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ABSTRACT  

Anxiety can alter an individual’s perception of their external sensory environment. Previous 

studies suggest that anxiety can increase the magnitude of neural responses to unexpected (or 

surprising) stimuli. Additionally, surprise responses are reported to be boosted during stable 

compared to volatile environments. Few studies, however, have examined how learning is 

impacted by both threat and volatility. To investigate these effects, we used threat-of-shock to 

transiently increase subjective anxiety in healthy adults during an auditory oddball task, in which 

the regularity could be stable or volatile, while undergoing functional Magnetic Resonance 

Imaging (fMRI) scanning. We then used Bayesian Model Selection (BMS) mapping to pinpoint 

the brain areas where different models of anxiety displayed the highest evidence. Behaviourally, 

we found that threat-of-shock eliminated the accuracy advantage conferred by environmental 

stability over volatility in the task at hand. Neurally, we found that threat-of-shock led to both 

attenuation and loss of volatility-attuning of neural activity evoked by surprising sounds across 

most subcortical and limbic brain regions including the thalamus, basal ganglia, claustrum, insula, 

anterior cingulate, hippocampal gyrus and also the superior temporal gyrus. Conversely, within 

two small clusters in the left medial frontal gyrus and extrastriate area, threat-of-shock boosted 

the neural activity (relative to the safe and volatile condition) to the levels observed during the 

safe and stable condition, while also inducing a loss of volatility-attuning. Taken together, our 

findings suggest that threat eliminates the learning advantage conferred by statistical stability 

compared to volatility. Thus, we propose that anxiety disrupts behavioural adaptation to 

environmental statistics, and that multiple subcortical and limbic regions are implicated in this 

process. 

 

 

Keywords: anxiety, volatility, statistical learning, fMRI, Bayesian model selection 
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INTRODUCTION 

Anxiety affects both clinical (Hao et al., 2020) and non-clinical populations (Cao et al., 2020; Roy 

et al., 2020; Taylor et al., 2020). Non-clinical, transient anxiety has overlapping features with 

pathological anxiety, suggesting that studying the former can aid our understanding of the latter 

(Grillon, 2008; Robinson et al., 2013). A common way to study anxious states in healthy 

individuals are threat-of-shock paradigms, such as those used in several key neuroimaging 

studies of anxiety (Klumpers et al., 2017; Torrisi et al., 2018). Using such paradigms, Cornwell 

and colleagues (2007) found that healthy individuals under transient threat-of-shock show threat-

induced increased neural responses to unexpected (or deviant) stimuli, comparable to people 

with post-traumatic stress disorder (Morgan and Grillon, 1999). We refer to this phenomenon of 

threat-induced increased neuronal responses as hypersensitivity. Interestingly, a later study by 

the same group (Cornwall et al., 2017) found that this hypersensitivity to unexpected stimuli could 

be reversed using anxiolytic medication (known to alleviate anxiety) administered during a 

combined threat-of-shock and auditory oddball paradigm. 

 

Oddball paradigms use changes in the auditory (or visual) sensory statistics to evoke 

prediction error responses that are driven by larger neural responses to surprising (compared to 

frequent or unsurprising) events (Nätäänen, 1992). While a small  number of studies have shown 

that these neural responses to surprising events are boosted during anxious states (Cornwell et 

al., 2007; 2017), it remains unclear how the stability or volatility of the environmental statistics 

affect such responses. Previous work has shown that neurotypical individuals increase their 

learning rates in volatile compared to stable environments (Behrens et al., 2007), and that  anxiety 

detrimentally affects how quickly adults learn about new environmental contingencies following a 

surprising change in sensory statistics (Browning et al., 2015). We refer to this as threat-induced 

loss of volatility-attuning. In comparison, less is known about how anxiety affects an individual’s 
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accuracy in their judgements relating to changing environmental statistics and which brain regions 

are engaged in these processes. As such, we investigated the degree to which induced anxiety, 

within a combined threat-of-shock and oddball paradigm, affects both the learning accuracy and 

brain responses to surprising stimuli in stable and volatile environments during threatening 

(threat-of-shock) and safe conditions. 

 

Motivated by the above notions of threat-induced loss of volatility-attuning (Browning et 

al., 2015) and hypersensitivity (Cornwell et al., 2017), we designed a study to empirically test 

these hypotheses and which were operationalised as families of models (see Figure 2 for further 

information). We defined ‘volatility-attuning’ as the contextual modulation of surprising responses 

dependent on the stability of the environment (this neural definition is subtly different to that of 

Browning et al., 2015). Accordingly, an individual with intact volatility-attuning would display 

greater responses to deviant stimuli during the stable versus volatile conditions even under threat. 

Thus, a loss of volatility-attuning induced by threat would be reflected in models incorporating 

equal neural responses in volatile and stable contexts. Conversely, hypersensitivity during threat 

(Cornwell et al., 2017) was reflected in models that postulated greater activity for surprise 

responses under threat than safety, with or without a loss of volatility-attuning. Alternative models 

hypothesised attenuation with threat, meaning larger responses during safe conditions. These 

hypotheses were based on previous findings of reduced neural activity in response to unexpected 

sounds for post-traumatic stress disorder (PTSD) patients compared to controls (McFarlane et 

al., 1993; Menning et al., 2008).  

 

To test these hypotheses we used Bayesian Model Selection (BMS) mapping for 

functional Magnetic Resonance Imaging (fMRI, Rosa et al., 2010). The BMS methodology is 

ideally suited to our purposes as it allows for the simultaneous comparison of any number of 

models at each and every voxel throughout the brain. BMS is unique as it is not limited to simply 
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using contrasts to determine where an experimental effect is the greatest (as in traditional 

methods). Instead, one can determine where each of the hypothesised models is most likely. The 

results from our BMS analysis revealed where in the brain our different hypotheses regarding  the 

anxiety-induced neural responses were most probable given our experimental data. 

