
Beyond Gradients: Noise Correlations Control Hebbian
Plasticity to Shape Credit Assignment

Daniel N. Scott1,3,* and Michael J. Frank2,3

1Department of Neuroscience, Brown University
2Department of Cognitive, Linguistic, and Psychological Sciences, Brown University

3Carney Institute for Brain Science, Brown University
*Corresponding Author

Updated: March 22, 2023

Abstract

Learning involves synaptic plasticity, but it remains unclear how the brain determines which synapses should
change and when. Plasticity is thus often considered as an approximation to gradient descent, despite drawbacks
to the latter, interpretational difficulties, and seemingly contrary evidence. To address these issues, we introduce
the “coordinated eligibility model”, linking biology with function and generalizing neuroscientific theories. We
show that gradients can be decomposed into factors related to correlated firing rate variability and dendritic inhi-
bition, which control population response changes and receptive field re-weighting respectively. By determining
plasticity according to products of these factors, our model computes directional derivatives of loss functions.
These derivatives need not align with task gradients, allowing networks to overcome limitations of gradient
descent like catastrophic interference, and they can facilitate important functions like compositional generaliza-
tion. As such, our model introduces a powerful and widely-applicable framework for interpreting supervised,
reinforcement-based, and unsupervised plasticity in nervous systems.

Introduction

When animals learn new skills they rarely get worse at previously learned ones, and new knowledge does not
generally displace old knowledge. Instead, old learning is often brought to bear on new situations, refining it and
speeding new learning as a result (see e.g. Dekker et al. 2022; Franklin & Frank 2018; Ghirlanda & Enquist 2003;
Tenenbaum & Griffiths 2001; Shepard 1987). A theoretical and mechanistic understanding of how these two feats -
the retention of old learning and its generalized use in new scenarios - can be jointly accomplished has been elusive
however. Most research has treated each topic separately in fact, despite the fact that both characterize learning
interactions between episodes; in the former situation, some set of specific counter-productive learning interactions
should be avoided, and in the latter, productive interactions should be sought. These observations suggest seeking
a unified account of learning interactions, which we refer to generically as “interference” below.

Most previous work on memory retention during new learning has taken place in computational cognitive
neuroscience or computer science, under the topic of catastrophic forgetting. When neural networks are trained
to solve one task at a time, they often retain only the most recently learned abilities or information, forgetting
old information (McCloskey & Cohen 1989; Ratcliff 1990; Flesch, Balaguer, et al. 2018). Within machine learning,
common approaches to mitigate this problem include interleaving training of different tasks or regularizing weight
updates (Srivastava et al. 2014; Kirkpatrick et al. 2017), whereas specialized architectures are often considered in
computational neuroscience instead (e.g., Schapiro et al. 2017; O’Reilly & Norman 2002; Mcclelland et al. 1995).
For example, the hippocampus appears to promote memory retention (i.e., protect against over-writing) by ensuring
that only a small fraction of neurons participate in learning at any given time (Mcclelland et al. 1995). Likewise,
neuronal populations in the prefrontal cortex are regulated by “gating” processes subject to reinforcement learning,
which likely avoid interference by determining which populations learn about what information (Frank & Badre
2012). Some work also exists near the intersection of these, showing that initial network connectivity can shape
gradients to reduce catastrophic forgetting, for example (Flesch, Juechems, et al. 2021).

Work on generalization has also proceeded according to several methodological routes. The most common
approach in computer science is simply exposing networks to diverse learning scenarios, which can allow them to
extract latent regularities and thereby facilitate generalization. The dense connectivity of the cortex has long been
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thought to play a related role, by representing diverse forms of information in highly overlapping cell ensembles
(Mcclelland et al. 1995). In theory, such overlap may average over learning episodes to extract shared information.
A second important approach in computer science is the use of restricted capacity learning elements, as in auto-
encoders, which attempt to compress information and thereby force gradient descent to extract latent features
of importance (Goodfellow et al. 2016). In neuroscience, related work has considered how reinforcement learning
of “gating” policies may control information flow to prefrontal cortex and thereby produce selective information
processing (Frank & Badre 2012). Such selectivity may then facilitate compositional generalization, and the transfer
of old learning to new situations (Rougier et al. 2005; Collins & Frank 2013).

While worthwhile and informative, the approaches noted above investigate architectural constraints, regularizing
procedures, and other auxiliary factors related to forgetting and generalization. By contrast, we consider here how
the functional form of synaptic plasticity impacts interference. From a theoretical perspective, such a principled
account is more desirable than a set of ad-hoc methods for managing it. Moreover, biological synaptic plasticity
has been extensively characterized (Rudy 2015; Scott & Frank 2022; Roelfsema & Holtmaat 2018), and is both
necessary and sufficient for many forms of learning (see, e.g., Lemke et al. 2021; Sehgal et al. 2021; Yang et al.
2014), suggesting that auxiliary methods for managing interference may represent only some aspects of biological
function. And finally, while work in computational neuroscience has often assumed that synaptic weights evolve
according to gradient descent (or some approximation thereof), exactly how known forms of plasticity are related
to gradients remains an important open question (Scott & Frank 2022; Liu et al. 2021; Nayebi et al. 2020; Lillicrap
et al. 2020; Bellec et al. 2020).

Elements of a theory are suggested by observations regarding coordinated plasticity. By the latter, we mean
statistical dependence between non-proximal synapse changes, either within or across neurons. Such plasticity is
widespread and functionally important (Cummings, Lacagnina, et al. 2021; Cichon & Gan 2015; Yang et al. 2014;
Gambino et al. 2014; Antic et al. 2010), and as we show here, mathematically more general than typical formu-
lations of gradient descent. Moreover, groups of neurons in cell ensembles frequently show coordinated plasticity
(Cummings, Bayshtok, et al. 2022; Cummings, Lacagnina, et al. 2021), and dendritic branch specific plasticity often
yokes learning across multiple synaptic inputs (L. Chen et al. 2020; Cichon & Gan 2015). Both have been shown
to impact interference between learning episodes, in fact, (Cichon & Gan 2015; Yang et al. 2014). This lead us to
consider how such mechanisms may relate to gradient descent, and how they may be impact interference.

To answer these questions, we analyzed neuromodulated Hebbian models of synaptic plasticity and their rela-
tionships to task gradients. We develop a theory we call the coordinated eligibility model (CEM), which generalizes
and extends the closely related Bienenstock-Cooper-Munroe theory (Bienenstock et al. 1982; Cooper & Bear 2012),
two-threshold calcium theories (Evans & Blackwell 2015), and models from reinforcement learning (Williams 1992;
Fiete & Seung 2006; Izhikevich 2007; Farries & Fairhall 2007; Frémaux et al. 2013). The CEM links neural firing-rate
variation, intracellular calcium dynamics, and neuromodulation to control both task improvement and between-task
learning interactions. As we show, the synaptic weight changes which most directly improve performance on a task
(i.e., gradients) can be written in terms of two components. We refer to the first as a population response (PR)
change, because it represents a change in how neurons in a network layer respond to a given stimulus. We refer
to the second as a receptive field (RF) change, because it reflects a change in what drives each neuron. If two
neurons respond proportionally to a stimulus, for example, but one increases its firing rate relative to the other, we
would refer to this as a population response change. If instead each begins responding to different input features,
we would refer to these as receptive field changes for each neuron. Both PR and RF changes will often be referred
to as “filter changes” below for brevity, by reference to linear filter theory.

Our results stem from the fact that any form of plasticity improving task performance involves filter changes
with specific relations to those of task gradients. In general, there are many synaptic weight changes that are
compatible with immediate task improvement. By modulating trial-wise neural (co)variability (frequently referred
to as “noise correlation” in neuroscience), CEM provides additional constraints on PR and RF filters that primarily
control other properties of learning, such as retention and generalization. Across multiple task settings commonly
studied in reinforcement learning and continual learning, we show that CEM affords the opportunity for more robust
performance compared to generic gradient descent. Moreover, we provide a formal account of how filter relations
control these properties, and of how noise correlations play a critical role in trial-and-error gradient estimation.

Re-stated mathematically, our results follow from several observations. First, gradients of task performance with
respect to layers of network weights have tensor-product decompositions into vector and dual vector components,
representing population response and receptive field changes respectively. Second, task-learning interactions (i.e.,
interference) arise from inner product relationships between gradients, and these inner products therefore decompose
into products between pairs of vectors and pairs of dual vectors. Since tensor products of projections of gradient PR
and RF changes are themselves projections of gradients, the CEM computes directional derivatives. And because
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directional derivatives can be interpreted as gradients on constraint surfaces, we note that they can impose inner
product relations between pairs of PR and RF changes to control interference. Existing models of plasticity are
compatible with these observations, and our coordinated eligibility model formalizes the relevant relationships.

Results

In the following sections, we first introduce the coordinated eligibility model, then show how it controls population
responses and receptive fields. Next, we show why these are important for interference mathematically. These ideas
are illustrated in figure 1, with PR and RF changes either removing or generating interference. We therefore present
a sequence of simulations addressing these cases. The first two simulations show how destructive (catastrophic)
interference can be avoided via adjustments to RFs and PRs, respectively. We then address the joint use of PR and
RF eligibility to reduce interference involved in learning about compositional representations across layers. Two
further simulations demonstrate how coarse-coded RF and PR changes facilitate generalization. Throughout all
our simulations, we use a reinforcement learning paradigm called the contextual bandit problem, which we discuss
below, and we compare our results with gradient descent. In our final sections, we show that the coordinated
eligibility model is a generalization of the BCM, two-threshold calcium, and REINFORCE models.

The Coordinated Eligibility Model

Our coordinated eligibility model posits that changes in receptive fields and population responses are jointly learned
by trial and error in the form of variable neural activity and concomitant plasticity. Coordinated firing rate
variability is hypothesized to explore population representation changes, while coordinated control of dendritic
calcium dynamics samples receptive field modifications. The degree to which these are converted into plasticity is
assumed variable, and dependent on covariation with so-called third factors such as dopaminergic reward-prediction
errors (reviewed in, e.g., Scott & Frank 2022). Importantly, trial, error, and reward in the model are formal notions
that need not correspond with behavioral trial, error, and reward. Instead, they describe a variation-selection process
controlling computational adaptation. Nonetheless, each can be interpreted literally in areas such as striatum, and
so we address this case in our exposition.

