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Abstract. There is a growing appreciation that mutagenic processes can be studied through the
lenses of mutational signatures – characteristic mutation patterns attributed to individual mutagens.
However, the link between mutagens and observed mutation patterns is not always obvious. While
some mutation signatures have been connected to specific causes such as UV light exposure, smoking,
or other biochemical processes, elucidating the causes of many signatures, especially those associated
with endogenous processes, remains challenging. In addition, endogenous mutational processes interact
with each other, as well as with other cellular processes, in ways that are not fully understood.
To gain insights into the relations between mutational signatures and cellular processes, we developed
a network-based approach termed GeneSigNet. The main idea behind the approach is to utilize gene
expression and signature activities for the construction of a directed network containing two types
of nodes corresponding to genes and signatures respectively. The construction utilizes a sparse partial
correlation technique complemented with a higher moment-based approach assigning edge directionality
when possible.
Application of the GeneSigNet approach to breast and lung cancer data sets allowed us to capture
a multitude of important relations between mutation signatures and cellular processes. In particular,
the model suggests a causative influence of the homologous recombination deficiency signature (SBS3)
on a clustered APOBEC mutation signature and linked SBS8 with the NER pathway. Interestingly,
our model also uncovered a relation between APOBEC hypermutation and activation of regulatory T
Cells (Tregs) known to be relevant for immunotherapy, and a relation between the APOBEC enzyme
activity (SBS2) and DNA conformation changes. GeneSigNet is freely available at https://github.
com/ncbi/GeneSigNet.
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1 Introduction

Traditionally, research in cancer genomics has been focused on the identification of cancer driving mutations,
which confer a growth advantage to the cancer cells. However, since cancer cells emerge as a result of various
mutagenic processes such as UV light or a faulty DNA repair mechanism, they also accumulate numerous
mutations with seemingly no direct role in carcinogenesis. Importantly, these so-called passenger mutations
can provide valuable information about mutagenic processes that cells have undergone. The key property
facilitating the identification of these mutagenic processes is that different mutagenic processes leave char-
acteristic mutation imprints on the cancer genome. Starting from the pioneering work of Alexandrov et al.
[1], several computational methods have been developed allowing to decompose a cancer genome’s mutation
catalogs into characteristic mutation patterns termed mutational signatures. Some of these mutational sig-
natures have already been linked to specific mutagenic processes [2,3]. Mutational processes can be caused
by both intrinsic (e.g., DNA repair deficiency) and extrinsic (e.g., UV radiation, tobacco smoking) factors.
However, the etiology of many of these signatures still remains unknown or not fully understood. In addition,
little is known about the interactions between mutagenic processes and other cellular processes. Yet, such
interactions are known to exist. As a case in point, tobacco smoking is not only mutagenic itself but also
believed to activate an immune response [4]. Conversely, a perturbation of some cellular processes, such as
DNA replication or repair pathways, can be also mutagenic. Furthermore, mutagenic processes themselves
have been known to interact between each other: homologous recombination deficiency (HRD) for instance is
typically accompanied by a mutational signature related to APOBEC activity [5,6]. Elucidating the interac-
tions between mutagenic processes as well as the interactions of mutagenic processes with cellular pathways
is of fundamental importance for a better understanding of carcinogenesis and the design of novel cancer
treatments. Deficiencies in the activities of several genes have been linked to specific signatures, including
MUTYH [7], ERCC2 [8], MSH6 [9], and FHIT [10]. In addition, a correlation between the expression of the
APOBEC family of genes with the strength of signatures SBS2 and SBS13 (the so-called APOBEC muta-
tional signatures) has frequently been observed [2,11]. Indeed, interrogating the correlation between gene
expression and the strength of a mutational signature can provide important clues on the etiology of the
signatures. For example, Kim et al. identified coherently expressed groups of genes associated with specific
combinations of mutational signatures [6]. While their analysis provided important insights into the etiology
of some signatures, it also pointed to the limitations of such cluster-based analysis. For example, while the
analysis captured the dependency between some signatures (e.g. clustered APOBEC mutations and HRD),
the directionality of the relationship could not be untangled.