 

MATERIALS AND METHODS 

Participants 

Our final sample included 38 healthy participants (50% male, 50% female), ranging from 18 to 31 

years of age (M = 21 years, SD = 2.89). All participants were right-hand dominant, fluent English 

speakers, with normal or corrected-to-normal vision. Participant exclusion criteria included the 

current use of psychotherapy or of psychotropic medication/s, excessive alcohol consumption 

(>2/day average), frequent tobacco use (>6/day), any contraindications to magnetic resonance 

imaging (MRI) scans, any history of mental or neurological disease, or an unwillingness to 

experience discomfort. The final sample participants’ demographics and relevant questionnaire 

scores are shown in Table 1. All participants gave both written and verbal informed consent to 

the study and were compensated for their time at a rate of $20 AUD per hour. The University of 

Queensland Institutional Human Research Ethics committee approved the study.  

 

Participant exclusion 

From an original sample size of 52 individuals, we removed 14 participants. Five were excluded 

due to exclusionary medical conditions that were not disclosed during participant screening, six 

due to equipment failure or data loss, and three due to their behavioural results strongly 

suggesting they were not engaging in the task. We also note that following the experiment, 18 

participants reported that they heard distorted sounds in some blocks. However, after determining 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.21.469465doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.21.469465
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

there were no significant differences in the behavioural data with those who did not report the 

distorted sounds, we did not exclude any participants on this basis.  

 

Task Description and Procedure 

We adapted the reversal oddball paradigm developed by Dzafic and colleagues (2020) from 

electroencephalography (EEG) to functional Magnetic Resonance Imaging (fMRI), and combined 

this with a modified version of a threat-of-shock procedure (Cornwell et al., 2017). This “Threat-

of-Shock with Auditory Volatility Oddball" (TSAVO) task is depicted in Figure 1. Prior to the task, 

all participants completed an MRI metal check, changed into medical scrubs, and completed two 

 

Table 1: Participant Demographics and Inventory Scores 

Characteristic N Mean (SD) 

Sex Male: 19; Female: 19  

Age  (years) 38 21 (2.89) 

Trait Anxiety Score 37* 38 (8.12) 

Beck’s Anxiety Inventory Score 38 8 (8.24) 

Beck’s Depression Inventory Score 37* 7 (7.19) 

Intolerance of Uncertainty 38 25 (7.95) 

Statistical Learning Errors 38 14 (5.18) 

* Note that one participant declined to complete each of these questionnaires. 
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to four practice blocks (depending on if they needed or requested more practice) of the task. All 

participants demonstrated understanding of the task prior to participating, and were provided 

opportunities for questions both before and after the task. The total time of the task was 

approximately 30-36 minutes, including short breaks. 

  

The auditory stimuli consisted of pure tones delivered binaurally via earphones. Each tone 

was 1000 Hz in frequency and was either “short” (50 ms) or “long” (100 ms), with an interstimulus 

interval (ISI) of 750 ms. Although this ISI was fixed, there was a variable length of time for 

questions/responses after each block, which produced a “jitter” between blocks.  

 

There were 12 blocks per experiment, with 200 tones delivered per block (each block 

lasting 150 seconds). The tones were played in a pseudorandom order, with the “standard” being 

common (occurring with 80% probability), and the “deviant” being uncommon, or unpredictable. 

Each deviant always had at least one standard tone played after it. In half the blocks, the 

frequency of standard and deviant tones were kept constant throughout the block (80/20%): these 

were called stable blocks (Figure 1a, left). During volatile blocks, the standard and deviant tone 

probabilities were reversed at three unpredictable times per block, as depicted in Figure 1a (right). 

We counterbalanced the presentation order of the four types of blocks (stable safe, volatile safe, 

stable threatening, and volatile threatening) across participants.  

   

While Cornwell et al. (2007, 2017) only administered one shock despite multiple shock 

warnings, in this experiment participants were administered a single shock once during five of the 

six “shock-warning blocks”. Each “shock block” had a differently-timed shock, delivered at an 

unpredictable time t ≤100 seconds from the end of the block. We randomised the shock delivery 

time because temporally unpredictable administration of aversive stimuli seems to increase the  
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Figure 1: Threat-of-Shock combined with Auditory Volatility Oddball (TSAVO) 

Experimental Paradigm. (a) Example of one statistically stable (green) followed by one volatile 

(purple) block. Long dashed black lines denote long sounds while short dashed grey lines denote 

short sounds. In the volatile block, the letter “R” denotes “reversal” moments, when probability 

rules were reversed (e.g., from 80/20% to 20/80% for the long and short tones). This occurred 

three times during each volatile block. Each block was followed by three questions (see b). (b) 

Participants answered three questions after each block: (1) sound proportion estimate of the 

frequencies of the sounds (with ‘more short sounds’ displayed to the left hand side of the scale 

and ‘more long sounds’ on the right)), (2) their confidence rating (from low to high), and (3) a 

rating of their anxiety level (from low to high). (c) Overview of the components of each block. Each 

block began with either a threatening or safe cue, and ended with the same three questions. 

During threatening blocks, a single shock occurred at a variable, unpredictable length of time 

within  100 seconds from the end of the block.  
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anxiety induced by said stimuli (e.g., Grillon et al., 2004; Somerville et al., 2012; Simmons et al. 

