. faecium across 102 

the timeframe that VRE (analysed by the ECDC: 2002 to 2019) increased in prevalence from 103 

11.1% to 38.4% in Ireland (available at 104 

https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4). Specifically, this 105 

study provides an insight into the pangenomics of E. faecium from three studies in Republic of 106 

Ireland using a comparative genomic, resistomic, and virulomic lens. It is now possible to 107 

derive intrapangenome correlations (Whelan et al., 2020) so these approaches shall be explored 108 

to provide additional insight.  109 

A recent study of the global dissemination of E. faecium identified that it has two main 110 

modes of genomic evolution: the acquisition and loss of genes, including antimicrobial 111 

resistance genes, through mobile genetic elements including plasmids, and homologous 112 

recombination of the core genome (49). Unfortunately, there were no Irish isolates contained 113 

within this study. 114 

 115 

Methods: 116 

 117 

Microbiological analysis 118 

 119 

 Twenty-eight isolates identified as vancomycin resistant Enterococcus faecium during 120 

2018 and 2019 were collected by the Mater Misericordiae University Hospital (MMUH) in 121 

Dublin. The sample metadata are described in SI Table 1. Antimicrobial susceptibility testing 122 

was performed at the MMUH according to EUCAST guidelines 123 
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(https://www.eucast.org/ast_of_bacteria/) and subsequently at Maynooth University using disk 124 

testing according to the CLSI guidelines. The isolates were investigated for resistance to the 125 

following antibiotics: (ciprofloxacin, erythromycin, chloramphenicol, vancomycin, 126 

tetracycline, ampicillin, and linezolid) (SI Table 2).  127 

 128 

DNA extractions genome sequencing  129 

 130 

DNA was extracted from each of the 28 isolates using the Macherey-Nagel Nucleospin 131 

microbial DNA isolation kit according to the manufacturer’s instructions. The extracted DNA 132 

was sequenced by Novogene using the “Bacterial resequencing” service on the Illumina with 133 

PE150 and Q30 ≥ 80%. This provided >100X coverage of each genome.  134 

 135 

Genome assembly 136 

 137 

The 28 samples sequenced for this study and all reads associated with Irish VRE 138 

genomes from British Society for Antimicrobial Chemotherapy study PRJEB4344 (hereafter 139 

referred to as the “BSAC” isolates (57)) were downloaded from the NCBI sequence read 140 

archive (SRA; (58)). Each read pair (sample) was subjected to adapter removal and quality 141 

trimming using TrimGalore v.0.6.6. (59) using default settings. Adapter removal during the 142 

TrimGalore pipeline was powered by CutAdapt v.3.0 (60) and FastQC v. 0.11.9 (61). Each 143 

sample was assembled using Unicycler v.0.4.7 (62) using default paired-end settings. Unicycler 144 

utilised SPAdes v.3.14.1. (63) to assemble reads and used Bowtie2 v.2.4.2. (64), Pilon v.1.23 145 

(65), BLAST v.2.11 (66,67), and samtools v.1.11 (68) to further complete the assembly. Each 146 

assembly was quality assessed using CheckM (69) using the Enterococcus faecium database 147 

(SI Table 3) and sequence typed using MLST v.2.19.0 (Jolley and Maiden, 2010; Seemann, 148 
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2014) using default settings (SI Table 4; Figure 1). Instances where a ST could not be 149 

completely identified, the approximated alleles were used to approximate a ST using the 150 

“search by locus combinations” option for E. faecium using PubMLST (www.pubmlst.org 151 

(72)). Each assembly was separated into “chromosomes” and “plasmids” (hereafter referred to 152 

as “mobilomes” as complete plasmids were not always guaranteed and were treated 153 

collectively as an extrachromosomal entity) using Platon v.1.5.0 (73). These partitioned 154 

assemblies were analysed alongside their concatenated “whole genome” assemblies. 155 

Assemblies that had a reported completeness percentage ≤ 95% were retained for further 156 

analyses. 157 

 158 

Additional genomes 159 

 160 

A total of 11 Enterococcus faecium genome assemblies were available on NCBI 161 

assembly and attributed to Ireland in their respective metadata (from study PRJNA521309; 162 

(74)). As above, these assemblies were quality checked using CheckM, sequence typed using 163 

MLST, and separated into chromosomal and mobilomal components using Platon. These 11 164 

isolates were all sampled in county Cork and shall be hereafter referred to as the “Cork” 165 

isolates.  166 

 167 

Plasmid containment analysis 168 

 169 

 As plasmids were contiguous, a containment analysis was used to determine the closest 170 

relatives of the mobilome. Each containment analysis was performed using the “screen” 171 

algorithm in MASH v. 2.2.2. (75) against PLSDB (76) with a P-value stringency cut-off of 0.1 172 
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and an identity stringency cut-off of 0.99 to replicate the parameters used during the 173 

construction of PLSDB (Table SI 5).  174 

 175 

Genome annotation 176 

 177 

 Each assembly dataset (whole genome, chromosomal, and mobilome) was annotated 178 

using Prokka v.1.14.6 (Seemann, 2014) using default settings. Prokka used Prodigal v.2.6.3. 179 

(78) to predict gene sequences, Aragorn v.1.2.38 (79) to detect tRNA sequences, and Minced 180 

v.0.4.0 (80) to detect CRISPR sequences, SignalP v.4.0 (81) to detect signal peptides, and 181 

HMMER v.3.3.1 for protein similarity searching (82), BioPerl v.1.7.2 for file manipulation 182 

(83), and barrnap v.0.9 for rRNA profiling (84). Each protein sequence in each assembly 183 

dataset was further annotated using InterProScan v.5.45-80.0 (85) using the “--appl PfamA” 184 

and “--goterms” to assign Pfam domains (86) and Gene Ontology terms (87) respectively. 185 

Finally, each assembly dataset was searched for secondary metabolite biosynthesis genes using 186 

a set of tools with their respective default settings (unless otherwise stated below): GECCO 187 

v.0.6.3 (88) and AntiSMASH v.5 (89), for transposable elements using MobileElementFinder 188 

v.1.0.3. (90), for antimicrobial resistance using ABRicate v.1.0.1 (Seemann, 2014) with the 189 

associated CARD database (92) and PointFinder v.1 (using the Enterococcus faecium database 190 

(93)), for virulence factors using Abricate with the associated VFDB dataset (94), and for metal 191 

(and biocide) resistance using BacMet v.2.0 (95). As BacMet is published as an amino acid 192 

dataset, it was first backtranslated to a representative nucleotide sequence (using translation 193 

table 11) using the “backtranseq” function in EMBOSS v.6.6.0.0 (96) with codon usage tables 194 

for Enterococcus faecium (the subject of this study); Enterococcus faecalis, Staphylococcus 195 

aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, 196 

Enterobacter spp. (ESKAPE pathogens); Escherichia coli (model organism), Treponema 197 
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pallidium, Neisseria gonorrhoeae, Chlamydia trachomatis (prevalent bacterial STIs), 198 

Clostridium botulinum, Campylobacter jejuni, Listeria monocytogenes, and Vibrio 199 

parahaemolyticus (prominent foodbourne pathogens), Helicobacter pylori (common gastric 200 

pathogen) and Clostridiodes difficle, Legionella pneumophilia, and Mycobacterium 201 

tuberculosis (common nosocomial infections). Codon usage tables were obtained from the 202 

Kazusa genome research institute (https://www.kazusa.or.jp/en/). To mitigate false negatives, 203 

ABRicate was ran with a 50% minimum percentage identity stringency score (as opposed to 204 

the default 80%) to allow for the detection of full-length homologs that may have been 205 

otherwise undetected (Collated results for AntiSMASH and ABRicate are given in SI Tables 206 

6-10).  207 

 208 

Genome characteristic statistical analysis 209 

 210 

The sum of coding genes, genome size (Mbp), genome density (the mean number of 211 

genes per Mbp), and guanine-cytosine content (GC%) was calculated for the chromosomal and 212 

mobilomal datasets for each sample (SI Table 11; Figure 2). Summary statistics (mean, median, 213 

standard deviation, and variance) was computed for each data series (SI Table 12). Two-tailed 214 

Welch’s t-tests (H0:a=b;HA:a≠b; (97,98)) were used to compare genome density and GC% 215 

between chromosomal and mobilomal datasets, a Bonferroni-Dunn correction (PBD = P  216 

ncomparisons; ncomparisons = 2; (Bonferroni, 1936; Dunn, 1961)) was used to control Type-I errors 217 

and instances where PBD ≤ 0.005 were considered statistically significant. A P ≤ 0.005 will be 218 

used to determine significance in all pairwise test comparisons to control for potential Type I 219 

and Type II errors (101). Summary statistics were calculated for gene length in each genomic 220 

subset (chromosomal and mobilomal), distributions were assessed for normality using a 221 

Kolmogorov-Smirnoff test (H0:~X=N(,);HA:~X≠N(,); (102,103)) and equivariance using 222 
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a Levene’s test (H0:2
a=2

b;HA:2
a≠2

b; (Levene, 1960)). All samples were observed to be 223 

non-normally distributed and 26 of 79 were observed to have unequal variances (Levene’s test 224 

P ≤ 0.05). Considering these trends, a Brunner-Munzel test (H0:B=0.5;HA:B≠0.5) was used to 225 

determine whether chromosomes were statistically more likely to have longer genes than 226 

mobilomes. A Bonferroni-Dunn correction was applied (ncomparisons = 79) and instances where 227 