To fill this gap, we introduce a network-based method, named GeneSigNet (Gene and Signature In-
fluence Network Model), for inferring relationships between gene expression and mutagenic processes. To
this end, GeneSigNet constructs a Gene-Signature Network (GSN) defined as a sparse, weighted, and di-
rected network consisting of two types of nodes – genes and SigStates (Signature States). SigState nodes
are in one-to-one correspondence with signatures and each SigState represents a general cell state associated
with the emergence of the corresponding mutational signature (see Section 2.1 for a detailed description).
Importantly, both genes and SigStates have their own associated activities. Activities of genes are defined
by their expression profiles across samples while activities of SigStates are measured by the strengths of
the corresponding signatures across samples. Node activities will provide the basis for inferring edges of the
GSN. Mathematically, both gene and SigState nodes are treated identically, however the interpretation of
the uncovered relations can be different.

Inferring causal relationships between biological entities is challenging yet crucial in various biological
applications. Approaches to infer directions are often based on perturbation data or prior information such as
transcription factors binding, protein-protein interaction networks, among others [12,13,14,15]. Unlike gene
regulatory networks where causal relations originate from transcription factors to target genes, no perturba-
tion data or prior knowledge is available in our setting. Hence, the directionality of the relationship between
SigStates as well as between other pairs of nodes in the GSN is undetermined and GeneSigNet relies on
inferring dependencies based solely on the activities of nodes. Aiming at achieving deeper mechanistic in-
sights, our approach goes beyond simple bivariate correlations and strives to identify dominating influences
and causal relationships. To identify such dominant relations, GeneSigNet leverages a sparse partial cor-
relation technique (SPCS). Sparse estimations of partial correlations based on a penalized regression [16,17]
have been previously introduced to construct biological networks, although neither of them determines the
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causality directions. Under the conditional dependency assumption, GeneSigNet selects, for each node,
the optimal combination of a sparse set of explanatory factors (genes or SigStates), resulting in a weighted
directed network. However, some edges inferred by SPCS can have similar weights in both directions, in
which case a higher moment-based strategy is used to resolve directionality. We note that other methods
that infer gene regulatory networks from gene expression data [18,19,20,21] may be applicable in our setting
even though their development was meant for a different purpose. In particular, GENIE3, considered to
be the best method in this class [20,22,23], infers a weighted complete directed graph. Thus we tested if
edge weights computed by GENIE3 can be utilized for directionality assignment. However, we found that
GeneSigNet outperforms such approach.

Our results demonstrate that network sparsification combined with directionality information regarding
the influence between the nodes provides advanced insight going beyond general GO enrichment analysis and
suggests more mechanistic explanations. The relations inferred by the GeneSigNet model are consistent
with current knowledge and include several new and interesting findings. In particular, the model suggests a
causative relation from the homologous recombination deficiency signature (SBS3) to a clustered APOBEC
mutation signature and linked Signature 8 (SBS8) to the NER pathway. The last connection is consistent
with the recent findings based on an experimental study in mouse [24]. In addition, GeneSigNet identified a
relation between APOBEC hypermutation and activation of regulatory T Cells which presents an important
implication in immunotherapy and captured a relation of APOBEC signature (SBS2) with DNA conformation
changes among other findings.

In what follows, we provide a general description of the method, its evaluation, and the key biological
results. For completeness, a formal description, mathematical details, and additional information about
biological results are provided in Supplementary Information.