2008). Thus, the aim was for participants to be relatively sure they were likely to receive a shock, 

but to be unable to predict when they would receive it. 

  

Prior to the experiment, each participant’s anterior wrist surface was cleaned and two 

electrodes were placed approximately 2 cm from the wrist flexion crease. Next, participants were 

administered a work-up shock procedure during which between one and five sample shocks were 

delivered to the wrist via a constant current stimulator. Shocks were delivered via a Biopac 

machine which functioned in association with Acqknowledge Data Acquisition software and 

MATLAB. Participants were asked to choose a shock intensity that was physically uncomfortable 

but not painful. Their chosen level of shock, a moderately uncomfortable physical intensity, was 

kept constant throughout the experiment. The shock level ranged from 0.001 to 50 V for this 

participant group, with most participants selecting a voltage between 0.01 to 0.02 V.  Before each 

block, a message appeared on the screen saying either, “PREPARE FOR SHOCK AT ANY TIME” 

(“threat cue”) or “YOU ARE SAFE. NO SHOCK THIS ROUND” (“safe cue”).  

 

Behavioural measure of Statistical Learning Errors (SLEs) 

After each block, participants estimated the percentage of the short and long sounds, as well as 

their confidence and anxiety levels (both rated from 0 to 100), using visual rating scales (Figure 

1b). For each block, we calculated the behavioural Statistical Learning Errors (SLEs), which we 

defined as the absolute difference between a participant’s estimate of the percentage of a given 

type of sound, and the true percentage of those sounds. For example, if the percentage of short 

sounds was 20% and a participant responded with 40%, then their SLE was 20%. We also 

calculated each participant’s average stable-over-volatile learning advantage in the safe or 

threatening blocks, which we defined as the difference in SLEs (in percent) between stable and 
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volatile conditions. The confidence and anxiety ratings were taken to be the location along the 

visual scale where the participant clicked, converted to a percentage of the total scale length (with 

0% on the left/lower end of the scale, and 100% on the right).  

 

Data acquisition and pre-processing 

Structural and functional MRI images were acquired on a 3-T Siemens Magnetom Prism scanner 

using a 32-channel head coil. Prior to the task, structural images were acquired with an MP2-

RAGE sequence with a repetition time (TR) of 4000 ms, echo time of (TE) of 2.91 ms, resolution 

(voxel size) of 1 mm3, Field of View (FoV) of 256 mm, 176 slices per slab, inversion times (TI and 

T2) of 900 ms and 2220 ms respectively, and flip angles of 6 degrees and 7 degrees respectively. 

During the task, functional T2*-weighted images were acquired using a multiband, echo-planar 

sequence, across the whole brain (TR: 785 ms, TE: 30.0 ms, resolution: 2 mm3 isotropic, slices: 

60, FoV: 208 mm, flip angle: 52 degrees). Following the completion of the task, there was also 

the collection of diffusion imaging data using a neurite orientation dispersion and density imaging 

(NODDI) technique (Zhang et al., 2012); analyses of those data will be reported elsewhere. 

 

Standard pre-processing of the fMRI images was completed using the Statistical 

Parametric Mapping 12 (SPM12; http://www.fil.ion.ucl.ac.uk/spm/) software package for MATLAB 

(The MathWorks, Inc.; http://www.mathworks.com). The pre-processing steps included 

realignment on the functional images; co-registration of the functional and structural images; 

segmentation of the structural image, with heavy regularisation (0.1) recommended for MP2-

RAGE sequence; normalisation of the resliced images into a standardised, stereotaxic space 

(according to the Montreal Neurological Institute, MNI, template); and smoothing of normalised 

images with an 8mm full-width-at-half-maximum isotropic Gaussian kernel. 
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Behavioural analyses 

Behavioural analyses were performed using Two-Way Analyses of Variance (ANOVAs) for the 

main effects and interactions of volatility and threat on anxiety ratings and the SLE data. These 

were followed up with post-hoc tests, with significance values adjusted using Bonferroni correction 

for multiple comparisons. We also examined the difference in the SLE learning advantage 

conferred by stable over volatile environments by subtracting each participant’s average SLE in 

the volatile condition from the safe condition, separately within the safe or threatening conditions. 

Significance was examined using a paired-sample t-test. 

 

Bayesian Model Selection 

A Bayesian approach allowed us to compare multiple non-nested hypotheses operationalised as 

different models of the neural activity under the different volatility and threat conditions. We 

specified and compared nine different hypotheses (named H0 to H8, and shown in Figure 2) using 

random effects (RFX) Bayesian Model Selection (BMS) as described by Rosa et al. (2010) and 

the SPM12 manual (Ashburner et al., 2016). For a full description of the BMS method we 

employed, including the use of parametric modulators (i.e., regressor weights) to specify different 

hypotheses about the relative amplitude of neural responses, please see Rosa et al. (2010) and 

Harris et al. (2018). Briefly, for each model, parametric modulators were assigned to each 

experimental condition such that they represented the hypothesised relative amplitude of the 

neural response to a deviant event. For example, if we hypothesised that, for condition A, the 

neural activity levels were 4 times greater in magnitude than in condition B, then we would assign 

a weighting of “4” for condition A and a “1” for condition B. In this example, the parametric 

modulators would simply consist of a vector of “4”s (one for each trial) in condition A, and a vector 

of “1”s for the trials in condition B. 
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BMS model definitions 

Our intention was to describe plausible, easily interpretable hypotheses for the relative deviant 

neural responses under different combinations of threatening, safe, volatile, and stable conditions. 

It is important to note that, when using model comparison, the most probable model is conditioned 

upon those contemplated in the model space. It is often intractable to test for all possible models. 