Mathematically, we model each post-synaptic neuron’s firing rate as the product of a variable gain term γ and
a normalized current-frequency curve (i.e., point-wise non-linearity) f applied to summed synaptic input. In our
simulations we take f to be rectification above some threshold θ, which we set at zero for simplicity. Plasticity in
each neuron’s set of input synapses w is then modelled as a function of the post-synaptic variables along with a
neuromodulator concentration m and a vector of dendritic calcium variables d:

∆w = mγ∆fdT (1)

The vector d is itself some function of the synaptic inputs x, and the quantity ∆f is a firing rate deviation f − f̄ ,
where f̄ is a baseline. There may be biological or normative reasons to define this baseline differently depending
on context, but we take it here to be the gain-normalized average firing rate over presentations of a given stimulus,
denoted ⟨f⟩. Hence the baseline is stimulus-dependent, reflecting differentiated, relatively consistent, spatially
specific calcium current inductions by distinct stimuli. This stimulus-dependence is consistent with other models
such as REINFORCE, CHL, and XCAL, which also have baselines induced by stimulus evoked activity, and such
baselines are used in conjunction with trial-wise activity deviations and performance signals to improve function.

Biologically, the model is motivated by two observations. First, firing rate gains are frequently controlled quasi-
independently of glutamatergic inputs (Cohen-Kashi Malina et al. 2021; Garcia-Junco-Clemente et al. 2019). And
second, dendritic calcium deviations are generally impacted by many factors in addition to input stimulus identity
(Scott & Frank 2022). While most models take weighted sums of inputs to both determine firing rates and to define
the Hebbian term governing weight changes, our coordinated eligibility model separates these. This separation
allows receptive field plasticity to be a more general function of input, and coordinated firing-rate gain modulation
to control the population response aspects of plasticity. As such, the CEM directly and independently controls
updates to the input weighting and output properties of a group of neurons. These features allow the model to
flexibly explore different potential learning outcomes, and they provide links between biology and mathematical
aspects of learning which we examine in the following sections. Notably, the model reduces to various other
algorithms as special cases, as we explain in our final results section and figure 7.
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Trial-wise covariation in firing rates samples population responses

The coordinated eligibility model can be written in terms of vectors and matrices to summarize all synaptic changes
between two layers of neurons simultaneously. This is simplest to illustrate when d(x) is the same function for every
neuron. Using subscripts to index neurons, the matrix of synapse changes is:

∆w = mγ∆fdT = m


γ1∆f1
γ2∆f2
...

γn∆f3

 [
d1, d2, ..., dn

]
= m


γ1∆f1d1 γ1∆f1d2 ... γ1∆f1dn
γ2∆f2d1 γ2∆f2d2 ... γ2∆f2dn

... ... ... ...
γn∆fnd1 γn∆fnd2 ... γn∆fndn


Above, w now denotes the whole set of synaptic efficacies, i.e., the weight matrix, whereas f is a vector of post-

synaptic firing rates and d is a vector of calcium elevations for each potential pre-synaptic input. The term γ∆fdT

is an outer (or tensor) product, and denotes a matrix with γi∆fidj in the jth column of the ith row. This product
is composed from two vectors, the vector γ∆f on the left, and d on the right. Since γ∆f specifies a change in
firing rates across a layer, and d specifies a change in responsiveness to various inputs for each neuron, these vectors
represent population-representation changes and receptive field re-weightings, respectively. As one can verify, the
weight change ∆wij depends on the post-synaptic activity γifi and the dendritic calcium dj as in equation 1.

The trial-average weight change is equal to the gradient of reward with respect to network weights under
particular conditions. These require that m represents reward prediction error, γ is constant, d(x) = x for all
neurons, the firing rate transfer function is the identity, and firing rate variability is mean-zero and isotropic. In
this case the model is equivalent to REINFORCE Williams 1992. The mean-zero isotropic condition occurs when
firing rate noise is normally distributed with no correlation, for example, meaning γ∆f ∼ N (O, I). Using g to
denote the ideal population-response change, the average weight update is then:

⟨∆w⟩ = gxT (2)

This says that every neuron should change its receptive field to weigh inputs by strength, reflected in the xT term,
and that each neuron should increase or decrease its firing rate such that the whole population response changes
by g. A proof of this weight update relation can be found in our appendices, reproducing (Williams 1992).

Importantly, the average weight update is the result of summing a number of individual ones, as with stochastic
gradient descent. The assumption that γ∆f ∼ N (O, I) means that potential updates γ∆fxT perform exhaustive
trial-and-error search for the best dimensions of change, being reinforced or discouraged by reward. Each individ-
ual neuron gradually increases or decreases its firing rate independently, according to RPE-transmitted feedback
dependent on network outputs. By inspection, one can note that it would be more efficient if only one sample pop-
ulation change was tried, with all neurons varying together, such that the vector of changes was g. The sought-after
average would then be computed in one step, and conflicting population response changes would not need to be
added together, generally cancelling one another out to ultimately generate gxT .

This line of reasoning has two important implications. First, the sample complexity of gradient estimation
can be improved by considering smaller hypothesis spaces of population-response changes. Sampling along g alone
cannot generally be enacted because is is not known beforehand, but the space of possibilities to consider may
often be pruned using prior information or biases. Indeed, previous work showed that noise correlations reduce
sample complexity during learning in a model of plasticity related to that considered here (Nassar et al. 2021). The
CEM generalizes this insight via the additional observation that noise correlations specifically produce directional
derivatives (see figure 1). Introducing covariance in general dimensions, rather than necessarily along g, produces
population response updates that need not align with g as they sum. Importantly, such alignment is often unneces-
sary, even for completely and efficiently solving tasks, because neural networks typically have many more degrees of
freedom than they do training data. As a result, the CEM can use population-response changes to flexibly satisfy
multiple constraints, such as avoiding interference during task improvement. We illustrate a simple example of this
in figure 1, panels G-H. A formal treatment of this result, including its proof, can be found in the supplement.

Dendritic shaping determines receptive fields

Taking expected values above resulted in an expectation over mγ∆f , which yielded the optimal population response
change g when particular (i.e., REINFORCE) conditions were met, and directional derivatives otherwise. In a
more general setting, d is variable and is included in the average. The simplest example differing from gradient
descent takes d as identical across neurons but independent from m, γ, and ∆f . Then for some v representing the
population-response change we just replace x with d in the equations above:

⟨∆w⟩ = vdT (3)
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For example, suppose that d = [x1, 0, ...0]. Then this weight change ⟨∆w⟩ implies that the whole population will
respond more with the representation v whenever x1 is present (subject to additional impacts of the firing-rate
non-linearity). More generally, if d = x, then the population will respond more like v whenever the inputs match
elements of the vector x. More realistically, these receptive field plasticity selections almost certainly vary across
neurons, in which case the population change v may be as above, but each neuron would modify its receptive field
to attend to different aspects of the layer’s input. The total weight change matrix is then a sum of terms similar
to (3) with different d functions depending on the term in the sum. These cases are also directional derivatives,
because they are also projections of the gradient gxT . We expect these to be computed biologically by a sampling
mechanism like the one discussed for population responses. Work showing, for example, that dendritic-calcium
shaping SOM+ interneurons form covarying ensembles just as PV+, pyramidal, and medium-spiny neurons do,
supports such a hypothesis (Cummings, Bayshtok, et al. 2022). The resulting RF description is mathematically
similar to the PR description (shown alongside one biological interpretation in figure 1), so we refer interested
readers to our supplementary material and proceed to address interference as a function of PR and RF changes.

Interference decomposes as representation and receptive field change

As noted above, many outcomes of learning, such as learning-induced forgetting or generalization, can be cast in
terms of interference. Interference is a property of tasks and the learning algorithms used to solve them, and it refers
to the situation whereby modifying performance on one task leads to altered performance on another (McCloskey &
Cohen 1989). This applies to broad definitions of “task” and “learning algorithm” in the sense that if one quantifies
an aspect of network activity and alters both this and another measure by changing the network, then these “tasks”
interfere given this “learning algorithm”. In this section we quantify how interference manifests in terms of RF and
PR changes and their products.

Importantly, performance change only occurs when weights in a network move uphill or downhill on a task error
surface, meaning non-orthogonally relative to a gradient. Interference is thus a result of gradient relationships.
When reward depends on the activity in some layer of a network, its gradient with respect to network weights is
always an outer product gxT , where x represents input to the network layer and g is the ideal population-response
change. Gradients for two tasks can then be seen to interfere according to relationships between their representation
and receptive field changes.

Using (·, ·) to denote the usual matrix inner product, and examining gradients with respect to two reward
functions r1 and r2, we find that:

(
dr1
dw

,
dr2
dw

) = (∆1w,∆2w) = (gT1 g2)(x
T
1 x2) (4)

For networks with multiple layers, the same is true of each layer, so that the inner product of two gradients taken
with respect to all weights simultaneously also decomposes into terms such as these. Each inner product is zero if
either xT

1 x2 = 0 or gT1 g2 = 0, meaning one gradient has no impact on the other task’s performance if either the RF
changes or the PR changes are orthogonal. In the extreme case of two sub-networks being either active or inactive
conditional on each of two tasks, there is clearly no interference because changes in both RFs and PRs involve
different neurons. The equation above generalizes this to the case where tasks use the same neurons. Because
neural networks are typically very high dimensional, RF and PR changes generally have unconstrained degrees of
freedom available to potentially manage such interference.

In the coordinated eligibility model, the population response covariance C1, gradient PR change g1, and selective
receptive field plasticity d1 associated with task 1 jointly impact performance on task 2 if:

(∆1w,∆2w) = (gT1 C
T
1 g2)(d

T
1 x2) ̸= 0 (5)

That is, learning task 1 has no impact on task 2’s performance if the candidate representation changes explored
for task 1 do not “overlap” with those impacting performance on task 2, or if dendritic control of receptive field
plasticity ignores elements of synaptic input shared between tasks. The result is slightly more subtle than this in
the sense that interference will still be avoided if change associated with task 1 involves counterbalanced updates,
rather than simply non-overlapping ones, with respect to task 2. For example, if task 2 involves summing activity
from several elements, then increasing RF responses to one and decreasing them to another could leave their sum,
and hence performance, unchanged.

