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ABSTRACT

Here we report Single CEll Variational ANeuploidy analysis (SCEVAN), a fast variational algorithm for the deconvolution of the
clonal substructure of tumors from single cell data. It uses a multichannel segmentation algorithm exploiting the assumption
that all the cells in a given copy number clone share the same breakpoints. Thus, the smoothed expression profile of every
individual cell constitutes part of the evidence of the copy number profile in each subclone. SCEVAN can automatically and
accurately discriminate between malignant and non-malignant cells, resulting in a practical framework to analyze tumors and
their microenvironment. We apply SCEVAN to several datasets encompassing 106 samples and 93,322 cells from different
tumors types and technologies. We demonstrate its application to characterize the intratumor heterogeneity and geographic
evolution of malignant brain tumors.

Introduction

Understanding intratumor heterogeneity and the interactions
between tumor cells and the immune system is the critical
step to explain treatment failure and plays a crucial role in
the study of tumor growth and evolution1, 2. Single-cell RNA
sequencing (scRNA-seq) is the reference technology to char-
acterize tumor heterogeneity and the composition of the tumor
microenvironment at high resolution3. In addition, this tech-
nology was successfully used to identify multiple transcrip-
tional programs activated in a single tumor4, 5 and to prioritize
of key regulators of tumor-host interaction6. To study the com-
plexity of lineage identity, differentiation, and proliferation
of tumor cells and the impact of stromal and immune compo-
nents, a large number of unsorted cells from tumor biopsies
are subject to whole transcriptomics profiling and then clas-
sified as malignant cells, stromal cells, and immune cells,
and further stratified into different compartments according
either expression of specific markers6, and the orchestrated
activation of pathways5. The distinction of malignant from
non-malignant cells is a critical step in the follow-up anal-
ysis of scRNA-seq tumor datasets. The basic idea to solve
such a problem relies on estimating common copy number
alterations that characterize transformed cells. The copy num-
ber profiles are obtained by considering the gene expression
profiles of each cell as a function of the genomic coordi-
nates. The moving average smoothing of the gene expression
function is then clustered in malignant and non-malignant
cells. One of the most successful methods based on this ap-
proach is the INFERCNV4algorithm. The main drawback is

that the clusters of reference cells require manual identifica-
tion, usually with a combination of approaches7, 8. Moreover,
INFERCNV and similar methods4, 9 are particularly suited
for smart-seq data having high coverage and relatively low
throughput whereas they exhibit sub-optimal performances on
droplet-based methods with very sparse coverage depth and
higher throughput10. An approach to overcome these limita-
tions is represented by the CopyKAT method11 that classifies
malignant and non-malignant cells. It was successfully ap-
plied to analyze the clonal substructure of three triple-negative
breast tumors. However, the classification produced by Copy-
KAT is severely affected by a wrong identification of normal
cells and, similarly to other methods, was not designed to
perform a complete automatic identification of the clones,
reporting their breakpoints, the specific and shared alteration
and a complete e clonal deconvolution.

Here we present Single CEll Variational Aneuploidy aNaly-
sis (SCEVAN), a novel variational algorithm for automatically
detecting the clonal copy number substructure of tumors from
single-cell data. By overcoming most of the mentioned limi-
tations, our method automatically segregates malignant cells
from non-malignant cells. Clusters of malignant cells are
then analyzed through an optimization-based joint segmen-
tation algorithm. We exploit the notion that all the cells in a
given copy number clone share the same breakpoints with the
smoothed expression profile of every individual cell providing
support towards the definition of the copy number profile of
individual subclones. Therefore, joint segmentation allows the
enhancement of systematic biases leading to the emergence
of consistent breakpoints. Afterwards, SCEVAN performs a
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complete downstream analysis to automatically identify tumor
subclones, classifying their specific and shared alterations up
to a clone phylogeny. The joint segmentation algorithm im-
plemented in SCEVAN is based on a variational framework
developed in the field of Computer Vision making use of the
Mumford Shah energy model12 which has been already suc-
cessfully applied to detect copy number alterations in matched
tumor-normal pairs of high-density comparative genomic hy-
bridizations arrays13 and used to detect fusion breakpoints14.
Moreover, its joint version was developed to identify recurrent
copy number alterations in large tumor cohorts15, 16. Here we
benchmark the output of SCEVAN against state-of-the-art
methods and found that SCEVAN exhibits faster and more
accurate performance. Finally, we used SCEVAN to charac-
terize the clonal substructure in multiple scRNA-seq glioma
and head and neck cancer datasets.