Fortunately, however, the literature and our behavioural findings aided in narrowing the 

(technically unlimited) range of possible models down to eight simple alternative hypotheses and 

a null. We drew on findings in the literature to inform the models representing Hypotheses 1 to 4 

(H1-H4), and we drew inspiration from our behavioural data, in combination with a previous study 

(Dzafic et al., 2020), to construct the models representing Hypotheses 5 to 8 (H5-H8). Finally, we 

constructed a null hypothesis, H0, to directly assess the probability that there were no differences 

between the four conditions. For each of these hypotheses, we included every model that 

reflected all possible combinations of integer parametric modulators (between 1 and 4) 

representing the hypothesized ranking of neural activity amongst the conditions (see below and 

Supplementary Material for further details). We limited the parametric modulators to integers 

between 1 and 4 for simplicity. We describe how we specified these models below, where we 

refer to the experimental conditions of safe stable (SS), safe volatile (SV), threatening stable (TS) 

and threatening volatile (TV).  

 

We designed H1 to H4 based on the previous literature. H1 was informed by the 

aforementioned findings of Cornwell et al. (2007, 2017) and Dzafic et al., (2020), with greater 

neural activity under threat than in safety (hypersensitivity) and during stable compared to volatile 

conditions (intact volatility-attuning). H1 was specified using parametric modulator weights of 4, 

3, 2 and 1 for TS , TV , SS  and SV conditions, respectively. As there were no other possible 

combinations of integers from 1 to 4 to represent the rankings of neural activity between the  
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Figure 2: The nine hypotheses regarding the neural responses to surprising (deviant) 

stimuli. For our Bayesian Model Selection analysis, we formulated two groups of hypotheses that 

were either based on the literature (H1-H4) or behaviourally driven (H5-H8). All hypotheses could 

be grouped according to whether volatility-attuning (i.e., higher responses during stable compared 

to volatile conditions) remained intact under threatening conditions (H1, H3, H5, H6) or was lost  

(H2, H4, H6, H8). The literature-based models could be further divided according to whether 

neural responses to surprise were consistently highest in threatening conditions (H1, H3) or safe 

conditions (H2, H4). The behaviourally-driven models were all based on the behavioural statistical 

learning error (SLE) data. Finally, a null hypothesis (also referred to in the text as Hypothesis 0, 

H0) was included to reduce the Type I error rate. Please see the text for further explanations of 

each model. 

 

experimental conditions, H1 included only one model alternative. H3 was a variation of H1 

reflecting hypersensitivity to threat, but with loss of volatility-attuning during threat, inspired by the 

behavioural findings of Browning et al. (2015). H3 had the parametric modulator weights of 4, 4, 

3 and 2 for TS, TV, SS and SV conditions, respectively. In addition to this ‘base’ version of H3, 

there were 3 other sets  between 1 and 4 that could represent the same ranking of neural activity 
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amongst the conditions (i.e., [4,4,2,1], [3,3,2,1] and [4,4,3,1]), giving a total of four H3 model 

variations. 

 

H2 and H4 were based on previous findings of reduced neural activity (or attenuation) in 

response to unexpected sounds in post-traumatic stress disorder (PTSD) patients compared to 

controls (McFarlane et al., 1993; Menning et al., 2008). These models were derived by modifying 

H1 and H3, respectively, such that neural responses were greater in safety than in threat, again 

combined with either retention (H2) or loss (H4) of volatility-attuning during threat. For H2, the 

regressor weights were 2, 1, 4 and 3 for the TS, TV, SS and SV conditions, respectively. There 

were no further possible sets of integers from 1 to 4 that could specify H2. For H4, the weights for 

the ‘base’ model were 2, 2, 4, 3 for the TS, TV, SS and SV conditions, respectively. In addition, 

there were 3 variations of regressor weights specifying the same rank order of neural activity (i.e., 

[1, 1, 4, 3], [1, 1, 3, 2] and [1, 1, 4, 2]), giving a total of four variations of H4. Overall, for H1-H4, 

there were a total of 10 models. 

 

In contrast to these hypotheses, H5 to H8 were based on the patterns observed in the 

behavioural SLE data. We created these models to test whether there were regions whose neural 

deviant responses varied in a way that was proportional to behavioural accuracy (that is, inversely 

proportional to SLEs). Our results (see Results for further details) showed that during safe volatile 

conditions the SLEs were significantly higher than during the safe stable conditions; meaning 

participants made more SLEs during the safe volatile blocks (compared to the safe stable blocks). 

As such, we hypothesised that the deviant neural responses would be greater (suggesting greater 

prediction errors) in the safe stable blocks than the safe volatile blocks. These models were 

inspired by previous findings that surprise responses tend to be larger for people with higher 

behavioural accuracy (Dzafic et al., 2020). Given this, we designed four hypotheses (H5-H8) that 
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matched the observed significant difference whereby the response in SS conditions was always 

larger than the response in SV conditions.  