2 Results

2.1 Overview of GeneSigNet

The main idea of the approach is to construct a gene-signature network (GSN), consisting of nodes corre-
sponding to genes and signatures (SigStates), and use this graph to establish relations between mutagenic
processes and other cellular processes (Fig. 1A). Thus, the GSN extends the concept of a gene network to in-
clude, in addition to genes, meta-nodes corresponding to signatures. Both types of nodes have associated node
activities: gene expression for the gene nodes and strength of mutational signatures for the corresponding
SigState nodes (Fig. 1C).

Importantly, we introduce a concept of SigStates, defined as the abstract representation of cellular states
associated with a specific mutational signature. The activity of a SigState is based on the number of mutations
attributed to the corresponding signature. Note that while gene expression can have a causative effect on
generating mutational signatures, signatures themselves are simply mutation patterns created by mutagenic
processes and cannot directly influence gene expression. Instead, the activities of cellular processes related to
signatures might influence gene expression, which motivated us to introduce SigStates. A mutagenic process
can be directly related to a perturbation of a specific biological pathway or gene, or be triggered by an
environmental factor such as smoking, which in turn might additionally affect other cellular processes. Given
that the outcome of mutatgenic processes accumulate over time, it is challenging to fully ensure that a
SigState represents the processes directly causing the signature. Therefore, unless additional information
is given, genes linked to a SigState in either direction are assumed to be associated with the respective
mutagenic process rather than causing or being caused by it (Fig. 1B).

Having defined the nodes of the GSN we now turn to inferring the relations between them. Mathematically,
our network inference does not distinguish between the two types of nodes. The approach consists of two main
steps. First, a sparse partial correlation technique is used to construct a sparse directed network that captures
dominant relations between the nodes. Next, a higher moment-based directionality determining technique
is used to reduce the number of edges with unresolved directions (bidirectional edges). The workflow of the
GeneSigNet method is presented in Figure 2.

Let 𝑋 be a combined input matrix consisting of gene expressions and exposures of mutational signatures
(SigStates) across cancer samples (Fig. 2A). The rows of 𝑋 denote the samples, whereas the columns represent
genes and SigStates. In other words, for 𝑖-th sample, 𝑥𝑖𝑗 denotes expression of a gene (for 1 < 𝑗 < 𝑚) and
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Fig. 1. Gene-Signature Network (GSN). (A) GSN is a directed network consisting of two types of nodes: genes
(green circles) and SigStates (orange ovals). SigStates are in one-to-one correspondence with signatures. The activity
of a gene is defined by its patient-specific expression level, whereas the activity of a SigState is represented by the
strength of the corresponding mutational signature across samples. Edges of a GSN represent inferred dependencies
and might be either positive (red) or negative (blue). The edges are unidirectional when the direction of the influence
is resolved or bidirectional otherwise. (B) Interpretation of gene–SigState edges. A directed edge from a gene to a
SigState represents a putative causal relation from the gene to the SigState and thus to the corresponding signature.
The genes that are targets of a SigState are interpreted as associated with the mutational signature. These downstream
genes can be perturbed DNA repair pathways and thus be involved in producing the signature imprints in a genome or
can be other dysregulated pathways (e.g. immune response) caused by SigState. (C) For each node (gene or SigState),
GeneSigNet identifies potential regulators (genes or SigStates) as a sparse, optimized set of nodes whose activities
are partially correlated (correlated after accounting for confounding correlations) with the activity of a given node.
Formally, GeneSigNet infers, for every node 𝑘, the weight 𝑤𝑘𝑓 of the influence of the putative regulator 𝑘 on the
activity of node 𝑓 (see also the method workflow in Fig. 2).

exposure of a mutational signature (for 𝑚+ 1 < 𝑗 < 𝑛). GeneSigNet decomposes the problem of inferring
the network of 𝑛 nodes into 𝑛 different variable selection subproblems (Fig. 2B). For each subproblem, a
single node is considered a target and sparse partial correlation selection (SPCS) is used to find the weights
of incoming effects from the other 𝑛 − 1 nodes. The 𝑙1 norm constraint is combined with the least square
minimization to avoid over-fitting. For each node, the sparsity constraint allows selecting only dominant
incoming effects as potential causal factors (see Sections S1.1 and S1.2 in Supplementary Information for a
detailed mathematical description of the SPCS model).