PBD ≤ 0.005 were considered statistically significant (SI Table 12).  228 

 229 

Genome relatedness 230 

 231 

 Chromosomal sequences from each isolate were all-vs-all compared using MASH v. 232 

2.2.2. (75) and instances where the reported distance (D) ≤ 0.05 with a P-value ≤ 0.05 extracted 233 

as an edge list and visualised as a network with Gephi v.0.9.2 (104) using the Fruchterman-234 

Reingold algorithm (105) (Figure 3). This procedure was repeated for mobilomal sequences 235 

(Figure 4). 236 

 237 

Pangenome analysis 238 

 239 

A pangenome for the whole genome and chromosomal datasets (for all isolates, and 240 

individually for the “Cork” isolates, for the “BSAC” isolates, and for the isolates sequenced 241 

for this study) was produced using Roary v.3.1.3. (106) with the “-e” flag to align all gene 242 

clusters using PRANK v.170427 (107), and the “-z” flag to keep intermediate files (retained to 243 

produce the robust phylogeny below). To assess the effect of the mobilome on the genome 244 

diversity and complexity, each pangenomic category (ngenes; “core pangenome” (99% ≤ nsamples 245 

≤ 100%), “soft core pangenome” (95% ≤ nsamples < 99%), “shell pangenome” (15% ≤ nsamples < 246 

95%), and “cloud pangenome” (nsamples < 15%)) in the whole genome generated pangenome 247 
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was compared to the chromosomal pangenome using a two-tailed Fisher’s exact test 248 

(H0:=;HA:≠; (108)) with a Bonferroni-Dunn correction (ncomparisons = 4), instances where 249 

PBD ≤ 0.05 were considered statistically significant, and statistically significant instances where 250 

 >  were considered to be overrepresented and instances where  <  were considered 251 

underrepresented (SI Table 13).  252 

 253 

Pangenome function 254 

 255 

The representative pangenome refers to the collection of representative sequences from 256 

each pangenome cluster. Gene ontology terms (as assigned by InterProScan) were extracted 257 

and slimmed from the whole genome dataset (inclusive of all isolates) using the 258 

“map_to_slim.py” from GOATools (109) using generic .obo files. Sequences were grouped 259 

into their pangenomic categories and compared to the background population using the 260 

“find_enrichment.py” script (using a Fisher’s exact test (H0:=;HA:≠) and Bonferroni-261 

Dunn correction (SI Table 14)) 262 

 263 

Phylogeny construction 264 

 265 

A phylogeny was constructed using single-copy, ubiquitous gene alignments (as 266 

produced by PRANK during pangenome construction) from the chromosomal dataset. The 267 

chromosomal dataset was used to further minimise the likelihood of interference non-vertically 268 

inherited sequences on the phylogeny. Each alignment was quality trimmed using TrimAL 269 

v.1.4 (110) using the “-automated1” flag. A superalignment was constructed by concatenating 270 

all trimmed alignments using FASconCAT v.1.04 (111) and a consensus phylogeny was 271 

constructed using IQtree v.1.6.12 (112) with 10,000 bootstrap replicates. IQTree used 272 
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ModelTest-NG v.0.1.7 (113) to determine the GTR+F+R6 (114) nucleotide evolutionary model 273 

to be most appropriate for phylogenetic reconstruction. The root of the tree was determined by 274 

creating a second phylogeny with a specified outgroup of 2 Staphylococcus aureus genomes. 275 

The second phylogeny was constructed by clustering all chromosomal and staphylococcal 276 

proteins using ProteinOrtho v.6.0.24 (115) with a stringency cut off value of E≤1.00e-50. All 277 

protein clusters that were ubiquitous in all Enterococcus faecium species and single copy for 278 

each species within each cluster were extracted and aligned using Muscle v.3.8.1551 (116). 279 

Each alignment was trimmed as above using TrimAL (using the “-automated1” flag) and a 280 

consensus tree was constructed as above using IQtree with 10,000 bootstrap replicates. 281 

ModelFinder-NG determined LG+I+G (117) to be the best model of protein evolution. The 282 

second phylogeny determined ST178 (all samples isolated in Cork, Ireland) to be the outgroup 283 

of the core gene tree. The finalised phylogeny was displayed and annotated using iToL v.5 284 

(118) (Figure 5). The phylogeny was annotated with genome annotation data (generated using 285 

the analyses above and below) to visualise underlying trends (Figures 6-10; SI Figure 1) 286 

 287 

Isolate clustering 288 

 289 

Isolates were clustered using previously constructed core gene superalignment using 290 

RheirBAPS v.1.1.3 (119,120) with a maximum depth of two, an initial population cluster of 291 

20, and with an additional 100 rounds of processing to approximate optimal clustering (Figure 292 

5; Figure 11; SI Table 15). All isolate-cluster assignments were determined to approach 100% 293 

likelihood (P = 1 in all cases) indicating that their placement is correct. 294 

 295 

Core genome MLST 296 

 297 
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 A core genome MLST (cgMLST) was constructed for all isolates using chewBBACA 298 

v.2.8.5 (121) using default settings and using the Enterococcus faecium Prodigal training file 299 

provided with the software. The cgMLST profile was displayed and annotated with metadata 300 

using GrapeTree (122) with the MSTree V2 algorithm (Figure 12). The generated cgMLST 301 

was verified using our previously generated data pangenomic data with PANINI v.1 (123). 302 

Briefly, as PANINI requires a minimum of 100 input taxa, we constructed a pseudo-dataset 303 

where each taxon was represented twice and processed. Pseudo-taxa were removed from the 304 

PANINI output and was visualised alongside the previously constructed phylogeny and 305 

annotated with their associated RheirBAPS generated clade using MicroReact (124) (SI Figure 306 

2). 307 

 308 

Pangenomic co-evolutionary analyses 309 

 310 

The chromosomal phylogeny and Roary-derived pangenome (inclusive of all isolates) 311 

were used to test statistically significant associations or dissociations between any vancomycin 312 

resistance gene (vanA, vanB, vanH, vanW, vanX, vanXB, vanY, vanYB) and any other gene (SI 313 

Table 16) using Coinfinder (56). Coinfinder uses a binomial test (H0:=x;HA:≠x) and while 314 

the authors advise the use of a Bonferroni-Dunn corrected, this was not implemented so all 315 

coincidences could be explored and instances where P ≤ 0.005 were considered statistically 316 

significant. 317 

 318 

Recombination analysis 319 

 320 

 Using RheirBAPS resulted into two distinct clades, the “Cork” isolates (CC94) and all 321 

other isolates (CC17; discussed in a later section). To examine the extent of core genome 322 
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recombination on CC17 evolution, genomic comparisons were performed between each CC17 323 

isolate and a “complete genome” Enterococcus faecium (reference) assembly (downloaded 324 

from NCBI Assembly). The reference was selected from a pool of all available Enterococcus 325 

faecium complete genome assemblies (which passed taxonomy assignment) from NCBI 326 

Assembly, where each genome was assessed for vanA or vanB presence using ABRicate with 327 

the CARD database (--minid 50), assigned a sequence type using MLST, and assigned a CC 328 

using PubMLST. Any assembly with a vanA+ or vanB+ phenotype, with an indeterminant ST, 329 

or assigned to either CC17 or CC94 were discarded. Remaining isolates were processed to 330 

remove plasmids and the remaining chromosomal sequence was annotated using Prokka with 331 

default settings. Proteins from all CC17, CC94, and candidate reference assemblies were 332 

clustered using ProteinOrtho (E≤1e-50). Protein clusters that were both single copy and 333 

ubiquitous in all species were individually aligned using Muscle with uninformative regions 334 

using TrimAL (with the “-automated1” flag) and concatenated into a superalignment using 335 

FASConCAT. The superalignment was processed to construct a consensus tree with 10,000 336 

bootstrap replicates using IQTree. The resultant consensus tree was rooted at CC94 and the 337 

closest assembly to CC17 was selected as the reference strain. The most suitable reference was 338 

determined to be GCF_005166365.1 (strain NM213; PRJNA513159). Strain NM213 was 339 

isolated from healthy Egyptian infants in 2018 to determine its potential as a probiotic 340 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA513159/).  341 

 Whole genome alignments were constructed between strain NM213 and each CC17 342 

assembly and concatenated using Snippy v.4.6.0 (snippy-multi) with default settings 343 

(https://github.com/tseemann/snippy). The resultant core whole multigenome alignment was 344 

processed to convert non-standard nucleotide characters to (ATGC) to “N” using a Snippy 345 

auxillary script (“snippy-clean_full_aln”). Genomic recombination regions were detected 346 

using Gubbins v.3.0.0 (125) using default settings and the extent of recombination was 347 
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illustrated using Phandango v.1.3.0 (126) where the previously constructed core-genome 348 

phylogeny (of CC17 and CC94) was used to scaffold recombination (Figure 13). This 349 

procedure was replicated for the remaining 24 suitable references (SI Figure 3).  350 

 351 

Phages 352 

 353 

 Phage and prophage elements within each chromosomal and plasmid sequence were 354 

assessed using Phigaro v. 2.3.0 (127) with default settings and saving the detected viral 355 

sequences to their own output files (“--save-fasta” flag) (SI Table 17). The sum of phages per 356 

genome were counted (SI Table 18). Extracted viral sequences were assessed as a source of 357 

drug resistance, metal resistance and virulence factors using abricate with the CARD, 358 