 

In H5 the conditions were represented as SS = TS > SV = TV (using parametric modulators 

of 4, 3, 4, 3 for the TS, TV, SS and SV conditions, respectively), denoting  intact volatility-attuning 

under threat. In H6 the conditions were represented as SS = TV > SV = TS (using parametric 

modulators of 3, 4, 4, 3 for the TS, TV, SS and SV conditions, respectively), also denoting 

preserved volatility-attuning. In H7 the conditions were represented as SS = TS = TV > SV (using 

parametric modulators of 4, 4, 4, 3 for the TS, TV, SS and SV conditions, respectively). H7 also 

reflected a loss of volatility-attuning with threat and hypersensitivity in volatile environments (with 

respect to the safe and volatile condition). Finally, in H8 the conditions were represented as SS > 

SV = TS = TV (using parametric modulators of 3, 3, 4, 3 for the TS, TV, SS and SV conditions, 

respectively). H8 also reflected a loss of volatility-attunning during threat, as well as attenuation 

of the neural responses in safe environments (with respect to the safe and stable condition). As 

with the models of H1-H4, we included all possible regressor weight combinations representing 

the same rank ordering. For each of the models H5-H8 there were 5 possible combinations of 

integers from 1 to 4 (inclusive), giving a total of 20 model variations within this behaviourally-

inspired model set. Finally, H0, the null, had the same parametric modulator weight (4) for all four 

conditions. Hence, our nine hypotheses were operationalised as 31 different models when 

considering all of the above mentioned variations of parametric modulators. 

 

In our application of BMS, an estimate of the log of the model evidence (log-model 

evidence) was calculated for each model at every voxel, for each participant. These were all 

compared using RFX BMS which allowed us to determine the (potentially different) ‘winning 

model’ (i.e., the model with the highest log model evidence given the data) at each voxel within 

the brain. After this, the exceedance probability maps were displayed with user-specified 
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probability thresholds of 0.85. This enabled the visualisation of the different regions of the brain 

where different models most likely explained the fMRI data; that is, with >85% probability. 

 

Bayesian Model Maps  

All displayed results have a minimum cluster size of 5 voxels. The EPMs show the exceedance 

probability which is an estimate of the relative probabilities that any given model explains the data 

(in the listed voxels) better than the other models considered. Note that we did not exclude white 

matter regions from our results. The physiological relevance of white matter signals in fMRI 

datasets is beyond the scope of this paper, but has been discussed elsewhere (Cheng et al., 

2015; Gawryluk et al., 2014; Gore et al., 2019; Grajauskas et al., 2019). Also note that when 

displaying the EPMs, one can select any user-defined threshold. A frequentist may wish to display 

EPMs where the exceedance probability is at least 95%, but if you do so, note that the 

interpretation of these results is different (and arguably much simpler): clusters displaying above 

the 95% EPM threshold have at least 95% exceedance probability compared to all the other 

models considered, given the data collected. In our results, we choose to present any EPMs 

above 85%. We present our BMS results using the BrainNet Viewer software package for Matlab 

(Xia et al., 2013) and label the anatomic regions using the Anatomy Toolbox add-on for SPM 12 

(Eickhoff et al., 2005; Zilles & Amunts, 2010; Amunts et al., 2007) and the Multi-Image Analysis 

Graphical User Interface (GUI) (Mango) software. 

 

RESULTS 

Behavioural findings 

Anxiety scores increased following threat-of-shock blocks 

We examined differences in participants’ average anxiety ratings (from 0 to 100, recorded here 

as %) following safe blocks compared to threatening blocks, and in stable blocks compared to 

volatile blocks. We found a significant main effect of threat, F(1,37) = 16.32, p < 8.55x10-5, with 
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higher reported anxiety ratings following threatening blocks (M = 42.84%, SE = 3.36) compared 

to safe blocks (29.05%, SE 3.41), with a mean rating difference of 13.78%. There was no 

significant main effect of volatility, F(1,45) = 0.01, p = 0.943, nor was there an interaction effect of 

threat and volatility on anxiety ratings, F(1,45) = 0.06, p = 0.805. 

 

Statistical learning errors are lower during stable compared to volatile blocks , but only under safe 

conditions  

We estimated the SLEs across the four experimental conditions. We used a two-way repeated-

measures ANOVA to assess the significant differences between the groups and found there was 

a significant main effect of volatility, F(1,37) = 12.73, p < 4.85x10-4. Following this, we conducted 

post-hoc statistical tests, finding significantly higher SLEs in the volatile compared to stable 

conditions within safe blocks (p < 5.91x10-5 adjusted by Bonferroni correction for multiple tests; 

see Figure 3). 

 

Anxiety attenuates the learning advantages conferred by stability over volatility 

Following the behavioural findings of other studies (Browning et al., 2015, Huang et al., 2017, 

Piray et al., 2019), we tested whether there was threat-induced mitigation of the learning 

advantages usually conferred by stable compared to volatile conditions. For this, we estimated 

the difference in the SLEs between the stable and volatile conditions within the safe or threatening 

blocks. The average SLE reduction conferred by statistical stability over volatility, was 6.60% in 

safety, compared to 2.87% in volatile conditions, showing that threat significantly attenuated the 

stability-over-volatility learning advantage (p = 0.033, t = 2.21, df = 37).  
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Figure 3: Statistical Learning Errors (SLEs) under different levels of volatility and threat. 

(A) Participants’ average SLEs are represented by density plots (each participant’s average is 

represented by a single dot in the scatter plots, and group mean SLEs are represented by 

connected, dark dots). In the safe and stable condition, participants made significantly fewer SLEs 

compared to the safe and volatile condition. (B) Participants’ average stable > volatile learning 

advantage is represented by a dot in the density plot. We observed a significant reduction in the 

learning advantage conferred by stable compared to volatile environments during threatening 

conditions. Note: The asterisks (***) and (*) are indicative of a significant difference of p < 0.0001 

and p < 0.05, respectively. 