Importantly, equation (5) is a recipe for producing generalization as well as avoiding destructive interference.
Generalization is the opposite of destructive interference in the sense that rather than having new learning degrade
previously achieved performance, either new learning improves it (which we would call retroactive constructive in-
terference) or learning one task decreases the need for new learning during another, providing proactive constructive
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interference. These outcomes also require RF and PR changes to have significant overlap with their counterparts
in gradients, with the inner products being positive rather than negative. Networks can therefore seek interference
via PR and RF changes in order to produce learning generalization or transfer.

Finally, it is important to note that the representation-modifying terms g contain information about downstream
processing, such that overlap therein acts similarly to overlap in stimulus inputs to the network. Even if two tasks
require driving different effectors, RF overlap for the neurons controlling them can generate interference just as
overlapping input stimuli do. There is a fundamental symmetry between input overlap and readout overlap, which
generate the two sources of interference in equations (4) and (5). This symmetry can be broken when reward depends
on a set of effectors shared across tasks, however, because the reward or error computation applied to all network
outputs acts analogously to a final, single-neuron processing stage. As a result, the common machine-learning
practice of using “multiple heads”, which is analogous to context-dependent processing in real neural networks, is
important for realizing the full potential of any particular network architecture to determine interference.

To summarize, the preceding subsections have introduced the coordinated eligibility model, which explicitly
controls population response and receptive field plasticity via neural firing rate covariance and a generic model of
dendritic calcium shaping. Candidate population response changes form a hypothesis space of potential compu-
tational changes, given any particular input, and the model selectively samples this space according to firing rate
covariance. A similar logic applies to candidate receptive field changes, although we have left the details unspecified,
because the interaction between the two would increase the scope of this paper substantially. These PR and RF
changes control interference, because task gradients decompose into PR and RF terms, implying that interference
calculations do as well. We now proceed to demonstrate these results and some of their implications in neural
network simulations.

Contextual bandit tasks and network model

Perhaps the most well established example of neuromodulated Hebbian plasticity, of which the coordinated eligibil-
ity model is an example, is corticostriatal reinforcement learning. In this context, dopaminergic signaling of RPEs
modulates synaptic plasticity in striatal medium spiny neurons (MSNs) to improve behavior (Schultz et al. 1997;
Frank 2005; Shen et al. 2008; Scott & Frank 2022). We therefore considered how coordinating eligibility might fa-
cilitate adaptive striatal learning. The striatum contains several interneuron types, including parvalbumin-positive,
somatostatin-positive, and cholinergic subtypes which modulate spiny neuron excitability and learning (see, e.g.,
Monteiro et al. 2018; Cattaneo et al. 2019; Reynolds et al. 2022). In addition, MSNs express voltage-gated calcium
channels, exhibit depolarized dendritic “up-states”, have their firing rates modulated by both dopaminergic sig-
naling and CREB activity, and develop recurrent collaterals targeting both somatic and dendritic regions of other
MSNs. As a result, there are numerous mechanisms that could generate the basic functional subdivisions of gain,
firing rate, and dendritic calcium control required by our coordinated eligibility model. One such candidate division
of labor is illustrated in figure 1, panel C.

We therefore simulated simplified three-layer neural networks representing cortico-basal-ganglia interactions to
explore how plasticity rules (which are downstream of the biology discussed above) relate to interference, abstracting
away from the complex disinhibitory architecture of the BG in doing so. These used coordinated eligibility to
solve reinforcement learning tasks, and we compared our results with policy gradient based learning. Each of our
simulations used 200 input (cortical) neurons, 200 hidden (striatal) neurons, and one output neuron for each action,
which competed for selection via a softmax function. Neurons were modelled as rectified-linear units, input-to-
hidden-layer weights were initialized according to log-normal distributions. and all weights were constrained to be
positive. The tasks we modelled were “contextual bandit” problems as described below, which networks learned
over repeated blocks of 20 training trials each. Our demonstrations used algorithmic gradients (rather than sampled
ones) to control for sample complexity, and they therefore illustrate improvement based on filter geometry alone.
Nevertheless, we verify that online schemes estimating projections during learning produce very similar results (see
the supplement on oracle vs sample-based quantities).

The contextual bandit tasks describe the common process of learning to take different particular actions de-
pending on the state (or context) one is in. This is typically framed as visiting different casinos, wherein one has a
set of slot machines to choose between playing; the context is the casino, the action is the slot machine play, and
the reinforcement learning problem is choosing the best machine in each casino based on reward receipt. This setup
is the reinforcement learning analogue of supervised input-output learning, such as labeling images. Contexts are
analogous to images and actions to labels. The supervised case and the reinforcement one differ only in that actions
must be tried and compared in order to determine the correct response for each input. This sampling occurs via
noise in network firing rates and the resulting actions.
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Figure 1: Gradients, interference, and the coordinated eligibility model. (A) Neural network loss gradients decom-
pose into population representation changes and receptive field changes by layer. (B) In the CEM, plasticity is a
sum of outer products of these. (C) Example mapping to striatal biology. A similar mapping to cortical biology,
with pyramidal neurons rather than MSNs as the principal cells is also plausible. (D) Interference arises when
population response changes involved in learning one task also impact another task, and similarly for receptive field
changes. Orthogonalizing either population response changes or receptive field ones removes interference. Merging
them creates interference, which can be used to generalize. (E) Diagram of merging and splitting eligibility for RFs
(top row) and PRs (bottom). In the top row, an input is either included or left out of two candidate receptive
field changes occurring in downstream neurons. In the bottom row, a neuron is either included or left out of the
population response change associated with two inputs. (F) There are 2x2 cases in E, organized as a table here.
One can either split or link both RF and PR changes. Any combination of table elements can theoretically occur
in a single layer of weights. (G) A simple interference removal example. The same input “In” is applied given
two readouts L, and R. The loss specifies that L should be on, and R should be off. Potentiating the left pathway
(teal) but not the right pathway (yellow) will accomplish this goal. A continual learning scenario involving only L
will tend to drive both neurons 1 and 2, by contrast. (H) L’s activity in panel H is constant on a manifold in the
firing rate space reached by driving 1, 2, or both. Which change occurs depends on their noise covariance, yielding
activity change in some direction v, if noise is not isotropic, or in direction g if it is. If only one neuron varies at
a time, such as unit 1, then only the yellow dimension of potential population response changes will be eligible for
trial-and-error updating, and therefore subsequently “moved along” until reaching S.
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Any sensible RL model can solve contextual bandit tasks, but changing contexts generally induces experience-
dependent forgetting in networks if learning is done online and in a blocked fashion. Furthermore, the typical
learning approach of following a policy gradient, which is the equivalent of gradient descent for image classification,
also does nothing to manage generalization of learning from one context to another. Therefore, we demonstrate the
coordinated eligibility model controlling both such forms of interference below.

Avoiding forgetting via selective receptive field plasticity

When a feature is shared by multiple stimuli, it may improperly suggest taking particular actions, leading to
interference. Perhaps the most intuitive form of interference control is thus the capacity to ignore those stimulus
features shared across stimuli when changing responses to them. Selective receptive field plasticity, controlled
by the d terms in our CEM equations (1), can accomplish this. To illustrate this mechanism computationally,
we simulated our network model solving a contextual bandit task involving 20 contextual inputs, each of which
required taking one of 5 alternative actions. (These numbers are purely for illustration purposes - nothing about
the mathematics of our results changes with scale.) The inputs were vectors of Bernoulli random numbers with
P(success)=0.15 (figure 2C) and therefore included moderate amounts of feature (i.e. neuron activation) overlap
(figure 2D). We also guaranteed each input had at least 1 unique feature, for reasons discussed below. Learning
was grouped hierarchically by “days” and “blocks”. Days referred to one pass through the training environment, in
which the network was presented with 20 trials in context 1 (the first “block”), 20 in context 2 (a second “block”),
etc. Once a block of trials for context 20 was completed a “day” therefore ended and the next “day” began.

For our model comparison, receptive field plasticity vectors d were restricted in the CEM to be orthogonal to
previously encountered gradient ∆RFs. This was accomplished via projection, with projection matrices for each
context being updated during other contexts. That is, each context had an associated noise-covariance matrix
which progressively lost dimensionality according to other task’s inputs (details in the supplement). Whereas
the standard policy-gradient algorithm exhibited substantial interference between contexts, the CEM significantly
improved learning times and task performance (figure 2, panels E-H). Specifically, at every return to a previously
learned-about context, performance was worse for gradient descent than it had been when that context was last
encountered (panels E,F). This is abolished by the CEM (also shown in panels E,F), and total cumulative error,
also referred to as regret, was diminished by about 20 percentage points (panel G).

We expected improvement under the CEM to result in part from decreased learning about irrelevant dimensions
in network inputs, and we verified this. To do so, we computed the principal components of the network weight
dynamics (panels I,J) to examine their frequency content, on one hand, and we isolated the biasing impacts of shared
inputs on the other (panels K,L). The primary principle component of the weight dynamics in both simulations was
strongly aligned with the direction from the initial to the final weights (ρ ≈ 0.9), whereas every other significant
dimension was primarily oscillatory, with a period of 1 day (panel J). This periodicity is natural, because the inputs
cycle daily. We also therefore computed the effective weights from the average input (taken over all contexts) to
each readout at every trial during learning. These weights are just entries of WrReLu(Whxavg) for xavg the average
input, Wr the readout matrix, and Wh the hidden weights. This verified (panel K) that gradient descent repeatedly
learns and unlearns associations between shared input and each readout. These bias the network to respond to
non-diagnostic input cyclically, an effect that is largely abolished by the CEM. We also observed (not shown) that
computing noise updates to orthogonalize ∆RFs against one another, in addition to the orthogonalization against
other inputs, was even more effective at removing interference. This occurs when ∆RFs are restricted to unique
subsets of neurons coding unique input features, for example. In such a scenario, weight changes are incapable
of conflicting with one another, not just in how much they introduce functional conflict. As such, the network is
effectively segregated into non-interacting sub-networks during learning.