BACMET, VFDB databases as above and as a source of secondary metabolism machinery 359 

using GECCO as above, only one gene-of-interest was observed (discussed below). Extracted 360 

prophages were annotated using Prokka using the “--kingdom Viruses” flag.  361 

 362 

Phage classification 363 

 364 

A database of all Caudoviridae ICTV exemplar reference phage genomes were 365 

downloaded from NCBI Assembly. Caudoviridae were selected as this clade encompassed all 366 

viral families identified by Phigaro (Siphoviridae, Inoviridae, and Myoviridae, respectively). 367 

Each extracted prophage was searched against the database using Mash v.2.2.2 (75) using the 368 

“dist” (distance) algorithm. As we searched prophages (partial genomes) against phages (whole 369 

genomes) we selected top hits (1 per prophage) from instances with the shortest distances (D 370 

< 1) and smallest P-values (P ≤ 0.005) for each prophage (SI Table 18; Figure 14).  371 

 372 
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Integron assessment 373 

 374 

 The presence of integrons in chromosomal and plasmid sequences was determined 375 

using IntegronFinder v.2.0 (128) using the “--local-max” flag and setting “--calin-threshold” 376 

flag to 1 (instead of the default 2). We chose to set the “--calin-threshold” flag to 1 to include 377 

integrated regions with CALIN artefacts. While lowering this threshold may yield a higher 378 

number of false positives, we feel it is appropriate for exploratory purposes. The distribution 379 

of integrons per genome is given in SI Table 19. Again, ABRicate was used to determine 380 

whether contigs containing integron elements contained genes-of-interest (SI Table 20; Figure 381 

15). 382 

 383 

Results 384 

 385 

Quality control 386 

 387 

 All assemblies were reported to have a high level of completeness (completeness = 388 

99.29±0.55%; 95.16 ≤ % ≤ 99.61; SI Table 3).  389 

 390 

General characteristics of the genomes 391 

 392 

Genomes used in this manuscript were reported to have a mean chromosomal gene 393 

count of 2537.91±77.44 ( = 2550.5; 2334 ≤ n ≤ 2730) and an aggregated (chromosomal and 394 

mobilomal) gene count of 2,821.64±116.65 ( = 2812; 2508 ≤ n ≤ 3158). For chromosomal 395 

data, a mean gene sum of 2537.91±77.44, a mean genome size of 2681.5±78.77 Mbp, a mean 396 

density of 0.946±0.0098 genes/Mbp, and a mean GC% of 38.03±0.15% (SI Tables 10-11; 397 
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Figure 2). For mobilomal data, a mean gene sum of 283.73±84.86, a mean genome size of 398 

259.99±75.76 Mbp, a mean density of 1.088 genes/Mbp, and a mean GC% of 34.70±0.38%. 399 

When statistically examined, mobilomes were observed to be significantly denser with regards 400 

the number of observed genes (to have a greater number of genes per Mbp genome; PBD < 401 

1.00e-06) and had a significantly lower GC% (PBD < 1.00e-06) When the coding proportions 402 

were compared, 19 mobilome samples were reported to be significantly less dense (in terms of 403 

the sum of coding nucleotides) than their chromosomal counterparts, however 61 comparisons 404 

displayed insignificant differences.  405 

 406 

Genetic relatedness (MLST, cgMLST, and RheirBAPS) 407 

 408 

 While a total of 16 STs were observed throughout the dataset, considerable differences 409 

were observed between the 3 sources (isolates sequenced for this study, previously published 410 

isolates, and “Cork” isolates). The “Cork” isolates were exclusively ST178, and ST178 was 411 

not observed in either of the clinical sources (Figure 1, SI Table 4). Isolates sequenced for this 412 

study were predominantly ST80 (16 of 28; 57.14%) and previously published isolates were 413 

predominantly ST17 (17 of 40; 42.5%) and ST192 (9 of 40; 22.5%). Interestingly, ST80 and 414 

ST17 are exclusively observed in their associated sources, however ST192 and ST203 are 415 

observed in both sources.  416 

Isolate clustering using RheirBAPS matched clonal complexes at level one, with all 417 

CC94 isolates assigned to Cluster A and all CC17 isolates assigned to Cluster B (SI Table 14). 418 

At level two, eight clusters were observed, however using phylogenetic inference, this can be 419 

collapsed to five clusters with four subclusters. As all CC94 isolates were again assigned to a 420 

single cluster, CC17 isolates formed four clusters (α, β, γ, δ) with four subclusters (δ1, δ2, δ3, 421 

and δ4). These clusters are named based on their phylogenetic divergences (Figure 5) . Cluster 422 
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α contained one genome, ERR374806 (ST1032) and was the earliest diverging CC17 isolate 423 

in our dataset. Cluster β encompassed all ST203 isolates and all ST192 isolates except for 424 

ERR374982 (which was assigned to Cluster γ, matching its phylogenetic placement). Cluster 425 

γ encompasses all ST78 isolates and the singleton ST192. As previously mentioned, Cluster δ 426 

was comprised of four distinct subclusters (δ1, δ2, δ3, and δ4). Where δ1 is basal to all other δ 427 

clades, and δ2 is basal to sister clades δ3 and δ4. Clade δ1 encompassed all ST17 isolates, and 428 

isolates assigned to singleton ST groups (ST18, ST132, ST982, ST1038, ST1421). Clade δ2 429 

encompassed all ST80 isolates, two ST80 isolates, and singleton ST isolates (ST16, ST64, 430 

ST132, ST202, ST612). Clade δ3 encompasses seven ST80 isolates and clade δ4 encompasses 431 

the remaining eight ST80 isolates and the singleton ST787. These results suggest that ST80 is 432 

a descendant of ST17 and is undergoing considerable chromosomal evolution. Clusters α, β, 433 

and γ, and Subclusters δ3, and δ4 all displayed monophyly. Subcluster δ2 displayed considerable 434 

paraphyly with 4 root nodes. Subcluster δ1 also displayed paraphyly (if the Cluster δ earliest 435 

diverging taxon (Sample 8) is ignored) due to ERR374755. The Subcluster δ1 paraphyly may 436 

be considered an artefact of cluster evolution, with Subclusters δ2, δ3, and δ4 undergoing rapid 437 

evolution after the divergence of ERR374755 from their common ancestor. The paraphyly 438 

observed in Subcluster δ2 may be due to sample size and may be resolved or further partitioned 439 

with additional taxa. The paraphyly observed is likely due to evolutionary expansion between 440 

sampling times, with earlier diverging isolates (BSAC isolates) being isolated prior to 2011 441 

and later diverging isolates (isolates sequenced for this study) being sequenced in 2018). 442 

 The cgMLST graph (and associated graph analyses) displayed considerable modularity 443 

(Figure 12; SI Figure 2) with distinct clades forming, largely corroborating RheirBAPS results, 444 

regardless of the year of isolation. Two exceptions were observed for this trend: firstly, 445 

polyphyly in Cluster β was observed with isolates from 2009 adjacent to Cluster γ, and those 446 

from 2018 adjacent to Subcluster δ2. Again, Subcluster δ2 appeared less modular than other 447 
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Clusters (mirroring paraphyly observed in the phylogeny), but this was likely due to core 448 

genome evolution between sampling dates. A Subcluster δ2 isolate was observed adjacent to 449 

Subcluster δ4. 450 

 451 

Plasmid containment 452 

  453 

 As expected, the majority of PLSDB hits were attributed to E. faecium (SI Table 5), 454 

however some other interesting observations were also noted. All eleven CC94 (Cork) isolates 455 

each displayed a hit to two Listeria monocytogenes strain CFSAN023459 plasmids 456 

(pCFSAN023459_01 and pCFSAN023459_02), eight CC94 isolates also returned a hit for 457 

Enterococcus hirae strain CQP3-9 plasmid pCQP3-9_1. Hits pertaining to Bacillus cereus 458 

plasmid pBC16 were observed across CC17, interestingly, all Cluster γ isolates except 459 

ERR375014 (ST78) and all Cluster β isolates except ERR374813 and ERR374914 (ST203; 460 

only Cluster β isolates not sequenced during this study) returned a hit. Plasmid pEGM182-2 461 

from Enterococcus casseliflavus strain EGM182 was observed in CC94 and in Subclusters δ3 462 

and δ4, where four of six δ3 isolates (except Samples 6 and 12; ST80) returned two hits for 463 

pEGM182-2. Hits were returned for Escherichia coli strain UB-ESBL31 plasmid pESBL31 464 

from isolates across the phylogeny. Of note, all Cluster γ isolates and five δ4 isolates returned 465 

a hit for pESBL31. Most of these isolates (14 of 15) were sampled between 2002 and 2011, 466 

and one isolate (Sample 1) was sampled in 2018, suggesting persistent survivability for this 467 

plasmid and its descendants. 468 

 469 

Antimicrobial susceptibility profiles 470 

 471 
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The 28 vancomycin resistant Enterococcus faecium were isolated from 22 hospital 472 

patients in 2018/2019 (MMUH, Dublin isolates). Samples 2 and 24 were isolated on the same 473 

day from patient 2. Samples 10, 5 and 27 were isolated from patient 5 at days 92, 100 and 107, 474 

respectively. Samples 21, 20, 9 and 26 were isolated from patient 9 on days 0, 8, 19 and 365, 475 

respectively. The antimicrobial susceptibility profiles (SI Table 2) of the isolates confirmed 476 