 

Summary - Bayesian Model Selection 

We used BMS to determine which of our hypotheses best explained the neuroimaging data at 

each voxel. Our Exceedance Probability Maps (EPMs, set at 85% probability, shown in Figure 4 

and described below) helped to shed light on the neural computations most likely to occur in 

different brain regions under the different levels of threat and volatility. Overall, we found that H8 

(SS > SV = TS = TV; specifically, M8e in the Supplementary Material) contained the winning 

model across the majority of the (mostly subcortical and limbic) brain regions. This model 
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suggests that surprise responses are attenuated in stable environments during threat and that 

there is an overall loss of volatility-attuning (i.e., no difference in the responses evoked during 

stable or volatile environments under threat). The latter observation of  a loss of volatility-attuning 

is consistent with other work (Browning et al., 2015; Huang et al., 2017; Piray et al., 2019). In 

addition, we found that H7 (SS = TS = TV > SV; specifically, M7a in Supplementary Material), 

which reflects greater neural activity under threatening and safe stable environments (compared 

to safe volatile environments), was most likely in two small clusters in V3/V4 and the posterior-

medial frontal gyrus. This model is also consistent with a loss of volatility-attuning under threat. 

Finally, the null hypothesis (H0) was most likely in a number of cortical areas within the occipital, 

parietal, temporal and frontal areas. Below, we provide further details relating to the results from 

these BMS analyses. 

 

Threat reduces neural activity and eliminates volatility-attuning in most subcortical brain 

regions 

As discussed above and shown in Figure 4 and Table 2, H8 dominated most subcortical and 

limbic regions of the brain. This hypothesis stipulated that  the greatest deviant neural activations 

are observed under stable and safe conditions, with threat reducing neural activity in stable 

environments and eliminating volatility-attuning (by eliminating differences in the neural activity 

otherwise seen between stable and volatile conditions). H8 (highlighted in dark blue in Figure 4) 

was far more likely than any other model, with over 99.99% exceedance probability over multiple 

regions, including bilateral caudate tail and body, parahippocampal gyrus, thalamus/putamen, 

lentiform nucleus of the putamen, anterior cingulate, the left STG and claustrum and right insula, 

sub-gyral hippocampus and posterior corona radiata.  
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Figure 4: Exceedance probability maps (EPMs) thresholded at an exceedance probability 

of 0.85 for all models of each hypothesis. Selected clusters are labelled for Hypothesis 8, H8 

(dark blue), Hypothesis 7, H7 (yellow) and Hypothesis  0, the ‘null’ (dark red). Hypothesis  1, (H1), 

2 (H2), 3 (H3), 4 (H4), 5 (H5) and 6 (H6) did not have results above this threshold and are therefore 

not shown. Note: ‘Loss of Attuning’ refers to no difference between the stable or volatile deviant 

response during threatening blocks. ‘Attenuation’ refers to a reduction in the threat-based deviant 

responses (relative to the safe condition), while ‘Hypersensitivity’ refers to the opposite. 

Additionally, ‘✔ ‘ = present, ‘x’ = absent and ‘≈’ = present but only within volatile conditions.  
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Table 2 

Hypothesis  8: Threat reduces neural activity and eliminates volatility-attuning  

Brain region Hem BA MNI coordinates  

x          y         z 

Cluster 

size 

Peak 

Exceedance 

Probability (%) 

Cingulum, STG, Caudate tail 

and body, parahippocampal 

gyrus, thalamus/putamen, 

lentiform nucleus of the 

putamen, claustrum, anterior 

cingulate, insula, sub-gyral 

hippocampus 

L/R NA -16 12 34 14706 100.00 

 

 

Posterior corona radiata R NA -6 44 -10 151 99.00 

Note: This table contains the location for the peak of a very large EPM cluster with an ≥ 85% 

probability threshold. Please note that the reported coordinate for the cingulum was simply the 

location of the peak exceedance probability, but the cluster included multiple other regions as 

listed here. L: left; R: right. 

 

 

Threat increases deviant neural responses in some frontal and occipital cortical regions 

In two small clusters, we found that H7 displayed  the greatest  evidence. H7 proposed that neural 

activity would increase during threatening volatile blocks (see Figure 4 and Table 3) compared to 

safe volatile blocks, and included a loss of volatility-attuning. H7 had exceedance probabilities 

over 88% and 87% in small clusters in the left V4/V3 region (Brodmann Area/BA 19) and the left 

posterior-medial frontal gyrus (Brodmann Area/BA 46), respectively.  
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Table 3 

Hypothesis  7: Threat increases neural activity and eliminates volatility-attuning  

 

Brain region Hem BA MNI coordinates  

x          y         z 

Cluster 

size 

Peak 

Exceedance 

Probability 

(%) 

V4/V3 L 19 -18 -72 -10 15 88.00 

Posterior-medial  

frontal gyrus 

L 

 

46 

 

2 

 

20 

 

44 

 

10 

 

87.00 

 

Note: This table lists Exceedance Probability Map (EPM) region clusters 5-or-more voxels in size 

with an ≥ 85% probability threshold. Clusters in the same region are grouped together. Between 

clusters, the table order is determined by exceedance probability (and within clusters of the same 

probability, the order is determined by cluster size). L: left; R: right. 