Avoiding forgetting with population response eligibility

Our second avenue for managing interference involves context-dependent processing, manifest here as contextual
differences in action readouts. (Note that the sense of “context” here differs from the contextual-bandit sense, which
refers to input.) Each task in our second simulation therefore had its own set of readouts “listening” to network
activity. This could occur when frontal circuits change motor or pre-motor responsiveness to different striatal
populations, and is common in neural network research, for example. Appropriate responding therefore requires
some indication of context, but in general this may be absent from network inputs. Realistic context signals may
be internally generated, or available via a combination of memory and latent state inference, however. Interference
arises in these settings because changing representations to drive one set of readouts will generically either introduce
noise or aliasing (i.e. differential, specific drive) in other readouts.
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Figure 2: Minimizing interference with selective receptive field plasticity. (A) Comparison of gradient and CEM
eligibility in this simulation. Receptive field changes to hidden layer neurons are limited to orthogonal stimulus
features in the CEM. (B) RF splitting here is similar to ignoring non-diagnostic input features. (C) Inputs to
the network are random feature vectors. (D) These have modest average pairwise overlap, stemming from their
many shared non-diagnostic features. (E) Comparison of performance between gradient descent (GD) and the
coordinated eligibility model (CEM). Each stimulus has a learning curve which specifies, for each trial of stimulus
presentation, the probability that the network responds correctly. These are averaged and displayed. Because
stimuli are presented in 20-trial blocks (“days”), and are subsequently returned to after learning occurs for other
stimuli, GD exhibits decreased performance at these return times relative to the previous context visit, whereas
the CEM does not. (F) Change in performance at context return induced by interference. Non-monotonicity arises
because there is limited range for performance loss at the initial 20-trial mark. (G) The CEM generates less regret
(cumulative error) than GD by avoiding performance decrements. (H) Interference is greater or lesser, such that
improvement of the CEM over GD is greater or lesser, according to input overlap. (I) PCA of network weight
dynamics under GD. (J) Averaged, normalized Fourier decompositions of the 5 principal components following the
first. All substantial PCs except PC1 are oscillatory. (K, top) Impact of shared input on readout activity for first
four days of GD weight history. The network repeatedly learns and unlearns readout associations to the shared
inputs. (K, bottom) softmax of the above. Shared, irrelevant input cyclically biases the network towards whatever
response is currently being learned. (L) Same as (K) but with CEM, on the same color scales. Oscillatory activity
is strongly damped.
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Tuning receptive fields to avoid interference in purely context-dependent processing is not possible, however,
because there will be (by definition) no unique input features. However, firing rate variability in a network’s hidden
layer determines which aspects of population responses are subject to change. By ensuring that changes involved
in driving one set of context-dependent readouts are orthogonal to other contexts’ readouts, network plasticity
based on the CEM is therefore able to avoid interference. As with the ∆RF case, this orthogonalization can be
computed online by removing dimensions from the noise variance as tasks are encountered, or it can be based on
an a-priori partition of the population response space. Biologically, autonomous CREB-mediated excitability drift
in amygdala neurons has been shown to recruit partially overlapping, partially distinct collections of neurons into
memory encoding (Zhou et al. 2009; Yiu et al. 2014), for example, and CREB similarly mediates excitability in
striatum (Dong et al. 2006). For simplicity, we assume here that since the readouts are known a-priori, the noise
correlations which orthogonalize sampling between them are as well.

Concretely, we model this contextual-processing scenario by presenting networks with one stimulus and using
multiple overlapping sets of readouts to select actions. We simulated 20 such contexts, with five actions avail-
able in each. In analogy with the RF simulations, readouts were generated as Bernoulli random vectors with
P(success)=0.15 (figure 3C). This generated moderate amounts of readout overlap, as seen in figure 3D. Simula-
tions were done using the same trial counts, blocking parameters, and neuron parameters as the previous section,
but we used a mixture model for gradient project that interpolated between isotropic and projective noise (our
“anisotropy” parameter below). We found that the CEM reduced interference considerably, with cumulative regret
in the example reduced by roughly 25 percentage points compared to gradient descent (figure 3G). The extent of
improvement depended on the anisotropy parameter, as illustrated in panel H. With zero anisotropy, the network
performed gradient descent, whereas with a parameter of 1, it orthogonalized updates completely. The best perfor-
mance occurs between these values, when weight updates are at intermediate (rather than potentially high) angles
to gradients.

As with our RF simulation, we sought to explain the performance effects in more detail on the basis of weight
dynamics. To do so, we again computed effective weights, this time segregated into “correct” and “other” categories
and averaged (figure 3, panels I,J). These indicated that for gradient descent, like the previous simulation, effective
weights into correct readouts oscillated over training (panel I). Similarly, competitor readouts saw their weights
decrease over training in an oscillatory manner (panel J). The CEM abolished both of these effects, and the
probability of choosing a correct action therefore increased monotonically (for the CEM) over training (panel K).
Nonetheless, as with our RF simulation, we observed that the underlying weight trajectory retained substantial
oscillation (panel L), which would be removed by a yet more stringent sampling-orthogonalization procedure as
discussed in the RF simulation section.

Coordinating eligibility for compositional stimulus-action relationships

As a final application to interference avoidance we consider tasks with multidimensional, compositional inputs that
require compositional responses. Many objects can be described as bundles of features of varying statistical inter-
dependence, and when learning a task, subsets of these features might dictate separate elements of an appropriate
response (figure 4B). Brain regions with convergent input from diverse pre-synaptic partners would be well served
by plasticity mechanisms that could manage responsiveness to the compositional building blocks in such mixed
inputs, and the resulting compositionality would also facilitate combinatorial generalization (as in e.g. O’reilly
2001). While there are circuit level architectural mechanisms that can gate attention to specific features in order
to govern responding (Frank & Badre 2012; Niv et al. 2015), we consider here how such functions can arise from
learning rules themselves. As we show, feature-dependent population-response plasticity can work in tandem with
receptive field plasticity to produce compositional learning.

Our basic insight is that exploratory population response noise need not be independent of dendritic selection
mechanisms, and indeed likely isn’t in general. A candidate population response change q can therefore be considered
in conjunction with a receptive field change p, leading to a synapse update matrix qpT , yoking compositional building
blocks of representation changes to those of receptive field changes. Multiple such pairs of changes can be sampled
during the same learning episode, and the result constitutes a form of dimensionality reduction; instead of performing
sampling-based gradient (or directional derivative) estimation on the complete bipartite graph of representations
and receptive field updates, some smaller graph is assumed. For example, striatal neurons multiplexing sensory
information from different areas may have different population-level representations related to different modalities,
and it may be useful to explore holistic changes in these representations in a way that keeps processing changes
separated by (and internal to) different modalities. This would imply yoking a representation change associated
with one modality to a set of receptive field changes “listening” to that same modality. As above, we are not
suggesting other mechanisms cannot accomplish similar goals. Instead, we show that synaptic plasticity could be
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Figure 3: Minimizing interference with selective population response plasticity. (A) Comparison of gradient and
CEM eligibility in this simulation. In the CEM, population response changes are sampled via orthogonal noise
dimensions, segregating learning across contextual decoding subspaces. This is illustrated by the middle neuron
being removed from PR change eligibility. (B) Intuitively, this simulation models isolating stimulus response changes
when multiple contextual responses make use of shared aspects of internal representations. (C) Random readouts
used in the task. (D) Readout vector overlap. (E) Comparison of GD and CEM performance. GD has discontinuous
performance when returning to a context (every 20-trial mark here) because learning in other contexts changes
representations that are read out by other contexts’ readouts. The CEM model avoids this. (F) Average change
in performance on block entry relative to exiting the previous block of the same context. (G) Interference leads
to worse performance under GD. (H) Performance improvement depends on how strongly orthogonalized the CEM
PR changes are. (I) Effective readout weights from the (single, shared, constant) input to each contexts correct
answer rise monotonically under the CEM, but rise and fall under GD as each new context suppresses weights
which aren’t aligned to the current readout. (J) Competition from incorrect readouts falls when each stimulus is
trained, then rises again under GD. This effect is abolished under the CEM. (K) The probability of providing a
correct answer rises and falls under GD in line with (I and J). (L) As one would expect, the CEM moves more
directly from the initial weight configuration to its final one, as shown by the L1 path length (summed absolute
weight increments and decrements) as a fraction of the L1 distance from initial to final weights. Both GD and CEM
relative path-lengths exceed 1 because both exhibit non-monotonicity in their weight changes. Non-monotonicity in
the CEM case is orthogonal to readouts however, and therefore does not manifest in performance non-monotonicity.
A strictly better algorithm might also remove this “invisible interference”.
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either pre-configured or tuned online to perform them in some circuits.
To explore this idea, we simulated simple compositional task sets. Tasks were constructed by generating random

mathematical bases for network inputs and hidden layer responses, and associating elements of each basis with
elements of the other. The desired input-to-hidden transformation was thus an orthogonal matrix W ∗

h = BAT ,
with input feature vectors encoded in A and hidden ones in B. Stimuli were generated as compositions of the
basic features, and target outputs were generated as compositions of graded responses to these input features. The
strength of an input feature therefore determined the extent to which its associated output was required. The
number of input features per stimulus was determined with a compositionality parameter C ∈ {1, ..., n}, where n is
the network width in feature groups. This yielded a set of n-choose-C potential inputs, which grows rapidly when
C is not approximately 1 or n. Therefore, we selected stimuli to include all n of the features with equal frequency.
For example, with C = 2 and n = 4, neurons in the pairs {1,2}, {2,3}, {3,4}, and {4,1} would be taken to be active
to varying degrees as inputs.

To perform graded feature-matching, we defined a parameter L, a “linking number”. As noted above, cross-
layer feature dependencies form a bipartite graph, with links between layers set by the non-zero qpT combinations
discussed above. Whereas gradient descent operates on the complete bipartite graph, involving every possible (q, p)
pair, the best coordinated eligibility model operates only on those input-to-hidden feature links required for the
task, reducing dimensionality substantially. The linking number L interpolates between GD and this best model
by setting the in- and out-degrees of each feature vector in the hidden and input layers’ dependencies, respectively.

Our results are illustrated in figure 4, showing improved performance of the CEM relative to GD. This results
from reducing the number of candidate network changes sampled by the plasticity rule. The reduced set of candidate
weight changes avoids interference that would otherwise arise from incorrectly associating input features with output
features that appear jointly with the inputs’ associated targets. As a result, the coordinated eligibility model
solves the example task set more quickly, with less interference, and accrues less total error than GD, as with
our other simulations. The impact of linking number shows that reductions in dimensionality improve performance
monotonically, as one would expect (figure 4H). Thus, feature matching via coordinated receptive field and response
eligibility can drastically improve learning in compositional tasks relative to gradient descent.