they were all vancomycin resistant. Of the 28 VREfm, 25 were erythromycin resistant, two 477 

were chloramphenicol resistant, 28 were ampicillin resistant, 19 were tetracycline resistant and 478 

two were linezolid resistant. Samples 14 and 24 were the only isolates resistant to 479 

chloramphenicol or linezolid. While sample 2 was isolated from the same patient as sample 24 480 

it did not display the same resistance profile. The three samples susceptible to erythromycin 481 

did not display a specific AMR gene absence associated only with these samples. The metadata 482 

of the BSAC study contained susceptibility to vancomycin data only and the “Cork” isolates 483 

contained no antimicrobial resistance data. Of the BSAC study isolates 23 were vancomycin 484 

susceptible and 17 were vancomycin resistant (SI Table 1). 485 

 486 

Antimicrobial resistance genotyping 487 

 488 

A total of 32 resistance genes were observed throughout the dataset, of which 13 were 489 

exclusively observed in the chromosome (AAC(6')-Ii, dfrF, ermT, efmA, msrC, tetM, vanB, 490 

vanHB, vanRB, vanSB, vanWB, vanXB, and vanYB), where one pair (vanRB and vanSB) were 491 

observed exclusively in isolate ERR374834. Ten genes were observed exclusively on the 492 

mobilome (ANT(6)-Ia, Enterococcus faecium chloramphenicol acetyltransferase, catA8, lsaE, 493 

tetU, vanA, vanHA, vanRA, vanXA, and vanZA), and 9 were observed in either the chromosome 494 

or mobilome (AAC(6')-Ie-APH(2'')-Ia, APH(3')-IIIa, ermB, SAT-4, aad(6), dfrG, tet(L), vanSA, 495 
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and vanYA). Interestingly, the 9 genes present on either the chromosome or mobilome never 496 

appeared both chromosomally and mobilomally in the same isolate (SI Table 6; Figure 6).  497 

 498 

Mobile AMR genes 499 

 500 

The vanA gene was present only in the mobilome of 44 isolates, almost always with the 501 

cluster of vanHA, vanRA, vanSA, vanXA, vanYA and vanZA (SI Table 6; Figure 6). These 502 

mobilomes were sampled from across CC17, spanning Clusters β, γ, and δ (encompassing 16 503 

ST80 isolates, 7 ST78 isolates, 5 ST203 isolates, 4 ST17 isolates, and 3 ST192 genomes, and 504 

one isolate from each of ST16, ST18, ST64, ST132, ST202, ST612, ST1032, ST1421 and an 505 

unassigned ST).The vanA isolates comprised samples from the BSAC study (n = 16) isolated 506 

in 2002, 2003, 2005, 2006, 2007 and 2009 to 2011 and the isolates from Dublin between 2018 507 

and 2019 (n = 28). The vanB gene was identified on the chromosomes in addition to the mobile 508 

vanA on two isolates from the BSAC study and one isolate from MMUH (sample 1). Samples 509 

14 and 24 (ST80, Subcluster δ4) were linezolid resistant but did not contain the mobile linezolid 510 

resistance genes. Both samples were also the only isolates displaying chloramphenicol 511 

resistance. However, neither contained any known mobile chloramphenicol resistance genes. 512 

Enterococcus faecium chloramphenicol acetyltransferase (conferring resistance to phenicols) 513 

was observed in the mobilome of 3 of 17 ST17 isolates and in the ST1038 isolate (all Subcluster 514 

δ4). Another phenicol resistance gene catA8 was also observed in the mobilome of sample 26. 515 

However, all were phenotypically susceptible to chloramphenicol.    516 

The resistance gene lsaE (conferring resistance to lincosamide) was observed on the 517 

mobilomes of samples 18 and 26 and ten isolates from the BSAC study. The genes aad(6), 518 

ermB and aph(3’)III-a were present in each of the BSAC mobilomes containing lsaE. The 519 

tetracycline resistance gene tetU was observed on the mobilome of 6 ST80 isolates, 2 ST18 520 
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isolates, and one isolate from each of ST17, ST132, ST787, ST1038, and ST1421 respectively. 521 

In addition, tetL (conferring resistance to tetracyclines) was frequently present on the 522 

mobilomes.  523 

 524 

Chromosomally mediated AMR  525 

 526 

The vanB gene was identified in 11 isolates and were always chromosomal. A cluster 527 

of vanB, vanWB, vanXB, and vanYB (conferring resistance to glycopeptides, specifically 528 

vancomycin) was observed in nine Subcluster δ1 isolates (accounting for one ST16, and 8 of 529 

17 ST17 isolates) and one Subcluster δ2 isolate (ERR374832; ST132) (SI Table 6; Figure 6). 530 

With the exception of ST16, all isolates with these four genes were also observed to possess 531 

vanHB, and the ST132 isolate was further observed to possess vanRB and vanSB. The genes 532 

vanSA and vanYA were individually (and uniquely) observed in sample 8 (unassigned ST) and 533 

sample 23 (ST203) respectively.  534 

One chromosomal exclusive gene, aac(6')-Ii (aminoglycoside resistance), was 535 

observed to be ubiquitous in all samples and one other msrC (macrolide and streptogramin B 536 

resistance), was observed in all isolates except sample 23 (ST64). The combination of these 537 

two genes is reported to confer resistance to compounds from the aminoglycoside, lincosamide, 538 

macrolide, oxazolidinone, phenicol, pleuromutilin, streptogramin, and tetracycline classes 539 

(129–132).  Interestingly, CC94 isolates were not observed to possess any other AMR genes 540 

beyond these two examples. The genes ermB and ermT (conferring resistance to lincosamide, 541 

macrolide, and streptogramin) were present in 46 of 68 CC17 isolates. Only one isolate, sample 542 

23 (ST64), was observed to possess both ermB and ermT genes and each individual gene was 543 

distributed relatively unevenly throughout the dataset (eg. ermB was observed in 8 ST80 544 

isolates, ermT in 5 ST80 isolates, and 5 ST80 isolates lacked both genes); however, it was 545 
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observed that, if present, an isolate only possessed one of ermB or ermT on the chromosome 546 

(with the exception of Sample 23). The distribution of erm in this regard does seem to follow 547 

an underlying phylogenetic bias. For example, approximately half of Subcluster δ2 possess 548 

ermB and the other possess ermT. This transition appears to have occurred after the divergence 549 

of ERR374697 as it is retained in all later diverging taxa (Figures 5,6). Another example of 550 

erm bias can be observed between Subclusters δ2, δ3, and δ4, where δ2, δ3 display bias towards 551 

ermB and δ4 towards ermT. As both genes are observed in the Sample 23 chromosome (the 552 

earliest diverging δ4 taxon), it can be reasonably assumed that this transition occurred after the 553 

divergence of Sample 23 from the last common ancestor of the remaining δ4 isolates. 554 

 The gene dfrF (conferring resistance to trimethoprim) was observed distributed 555 

throughout the dataset (like ermBT) and displayed phylogenetic biases towards Cluster γ, and 556 

ermT positive members of Subclusters δ1, δ2, and δ3. The gene tetM (conferring resistance to 557 

tetracycline) was scattered throughout the dataset but was specifically observed in 13 or 18 558 

ST80 isolates. 559 

   560 

AMR genes present on either mobilome or chromosome.  561 

 562 

Seven of the AMR genes detected were distributed across either the mobilome or the 563 

chromosome within the samples investigated (AAC(6')-Ie-APH(2'')-Ia, aph(3’)-IIIa, ermB, 564 

SAT-4, aad(6), dfrG and tetL). This demonstrates the inter-connectedness of the mobilome and 565 

the chromosome as a mode of AMR gene transport within these isolates (SI Table 6; Figure 6).  566 

 567 

Core resistome 568 

 569 
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Using default pangenomic parameters (106), a core chromosomal resistome (inclusive 570 

of soft-core) whereby a gene is represented in ≥95% (≥75 genomes) comprise of two genes: 571 

AAC(6')-Ii and msrC. When CC94 is excluded, the core mobile resistome (≥64 genomes), is 572 

expanded to include efmA. A core mobile resistome was not established. 573 

 574 

Single nucleotide point mutations  575 

 576 

Linezolid resistance was identified phenotypically in sister taxa, Samples 14 and 24, 577 

but no associated plasmid mediated resistance mechanism was identified (SI Table 6; Figure 578 

6). In addition, the 23S rRNA, L3 and L4 gene sequences and amino acid sequences, 579 

respectively, were compared with the linezolid susceptible isolates in this study using 580 

PointFinder (SI Table 7; Figure 7). No linezolid resistance associated mutations were 581 

identified. Thus, the mechanism of linezolid resistance has not been identified. The linezolid 582 

resistance phenotype of the BSAC or CC94 isolates was not reported.  583 

The ciprofloxacin resistance phenotype was not reported in the BSAC or CC94 isolate 584 

associated metadata. Isolates sequenced for this study were all ciprofloxacin resistant. The 585 

gyrase and topoisomerase IV genes (gyrA and parC) from each isolate was compared with the 586 

ciprofloxacin susceptible strains using PointFinder to identify point mutations associated with 587 

ciprofloxacin resistance. Mutations in all isolates were identified at amino acid position 83 in 588 