 

The Null Hypothesis  

We included a null hypothesis  in our set of models (Hypothesis 0, H0) as a way to protect against 

Type I errors when using RFX BMS to calculate exceedance probabilities (Moser et al., 2018; but 

see alternative methods, Rigoux et al., 2014; Correa et al., 2018). As listed in Table 4, H0 

explained the data best in clusters in the bilateral central opercular and superior parietal lobe, the 

left occipito-temporal gyrus, V1 and frontal pole, and in the right lateral occipital cortex, V4, and 

temporal pole, suggesting that deviant responses in these regions were not sensitive to 

manipulations of threat or volatility. 
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Table 4 

Model 0 (Null): Neural activity is unaffected by threat and volatility  

Brain region Hem BA        MNI coordinates  

x          y         z 

Cluster 

size 

Peak 

Exceedance 

Probability (%) 

Central opercular cortex R 42 58 -6 8 1,473 100.00 

 L  -58 -18 10 936 100.00 

V4 R 19 28 -72 -14 250 100.00 

Lateral occipital cortex R 18 48 -62 -2 95 100.00 

Lateral occipito- 

temporal gyrus 

L 37 -30 -68 -16 222 100.00 

Superior parietal lobe R 5 2 -46 60 53 100.00 

V1 L 17 -2 -70 12 201 100.00 

Frontal pole L 10 -44 36 -6 6 94.00 

Superior parietal L 7 -26 -52 42 11 93.00 

Temporal pole R 38 52 8 -4 9 90.00 

Note. This table lists EPM clusters 5-or-more voxels in size with an ≥ 85% probability threshold.  

L: left; R: right. 

DISCUSSION   

We investigated statistical learning in the context of both stable and volatile environments, during 

threatening and safe conditions (i.e., with and without the physical threat-of-shock, respectively). 

We found that statistical learning accuracy was higher during safe blocks when the environmental 

statistics were stable compared to volatile, and that the learning advantages conferred by stable 

environments were lost under threat. Next, to model the different surprise responses occurring 
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simultaneously across the brain, we used BMS to compute the EPMs for nine hypotheses 

(operationalised as model families) that were based on either the previous literature or our 

behavioural findings (and including a null model). We found that H8 hypothesising threat-induced 

loss of volatility-attuning and attenuation of neural surprise responses (but only with respect to 

the stable conditions) best explained the data in the majority of (mostly subcortical and limbic) 

brain regions. In other words, during threatening blocks, most subcortical and limbic regions 

exhibited reduced deviant responses (i.e., attenuation) and no difference in the responses evoked 

during the stable or volatile conditions (i.e., loss of volatility-attuning). In two small clusters, that 

included V4/V3 and the posterior-medial frontal gyrus, we also observed threat-induced loss of 

volatility-attuning but here instead of threat-induced attenuation (as in H8) we observed an 

increased response during the threatening and volatile condition (H7). Finally, we found a number 

of cortical regions in which the deviant responses were unaffected by threat and volatility (i.e., 

where the null hypothesis won); these included clusters in the occipital, parietal, temporal and 

frontal regions. 

 

Subcortical and limbic regions display a loss of volatility-attuning and attenuation of  

surprise responses under threat 

For most subcortical and limbic brain regions, responses to surprising stimuli were greatest during 

safe and stable blocks compared to the other three conditions (as shown in Figure 4, H8). 

According to H8, threat-induced attenuation occurred during stable but not volatile conditions. 

These effects were observed in many subcortical and limbic regions including the insula, 

claustrum, putamen, caudate, anterior cingulate, parahippocampal gyrus and the STG. Findings 

within areas such as the insula (Steuwe et al., 2014, 2015), and (dorsal) ACC (Klumpers et al., 

2010) are in support of previous literature showing these areas are engaged in threat processing. 

More broadly, the role of these limbic structures in generating prediction error responses, 

particularly during states of anxiety, has been discussed in a number of recent reviews (Calhoon 
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& Tye, 2015; Tucker & Luu, 2021). Here, the limbic system is referred to as the neural circuitry 

underlying anxiety and is credited for the assignment of emotional weighting to potential threats 

(Calhoon & Tye, 2015). Others have identified the limbic regions as a base for Bayesian prior 

formation and for organising predictive coding processes throughout the neocortex (Tucker & Luu, 

2021). Our findings align with these recent proposals, and support the notion that the distributed 

sensory information that is processed through the limbic system leads to affectively charged prior 

expectancies which influence future updating of beliefs. 

 

Interestingly, however, these threat-induced attenuation findings are in opposition to our 

original literature-based hypersensitivity hypotheses, H1 and H3, which were informed by multiple 

previous findings showing greater neural responses to surprising stimuli in anxiety. Notably, most 

of these studies were performed using EEG or magnetoencephalography (MEG; except for Chen 

et al., 2017, who used fMRI). Indeed, Morgan and Grillon (1999) found that people suffering from 

post-traumatic stress disorder had increased neural responses to surprise compared to controls 

(see also Ge et al., 2011; Bangel et al., 2017) and Chang et al. (2015) found the same in people 

with panic disorder. Similar findings were observed in people scoring high in trait anxiety (Chen 

et al., 2017) and among neurotypical individuals under threat-of-shock (Scaife et al., 2006; 

Cornwell et al., 2007, 2017). Despite being at odds with the hypersensitivity hypotheses, these 

findings are consistent with multiple other EEG studies, which show a pattern of reduced surprise 

responses in anxiety disorders, or ‘threat-induced attenuation’, including case-control studies in 

PTSD (McFarlane et al., 1993; Menning et al., 2008) and panic disorder (Tang et al., 2013; 