Next, we use a higher moment-based strategy to decide directionality for each bidirectional edge (𝑗, 𝑓)
inferred by SPCS (Fig. 2C). Let 𝑟𝑗 and 𝑟𝑓 be the column vectors denoting the residual activities over the
𝑝 samples, corresponding to the nodes 𝑗 and 𝑓 , respectively. These vectors are calculated by removing the
confounding effects from the activities of the nodes 𝑗 and 𝑓 due to the presence of the remaining 𝑛−2 nodes
(for more details on the confounding effect removal, see Equation S4 and Section S1.3 in Supplementary
Information). Hence, 𝑟𝑗 and 𝑟𝑓 can be assumed to have a bivariate normal distribution since the incoming
confounder effects from the other 𝑛 − 2 factors were removed from the activities of the nodes 𝑗 and 𝑓 .
The direction of causal effects between the pair of nodes is determined based on higher moment statistics,
skewness and kurtosis of 𝑟𝑗 and 𝑟𝑓 [25]. If both moments support the same direction with the sparse partial
correlation, the edge corresponding to the opposite direction is removed, otherwise, both edges remain in
the network (for details, see Section S1.3 in Supplementary Information). Finally, a matrix normalization
algorithm, alternate scaling [26], is used to bring the total incoming and outgoing effects of each node to the
same range (for details, see Section S1.4 in Supplementary Information), and a weighted-directed network is
constructed to represent the regulatory flows over all nodes. A more detailed description of GeneSigNet is
provided in Supplementary Information (Section S1).
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Fig. 2. Workflow of GeneSigNet. (A) A combined input matrix 𝑋 is given by concatenating gene expression
data and exposures of mutation signatures ( SigStates) across 𝑝 samples (patients). The 𝑖-th row represents the data
of the 𝑖-th sample with the first 𝑚 values corresponding to expression data of 𝑚 genes followed by 𝑛 − 𝑚 values
of exposures for 𝑛 − 𝑚 mutational signatures. (B) Given the input matrix 𝑋, we infer a network of 𝑛 nodes. For
each node, Sparse Partial Correlation Selection (SPCS) is used to simultaneously estimate the weights of incoming
effects from the other 𝑛− 1 nodes. 𝑤𝑘𝑓 is the edge weight denoting the strength of the effect on node 𝑓 coming from
node 𝑘. An 𝑙1 norm constraint is used to avoid over-fitting. This sparsity constraint allows selecting only dominant
effects as causal nodes by filtering out insignificant confounding effects due to noise. (C) For each bidirectional edge
(𝑗, 𝑓), the residual vectors 𝑟𝑗 and 𝑟𝑓 corresponding to nodes 𝑗 and 𝑓 are obtained by removing effects of the 𝑛 − 2
nodes other than the two nodes of the considered edge. The direction of causal effects between the pair of nodes
is determined based on higher moment statistics, skewness and kurtosis of 𝑟𝑗 and 𝑟𝑓 . If both moments support the
same direction with the partial correlation (see Equation S5 in Supplementary Information), the edge corresponding
to the opposite direction is removed, otherwise, both edges remain in the network. (D) Finally, the total incoming
and outgoing effects of each node are normalized respectively in the same range using the alternate scaling algorithm,
and a weighted-directed network is constructed to represent the dependency flows over all nodes as output.