GyrA, resulting in either an S83I change in all δ2 isolates (Samples 6, 7, 12, 15, 19, 20, and 22) 589 

or an S83Y change in the remaining samples sequenced for this study, in ermT positive δ1 590 

isolates, both ST203 isolates, in the only Cluster α isolate, and in a four-isolate clade of δ2.  In 591 

addition, two mutations at amino acid 709: Y709N and Y709D, outside the quinolone 592 

resistance determining region (QRDR) in the same groups of isolates. Point mutations at p.S80 593 

were observed across all CC17 isolates except ERR37474. The majority (53 of 78) of isolates 594 
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displayed an S80I mutation and the remaining 15 isolates displayed an S80R mutation. Point 595 

mutations in ParC follow a phylogenetic pattern, appearing in blocks with sister taxa (Figure) 596 

Interestingly, all Cluster γ isolates displayed the S80R mutation. As these point mutations are 597 

at the same site, it can be reasonably assumed that this point mutation is more likely to be 598 

inherited from the CC17 common ancestor than via several individual convergent events. 599 

Thus, ciprofloxacin resistance was due to the mutations at serine 83 in the GyrA protein 600 

and serine 80 in the ParC protein in all isolates sequenced for this study.  601 

 602 

Metal resistance 603 

 604 

 No metal or biocide resistance genes were observed on any mobilome sequence. A 605 

“core” metal-resistome of 3 single-copy genes (chtR, chtS, and sodA) was observed in all 606 

chromosomes (SI Table 8; Figure 8). A further 3 single copy genes (copA, copB, and copY/tcrY) 607 

observed in all chromosomes except for two isolates sequenced during this study, sample 9 and 608 

sample 21 (both from ST192).  One gene, perR was observed as a single-copy ortholog in all 609 

clinical isolates (inclusive of ST192) but absent in all “Cork” samples. One gene, dpr/dps was 610 

observed exclusively in sample 8 (unassigned ST). Finally, a set of 6 genes (merA, merR1, 611 

tcrA, tcrB, tcrY, and tcrZ) were observed exclusively in the “Cork” samples (CC94). In 612 

summation, all samples (except ST192) shared 7 genes (chtR, chtS, copA, copB, copY/tcrY, 613 

perR, and sodA). These 7 genes confer resistance towards selenium (chtR), hydrogen peroxide 614 

(chtR, perA, and sodA), chlorhexidine (chtS), copper (copA, copB, copY/tcrY) and silver (copB) 615 

(36,133). The absence of copABY from ST192 may indicate copper and silver susceptibility in 616 

these samples. The presence of dpr/dps in sample 8 is expected to confer iron resistance and 617 

increased resistance to hydrogen peroxide (134,135). The presence of merA and merR1 in the 618 

CC94 samples indicates intrinsic resistance to mercury and phenylmercury acetate (an 619 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469549
http://creativecommons.org/licenses/by-nc/4.0/


organomercuric compound) and the presence of tcrABYZ suggests increased copper resistance 620 

(43,136–139).  621 

 Using default pangenomic parameters (106), a core chromosomal metal 622 

resistome (inclusive of soft-core) whereby a gene is represented in ≥95% genomes (≥75 623 

genomes) comprise of six genes: chtR, chtS, copA, copB, copY/tcrY and sodA. When CC94 is 624 

excluded, the core metal resistome (≥64 genomes), is expanded to include perR.  625 

 626 

Virulence factors 627 

 628 

Each CC94 isolate contained a plasmid mediated virulence factor (VF), the biofilm-629 

associated transcription factor bopD (SI Table 9; Figure 9). Only one other VF was observed 630 

to be plasmid mediated: the fibrinogen binding surface protein fss3 (only observed within 631 

sample 18 (ST80)), all other observations were chromosomally mediated. All isolates were 632 

observed to possess clpP (a caseinolytic protease), cpsA (a biofilm associated undecaprenyl 633 

diphosphate synthase) and cpsB (a capsule associated phosphatidate cytidylyltransferase). A 634 

collagen adhesin precursor (acm) was observed in all isolates except sample 1 (ST1421) and 635 

the cell wall anchor protein sgrA was observed in every isolate except sample 26 (ST202). All 636 

isolates in CC17 (except Sample 1 (ST1421)) contained the bile salt hydrolase bsh and all 637 

CC17 isolates except ERR375031 (ST17) contained the endocarditis/biofilm-associated pilus 638 

ebpC. The collagen binding microbial surface components recognizing adhesive matrix 639 

molecule (MSCRAMM) gene ecbA was observed in sample 17 (ST80), ERR375043 (ST16), 640 

ERR374741 (ST17), ERR374767 (ST64), and in two ST203 samples (ERR374813 and 641 

ERR374914). The collagen adhesin protein scm was observed in 14 of 16 ST80 isolates, 5 of 642 

17 ST17 isolates, 2 of 5 ST18, 7 of 9 ST78, 1 of 3 ST192 (sample 21) and in sample 26 (ST202). 643 

Finally, fss3 was observed in 14 of 16 ST80 isolates, all 6 ST203 isolates, in both ST132 644 
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isolates, in one isolate each from ST16, ST17, ST64, ST78, ST192, ST787, ST1032, and 645 

ST1421 and one unclassified ST isolate (sample 22). Both fss3 and scm were absent from 646 

sample 17 (ST80). 647 

 Using pangenomic parameters, a core virulome (inclusive of soft-core) whereby a gene 648 

is represented in ≥95% (≥75 genomes) would yield acm, bopD, clpP, cpsA, cpsB, efaA, hasC, 649 

htpB, lap, and sgrA, illustrating a key pathenogenic potential for biofilm-associated proteins, 650 

capsular polysaccharide biosynthesis, caseinolytic protease, endocarditis specific antigen and 651 

collagen adhesins (140,141). When only clinical isolates are considered, the core virulome 652 

(≥64 genomes) is expanded to include bsh, epbA and epbC, further increasing cardiac virulence 653 

and limiting the antibacterial function of bile acids (142,143). 654 

 655 

Phages 656 

 657 

 Prophages were observed in the chromosome of 65 isolates (2.59±1.02; 1 ≤ n ≤ 4) and 658 

all were observed to be non-transposable (SI Tables 17-19). The majority (196 of 202) of 659 

prophages were predicted to be Siphoviridae, three prophages were observed to be either 660 

Siphoviridae or Myoviridae in ERR374794, ERR374824, ERR375046, one prophage (from 661 

ERR374806) was observed to be Myoviridae, one prophage (from sample 25) was observed to 662 

be Inoviridae, and one prophage (from sample 20) was of unknown taxonomy. Prophages were 663 

not observed within any mobilome. One resistance gene, ermB, was observed in a prophage of 664 

ERR374741, however no other resistance mechanism (antibiotic or metal/biocide) and no 665 

virulence factors were observed on any other prophage. Without this ermB phage, ERR374741 666 

would be susceptible to lincosamide, macrolide, and streptogramin. The prophage genome 667 

within ERR374741 was also observed to contain a probable secondary metabolism mechanism, 668 

however the product class could not be determined. One prophage within sample 13, sample 669 
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28, and ERR374909 was observed to contain a probable polyketide synthase. When these 670 

prophages were searched using Mash (SI Table 19), a set of 4 phages were mapped to 40 of 79 671 

genomes. In the “Cork” samples, Enterococcus phage ΦFL2A was ubiquitously observed. A 672 

total of 17 prophages were observed within 17 BSAC genomes, Enterococcus phage EFP01 673 

was observed in 11 genomes, Listeria phage B025 was observed in 4 genomes, and 674 

Corynebacterium phage BFK20 was observed in 2 genomes (Figure 14)  675 

 When isolation dates were considered for the BSAC samples, vancomycin resistance 676 

did not appear to be affected by the presence of a prophage as both VSE and VRE were 677 

represented (57). Both Corynebacterium phage BFK20 prophage-containing genomes were 678 

isolated in 2009, Listeria phage B025 prophage-containing genomes were isolated between 679 

2002 and 2011, and Enterococcus phage EFP01 prophage-containing genomes were isolated 680 

between 2001 and 2011. In genomes sequenced for this study, Corynebacterium phage BFK20 681 

was observed in 1 genome (sample 7), Enterococcus phage EFP01 was observed in two 682 

genomes (samples 13 and 28), Enterococcus phage ΦFL2A was observed in sample 11, 683 

Listeria phage B025 was observed in 3 genomes (samples 6, 12, and 19), and a duo of 684 

Enterococcus phage ΦFL2A and Listeria phage B025 was observed in 5 genomes (samples 2, 685 

14, 22, 23, and 24).  686 

 A core phage has previously been observed in studies into Enterococcus faecalis, where 687 

it is implicated in virulence and genome plasticity (144), however, to our knowledge, this trend 688 

has not been observed for E. faecium. 689 

 690 

Pangenomics 691 

 692 

As mentioned above, a pangenome was constructed for this dataset each pangenomic 693 

category was populated (ngenes; “core pangenome” (99% ≤ nsamples ≤ 100%), “soft core 694 
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pangenome” (95% ≤ nsamples < 99%), “shell pangenome” (15% ≤ nsamples < 95%), and “cloud 695 

pangenome” (nsamples < 15%)). The number of genes in the “whole genome” core and soft-core 696 

pangenomes and the “chromosomal” core and soft-core pangenomes are relatively unaffected 697 

by the mobilome (1324 and 236 genes vs 1327 and 229 genes respectively (SI Table 12)). 698 

However, the shell pangenome (2252 genes vs 1550) and the cloud pangenome (3306 genes vs 699 