Results
SCEVAN Workflow
The workflow of the proposed SCEVAN algorithm (Figure
1) starts from the raw count matrix with genes on rows and
cells on columns. The input count matrix is pre-processed
by removing cells with a low number of detected transcripts
and selecting the most expressed genes. A set of high confi-
dent non-malignant cells are identified and used to determine
a copy number baseline and to compute the relative matrix
removing the baseline (Steps A and B). This matrix under-
goes an edge-preserving non-linear diffusion filter assuming
a piece-wise smooth function as the underlying model (Step
C). The smoothed matrix is then segmented with the joint
segmentation algorithm to obtain a copy number matrix (Step
D). At this point, SCEVAN discriminates the normal cells
from tumor cells as those falling in the cluster containing the
highest number of confident normal cells (Step E). Finally, the
different subclones are obtained by analyzing the clusters of
the tumor cells in the Copy Number Matrix as detailed in the
Methods (Step F). In particular, each cluster are segmented
independently. The segments are classified and a p-value
is assigned to each detected alteration. Finally, SCEVAN
characterizes truncal, shared and clone-specific alterations
comparing different clusters, performing enrichment analysis
up to a clone phylogeny.

Malignant cell classification
To evaluate the accuracy of SCEVAN in classifying malignant
from non-malignant cells, we applied out tool to several public
datasets7, 10, 17–19 of three different cancer type of scRNA-seq
data (Glioblastoma (GBM), Head and Neck Squamous Cell
Carcinomas (HNSCC), Colorectal cancer) and from different
sequencing technologies (Smart-seq2, 10X Chromium), clas-
sifying a total of 106 samples and 93322 cells (Supplementary
Table S2). In all the considered datasets, the identification
of the non-malignant cell was reported by the authors and
was based on a combination of approaches using copy num-
ber4, clustering and cell markers. We compare our results in

terms of F1 score20 with those obtained by using a the state-
of-the-art tool CopyKAT11. SCEVAN, as shown in figure 2,
achieved a better classification score in 63% of the samples,
whereas CopyKAT performed better than SCEVAN in 23%
of the samples. The F1 score for all samples obtained with
SCEVAN is 0.90 in contrast to the F1 score of 0.63 obtained
with CopyKAT. SCEVAN showed a low F1 SCORE in sam-
ples with very few tumour cells (between 1 and 15), which
are present mostly in the case of Head & Neck cancer dataset
(Supplementary Table S2). For these cases, the separation of
malignant and non-malignant cells exclusively based upon hi-
erarchical clustering is notoriously challenging. This behavior
is also a well-known limitation of CopyKAT11. Conversely,
the greedy segmentation algorithm implemented in SCEVAN
is particularly efficient. Indeed, a direct comparison of the
execution times on the same data showed that SCEVAN is 2x
to 7x faster (Supplementary Fig. 1). Collectively these results
confirm that SCEVAN can accurately discriminate between tu-
mor and normal cells in different solid tumors using the copy
number profiles inferred from scRNA-seq. Moreover, SCE-
VAN is faster and more accurate than other state-of-the-art
approaches.