Linking receptive fields for generalization

We now consider constructive interference, in the form of generalization or learning transfer. As in our previous
simulations, this can be accomplished with either selective receptive field plasticity or selective population response
plasticity. In the former case, by contrast to the increased specificity of receptive field changes used to avoid
interference, networks can also coarse-code (or decrease the specificity of) plasticity in order to change responses
to multiple inputs based on feedback related to any single input. Notably, this is not the same as coarse-coding
representations, which roughly refers to neurons responding to many inputs, because coarse coding of plasticity does
not inherently result in coarse codes for activity. But by updating neural responses to multiple inputs simultaneously,
such plasticity can generalize learning from one input to another.

This type of generalization can also be construed as a form of inference. For example, co-occurring features
in a network’s input might signal an object’s identity, such that response changes to subsets of features ought to
be generalized to the whole partially observed object. In particular, this means that when a different subset of
object features signal the object’s identity, updated behaviors should still apply. Whether inferences like these
are appropriate will depend on many factors, but in cases where they are, coarse-coded receptive-field plasticity is
one potential mechanism for supporting them. As with tailored RF plasticity for interference avoidance, dendritic
features such as spine clustering, active electrical processes, and branch-level excitability gating are all mechanisms
that could reasonably serve this function.

To illustrate this, we ran network simulations in which pairs of inputs were associated pairwise with the same
target outputs. One network learned the resulting contextual bandit task using gradient descent, while in a second
network, receptive field plasticity was yoked across paired inputs. The results of the two simulations can be seen
in figure (5), showing that learning speed is roughly doubled under the given coordinated eligibility model, as one
would expect. Transfer of learning from one stimulus to its paired input can be seen directly in panels J and K, in
comparison to the absence of transfer visible in F and G. These simulations therefore demonstrate one mechanism by
which similarity based clustering or other procedures could tune learning rules to generalize, in a manner consistent
with solving tasks via gradient-like improvement.
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Figure 4: Coordinating receptive field and population response eligibility to de-mix plasticity for compositional
learning. (A) Comparison of GD and CEM. When network connectivity is dense, GD learns dense updates, whereas
CEM can learn sparse, targeted updates. This can be useful in cases where e.g. multi-modal information is
multiplexed in neurons’ activities, but learning should respect modality. (B) Example of such compositional data:
A stimulus is composed of several features, and each feature independently dictates an element of the network’s
response. (C) Input second moments for 10 inputs. (D) Feature associations. Each input is a composition of features,
and each output is a composition of the input features’ individual output associations. Each input feature dictates
one unique output feature. (D) Context-average performance over time. GD continuously produces interference
between inputs because it both wrongly associates multiple input features with each output feature, and wrongly
associates multiple output features with each input feature. (E) Summed weights connecting input features to their
“true” output features. The CEM here is a mixture-model with P = 0.8, so that performance closes 80% of the gap
between GD and ideal behavior (which would be seen with P = 1). (F) Summed weights connecting erroneously
associated input and target features, as a fraction of the true “diagonal” ones. GD dedicates a majority of it’s
synapse changes to erroneous associations early on, diminishing to roughly 15% towards the simulation end. This
is diminished by roughly a factor of 5 (i.e. 1/(1 − P )) in the CEM mixture model, whereas incorrect associations
are abolished in the case of P = 1 (not shown). (H) Impact of linking number, by compositionality. Improvement
over GD increases monotonically as eligibility is narrowed from all candidate features (linking = 10) to only the
truly associated feature (linking = 1). This has a greater impact for more compositional sets of inputs (here comp.
= 10) in which each input has more features.
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Figure 5: Generalizing with selective receptive field plasticity. (A) Comparison of gradient and CEM eligibility in
this simulation. In the CEM, receptive field changes are coarse coded over inputs which share targets. (B) Coarse
coding input plasticity can be interpreted as yoking learning over observed and inferred unobserved features. (C)
Inputs are sparse positive random vectors. (D) Five target actions are allocated to 10 inputs. Inputs 1 and 2
share a target action, as do 3 and 4, etc. (E) Performance of GD and the CEM. Whereas some minor destructive
interference is visible in the GD curve (at block switches), the CEM has a prominent improvement at the first block
switch (20 trial mark). This occurs because performance on each stimulus is better on a new context block than
when it left the previous context block for a stimulus, a point illustrated further in F and G. (F) First and last
trial performance within a context (“casino”) for GD, for the first three blocks (“days”) of learning. Blue curves
are performance on the first trials of each block and red curves are performance on the final trials. The first trials
in context 2, 4, etc show performance around chance (20%), and learning proceeds independently over days for
different contexts. (G) Same as F, but for the CEM. The first trial in each context shows performance comparable
to the last trial in its paired context. For example, the first trial on day 1 for context 2 has performance comparable
to that of the last trial on day one for context 1, which was presented immediately prior. Generalization can also
be observed for later days and contexts. (H) Difference in regret (cumulative error) between the two models. Total
error is (1 - 0.5*0.8)*GD, i.e. 80% of being halved, because our anisotropy parameter was set to 0.8.
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Linking representations via overlap for generalization

As with receptive-field plasticity, coarse-coding population-representation eligibility can also produce generalization.
In this case, different contexts might make use of different representations (or different aspects of “the same”
representation) for information about any particular stimulus, but representational plasticity associated with one
context would be yoked to representational plasticity associated with the other.

We therefore simulated a version of this representation-based generalization using eligibility for population
plasticity that was distributed over multiple actions. Specifically, we simulated a network in which five inputs were
observed in each of two contexts, the analogue of our RF linking simulation. This could represent performing two
binary classifications for each such input, with the classification prompt determining which contextual readouts are
applied to the network. For example, it could model being asked, for each of five animals, if the given animal is a
mammal or bird, and whether it is small or large. Known or inferred shared information between these answers can
be used within the plasticity rule to generalize learning, such that if (e.g.) all mammals previously observed are
large, then learning to respond “mammal” can produce a learned response of “large” as well. Trial-wise covariation
of populations driving these two classifications thereby serve to generalize learning.

Our simulation results in figure 6 illustrate these points, showing that gradient descent does not transfer infor-
mation, whereas yoking receptive field plasticity across responses reduces total learning time substantially. As with
our RF simulation, panels J and K directly illustrate transfer from one context to its pair in the CEM. The absence
of transfer under gradient descent is shown in panels F and G. Hence, regardless of the mechanisms that might exist
to infer the appropriateness of such processes, or the specific architectural divisions of labor between brain areas
which might support their natural pre-configuration, we have shown how coordinated eligibility in gradient-like
learning can support generalization via the geometry of population-response plasticity.

Coordinated eligibility generalizes earlier models

Having discussed the functional aspects of our coordinated eligiblity model, we now explain how it generalizes other
important formulations. The Beinenstock-Cooper-Munroe (BCM) rule, two-threshold Ca2+ model of plasticity, and
REINFORCE algorithm are all equivalent to one another under certain circumstances, and they can thus be jointly
generalized. Our coordinated eligibility model incorporates simple formulations of each as special cases. Basic
information about these models is provided in figure 7.

The version of the BCM model we consider takes synaptic plasticity as:

∆w = y(y − θ)x (6)

Post-synaptic neuronal activity, in the form of a spike rate, is denoted here by the variable y, whereas the pre-
synaptic neuron’s activity is represented by x. The synapse strength is represented by the variable w, and its
change over time is denoted by the ∆w. The term θ denotes a “floating threshold” which measures activity in the
post-synaptic neuron over time. Biologically, this roughly summarizes the calcium dynamics in post-synaptic cells,
which play a large role in determining plasticity. Large calcium fluxes tend to induce LTP, whereas small ones tend
to induce LTD, and the boundary between these is adapted over time. Theta represents this boundary, and NMDA
receptor subunit compositions are known to modify Ca2+ fluxes in response to activity, partially determining such
a threshold (Scott & Frank 2022 provides a recent review). Firing rates in this model are non-negative, implying
the sign of y(y − θ) is determined by y − θ. When y is greater than θ LTP is induced, whereas LTD is induced
otherwise.

The BCM model leaves out various important factors controlling plasticity. First, there are prominent impacts
of neuromodulators such as dopamine, acetylcholine, and norepinephrine in many systems. Calcium flux is also
mediated by NMDAR and voltage-gated calicum-channel (VGCC) composition in a synapse local way, suggesting
that the floating threshold separating LTD and LTP should be local too. And finally, synaptic eligibility for change is
known to be modified by factors such as shunting fluxes on spines and dendrites, which pro-actively modify calcium
dynamics rather than being passively driven by their inputs. The two-threshold model of calcium induced plasticity
and the REINFORCE model incorporate some of these aspects of spine-local and neuromodulatory impacts, and
our coordinated eligibility equations can functionally model all of them.

The simplest two-threshold calcium model of plasticity is piecewise constant, with three regimes. In this model,
high calcium flux elicits LTP, intermediate fluxes induce LTD, and small fluxes have no impact. Such a model can
be formulated to have linear behavior around the LTP to LTD transition, so that being slightly above threshold
yields minor LTP and being slightly below yields minor LTD. If this calcium flux is set by the convergence of a
variable post-synaptic response amplitude and a fixed input activity then, denoting the LTD-LTP threshold θh and
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Figure 6: Generalizing with selective population response eligibility. (A) Comparison of gradient and CEM eligibility
in this simulation. In the CEM, population response changes are coarse coded over target actions. (B) This
simulation models situations in which learning to change one type of behavior related to a stimulus should result
in changes to other behaviors related to the same stimulus. (C) Each of 5 inputs is associated with a unique action
in one context. (D) The same 5 inputs are associated with a second action in a different context. (There is no
inherent relation between action 1 in context 1 and action 1 in context 2, they are arbitrary labels associated with
different readouts vectors) Inputs 1 and 2 share a target, as do 3 and 4, etc. (E) Performance for GD and the CEM.
(F,G) First and last trials within a context for GD and the CEM. The first trial in each context shows performance
comparable to the last trial in its paired one for the CEM model, whereas there is no shared learning under GD.
(H) Reduction in cumulative loss attributable to generalization. In this simulation, differences in learning speeds
for different associations under GD are heterogeneous (see panel F), such that regret improvement under the CEM
depends on which random contexts are harder or easier to learn about. As with the previous simulation, expected
improvement is 0.5*0.8*GD.
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the LTD-no-change threshold θl, we have:

∆w =

{
0 y < θl

(y − θh)x y ≈ θh
(7)

If we identify the θh here with θ from BCM, and consider neurons which are significantly excited by a stimulus to
have only small fluctuations in firing rate around θ, then we can see that this is a local BCM model (in the sense
of a Taylor expansion), restricted to significantly active synapses. Linear two-threshold calcium models therefore
generalize BCM in the sense that the lower threshold for plasticity is some number greater than zero, and behavior
around the higher threshold is (locally) equivalent to BCM. A piecewise polynomial model in which the low-to-high
threshold transition is quadratic would be an even closer approximation. The linear case makes an important
connection with gradient descent, however, because gradients reflect local linear relationships.