2762 genes) were more pronouncedly affected. 700 

 701 

Pangenomic enrichment 702 

 703 

 The core pangenome (inclusive of all isolates) was observed to be enriched (PBD ≤ 704 

0.005) for major “house-keeping” and viability functions such as metabolism (eg. lipid 705 

metabolic process (GO:0006629), protein metabolic process (GO:0019538), carbohydrate 706 

metabolic process (GO:0005975), and RNA metabolic process (GO:0016070)), transport (eg. 707 

protein transport (GO:0015031) and ion transport (GO:0043167)), stress response 708 

(GO:0006950), signal transduction (GO:0050794), biosynthesis (GO:0009058), cellular 709 

regulation (GO:0065007), and localization (GO:0051179) (SI Table 13). The soft-core 710 

pangenome was observed to be enriched for localization and for transmembrane transport 711 

(GO:0022857). The shell pangenome was enriched for similar processes as the core genome, 712 

namely metabolic processes, transport, stress response, and localisation. The shell pangenome 713 

was also significantly enriched for small molecule metabolism (GO:0044281) and 714 

transposition (GO:0032196). The cloud pangenome was also enriched for metabolic processes, 715 

transport, and signal transduction. There was only one significant purification: transposition in 716 

the core genome. These results suggest a dynamic and non-specific evolution of the E. faecium 717 

pangenome and provides an insight into their genomic organisation and architecture.  718 

 719 
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Co-evolution 720 

 721 

When vancomycin resistance genes were sampled from the 28 genome dataset, a 722 

significant association (P ≤ 0.005) was observed between vanAHX and each of cadC, dinB, 723 

gmuD, gmuR, hin, hisB, nag3, sdhB, and uxaC and a significant dissociation with each of clpC, 724 

czcD, czrA, dkgB, dps, entP, fetA, fetB, fixK, fruA, gatA, lgt, mco, metB, opuCA, panE, phoP, 725 

rihB, and uvrA (SI Table 14). These results suggest that VREfm carrying vanA typically display 726 

an increase in carbohydrate processing (via gmuD, gmuR, nag3, sdhB, and uxaC), cadmium 727 

transport (via cadC), and DNA repair (via dinB) (145–152). Conversely, isolates with a vanA+ 728 

genotype were also more likely to display genotypes for a decrease in biofilm formation (via 729 

clpC), lipoprotein synthesis (via lgt), copper, iron, and zinc resistance (via czrA fetAB, and 730 

mco), pantothenate biosynthesis (via panE), quaternary ammonium compound resistance (via 731 

opuCA), oxidative resistance (via fetAB and opuCA), and stress response (clpC, dps, and uvrA) 732 

(153–162). Comparatively, vanBWXBYB was observed to be significantly associated with each 733 

of agaS, bfrA, dgaR, dgoA, dgoD, epsF, fruA, gatB, gmuE, gmuR, gpr, Int-Tn, lacD2, manR, 734 

manX, metK, mhpE, mro, mshA, noxE, sorC, ssbA, and treP and dissociated with each of aes, 735 

araQ, cysM, dctM, dppC, dppE, oppB, and tuf. These observations suggest that vanB+ VREfm, 736 

like vanA+ VREfm possess increases in carbohydrate (specifically sugar) catabolic processing 737 

genotypes (via agaS, dgoAD, lacD2, manRX, mshA, and treB), however, an increase was 738 

observed in biofilm formation genotype (via epsF) and stress response (via treB) (163–169). 739 

Isolates with a vanB phenotype were observed to be decreased in phenotypes for arabinose 740 

uptake (via araQ), cysteine synthesis (via cysM), dicarboxylate transport (via dctM) and protein 741 

transport (via dppCE and oppB) (170–174).  These protein transport genes are essential for 742 

sporulation in other Firmicute species, however, as Enterococcus are non-spore forming, their 743 

exact role with relation to vanB has not been elucidated (174–176). 744 
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Interestingly, fructose processing genotypes (via fruA, gatAB, and gpr) are significantly 745 

decreased in vanA+ isolates while being significantly increased in vanB+ isolates (SI Table 746 

16), suggesting a possible fructose metabolic niche in vanB+ isolates.  747 

 748 

Rampant recombination 749 

 750 

 Whole genome alignments and subsequent recombination analyses indicate massive 751 

recombination events in across the CC17 genome during its divergence from non CC17 E. 752 

faecium ancestors (Figure 13; SI Figure 3). The majority of recombination appears to have 753 

occurred approximately within the first 50% of the genome. 754 

 755 

Integron evolution 756 

 757 

 A total of 31 CC17 isolates were observed to possess an intrgron element, where three 758 

isolates (Samples 7, 15, and 22 (all Subcluster δ3)) were observed to possess two (SI Table 20; 759 

Figure 15). Integrons followed a phylogenetic distribution in Subclusters δ3 and δ4, however all 760 

other clusters were observed to be pseudorandomly distributed throughout the phylogeny. 761 

Genes-of-interest (resistance or virulence genes) were only observed on integron containing 762 

contigs in Subclusters δ3 and δ4. All isolates with a gene-of-interest possessed lsaA (conferring 763 

resistance to clindamycin, quinupristin-dalfopristin, and dalfopristin). Subcluster δ4 isolates 764 

only possessed lsaA. All Subcluster δ3 isolates also possessed efmA (an efflux pump conferring 765 

resistance to macrolides and fluoroquinolones), chtS (conferring resistance to chlorhexidine) 766 

and sodA (conferring resistance to peroxides). A clade within Subcluster δ3 (comprising of 767 

Samples 6, 12, 19, and 22) also all contained efaA (an endocarditis specific antigen) on their 768 

integron containing contigs.  769 
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 770 

Observation of an unusual contig 771 

 772 

Five isolates (Samples 2, 14, 24, and 25 (all assigned to ST80; subcluster δ4) and 773 

Sample 18 (ST80; Cluster β)) possessed a contig with a copy of arnB, a UDP-4-amino-4-774 

deoxy-L-arabinose--oxoglutarate aminotransferase involved in Gram-negative Lipid A 775 

biosynthesis and polymyxin resistance (177–179). The contig in samples 2, 14, and 24 are 776 

identical (SI Figures 4(a)-4(c)), however those attributed to samples 18 and 25 are distinct (SI 777 

Figures 4(d)-4(e)). Samples 2 and 24 were isolated from the same patient and all three of these 778 

samples are phylogenetic neighbours (Figure 5). These contigs have a plethora of cell wall 779 

synthesis and lipopolysaccharide modification genes which may play a role in resistance. Of 780 

particular interest, sample 17 contained phage sequences suggesting a possible viral mediated 781 

horizontal gene transfer. Instances of chromosomal segment transfer between Gram-positive 782 

and Gram-negative species (and vice-versa) has previously been attributed to phage activity 783 

and plasmid integration (180–182). 784 

 785 

Discussion 786 

  787 

Within Ireland VRE has already spread nationally and is endemic to Irish hospitals 788 

(183). The level of VRE in blood stream infections in Ireland has remained at or above 30% 789 

since 2005. While some other EU countries have levels above 30%, they have not consistently 790 

had this level of VRE BSI over such a wide timeframe. In 2019, >25% of VREfm BSI in eleven 791 

additional EU countries have been identified using the ECDC surveillance data. The spread 792 

and dominance of VREfm within Irish hospital patients over such a long duration provides us 793 

with a unique setting to study the changing dynamics and evolution of VREfm. A recent study 794 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469549
http://creativecommons.org/licenses/by-nc/4.0/


of the global dissemination of E. faecium identified that it has two main modes of genomic 795 

evolution: the acquisition and loss of genes, including antimicrobial resistance genes, through 796 

mobile genetic elements including plasmids, and homologous recombination of the 797 

chromosome. Within this global study 261 genomes contained the vanA gene. Within the 798 

hospital associated A1 clade of E. faecium the median number of AMR genes increased in the 799 

global study between 2001 and 2019 from 8 to 11 in 2015. Within this study for the Efm isolated 800 

between 2001 and 2011 the total AMR gene numbers corresponded with the presence of vanA 801 

rather than year. The vancomycin susceptible isolates and those with the vanB gene had less 802 

AMR genes than those with the vanA gene. vanA+ isolates had between 13 and 20 AMR genes, 803 

while those with vanB or no van gene had a total of between 5 and 12 AMR genes (except one 804 

vancomycin resistant isolate with vanB (n = 15) and one van susceptible isolate with no van 805 

genes (n = 16)). The timeframes for both groups were distributed across the ten years. Those 806 

with the highest AMR gene numbers both contained vanA and vanB. The number of AMR 807 

genes from the vanA study in 2018/2019 was between 12 and 18, which is consistent with the 808 

number from the previous study. Thus, the number of AMR genes in Ireland did not increase 809 

over time.  810 

The aims of this study were to compare the pan-genomes, mobilomes and chromosomes 811 

of the available genome sequences of vancomycin resistant or susceptible E. faecium across 812 

the timeframe that VRE (analysed by the ECDC (2002 to 2019)) increased in prevalence from 813 