Rentzsch et al., 2019). We highlight a number of potential factors contributing to this below. 
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Loss of volatility-attuning and hypersensitivity under threat in frontal and occipital brain 

regions  

Despite finding no evidence for the literature-based models of generalised hypersensitivity-

during-threat (i.e., H1 and H3), we did observe two small clusters in which threat-induced-

hypersensitivity occured, but only under volatile environments (i.e., H7). These two clusters lay 

within the right posterior medial-frontal gyrus and the left V4/V3 area. The location of one of these 

clusters, the posterior medial-frontal gyrus, is consistent with previous hypersensitivity findings 

from Cornwell and colleagues (2007) auditory oddball paradigm with a threat-of-shock as well as  

with Klumpers et al.’s (2010) findings that this region responds more during threat. However, this 

hypersensitivity only occurred under volatile (not stable) environments. Moreover, H7 only 

explained the data in a relatively small number of voxels and we did not find any significant 

clusters for H1 and H3. Thus, our results do not support the traditional definition of 

hypersensitivity-during-threat. There are multiple potential factors that contributed to this. Firstly, 

our participants may have set lower shock levels than in other studies, since they knew their 

discomfort ratings would be used to set their shock level, unlike in Klumpers and colleagues’ 

(2010, 2017) experiments. Secondly, shocks were set at a maximally uncomfortable level without 

being painful, unlike in Browning and colleagues’ (2015) experiment. These factors might also 

explain the fact that our average anxiety ratings did not exceed the halfway point on the scale (in 

contrast to, e.g., Cornwell et al., 2017), even though they were greater following the threat-of-

shock compared to safe blocks.  

 

Threat eliminates volatility-attuning both behaviourally and neurally 

Our behavioural SLE results support our BMS findings by suggesting that threat reduces the 

learning advantages conferred by statistical stability compared to volatility (Figure 3b). Critically, 

this suggests that anxiety affects learning accuracy in similar ways to how it affects learning rates, 

as shown by previous studies (Browning et al., 2015, Huang et al., 2017, Piray et al, 2019). Our 
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findings also support the effects of anxiety upon volatility-attuning, which has been explained in 

diverging ways by different research teams. On the one hand, Browning et al. (2015) showed that 

those high in trait anxiety under threat-of-shock display dysfunctional learning in volatile 

environments. The authors inferred that these individuals exhibited decision-making patterns that 

indicate difficulty in updating action-outcome plans based on the statistics of the current 

environment. Consistent with this idea, Raio et al. (2017) showed that anxiety specifically impaired 

reversal learning, although that study did not include multiple reversals and therefore did not 

introduce volatility in the way that our study did. Contrary to the conclusions above, other studies 

(Huang et al., 2017; Piray et al., 2019) have found that anxious people do not have impairments 

in learning in volatile environments per se, but instead display a failure in learning within stable 

environments. Our behavioural and neural (H8 and H7, see Figure 4) results speak strongly in 

support of the notion of a loss of volatility-attuning and the behavioural findings suggest that the 

threat-induced loss-of-volatility-attuning was caused by dysfunctional learning in stable 

environments (Huang et al., 2017; Piray et al., 2019). 

 

Neuroanatomical correlates of loss of volatility-attuning 

The previously identified neuroanatomical correlates of the loss of volatility-attuning in anxiety are 

also consistent with the current study. For example, Piray et al. (2019) found that although the 

BOLD signal in the dorsal ACC (dACC) correlated with learning rate across all trials and 

participants, this was not the case for those high in social trait anxiety. Despite our focus on 

learning accuracy instead of learning rates, and that we used transient, mildly-elevated anxious 

states (compared to high trait social anxiety), we similarly found that in the ACC, threat led to loss 

of volatility-attuning (and attenuation) of neural surprise responses. However, it will be important 

for future work to replicate and clarify these results, especially considering that this is but one 

study, and considering the paucity of other studies investigating these topics to date. 
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As discussed above, similar learning effects have also been observed in highly trait 

anxious people under threat-of-painful-shock (Browning et al., 2015), and even in people deemed 

likely to have clinical anxiety compared to controls (Huang et al. 2017). Thus, similar patterns are 

emerging across the spectrum from transient anxiety in neurotypical people, through to trait and 

clinical anxiety. Taken together with the previous studies, these findings are consistent with the 

conceptualisation of anxiety as a dimensional construct (Fucci et al., 2019). We hope that future 

research can develop our understanding further, by examining learning and anxiety in larger 

samples of people, including the full spectrum from healthy to clinically anxious participants. 

Further investigations will also elucidate how neural responses and behavioural learning findings 

like ours, relate to underlying structural tracts (McFadyen et al., 2020) and functional circuits 

(Shackman & Fox, 2016; Fudge et al., 2017). 

CONCLUSION 

In summary, our BMS findings show that increased subjective anxiety induced by threat-of-shock 

in healthy individuals leads to a loss of volatility-attuning across the majority of subcortical and 

limbic brain regions. In addition to a loss of attuning, we observed attenuation of neural activity 

under threat during stable conditions in the majority of subcortical and limbic regions of the brain. 

The loss of volatility-attuning and attenuation of neural responses to surprising events occurred 

within regions including the thalamus, basal ganglia, claustrum, insula, anterior cingulate, 

hippocampal gyrus, and the superior temporal gyrus. Conversely, threat-induced hypersensitivity 

(or increased activity) during volatile conditions was also observed in the left medial frontal gyrus 

and left extrastriate area, where the threat-of-shock boosted the neural activity to levels observed 

during the stable blocks. Overall, our results show that threat eliminates volatility-attuning by 

removing the learning advantages conferred by stable over volatile conditions – both on a 

behavioral level (in terms of learning accuracy) and on a neural computational level across most 

brain regions (as per H8 and H7). Our EPMs also shed light on the possible neuroanatomical 
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underpinnings of similar behavioural findings in other studies. Finally, our results are also 

consistent with theories regarding the limbic system’s role in affective processing of sensory 

information, including the formation of prior expectations and the updating of beliefs. In the future, 

we hope that studies in clinical populations can build upon both our behavioural and neural 

findings, and in so doing, uncover potential targets for future interventions. 
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