Setting aside for a moment those postsynaptic neurons which are inactive, the linear two threshold model and
the BCM model are special cases of a third equation, which was introduced independently in the reinforcement
learning literature. Specifically, REINFORCE algorithms update weights according to a family of related equations,
some of which can be written:

∆w = (r − r̄)(y − ȳ)x (8)

The quantity (r − r̄) here represents a reward prediction error (RPE) resulting from the activity in the network,
and ȳ is the trial-average firing rate of the post-synaptic neuron. It is an example of neuromodulated Hebbian
plasticity, because the Hebbian product of (y − ȳ) and x is further multiplied by a neuromodulatory factor.

The model (8) also differs from BCM in the critical respect that the post-synaptic plasticity threshold θ, which
is taken to be ȳ here, is computed on a stimulus-by-stimulus basis. This conforms with biology insofar as different
stimuli consistently elicit activity in specific spine populations. The expected value of the weight update ∆w is then
the gradient of reward with respect to the network weights, under the assumptions of linear neurons and Gaussian,
isotropic noise, for example, meaning the model performs gradient descent. These conditions and related ones for
different network models are critical, in the sense that REINFORCE algorithms are defined as gradient estimators,
not with reference to the specific equation above. This is a key distinction from the coordinated eligibility model,
which does not compute generic task gradients, does not generally have isotropic firing rate variation, and does not
need to be redefined in network specific ways for networks with different firing rate properties, for example. Our
results are therefore general and flexible in ways that the REINFORCE model is not.

In particular, the coordinated eligibility model is a generalization of REINFORCE in the sense that it reduces to
equation 8 when: m = (r− r̄); every neuron takes f as the identity function; every neuron uses the same dendritic
calcium shaping d(x) = x, and the same gain γ; all neurons are subject to i.i.d. Gaussian variability; and the
post-synaptic baselines are all ⟨f⟩. In this case, the neurons are linear, plasticity is proportional to synaptic input,
neuromodulation reflects reward prediction errors, and all neurons exhibit identical uncorrelated variability. This
in turn reduces to the two-threshold model if the RPEs are all the same and the high threshold is set as the average
firing rate. Finally, if neurons are always in the vicinity of the high threshold, and stimuli are indistinguishable by
the post-synaptic neuron, we recover a local BCM rule.

Discussion

While biological learning is often considered as an approximation to gradient descent, we have developed the alter-
native perspective that biological phenomena – specifically active receptive field structuring via dendritic calcium
manipulations and heterogeneous firing rate variability – might endow neuromodulated Hebbian forms of plasticity
with important ways to control synaptic credit assignment. We introduced a plasticity rule, which we referred to
as the coordinated eligibility model, and showed that the inductive biases afforded by the biological elements of our
model can be leveraged to manipulate task-learning relationships in useful and fundamental ways.

While our coordinated eligibility model is essentially mathematical, we have emphasized links with various mi-
crocircuit elements. In the cortex, for example, population response plasticity may be orchestrated by parvalbumin
expressing interneurons such as basket and chandelier cells, via their impacts on firing rate variability, and MSN
collaterals may mediate similar coordinated changes in striatal circuits. Receptive field plasticity properties, on the
other hand, are known to be responsive to dendritic calcium manipulations, which are impacted by somatostatin
interneuron activity in some contexts (Higley 2014; Naka et al. 2019; Kecskés et al. 2020). Empirical work has
shown that experimental dendritic calcium manipulations do impact interference between tasks during learning
(Yang et al. 2014; Cichon & Gan 2015; Sehgal et al. 2021), and furthermore, that subpopulations of PV+ and
SOM+ interneurons in superficial layers of sensory cortex are responsive to both input from VIP+ interneurons
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Figure 7: Plasticity model relationships. BCM and the two-threshold calcium model capture important biological
aspects of plasticity, while the REINFORCE model and the coordinated eligibility model generalize these in certain
senses. The REINFORCEmodel can be considered as a stimulus-specific, RPE gated linear BCMmodel, whereas the
coordinated eligibility model is a generalization of REINFORCE in which receptive fields and population responses
are subject to flexible control, rather than being determined by the gradient of reward with respect to network
weights. The term γ∆f is analogous to (y − ȳ), which we stress has substructure relative to REINFORCE and
need not comply with key stipulations of REINFORCE, such as isotropic firing rate variability, baselining by post-
synaptic average activity, or even perfect stimulus discriminability. This distinction is important to make because
REINFORCE refers to a family of gradient-descent algorithms, implemented through a particular stochastic policy
gradient estimate. The equation above is one form, specific to one type of network and reliant on other assumptions,
whereas the model we call coordinated eligibility here encompasses a partially overlapping class of models which
are always given by the equation above. These may not be REINFORCE algorithms in the contexts in which they
are applied, and in general won’t be.
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and other cortical regions (Pfeffer et al. 2013). As such, our model predicts that the specific forms of coordination
among these players during learning will control both the sample complexity of plasticity and the geometries of
population responses and receptive fields. Feedback signals acting as “third factors” to plasticity are expected to
covary with potential changes in these PRs and RFs to gate structured eligibility into realized plasticity. In this
manuscript, we considered dopaminergic RPEs to play this role, but many other circuit elements could provide such
third factors.

Our work also suggests that firing rate variability should be partially exploratory, that it should be factorizable
into components representing potential functional changes, and that these components should align with learning
dimensions. If in-vivo networks behave like this, we further expect that network state changes involving nore-
pinephrine, acetylcholine, and top down input de-correlate activity in the sense of removing significant observable
nuisance variance, rather than in the sense of making all neurons maximally independent, for example. That is,
the increases in signal to noise ratios and cortical state “decorrelation” as discussed in optimal-cortical state litera-
ture are predicted to facilitate meaningful exploration of population-response changes by removing confounding or
noisy features of neural responses, rather than by suppressing ensemble-based variation in cell groupings involved
in relevant population coding. In these ways, learning dimensions would be expected to align with either informa-
tion communicated by task knowledge or with inherent processing primitives embedded in the network. Complete
decorrelation would be expected only when fine-tuning of population responses required truly high-dimensional
hypothesis testing of potential functional changes.

Existing literature suggests fine grained coordination like this may indeed be the case. For example, L2/3
mediated cortical state decorrelation seems to involve some, but not other, populations of both SOM+ and PV+
cells (Pi et al. 2013; Pfeffer et al. 2013; Fu et al. 2014; Eggermann et al. 2014; N. Chen et al. 2015; Gasselin
et al. 2021). Distinguishing between different “decorrelated” network states during learning is likely to be difficult
however, because ensemble sizes or coordination scales in microcircuits are not generally known. Work on so-
called critical cortical dynamics may provide an interesting connection in this regard however, given that a growing
literature examines how network states facilitate information maintenance and transfer across scales (Ma et al.
2019; Karimipanah et al. 2017; Shew, Clawson, et al. 2015; Priesemann 2014; Shew & Plenz 2013; Beggs 2008).
With luck, data on these and related phenomena will allow us to translate the mathematical features of our model
into any number of more local circuit-specific hypotheses.

Finally, we note that our work is closely related to other developments in computational neuroscience, partic-
ularly in the recurrent neural network (RNN) literature. Work on RNN dynamics has increasingly focused on low
dimensional processing, as embedded in networks by either hand-construction (Mastrogiuseppe & Ostojic 2018), or
via regularization procedures applied to gradient-descent through loss-function modifications (Beiran et al. 2023).
Our findings here indicate how biological plasticity may naturally support such low-dimensional learning - and the
attendant computational advantages - via the functional properties of concrete cellular and molecular phenomena.
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Supplementary material

The REINFORCE algorithm

Our main results are very closely related to the classic REINFORCE algorithm. For reference, we reproduce the
specific relevant findings from Williams’ 1992 paper here. REINFORCE was originally formulated for two-layer
neural networks with weights wij , inputs x, and outputs y, by the pair of equations:

∆wij = αij(r − bij)
∂ln(gi)

∂wij

gi = P (yi = ξ|w, x)

The quantities αij , r, and bij here are a learning rate, a “reward” and a “reward baseline”. Two special cases
are especially relevant to neuroscience. First, when y is a vector of Bernouli random variables (“spikes”) with the
probability of emission determined as a logistic function applied to Wx, then (with a few other details determined)
the algorithm takes the form:

∆wij = α(r − r̄)(yi − ȳi)xj (9)

Second, when y ∼ N (Wx,Σ), or in fact has any linear exponential family distribution, one arrives at (up to
proportionality) the same conclusion. Hence, the results for either network construction are Hebbian algorithms,
in the sense that they depend on the Hebbian product (y − ȳ)xT . Williams established that these algorithms are
also policy gradient algorithms. In particular, he showed that the gradient of expected reward, with respect to
the weights, is equal to the expected value of the weight updates themselves. Hence, updating the weights via a
REINFORCE algorithm performs gradient descent on a reinforcement learning problem’s loss. Williams’ proof used
something called the REINFORCE or “log-derivative” trick, which makes it difficult to see how more general noise
cases relate to his result. Node perturbation, which functions by the same logic, also assumes a convenient noise
form, whereas investigating the general case using linear algebra and (tensor) calculus yields our results below.