Evaluation of the directionality inference We benchmarked the performance of GeneSigNet in
correctly inferring gene interaction directionality. As mentioned previously, a number of adjacent methods
inferring gene regulatory networks are also based on node activities to determine weighted directed graphs.
The best method in this class is considered to be GENIE3 [20,22,23]. For every node (a gene) in the network,
GENIE3 assigns weights (influence scores) from all other genes to this gene and, as a result, constructs a fully
connected, weighted, and directed graph. Given these properties, we tested whether utilizing edge weights
inferred by GENIE3 and selecting the direction corresponding to the heavier of the two opposing edges
could outperform the strategy employed by GeneSigNet. We compared the performance of the methods on
breast cancer (BRCA) and lung cancer (LUAD) data sets (see Materials and Methods for details). We used
mutational signatures’ exposure data and gene expression data to construct a GSN for each cancer type and
each method separately. For evaluating the inferred gene interactions, protein-DNA interactions from the
ChEA database [27] were used while excluding all bidirectional edges and self-interactions and retained the
remaining directed edges as our gold standard. The enrichment of correctly inferred directed interactions was
computed by comparing the number of correctly assigned directions to the number of inconsistent directions;
the significance of the enrichment was computed using a binomial test.
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Methods GeneSigNet SPCS GeneSigNet GENIE3 naïve GENIE3 modified

BRCA

Consistent fraction 0.554 0.614 0.455 0.583
𝑝 value 1.1e-06 3.1e-07 1 3.4e-03
Consistent directions 1,084 316 9,240 162
Inconsistent directions 874 202 11,052 116

LUAD

Consistent fraction 0.544 0.571 0.505 0.557
𝑝 value 1.0e-05 5.4e-04 0.0731 1.8e-03
Consistent directions 1,285 310 11,049 370
Inconsistent directions 1,077 233 10,833 294

Table 1. The evaluation of directionality inference. Using ChEA database as a gold standard, a binomial test
was performed to evaluate the directionality inference by comparing the number of correctly assigned directions to
the number of inconsistent directions. ’Consistent directions’ is the number of inferred directions consistent with the
ChEA database, whereas ’Inconsistent directions’ denote the number of inconsistent inferences.

For GeneSigNet, we first evaluated the directionality inference of the SPCS step alone. It performed
significantly better than the random selection (𝑝 < 1.0e-05, see GeneSigNet SPCS in Table 1). The perfor-
mance of GeneSigNet improved when the GSN was refined with the higher moment-based strategy and the
normalization technique. GeneSigNet provided 316 consistent directions out of 518 directed edges recov-
ered from the ChEA interactions (61.4%, 𝑝 = 3.1e-07) in the BRCA analysis, and 310 consistent directions
out of 543 directed edges (57%, 𝑝 = 5.4e-04) in the LUAD analysis (see GeneSigNet in Table 1).

For GENIE3, we first determined directions by selecting the edge with a higher weight, resulting in
a worse than random performance (see GENIE3 naïve in Table 1). We hypothesized that this behaviour
is due to assigning the edge weight to all pairs of nodes irrespective of the inferred interaction strength.
Subsequently, we modified this approach and considered only edges that are above a certain threshold. The
threshold (0.0037 and 0.0017 for BRCA and LUAD, respectively) was selected to maximize the performance
of GENIE3 in terms of the percent of consistent directions. The modified GENIE3 provided 162 consistent
directions out of 278 directed edges recovered (58%, 𝑝 = 3.4e-03) in BRCA analysis and 370 consistent
directions out of 664 directed edges (55%, 𝑝 = 1.8e-03) recovered in LUAD analysis (see GENIE3 modified
in Table 1).

Overall the results indicate that the strategy used by GeneSigNet provides a better prediction of
interaction direction than the competing approach.