11.1% to 38.4% in Ireland. To monitor and limit the spread of VREfm we need to understand 814 

how it evolves and acquires vancomycin resistance, how transmission networks are operating 815 

and how VREfm is developing resistance to last-line antibiotics. 816 

The same AMR gene was not observed in both chromosome and mobilome in any 817 

instance, which indicated genomic control of genetic redundancy (184–186). Vancomycin 818 

resistance was observed to be either plasmid mediated (via vanA) or chromosomally mediated 819 
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(via vanB), and rarely a combination of vanB on the chromosome and plasmid mediated vanA 820 

vancomycin resistance was observed. Tetracycline (and probable tigecycline) resistance (via 821 

tet(L)) was differentially dispersed in clinical isolates, with tet(L) being observed in the 822 

mobilomes of ST17, ST18, and ST203 and in the chromosomes of ST80 (if present within the 823 

genome). Other tetracycline resistance genes implicated in tigecycline resistance, tet(M) and 824 

tet(U), were observed in addition to tet(L) on the chromosome of most ST80 isolates. 825 

Interestingly, in contrast to previously reported trends (187,188), increased metal resistance 826 

did not positively correlate with increased drug resistance, in fact the opposite was observed, 827 

with the “Cork” strains displaying diminished drug resistance and increased metal resistance.  828 

Core-genome MLST corroborated phylogenetic and hierarchical clustering results, 829 

suggesting that core populations of E. faecium persist in Irish hospitals with frequent evolution 830 

towards pathogenicity via plasmid mediated transfer of vanA or chromosomal incorporation of 831 

vanB (Figures 5,12). This suggestion is corroborated by the genomic similarity between 832 

isolates in different clusters and clades (regardless of isolation year) and by the fact the VSE is 833 

observed within Cluster β and clades δ1 and δ4 (Figure 5). 834 

 We determined that a relatively stable “prophagome” exists between isolates (SI Table 835 

17), however, these are not, to our knowledge, implicated in the evolution of resistance or 836 

pathogenicity, as observed with closely related species (189,190). 837 

 An interesting potential virulence mechanism difference was observed between vanA+ 838 

and vanB+ isolates, whereby vanA+ genotypes were unlikely to display a biofilm forming 839 

genotype (via clpC) and vanB+ isolates were likely to display an epsF biofilm forming 840 

genotype (SI Table 16). Both vancomycin resistance genotypes displayed increases in 841 

carbohydrate catabolism genotypes, however vanB+ isolates were more likely to display 842 

specific sugar processing genotypes. Interestingly, vanA+ genotypes were less likely to 843 

coevolve with metal resistance, oxidative stress resistance, panthenoate, or lipoprotein 844 
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synthesis genotypes. These results suggest that vanB+ isolates are more likely to have evolved 845 

due to different stressors than vanA+ isolates. As vanA alignments used in this manuscript did 846 

not have any point mutations (regardless of the year of isolation), it is likely that a narrow range 847 

of mobile genetic elements confer resistance to commensal VSE in the immunocompromised, 848 

prompting their pathogenicity.   849 

 The significant differences in observed gene density (higher in mobilomes), GC% 850 

(lower in mobilomes), gene length (shorter in mobilomes) coupled with insignificant in coding 851 

proportions between chromosomes and mobilomes suggest that mobilomes are more likely to 852 

evolve either through the acquisition of statistically shorter sequences (while maintaining an 853 

equivalent coding potential) or through successive gene fission and/or gene 854 

subfunctionalisation events (191–194). While not statistically significant in most samples, 855 

coding nucleotide density is, on average, approximately 7% less in mobilomes (SI Tables 11-856 

12), where significantly variant coding proportions are also observed (2
chromosomal = 1.04; 857 

2
mobilomal = 3.62; P = 1.99e-10 (Levene’s test)). It is possible that these variances may just be 858 

an artifact of the highly variant sequences distributed across plasmids when compared to more 859 

stable chromosomes, these variances may also underly nucleotide deletion “clean up” 860 

processes following subfunctionalisation or fission events indicating evolution towards a more 861 

streamline, and therefore less bioeconomic expensive plasmids, thus promoting their 862 

propagation (193,195–197).  863 

 The pangenome of E. faecium is relatively open, with core and soft-core components 864 

only accounting for approximately 22% of the pangenome (when the mobilome is included) 865 

and for 26.5% when the mobilome is excluded (SI Table 12). This variation, coupled with the 866 

non-specific functional enrichments observed within the pangenome (SI Table 13), highlights 867 

the rampant evolutionary capabilities in “fixed” genomic biomolecules. This variation may be 868 

partially explained by the rampant recombination observed throughout CC17 or the diversity 869 
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of prophages observed throughout the respective genomes, however more research is needed 870 

to confirm the role of phages on VRE genome (Figures 11-13; SI Figure 3). As observed for 871 

phage data, integrons were observed throughout CC17 (SI Table 19; Figure 15). When 872 

integrons were observed in phylogenetic blocks, genes-of-interest were observed (SI Table 20; 873 

Figure 15). However, as these genes are widely observed in E. faecium, it is possible that these 874 

integrons are faciliting mobilisation of these genes. While recombination has been reported in 875 

E. faecium (198,199), the extent of recombination observed during this study has not, to our 876 

knowledge, been previously reported. This recombination may have been a driving force in the 877 

evolution of E. faecium CC17 towards pathogenicity (200).  Despite the rampant variation 878 

observed between genomes used in this study, chromosomal size, gene content, gene density, 879 

and the phylogenetic proximity of each genome remained largely stable throughout the dataset. 880 

The relatedness of the VSE and VRE indicates that vancomycin susceptible Efm are 881 

transferring between patients and then acquiring plasmids to become VREfm rather than or in 882 

addition to the movement of VRE between patients. Stability of Efm within Ireland over the 20 883 

years indicates that the increases in VRE across patients is not due to frequent and multiple 884 

introductions of different Efm into the hospital but rather the maintenance of genomic-related 885 

susceptible Efm that acquire vancomycin resistance plasmids and the spread of a cohort of 886 

highly related VREfm. Thus, the susceptible and resistant Efm are highly related and fixed 887 

within the hospital patients. To tackle VRE within Ireland we need to focus on reducing VSE 888 

in addition to reducing VREfm. This requires analysis of the epidemiology of VSE, VREfm 889 

and the plasmids containing the vanA gene. While this study provides some understanding of 890 

the past, we need to perform studies on the VSEfm and VREfm within our hospitals to 891 

understand the continuing rise of VREfm and the infection control required to limit the spread.   892 

  893 

Conclusion 894 
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 895 

 We have demonstrated that the genomic characteristics of the studies VSEfm and 896 

VREfm (such as genome size, gene density, and gene count) are relatively stable across space 897 

and time despite an open and plastic pangenome. The relatedness of the VSEfm and VREfm 898 

across time indicates that to reduce or remove VREfm from Irish hospitals we must 899 

concurrently remove VSEfm. The problem of vancomycin resistance within these pathogens is 900 

plasmid mediated vanA rather than chromosomally mediated vanB.  901 
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Figure 1: Distribution of sequence types between different studies 
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Figure 2: Comparison of different genome characteristics between chromosomes and plasmids 

across different studies.  
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Figure 3: Genomic distance cluster analysis of chromosomal sequences from all isolates. All 

CC17 isolates cluster together and all CC94 isolates cluster together (whereby all isolates share 

an edge). Approximately half of CC17 cluster with CC94. 
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Figure 4: Genomic distance cluster analysis of mobilomal sequences from all isolates. While 

some mixing occurs with BSAC isolates and isolates sequenced for this study, divergence 

between communities is observed. One BSAC isolate (ERR374724) is completely 

disconnected from the other connected components, which is unusual due to the shared 

presence of a vanA+ genotype between ERR374724 and many other isolates. All CC94 isolates 

cluster together in a separate connected component from CC17 mobilomes. 
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Figure 5: A 10,000 bootstrap phylogeny of isolates. Taxa are shaded based on their 

RheirBAPS clustering (discussed in methodology section) with an outer ring denoting the 

associated vancomycin resistance genotypes for each taxon. Bootstrap supports are provided 

for internal nodes. The majority of supports equate to 100%. Bootstrap shading is transitional, 

the colours shown in the legend are equidistant scales denoting where a new colour is shown. 

For example, a datapoint between 79.25% and 100% would be a shade of turquoise. Deep 

nodes all received high bootstrap support, further corroborating RheirBAPS clustering. 
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Figure 6. A phylogeny of isolates illustrating drug resistance genotype distributions as a 

categorical heatmap. Again, taxa are shaded based on their associated RheirBAPS cluster and 

a vancomycin resistance genotype is given as a separate bar for each taxon. 