Accuracy of inferred copy number profile
We benchmarked the inferred copy number profile produced
by SCEVAN on 25 samples of a Glioblastoma multiregional
dataset19 against the CNV status obtained using low-depth
whole-genome sequencing (WGS) on the bulk biopsies (Fig-
ure 3a). We re-sampled the output of SCEVAN and CopyKAT
to the same resolution of the WGS by taking one value every
1 Mb. The Pearson correlation between the vector extracted
from the segmentation and the smoothed ground truth refer-
ence was used for the evaluation. In the figure 3b the boxplots
show the Pearson correlation obtained in all samples with
the inferred profiles respectively with SCEVAN and Copy-
KAT. SCEVAN has a mean correlation of 0.55 (max 0.73)
whereas CopyKAT has a mean correlation of −0.06 (max
0.51 ). These data indicate that SCEVAN accurately infers
DNA copy number profiles from high-throughput scRNA-seq
data.

Intratumoral heterogeneity in Glioblastoma
Glioblastoma (GBM) is the most aggressive form of brain
tumor. The presence of clonal and sub-clonal differentiated
tumor cell populations, glioma stem cells, and components of
an immuno-repressive tumor microenvironment hinders the
definition of effective therapies21, such heterogeneity is influ-
enced by multiple genetic and epigenetic clues7, 22. SCEVAN
can automatically infer clonal substructure from single-cell
data by analyzing the clusters of the CNA matrix that show
significantly different genomic alterations (Methods). As an
application of this approach, we considered one of the samples
reported in a recent study7, the MGH105 sample. SCEVAN
identifies four subpopulations that have different alterations on
chromosome 6 (Supplementary Fig. 2). Interestingly, whereas
the resolution for the identification of four subclones could

2/13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.20.469390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469390
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. SCEVAN starts from the raw count matrix removing irrelevant genes and cells. A) Identification of a small set of
highly confident normal cells. B) Relative gene expression obtained from removal of the baseline inferred from confident
normal cells. C) Edge-preserving non-linear diffusion filtering of relative gene expression. D) Segmentation with a a
variational region growing algorithm. E) identification of normal cells as those in the cluster containing the majority of
confident normal cells. F) Analysis of subclones within tumour cells and characterization of shared and specific alterations.

not be reached by canonical scRNA processing analyses7,
the existence of the same subclones detected by SCEVAN
using exclusively single cell transcriptomic data in this tumor
was recently confirmed by the application of DNA single cell
DNA methylation platforms22. Taken together, these findings
highlight the superior performance of SCEVAN that shows an
unprecented resolution exclusively from scRNA-seq datasets
up to a level that was previously obtained only through con-
current application of multi-omics single cell data.

In yhe sample BT1160, the execution of SCEVAN returns
the presence of three tumor cell sub-populations, as shown in
figure 4a-b. Phylogenic reconstruction of the clone tree shows
that two of the clones are similar (subclone 1 and 2) whereas
the third subclone is significantly far (Figure 4c), suggesting
different dynamics of clonal expansion and diversification. In
order to better understand how individual clones fuel tumor
growth and clonal selection, we investigated the reported alter-
ations. SCEVAN identifies several truncal alterations, such as
the amplification on Chr 5 (q23.2-q31.3), shared alterations,
such as the deletion on Chr 10 (q22.1-q26.3), and subclone-
specific alteration such as the amplification in the green sub-
population on Chr 1 (q31.2-q32.1) and Chr 19 (q13.32-q13.33)
((Figure 4d). Interestingly, subclone-specific functional analy-
sis reveals a differential activation of pathways that resemble
a recent metabolic classification of Glioblastoma5. Subclone
1 (lightblue) enriches pathways characteristic of the Neuronal
subtype, subclone 2 (blue) has cells belonging to the Mito-
chondrial, and the subclone 3 (green) contains cells with Pro-
liferative/Progenitor subtype (Figure 4e). Indeed, this finding
is also confirmed by the enrichment of individual cells for ev-