Gradients and the CEM

Using Einstein notation, basis vectors en, dual basis vectors em, h as the element-wise derivative of f , and Dh as
matrix with h on the diagonal, the derivative of reward with respect to weights W is:

dr

dW
=

dr

dyi

dyi
dW

=
dr

dyi

dyi
dfj

dfj
dzk

dzk
dW

=
dr

dyj

dfj
dzk

d

dW
ekWx =

dr

dyj
(hje

j ⊗ ek)ekx
T

=
dr

dyj
hje

jxT = Dhbx
T ≡ gxT

On the last line, we have defined b as (dr/dy)T and g, the gradient output filter or gradient population response
change, as Dhb. Compare this with the expected value of the reward-modulated Hebbian update, using the local
linear form of r around r(ȳ), and denoting firing rate noise by λy:

⟨∆W ⟩ = ⟨(r − r̄)(y − ȳ)xT ⟩
= ⟨(r(ȳ) + bT (y − ȳ)− r(ȳ)− bT (ȳ − ȳ))(y − ȳ)xT ⟩
= ⟨bT (y − ȳ)(y − ȳ)xT ⟩ = ⟨bT (y − ȳ)(y − ȳ)⟩xT

= ⟨(y − ȳ)(y − ȳ)T b⟩xT = ⟨λyλ
T
y ⟩bxT = Cybx

T

This indicates that when the output firing rate covariance Cy is proportional to the matrix of firing rate slopes
Dh, the neuromodulated Hebbian update is equal to the gradient. This specific conclusion is the same as that of
Williams’ REINFORCE paper. More interesting, however, is the general reliance on Cy, which was not calculated
in that work (or in the node perturbation paper). In particular, for Dh ≈ I, the Hebbian algorithm implements a
transform of the gradient filter g by the approximately PSD matrix CyD

−1
h . This warps the gradient along different

dimensions, and in the case where CyD
−1
h is not full rank, it projects those dimensions out. As such this noise

controls the inner product between different tasks’ gradient filters g and the their directional response changes Cyb.
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The firing rate covariance can also be rewritten in terms of the covariance of summed input responses, giving
an interpretation of the noise as arising upstream of action potential generation:

⟨∆W ⟩ = ⟨(h⊙ λz)(h⊙ λz)
T ⟩bxT

= Dh⟨λzλ
T
z ⟩Dhbx

T

= DhCzDhbx
T

This indicates how somato-dendritic integration variability, which could easily be enacted by GABAergic shaping
inputs on perisomatic regions independently of gain control, could yield similar results.

Finally, consider dependence on the output of the network. The gradient of reward with respect to a layer of
rates yi is of course the gradient with respect to yn (the output) times the Jacobian dyn

dyi
:

dr

dyi
=

dr

dyn

dyn
dyi

The Jacobian is easy to compute by reference to the network architecture. We can introduce effective weights Ωj

for each layer j in the network to take the local slope of the f-I curves into account and write:

yn = f ◦Wn ◦ f ◦Wn−1...f ◦Wi+1yi

dyn
dyi

= Dn
hWnD

n−1
h Wn−1...D

i+1
h Wi+1

dyn
dyi

= ΩnΩn−1...Ωi+1 ≡ Ω(n,i)

Here we have defined Ω(n,i) as a set of weights from yi to yn in the local linearization. Since reward is a function
of these outputs, there is some locally optimal direction in which those outputs should change, defining a locally
optimal target activity. We denote this with a tilde, as ỹn. This in turn defines a local target prediction error,
(ỹn − yn) which we label δn. We then observe that:

dr

dyi
=

dr

dyn

dyn
dyi

= (ỹn − yn)
TΩ(n,i) = δTnΩ

(n,i)

This shows the intuitive fact that the locally-optimal target prediction error for the outputs can be “pulled backward”
through the local linear approximation to the network to give a locally optimal target prediction error for the
activities in yi.. This can be used to rewrite the gradient step as a target-prediction-error minimization step, telling
us what the relation between RL and the locally optimal supervised learning case is; RPEs are transmitting the
only thing about the downstream weights that matters, namely their aggregate effect. Averaging RPE-weighted
(yi − ȳi) values converts reward prediction error into a local activity prediction error. Notably, this solves both the
non-locality problem of gradient updates and the low resolution of scalar signals with a particular space-vs-time
trade-off, by swapping storage of weight information for its accumulation over time.

The activity-error relationship is now something we can substitute into the results above, to get a complete
picture of how the neuromodulated Hebbian updates and the gradients work, respectively. This gives:

⟨∆W ⟩ = CyΩ
(n,i)T δnx

T and
dr

dW
= Di

hΩ
(n,i)T δnx

T

The weight update can also be pre-multiplied with a covariance matrix, and the result interpreted in terms of noise,
to yield projections of both the input and output filters.

Specializing to a bandit task, the expected reward is defined by the probability of choosing each action, weighted
by the probable (expected) reward from that action. If p is the vector of reward probabilities, σ denotes the softmax
function determining probabilities of each action, and yn is the output layer of the network, then:

⟨r⟩ = pTσ(yn)

The gradient output filter can be computed for weights into layer yi as:

d⟨r⟩
dyi

=
d⟨r⟩
dσ

dσ

dyn

dyn
dyi

= pT (βDσ − βσσT )Ω(n,i)
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Therefore, the policy gradient for a given context is:

d⟨r⟩
dW

= βDhΩ
(n,i)T (Dσ − σσT )pxT

The three three layer case we consider has Ω(n,i) = Wr, where Wr denotes the set of task readouts. ReLu units
have Dh matrices with ones or zeros on the diagonal.

PR and RF projections

Simulation 1

In simulation 1, we project receptive fields by updating noise covariance matrices online. That is, the network starts
with an input noise covariance Ci for each context (input) i. During training on input j, each Ck is updated as
Ck(t) = Ck(t − 1)(I − uju

T
j ), where uj is the vector Ckxj scaled to have unit norm. Ck therefore becomes as a

product of orthogonal projection matrices, and as a result, orthogonal noise dimensions are repeatedly removed.
Input filters for future tasks are therefore orthogonalized against input filter plasticity for the current task. In
realistic scenarios, we would expect there to be some decay-time for these projections, such that the matrices C
gradually relax back to the identity, but that is not necessary for our simulations.

Simulation 3

Projections in simulation 2 are pre-computed based on readout weights. For each task i, we stack the readout
weights for all other tasks into a matrix, then find a basis for the row-space, V , and a basis for the kernel, U , using
the QR decomposition (i.e. using columns of Q). We set the covariance Ci as

Ci = [U, V ]D[U, V ]T

where [U, V ] is the horizontal concatenation of U and V , and D is a diagonal matrix with one minus the anisotropy
parameter p (i.e. 1 − p) in rows corresponding to V . As such, when p = 0, Ci is the identity matrix, and when
p = 1, Ci is a projection matrix equivalent to I − V V T which removes activity in the row-spaces of Wr matrices

for other tasks. As a result, Cigj will be in the kernel of the ith task’s readout matrix, W
(i)
r , for arbitrary gj , when

p = 1.

Simulation 3

For simulation 3, we generated orthogonal bases A and B for the input and hidden layers by randomly sampling
multivariate normal distributions and applying the Gram-Schmidt procedure to orthogonalize them. We regard the
columns of A as feature vectors f1...fn and the columns of B as feature vectors g1...gn. We generated compositional
input stimuli by circularly shifting and accumulating Euclidean basis vectors ei into vectors vi according to the
composition parameter C, then applying the basis trasnformation A. We did the same for outputs. For example,
if stimuli are denoted si, then in the n = 3, C = 2 case:

s1 = A(1, 1, 0)T , s2 = A(0, 1, 1)T , s3 = A(1, 0, 1)T

Juxtaposition here represents matrix multiplication, and parenthesis denote vectors rather than indexing. Match-
ing the inputs and outputs then indicates that the target weight matrix Wh∗ = BAT , because stimuli must be
transformed by A−1, which is equal to AT , into the feature basis for the input, then transformed into the euclidean
basis for the hidden layer.

Linking numbers were free parameters that we used to generate projectors for input and output components
of gradients. The input layer projector, which specified was constructed as P = I − (AI(:, [i]))(AI(:, [i]))T , where
I was the identity matrix and [i] was the set of all indices to remove. For linking number one, [i] would be every
index other than that associated with the current feature under consideration. This matrix corresponds to (pip

T
i )

above. A matrix for the outputs, Q was constructed and applied similarly.

Simulations 4 and 5

Both of these simulations also used pre-computed gradient transforms for simplicity. In the receptive field stimula-
tion, updates ∆W ∝ gdT took d = xi + xi+1 for paired inputs xi and xi+1 to be associated with the same targets.
This corresponds to projecting xi or xi+1 onto their sum and renormalizing the result. Analogously, each task’s
correct readout in simulation 5 had an associate in another task, and population response filters were projected
onto the dimension corresponding to the sum of the matched filters for the pair.
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Taxonomy of interference categories

For a task’s solution to be reachable by directed exploration along ydT for some y, certain conditions must be met,
which induce a taxonomy of interference categories. We define a set of tasks to have “essential interference” if
there is no choice of subspaces along which to sample to avoid interference. We say a set of tasks has “inessential
interference” if the task set does not have essential interference but the gradients themselves do interfere. And
we call a set “non-interfering” if the gradients are all orthogonal. By our definition, unsolvable task sets exhibit
essential interference, because minimizing error in one input-output pair implies increasing error in another. There
are solvable tasks with essential interference, however, as illustrated (along with other cases) in figure 8.

To be solvable, all component tasks’ solution manifolds must intersect. In the linear case these manifolds
are “flats” or submanifolds of zero curvature. This is convenient analytically, and it permits extrapolating local
gradient information into global information, but nonlinear networks with smooth solution manifolds are subject to
the same qualitative considerations discussed here, because intersection relations are topological in nature. In either
case, solution manifolds are induced by (effective) readout weight kernels. Several input-output pairs then have
inessential interference when each item’s solution space intersects with the intersection of all other items’ readout
weight kernels. Weights can then be changed to improve performance while moving within the other readouts’
kernels. Denoting solution manifolds for each task Si, these conditions are:

Si = yi∗h + ker(W i
r)

Si ∩ (∩jker(W
j
r )) ̸= ∅

The first is the definition of a solution manifold; the acceptable output associated with input i, denoted Si, comprises
any activation of the hidden layer yi∗h producing zero error, plus (infinitesimally) any vector from the set which
current readouts W i

r ignore. The second condition states that this solution manifold must intersect the kernels of
the other tasks’ readout weights; then it can be found by moving in a direction that doesn’t interact with those
tasks.