Sample 5

Sample 27

Sample 16

Sample 10

Sample 14

Sample 24

Sample 2

Sample 25

Sample 23

Sample 19

Sample 22

Sample 6

Sample 12

Sample 20

Sample 7

Sample 15

Sample 4

Sample 17

Sample 18

Sample 26

ERR374767

ERR375043

ERR375032

ERR374843

ERR374894

ERR374883

ERR374832

ERR374755

ERR375031

ERR375015

ERR374683

ERR374919

Sample 1

ERR375030

ERR374724

ERR374944

ERR374753

ERR374697

ERR375053

ERR374714

ERR374838

ERR374682

ERR375006

ERR375049

ERR374987

ERR374741

ERR375008

ERR374791

Sample 8

ERR374794

ERR374760

ERR374968

ERR374663

ERR374774

ERR375014

ERR374909

ERR374824

ERR375046

ERR374982

Sample 13

Sample 3

Sample 28

Sample 11

Sample 9

Sample 21

ERR374813

ERR374914

ERR374806

GCA 009896725.1

GCA 009896715.1

GCA 009896765.1

GCA 009896605.1

GCA 009896635.1

GCA 009897725.1

GCA 009897405.1

GCA 009896685.1

GCA 009897565.1

GCA 009897695.1

GCA 009896695.1

ERR374714

ERR375053

ERR374682

ERR374838

ERR375006

ERR375049

ERR374987

ERR374741

ERR374697

ERR374753

ERR374944

ERR374724

ERR375030

ERR374683

ERR375015

ERR375031

Sample 1

ERR374919

ERR374791

ERR375008

ERR374755

ERR374832

ERR374883

ERR374843

ERR375032

ERR374894

ERR375043

ERR374767

Sample 26

Sample 17

Sample 4

Sample 18

Sample 23

Sample 27

Sample 5

Sample 10

Sample 16

Sample 24

Sample 14

Sample 2

Sample 25

Sample 15

Sample 7

Sample 20

Sample 22

Sample 19

Sample 12

Sample 6

Sample 8

ERR374982

ERR374909

ERR375014

ERR374760

ERR374794

ERR374968

ERR374774

ERR374663

ERR375046

ERR374824

Sample 21

Sample 9

Sample 11

Sample 28

Sample 3

Sample 13

ERR374914

ERR374813

ERR374806

GCA 009896765.1

GCA 009896715.1

GCA 009896725.1

GCA 009896605.1

GCA 009897725.1

GCA 009896635.1

GCA 009896695.1

GCA 009897695.1

GCA 009897565.1

GCA 009896685.1

GCA 009897405.1

0.0015361

0.0000112

0.0000034

0.0000017

9e-7

0.0000089

0.0000069

2e-7

0.0000693

0.0000026

2e-7

2e-7

2e-7

0.0004514

2e-7

0.0000042

0.0000077

2e-7

0.0003389

0.0006546

0.0000017

2e-7

0.0000267

0

2e-7

2e-7

2e-7

0.0000034

0.0005036

0.0000017

0.0004518

0.0000552

0.0004214

0.0002253

0.0003214

0.0002875

0.0000042

8e-7

0.0001691

0.0000017

2e-7

2e-7

2e-7

0.0000042

0.0005349

2e-7

9e-7

2e-7

0.0002152

0.0000034

8e-7

0

0.0002689

0.0000017

0.0001845

0.0000685

9e-7

0.0000629

2e-7

0.0000059

0.0000437

0.0000732

0.00015120.0014673

0.0000208

0.0000016

0.0000246

2e-7

2e-7

0.0001319

2e-7

0.0002513

0.0000354

0.0001418

0.0002393

0.0001846

0.0002075

0.0002182

0.0000034

0.0000025

0.0004727

9e-7
0.0000017

0.0000069

2e-7

0.0004469

2e-7

2e-7

0.0000042

0.0000016

2e-7

2e-7

0.000371

0.0000744

0.000006

0.0009733

0.0000981

0.0002713

0

0.0000172

2e-7

2e-7

0.0001909

0.0001278

2e-7

0.0000026

2e-7

9e-7

0.000548

8e-7

2e-7

0.0006107

0.0001357

9e-7

2e-7

9e-7

0.0000056

0.001245

0.0000017

0.0395737

0.0002941

0.0011183

0.0006209

0.0395737

0.0000069

0.0006963

0.000025

0.0000319

0.0002938

0.0000017

0.00001

2e-7

2e-7

0.0007449

0.0000034

9e-7

0.00002

0

0.0000138

0.0000025

2e-7

0.0004443

0.0000017

2e-7

0.0000266

9e-7

0.0004802

0.0011208

0.0000077

2e-7

0.0000059

2e-7

0.0000069

2e-7

2e-7

2e-7

0.0395737

G
e

n
o

ty
p

e

A
A

C
(6

')
-I

e
-A

P
H

(2
''
)-

Ia

A
A

C
(6

')
-I

i

A
N

T
(6

)-
Ia

A
P

H
(3

-p
ri

m
e
)-

II
Ia

E
fm

 c
h

lo
ra

m
p

h
e

n
ic

o
l 
a
c

e
ty

lt
ra

n
s
fe

ra
s
e

E
rm

B

E
rm

T

S
A

T
-4

a
a
d

(6
)

c
a
tA

8

d
fr

F

d
fr

G

e
fm

A

e
fr

A

e
fr

B

ls
a
A

ls
a
B

ls
a
E

m
s
rC

te
t(

L
)

te
tM

te
tU

v
a
n

A

v
a
n

B

v
a
n

H
A

v
a
n

H
B

v
a
n

R
A

v
a
n

R
B

v
a
n

S
A

v
a
n

S
B

v
a
n

W
B

v
a
n

X
A

v
a
n

X
B

v
a
n

Y
A

v
a
n

Y
B

v
a
n

Z
A

Clusters

α

β

γ

δ(1)

δ(2)

δ(3)

δ(4)

CC94

Vancomycin resistance genotype

VSE

vanA

vanB

vanAB

Resistance and virulence genotypes

Absent

Chromosomal

Mobilomal

Chromosomal & mobilomal

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469549
http://creativecommons.org/licenses/by-nc/4.0/


 
 

Figure 7. A phylogeny of isolates illustrating point mutation mediated drug resistance 

genotype distributions as a categorical heatmap. Again, taxa are shaded based on their 

associated RheirBAPS cluster and a vancomycin resistance genotype is given as a separate bar 

for each taxon. 
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Figure 8. A phylogeny of isolates illustrating metal (biocide) resistance genotype distributions 

as a categorical heatmap. Again, taxa are shaded based on their associated RheirBAPS cluster 

and a vancomycin resistance genotype is given as a separate bar for each taxon. 
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Figure 9. A phylogeny of isolates illustrating virulence factor genotype distributions as a 

categorical heatmap. Again, taxa are shaded based on their associated RheirBAPS cluster and 

a vancomycin resistance genotype is given as a separate bar for each taxon. 
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Figure 10. A phylogeny of isolates illustrating secondary metabolite production genotype 

distributions as a categorical heatmap. Again, taxa are shaded based on their associated 

RheirBAPS cluster and a vancomycin resistance genotype is given as a separate bar for each 

taxon. 
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Figure 11: Distribution of RheirBAPS clusters between studies 
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Figure 12: Core genome MLST (cgMLST) for all isolates included in this study. The upper 

image is shaded based on RheirBAPS clustering and the lower is shaded based on vancomycin 

resistance genotypes. The year of isolation is presented in the centre of each circle, where each 

circle represents an isolate. 
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Figure 13: Red bars illustrate hot spots compared to a reference, where a hotspot is defined as 

a site where more than one species reports a ≥50% likelihood for the same recombination event. 

Blue boxes illustrate a recombination event for a single species. Multiple different 

recombination events can occur at the same site (appearing as overlap in this image). The plot 

at the bottom shows the maximal amount of species affected by a detected recombination event 

in a given hotspot 
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Figure 14. A phylogeny of isolates illustrating detected prophage distributions as a categorical 

heatmap. Again, taxa are shaded based on their associated RheirBAPS cluster and a 

vancomycin resistance genotype is given as a separate bar for each taxon. 
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Figure 15. A phylogeny of isolates illustrating detected  integron distributions as a categorical 

heatmap. Again, taxa are shaded based on their associated RheirBAPS cluster and a 

vancomycin resistance genotype is given as a separate bar for each taxon. Gene distributions 

(presence or absence) are given for efmA and lsaA (drug resistance), chtS and sodA (metal and 

biocide resistance), and efaA (virulence factor). 
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SI Figure 1: A 10,000 bootstrap phylogeny with all clinically relevant genes arranged as semi-circular categorical heatmaps. Annotation semi-

circles are arranged as follows (innermost to outermost): drug resistance genotype, point mutation drug resistance genotype, metal (biocide) 

resistance genotype, virulence factor genotype, secondary metabolism production genotype
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SI Figure 2: Core genome clustering. These clusters were produced using PANINI to 

corroborate cgMLST data, the phylogeny on the right is the same phylogeny used in all other 

images, colours are RheirBAPS clusters 
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SI Figure 3: Genome recombination between 24 different reference genomes. Each reference 

genome diverged prior to CC17. Red bars illustrate hot spots compared to a reference, where a 

hotspot is defined as a site where more than one species reports a ≥50% likelihood for the same 

recombination event. Blue boxes illustrate a recombination event for a single species. Multiple 

different recombination events can occur at the same site (appearing as overlap in this image). 

The plot at the bottom shows the maximal amount of species affected by a detected 

recombination event in a given hotspot. Each reference genome is given in the bottom left. 
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Figure 4(a): arnB contig in Sample 2. Positive sense genes are given above the line and negative sense are below the line. Genes are coloured in 

alternating blue for ease of visualisation 
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Figure 4(b): arnB contig in Sample 14. Positive sense genes are given above the line and negative sense are below the line. Genes are coloured in 

alternating blue for ease of visualisation 
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Figure 4(c): arnB contig in Sample 24. Positive sense genes are given above the line and negative sense are below the line. Genes are coloured in 

alternating blue for ease of visualisation 
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Figure 4(d): arnB contig in Sample 18. Positive sense genes are given above the line and negative sense are below the line. Genes are coloured in 

alternating blue for ease of visualisation 
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Figure 4(e): arnB contig in Sample 25. Positive sense genes are given above the line and negative sense are below the line. Genes are coloured in 

alternating blue for ease of visualisation 
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