ery subtype (Figure 4f). The evolutionary reconstruction sug-
gests the hypothesis that the subclone 3 is the funding clone.
The Proliferative/Progenitor subclone has several specific
amplifications (1q21.3-q22, 1q31.2-1q32.1, 3q26.32-3q27.2,
4q32.1-4q35.1, 6p22.1, 8p11.22-8q21, 19q13.32-19q13.22).
To identify drivers of the different cellular states we performed
differential analysis between genes with genomic coordinates
in regions of the subclone-specific alterations. The top differ-
entially expressed gene lying in the alterations specific of the
subclone 3 was Ubiquitin-conjugating enzyme E2T (UBE2T)
gene, which is significantly up-regulated (p-value 2.69e−43

log fold change 1.10) (Supplementary Fig. 3) enriching the
activity of the pathway of DNA Repair. This gene encodes for
the exclusive ubiquitin-conjugating enzyme (E2) that partners
with the Fanconi Anemia (FA) ubiquitin ligase (E3). The
E2T-FA complex is required for DNA interstrand crosslink
repair as the monoubiquitination event implemented by E2T
is essential for the recruitment of downstream DNA repair
factors by FA23.

Furthermore, the analysis of copy number sub-structure can
characterize the clonal status of specific tumor-associated
genes. In particular, SCEVAN reveals that in samples
BT1160 and MGH102, alterations of tumor suppressor genes
CDKN2A and PTEN are subclonal (Figure 5). Indeed, in sam-
ple BT1160, the deletion on Chr 10 (q22.1-q26.3), containing
PTEN (10q23.31), is shared between two out of three sub-
clones, while in the remaining subpopulation, this alteration is
not present. Also, in the sample MGH102, the region 9p21.3
containing the gene CDKN2A is deleted in two of the four
subclones. Taken together, these results suggest that SCE-
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Figure 2. F1 score obtained with SCEVAN and copyKAT11 in the classification of malignant and non-malignant cells for each
cancer type (Colorectal cancer17, Glioblastoma7, 10, 19, Head and Neck Squamous Cell Carcinomas18). Overall, 93,322 cells
from 106 samples (Supplementary Table S2).

Figure 3. (a) Copy number profile inferred with SCEVAN
and the corresponding ground truth from WGS of samples
S12P1 and S6P119. (b) Pearson correlation between the copy
number inferred with SCEVAN or with CopyKAT and the
ground truth from WGS for 25 samples19.

VAN can resolve clonal copy number substructure in tumors
from scRNA-seq data and identify subclonal differences and
glioma-specific cancer states.

Clonal evolution in multiregional GBM tumor
Glioblastoma heterogeneity has also been investigated in the
spatial and temporal axes19, 24 because a single biopsy may not
be informative of the whole tumor. Multiple biopsies allow
us to characterize the clonal architecture and evolutionary
dynamics of GBM25.

We use SCEVAN for evolutionary analysis of clonal struc-
ture for multi-regional scRNA-seq samples of GBM19. For
example, we consider one case, GS1, with seven biopsies,
two of them taken at the tumor periphery and the remaining
at the core of the tumor. The clonal analysis of each sample
with SCEVAN allows inferring an evolutionary tree of the
clones (figure 6). Copy number alterations develop along
several branches, and the peritumoral samples (P2/P3) are
in a branch separated from the core samples, in which there
is no amplification in chromosomes 4 and 8. Moreover, the
amplification present on Chr 2 is clonal in peripheral samples
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Figure 4. (a) Clonal structure of sample BT1160 inferred by SCEVAN. (b) t-SNE plot of CNA matrix. (c) Inferred
phylogenetic tree. (d) OncoPrint-like plot of BT1160 highlighting clone-specific alterations, shared alterations between and
clonal alterations. (e) REACTOME pathways activity for each subclone. (f) NES per cell of GBM cellular states5.
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Figure 5. Compact representation of clonal structure
inferred with SCEVAN of scRNA samples BT1160 and
MGH1027, in which the alterations containing tumor
suppressor genes PTEN and CDKN2A are subclonal.

and is subclonal in some core samples (P1/P4/P7).