Inessential interference is illustrated in figure 8 panel C. Solution manifolds and readout weight kernels are
shown, along with a path (green arrows) which moves towards each task’s solution space within the other task’s
kernel. Performing gradient descent for one task would result in motion directly towards that task’s solution space.
This would not lie in the kernel of the other, impacting performance on the second task. Panels A and B show
violations of the second condition above, meaning both exhibit essential interference.

Note that interference depends on the current weight configuration of a network. When readouts are one
dimensional, for example, each solution manifold bisects the weight space. This partitions it into regions where the
sign of interference between two tasks is constant. Actually observed interference is also a property of task order.
The gradient of reward is always pointing towards some current solution flat, which may not be the closest one.
When network weights move from one cell of the partitioned space into another, by virtue of following a weight
update towards a non-proximal solution manifold, the gradient for the just-crossed solution manifold changes sign.
Constructive interference with this second task then becomes destructive. Figure 8B illustrates this.

In task sets with inessential interference, noise can sample dimensions locally which are in the kernels of other
tasks’ readouts. This can be implemented online by removing dimensions from a networks’ noise variability which
have been seen in other tasks, at the point of a task switch. This noise variance decrement accumulation mirrors
the gradient estimate accumulation inherent in reinforce like rules, is memory efficient, and is biologically plausible.
Additionally, it accords with the facts that real neural responses to novel stimuli show decreasing variance over
time, and that networks of interneurons are well positioned to tune noise at the network level via their high inter-
connectivity.

Linear solution manifold geometry example

To determine when linear networks have different essential and inessential interference conditions, one can inspect
the intersection properties of generic flats in Euclidean space. The flats we consider are the null spaces of the
readout weight matrices, which are the spans of all vectors that a given readout matrix sends to zero (i.e. “doesn’t
care about”). Each of these kernels can be written in terms of a basis, and the intersection of kernels can therefore
be written in terms of basis relationships.

Let n denote the number of units in a network’s hidden layer. Then inputs to the network’s readout weights
have dimension n, and the basis for a given readout’s null space is given in terms of vectors of dimension n. Let
{vi1, vi2, ...vij} denote a set of basis vectors for each W i

r which are organized as columns in a matrix V i, so that

the dimensions of V j are (n × j). Consider j to be arbitrary, meaning variable over the sets V i, and the vector
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Figure 8: Interference cases. (A) Tasks which aren’t simultaneously solvable interfere in regions of the solution
space that lie between their solution manifolds. Red arrows denote opposite directions of updates in this region
of the plane based on which task is being learned at a given time. Green arrows denote constructive interference
for regions of space in which both solution manifolds lie in directions with an inner angle up to 90 degrees. (B)
In some situations, updates cannot move towards one solution manifold while moving parallel to the others. The
red arrows are an example of gradient descent moving the weights towards solution manifold S1, then back towards
S2, and finally towards S3. This illustrates how order matters, as well as how interference is destructive in regions
where angles between solution manifolds are less than 90 degrees. (C) Inessential interference occurs when there is
a dimension in the intersection of relevant kernels along which weights can move via directional derivatives while
solving the current task. In this example, a directional derivative algorithm can follow K(W 2

r ) towards S1, then
K(W 1

r ) towards S2 during consecutive training epochs in order to avoid interference. The green arrows illustrate
such a trajectory. (A,C) For any pair of solution manifolds, there is a partition of the weight space into regions
where gradients are destructive (solution space angles less than 90 degrees), constructive (solution space angles more
than 90 degrees), or neither. These regions are denoted by red minus signs and green plus signs here, respectively.

m = [m1,m2, ...mn] to count the number of readout kernels of each dimension, starting with 1 and ending with n.
Then if we have a 3 dimensional hidden layer with two readouts, one of which has a 1 dimensional null space and
the second of which as a 3 dimensional null space (i.e. is the zero matrix), the vector m = [1, 0, 1].

Now note that if there exists an intersection of these kernels, it has a coordinate in each basis. Denote the
coordinate vector for basis i by ai, and let l = sum(m). Then the existence of the intersection is equivalent to the
claim that we can represent it in each basis, i.e.:

V 1a1 = V 2a2 = ... = V lal

Each equality between vectors here is an equality between n unknowns (the coordinates), so that there are (−1 +∑
k mk)n equality constraints. On the other hand, there are

∑
k mkk unknown coordinates, because every kernel of

dimension k contributes k of them. An underdetermined system of linear equations admits a set of solutions with
as many degrees of freedoms as there are unconstrained free variables. Hence, the set of equations above admits a
solution which can be parameterized by nf such that:

nf =
∑
k

mkk − (−1 +
∑
k

mk)n

When nf is greater than or equal to zero, such a solution generically exists. When nf is less than zero, a solution
may still exist but is not generic, meaning any small displacement of a subspace will remove it. For example,
m = [3, 0] is a system of three lines in the plane. Random choices of these lines will not intersect, and indeed
nf = 3− 2× 2 = −1. On the other hand if m = [2, 0] we have a random pair of lines, which will generally intersect
in a point, which is a subspace with nf = 0 degrees of freedom.

Step-size normalization

The reward-modulated Hebbian rules used here are made inter-comparable with gradient updates by fixing step
sizes. In particular, projective operations change learning-rates, whereas our interest here is in isolating the geomet-
ric aspects of weight updates. To do so, we have generally ignored both the substantial improvement in sampling
complexity associated with lower-dimensional search, and the thorny and substantial issues related to setting learn-
ing rates. For example, real weight updates are unlikely to be fixed in magnitude, but it is not clear what sets update
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sizes biologically. Moreover, the idea that gradients are a reasonable point of comparison is inherently speculative
as well, and biologically, weight updates are unlikely to depend quadratically on noise as e.g. REINFORCE or
simple Hebbian algorithms would dictate, because quadratic dependencies produces very poorly behaved dynamical
systems. As such, naive Hebbian algorithms are also of limited biological realism. Both the CEM and GD are
therefore expected to deviate from the metric properties biological weight changes. We leave resolving these sorts
of questions to future work.

It is also important to note that there is no theory-free inter-comparison to be made between gradients and
projective updates in our compositional learning simulation (simulation 3), because different matrix norms yield
different step sizes for projective update matrices of rank greater than one. The gradient update is always rank
one, because it is an outer product, whereas the projective update is generally higher rank because it is a sum of
such products. Two candidate matrix norms for use with the projective algorithm are the Frobenious norm and
the max norm. The two norms agree on rank one updates, and therefore agree on the gradient update. The max
norm is potentially appropriate because it can be used to bound every rank-1 feature-pair’s update to be at most
equal in step size to the gradient update. On the other hand, the Frobenious norm is also potentially appropriate
because it splits the total step size across feature-pair terms such that their sum of squares is equal to the length
of the gradient update. The degree to which synaptic update magnitudes interact across e.g. a cortical column
is not known with enough precision to adjudicate between these options. The max norm seems more likely to
be descriptive of spatially well-separated pairs of neurons, whereas the Frobenious norm may be more likely to
describe single neurons, or those with tight local inhibitory coupling. Nonetheless, the use of the Frobenious norm
is conservative, whereas the max norm is “permissive” or “optimistic”. In simulation 3, we display results using the
max norm, because they don’t induce a transient early non-monotonicity in the performance curve, which requires
a detailed unpacking of matrix norms to explain.

Oracle versus sample-based quantities

To demonstrate the advantages of the CEM, we used algorithmically computed gradients in the main text. These
are appropriate because they separate geometric impacts on learning from sample complexity differences associated
with estimating derivatives in spaces of different dimension. Because real learning scenarios will not necessarily
involve access to precomputed gradients, we verified the consistency of our results in simulations with sample-based
ones.

Specifically, we ran simulations in which we replaced trials with loops of “sub-trials” which accumulated reward-
modulated Hebbian weight updates. In theory, such “sub-trials” could be promoted to “trials”, accumulated with
a causal kernel such as an exponential moving average without qualitatively changing our results. We chose the
present implementation because it removes complications such as overlapping integration time constants. We found,
as expected, that we were able to reproduce gradient based learning curves using the appropriate isotropic noise
based gradient-estimators, and likewise for projective update curves and estimators.

To further verify the interchangeable character of our gradient oracle and Hebbian sample-based weight up-
dates in simulation, we inspected their relationships on a trial-by-trial basis, and we computed the difference in
cumulative error at simulation end for an ensemble of 1000 random tasks in a pared-down version of simulation
2. Average differences between the oracle algorithm and the sample based algorithm were 0.5% ± 0.007% (mean
± SEM) of cumulative error for gradient filter accumulation, and 0.5% ± 0.004% (mean ± SEM) for projective
filter accumulation, using an accumulation loop of 1000 “sub-trials”. These are shown along with other diagnostics
below. In future work, we intend to provide more detailed examinations of the sample complexity and learning rate
based trade-offs in relation to gradient descent which we have bracketed here.
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Figure 9: Sample-based cumulative simulation error relative to oracle cumulative simulation error for gradient (g)
and projective (d) output filter construction. In general, sampling error is lesser for the CEM than for the full
REINFORCE estimate, given a fixed sample count, because the dimensionality is lower. Here we used 1k samples
per output filter estimate.
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Figure 10: Diagnostics comparing a random weight update based on oracle computation with the same update
based on a Hebbian sample accumulation, for a lower-dimensional version of simulation 2. Because the input filter
does not change in this simulation, one only expects the output filter to be distorted by sampling. We computed
and inspected the eigendecomposition of the weights, because the output filters are not accumulated independently
from the (static) input filters. As can be seen above, typical errors were negligible, the output filters were closely
aligned, and the eigenvalues were very generally very close as well. The exception to this occurred where gradients
were effectively zero, and alignment between sampled and oracle computations diverged. These accounted for a
significant fraction of the total number of updates but a negligible fraction of total weight change (because once
the network has converged, every update is minimal).
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Figure 11: Empirical filter correlation CDFs comparing sample and oracle based output filters, for the weights
contributing to 95% of the total weight change. The least important 5% are excluded because they are essentially
zero, and are therefore relatively unconstrained in addition to being unimportant. Left panel is for gradient output
filters g, and right panel is for projective output filters d. The improved sample complexity of the lower dimensional
filters is apparent in the difference between these plots. Lines indicate simulations with 1k and 2k block-accumulation
sub-trial loops, for comparison.
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