Clonal structure of primary and metastatic lymph
SCEVAN (and similar approaches) can address important
questions such as identifying similarities and differences be-
tween primary tumors and metastases. For this purpose, we
consider primary HNSCC tumors and corresponding lymph
node metastases18. Of the four considered cases, just one spe-
cific sample, patient (HNSCC5), presents a different clonal
structure between primary tumor and lymph node metasta-
sis, in particular the absence of amplification of chromo-
some 7 (p22.3-p13) in the lymph node metastasis, as shown
in figure 7. Interestingly, this is the locus of Glycopro-
tein non-metastatic b (GPNMB) which is down-regulated
in the lymph node metastasis (Supplementary Fig. 4). Fur-
thermore, GPNMB increases tumor growth and metastasis
in multiple contexts26. For the remaining patients (HN-
SCC20,HNSCC25,HNSCC26,HNSCC28) the clonal struc-
ture of the lymph node metastasis appears to be the same as
in the primary tumor. Therefore, we obtain a high correlation
(Pearson correlation between 0.79 and 0.89) comparing the
clonal profiles of the primary tumor and lymph node metasta-
sis pairs. These data show that result obtained with SCEVAN
can be used to study the clonal evolution of metastatic cancer.

Discussion
We described a variational segmentation approach to iden-
tify genomic copy number profiles from scRNA-seq data.
The adopted joint segmentation algorithm is based on the
notion that the cells in a given copy number clone share the
same breakpoints. Thus, the expression profile of every in-
dividual cell, seen as a function of the genomic coordinates,
contributes to the evidence of the presence of copy number
alteration in each subclone. SCEVAN uses a set of stromal
and immune signatures and the fact that malignant cells often
harbor aneuploid copy number events to discriminate between

Figure 6. Compact representation of clonal structure
inferred with SCEVAN of multi-regional scRNA-seq samples
of patient GS119 and a phylogenetic tree deduced from clonal
structure of the samples.

transformed cells and micro-environment cells automatically.
We used an extensive collection of annotated datasets of dif-
ferent tumor types confirming that SCEVAN is more accurate
and faster than state-of-the-art methods. Our evaluation has
shown that this approach is viable in cases with very high
purity and subjects with a significant amount of immune infil-
tration. Therefore, SCEVAN is particularly suited in studies
where unsorted populations of single cells need to be ana-
lyzed to characterize, for example, the interaction between
malignant cells and their microenvironment6.

The primary use of SCEVAN consists of delineating the
clonal substructure in solid tumors based on differences in
CNAs and studying the temporal and geographic evolution
of tumors. In addition, we used SCEVAN to deconvolve the
clonal structure of glioma tumors. For example, in one patient,
we found the presence of cell populations with differential
activation of glioma cellular states, confirming that the hetero-
geneity of glioma subtypes is driven by the clonal architec-
tures5. Functional analysis of subclones revealed novel drivers
of cellular states such as the Proliferative/Progenitor (PPR)
glioma subtype. We identified UBE2T as the top amplified
and differential expressed gene in the PPR clone. Interestingly,
UBE2T can be pharmacologically inhibited27, and therefore
it results as a new potential therapeutic target of PPR cells.
Moreover, we have shown that with SCEVAN, we can char-
acterize the clonal status of onco-suppressor genes such as
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Figure 7. Copy number profile of Primary (P) and Metastatic Lymph nodes (L) from samples of Head and Neck cancer
dataset (HNSCC5,HNSCC25,HNSCC26,HNSCC28)18.

PTEN and CDKN2A. Such characterization may be of inter-
est for diagnostics or therapeutic targeting and for exploitation
of approaches based on synthetic lethality28. Clonal decon-
volution extracted from scRNA-seq can also be used to study
regional and temporal tumor evolution as we have shown in
the case of a multiregional GBM dataset and for the character-
ization of difference between primary and metastases.

Some limitations of our SCEVAN rely mainly on its ba-
sic assumption that their aneuploidy can identify cancer
cells. However, there are cases such as liquid cancers ((es.
Leukemia), pediatric cancers, Ependymomas, and others are
known to harbor a minimal number of genomic alterations.
Thus, our approach (and similar) may not be suited in this
case.

Methods
Preprocessing of scRNA-seq data
The preprocessing phase is aimed at filtering out low-quality and
irrelevant cells. Specifically, the cells with less than 200 detected
genes and the genes expressed in less than 1% of cells are removed.
The remaining genes are annotated by adding their genomic locations
to the matrix using Ensembl based annotation package29 and then
genes are sorted according to genomic coordinates. After annotation,
the genes involved in the cell cycle pathway, obtained from REAC-
TOME30, are filtered to reduce artificial segments caused by the cell
cycle11.

Identification of High confident non-malignant cells
To segregate malignant from non-malignant cells, SCEVAN follows
a multi-step approach. A small set of high confidence normal cells is
used to build a relative expression matrix and seed the cluster of other
normal cells. Then, the relative expression matrix is segmented and
then clustered as described in the following paragraphs. To identify
the high confidence normal cells, we use a set of gene signatures
from public collections6, 31, which includes cells of tumor microen-
vironment including stromal and immune cells, such as lymphocytes,
macrophages, microglial cells, dendritic cells, neurons, and others
(Supplementary Table 1). We apply the Mann-Whitney-Wilcoxon
gene set test gene set enrichment analysis implemented in the yaGST
package32 and assume as normal confident cells the top classified

7/13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.20.469390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469390
http://creativecommons.org/licenses/by-nc-nd/4.0/


cells with p-value less than 10−10 and Normalized Enrichment Score
greater than 1.0. We restrict the search to a maximum of 30 high
confidence non-malignant cells. Then the copy number baseline,
estimated from the median expression of confident normal cells, is
removed from the count matrix, thus obtaining the relative matrix
Dr = D− m̃ where m̃ is the baseline n-dimensional vector (n being
the number of genes) with the median value of confident normal
cells.

Edge-preserving smoothing
Before the segmentation phase, one of the key steps of SCEVAN
is to smooth the relative expression matrix. Since the segmentation
step described below assumes a piecewise-constant model of the
copy number signal, we preliminarily proceed to perform a non-
linear smoothing of the gene expression along with the genomic
coordinates to regularize the signal, reduce the outliers and at the
same time preserve the discontinuities which are the breakpoints
between the copy number segments. We apply a filter grounded in
the Bayesian framework of edge-preserving regularization33 which
considers the minimization of the Total Variation (TV) functional∫

φ(|∇u|)

where u is the relative gene expression signal, ∇u is its gradient and
φ(·) is a discontinuity-adaptive prior34. In particular, here we use
φ(x) = logcosh(x) which has been shown to produce a well-posed
minimization problem overcoming the non-differentiability of the
TV at the origin35. The iterative numerical scheme implemented in
SCEVAN is just the one-dimensional adaptation of the stable finite
difference scheme previously reported35.

Single Cell joint segmentation algorithm
SCEVAN uses a joint segmentation procedure that inputs all the cells
in a given clone to identify the boundaries of homogeneous copy
number. Standard segmentation procedures independently segment
each sample11. The procedure is based on the Mumford and Shah
energy originally developed to analyze images. In their original
work12, the authors introduced the basic properties of variational
models for computer vision aimed at defining the mathematical
foundations for appropriately decomposition of the 2D domain Ω of
a vector-valued function u0 : Ω→Rm into a set of disjoint connected
components (Ω = ∪l

i=1Ωi, Ωi ∩Ω j = /0, 1≤ i, j ≤ l, i 6= j). The
set of points on the boundary between the Ωi is denoted as Γ. This
partition is modeled such that the signal varies smoothly within a
component and discontinuously between the disjoint components.
This problem is known as piece-wise smooth approximation. For
this purpose, Mumford and Shah proposed the minimization of the
following functional:

E(u,Γ) = α

∫
Ω

(u−uo)
2dxdy+

∫
Ω\Γ
|∇u|2dxdy+λ |Γ| (1)

where α and λ are two non negative parameters weighting the differ-
ent terms in the energy: the first term requires that u approximates
u0, the second term takes in account the variability of u within each
connected component Ωi and the third term penalizes complex solu-
tions in terms of the length of the boundaries |Γ|. Here we adopt a
special case of equation (1) when the approximation u of the signal
u0 is constrained to be a piece-wise continuous function (u constant
within each connected components Ωi). This is best suited for CNV

segmentation. In this case, the second term of the energy functional
vanishes, so the optimal segmentation is obtained by minimizing:

E(u,Γ) = ∑
i

∫
Ωi

(u0−ui)
2dxdy+λ |Γ| (2)

in this case, it easy to show that the minimum for this model can be
obtained by posing ui as the mean of u0 within of each connected
component Ωi. Hence, this functional represents a compromise
between the accuracy of the approximation and parsimony of the
boundaries. It is essential to notice that the resulting segmentation
depends on the scale parameter λ . Indeed, it determines the number
of computed regions: when λ is many small boundaries are allowed,
the resulting segmentation will be fine. As λ increases, the seg-
mentation will be coarser and coarser. Specifically, the input data
D is an m×n single-cell gene expression matrix obtained after the
preprocessing step detailed above, where m is the number of cells
in a given clone, and n is the number of genes ordered by genomic
positions. Then, we define a segmentation D as a set of ordered posi-
tions (breakpoints) partitioning the columns of D into M connected
regions R = {R1, · · · ,RM} identified by a set of ordered positions
Γ = {b1, · · · ,bM+1}. Each region Ri contains all genes whose ge-
nomic coordinates lie between breakpoints {bi,bi+1}. Moreover,
we are dealing with the one-dimensional vector function where the
domain is the genome, therefore in equation (2) |Γ| reduces to the
number of regions M. According to the original algorithm proposed
in16, to minimize this function, adjacent regions Ri and Ri+1 are
iteratively merged in a pyramidal manner to create larger segments,
and the reduction of the energy can be shown as:

E(u,Γ\{bi})−E(u,Γ) =
|Ri||Ri+1|
|Ri|+ |Ri+1|

||ui−ui+1||2−λ (3)

where |Ri| is the lenght of the i-th region, and ui is an m-dimentional
vector with the mean value of these columns, || · || is the L2 norm
and \ is the set difference. To minimize (2), we follow a greedy
procedure. We start with a segmentation having n regions, one
for each gene. Then, at each step, we merge the pair of adjacent
regions that yield the maximum decrease of the energy functional
upon merging. Since λ decides the end of merging, the choice
of an appropriate value is crucial to ensure the quality of the final
segmentation. As in16, the selection for λ at each merging step is
done dynamically, depending on two factors - the size of the region
and mean values of the consecutive regions being considered for
the merge. Hence, the cost of merging two regions Ri and Ri+1,
associated with a breakpoint bi, is computed as follows:

λ̃i =
|Ri||Ri+1|
|Ri|+ |Ri+1|

||ui−ui+1||2,

if λ̃i < λ the adjacent regions are merged and the i-th breakpoint
removed. Otherwise, the energy function has reached a local mini-
mum, and no merging can be done further. Therefore, λ is updated
to the smallest of λi + ε , continuing the merging. The sequence of λ

values is monotonically increasing as it corresponds to the amount
of decrease of the energy functional at each step in (eq. (3)). In13 we
adopted a stopping criterion in such a way that the final segmentation
is obtained when the increase in λ stabilizes and merging any further
does not correspond to a significant decrease of the energy. The final
stopping value is based on the variability of the adjacent region and
the total variability of the data, ν . The resulting computation for
the stopping criterion is ∆λ = λi+1−λi ≤ βν , where β is a positive
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constant (ideal value = 0.5–0.7), which represents the only parameter
of the segmentation algorithm.

Finally, the joint segmentation procedure performs a significance
test that evaluates the statistical significance of the alterations (ampli-
fication o deletion) observed in a given region. The null hypothesis
of the test is that the i-th region has no CNA, expressly assuming
µ as the number of cells with the alteration in the region and µ0
as the expected count when no alteration is present in a region, we
have H0 : µ = µ0 and H1 : µ > µ0. Indeed the null distribution
is estimated from the binary matrices (N cells and M segmented
regions), in which the value 1 indicates that a cell shows an alteration
in the i-th region if the mean is above a fixed threshold. Then the
distribution of the test statistics is computed via random permutations
as previously described15, 16.

Classification of malignant and non malignant cells
The multi-valued function u resulting from the segmentation is com-
puted by substituting each value with the mean between consecutive
breakpoints in each cell. It is then clustered into two groups using
hierarchical clustering. All the cells in the cluster containing the
highest number of confident normal cells are then classified as non-
malignant. The final CNA matrix is then obtained subtracting the
mean value of all the identified normal cells from each genomic
position.

If no confident normal cells are found, we assume that the sample
is pure and contains only malignant cells. In this case, the CNA
matrix is obtained by removing from the malignant cells a synthetic
baseline.

Differential sub-clonal structure characterization
SCEVAN can automatically characterize sub-clonal structures in tu-
mor cells. Cancer cells are clustered according to their copy number
profile. We use Louvain clustering36 applied to a shared nearest-
neighbor graph37 of the first 30 principal components of the final
CNA matrix. Each cluster represents a potential subclone. Therefore
the joint segmentation algorithm is re-applied considering just the
cells of the cluster, the segmentation results are analyzed to identify
subclone specific alterations, shared alterations between subclones,
and clonal alterations. From the segmentation of each subclone, we
select segments representing relevant alterations with |u| ≥ 0.10 or
significance testing of the joint segmentation with p-value ≤ 0.05
and then a hierarchical aggregation is carried out in which the neigh-
boring segments are aggregated together if they are of the same kind
(amplifications or deletions) and if their genomic distance is less
than 10Mb. This hierarchical aggregation serves to achieve a coarse-
grained segmentation between subclones. The aggregated alterations
extracted for each subclone are compared among subclones to deter-
mine specific or shared alterations. For each subclone, we perform
a linear search for alterations in the other subclones. An alteration
is shared between if the respective start or end breakpoints are at a
genomic distance of less than 10Mb and if the length of the minor
segment is at least 40% of the size of the major segment.

The potential specific alterations and those shared only between
certain subclones, obtained previously, are further investigated by
performing a significance test between the corresponding segments
among the clones. Each alteration is considered specific if the p-
value (t-test) between the mean of the genes in the CNA array, be-
longing to the segment, of the cells presenting the alteration and those
not presenting the alteration is less than 10−10 and the difference in
the mean is greater than 0.05.

Code and Data availability
SCEVAN is available in open source as an R package at the following
address https://github.com/AntonioDeFalco/SCEVAN.

Data used in this paper are publicly available on the Gene Expres-
sion Omnibus (GEO) with accession numbers listed in the Supple-
mentary Table 2. Copy number data from low pass whole-genome
sequencing are available contacting the authors of19.
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Figure S1. Classification time for each sample expressed as a percentage relative to the maximum time for each dataset.

Figure S2. (a) Clonal structure of MGH1057 inferred by clustering single-cell copy number profiles by SCEVAN. (b)
Inferred copy number in chromosome 6 for each subclone.
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Figure S3. (a) Differential gene expression analysis of genes belonging to the specific amplifications of subclone 3,
comparing subclone 3 against the others. (b) UBE2T expression on t-SNE plot of CNA matrix.
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Figure S4. Differential analysis of genes belonging to the specific amplification on chromosome 7, between the gene
expression of primary tumor against the lymph node metastasis.
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