2.2 Insights from the analysis of breast cancer data

Mutational signatures in breast cancer and construction of the GSN We utilized BRCA data
collection obtained from ICGC which includes 266 cancer samples providing both whole genome sequencing
data and gene expression data (for details, see Section 4.1 in Materials and Methods). The genomes harbor
mutations mainly contributed by 6 COSMIC mutational signatures – SBS1, 2, 3, 5, 8, and 13. We further
refined the mutational signatures based on mutation density and sample correlations. The mutations in
BRCA are characterized by occurrences of short highly mutated regions whose origin is believed to be
different than sparse mutations [6,28,11,29,30]. The information available from whole genome sequencing
allows for distinguishing these two types of mutation patterns and to treat such dense and sparse mutation
regions differently. The post-processing of mutational signatures resulted in 6 signature groups that we use for
subsequent analysis to construct the GSN – SBS1, APOBEC-C (clustered SBS2 and SBS13 corresponding to
APOBEC hypermutation), APOBEC-D (SBS2 corresponding to disperse APOBEC mutations), DSB (SBS3
and clustered SBS8), SBS5, and SBS8D (dispersed SBS8). In addition to gene expressions and exposures
of mutational signatures, we included a node indicating the binary status of homologous recombination
deficiency (HRD) as it is assumed to lead to specific patterns of mutational signatures in BRCA [31]. We
applied GeneSigNet to construct a GSN for genes, mutational signatures, and HRD status, and to find
relations between these features.

GeneSigNet uncovers mutagenic processes consistent with current knowledge Many relations
uncovered with GeneSigNet are consistent with our current knowledge on mutational signatures, confirming
the validity of our method. In particular, it is well appreciated that homologous recombination (HR) plays an
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Fig. 3. (A) The HRD status dominantly contributes to the base substitution load in the DSB repair SigState in
the presence of negative and positive effects from specific genes. Then, the increased DSB repair mutations produces
carry-over effects on APOBEC-C and APOBEC-D SigStates while the other SigStates and genes are contributing
to the flow. (B) SBS8 mutations are linked to the deficiency of the nucleotide excision repair. An extended network
including genes and GO terms associated with SigStates is provided in Figure S1 in Supplementary Information.

important role in the double-strand break (DSB) repair mechanism and that HR deficiency is associated with
the DSB signature [32]. Indeed, our network correctly predicted a strong positive influence from HRD status
to the DSB signature (Fig. 3A). In addition, GeneSigNet identified the known negative impact of BRCA1
expression on the DSB signature which is also consistent with the role of BRCA1 in HRD [32]. Furthermore,
GeneSigNet captured the impact of HRD on chromosome separation, reflecting the role of homologous
recombination in maintaining genomic stability [33,34], and identified the association of APOBEC-D with
telomere maintenance, consistent with the well recognized role of APOBEC mutagenesis in replication [35,36].

Interestingly, our method linked SBS8 to the nucleotide excision repair (NER) pathway (Fig. 3B). The
etiology of this signature has remained unknown until a recent experimental study linked it to the NER
pathway as well [24]. This demonstrates the power of the GeneSigNet method to uncover non-obvious
relationships.

Untangling the interactions between APOBEC and DSB processes Previous studies speculated
that APOBEC related mutational signatures can arise in multiple different scenarios. First, double-strand
breaks (DSB) created by the homologous recombination deficiency (HRD) provide mutational opportunities
for APOBEC enzymes to act on the ssDNA regions, resulting in clustered APOBEC mutations [37,38,30].
In another scenario, a recent study attributed APOBEC-mediated hypermutations to the normal activity of
mismatch repair which also involves creating ssDNA regions, generating "fog" APOBEC mutations [29]. The
complex interplay between APOBEC activities and other DNA repair mechanisms is yet to be elucidated.

Focusing on the interactions of APOBEC signatures with the other SigStates and genes, we observe
that GeneSigNet supports a positive influence of the DSB on APOBEC-C SigState, consistent with the
assumption that double-strand breaks provide an opportunity for APOBEC mutations. Additionally, our
analysis reveals that the expression level of the APOBEC3B enzyme is associated with the strength of the
DSB signature. Indeed, a previous study proposed that APOBEC3 proteins are recruited to DSB sites to
participate in the DSB repair process [5]. Thus, DSB contributes to an increase in APOBEC-C strength
by two different mechanisms: (i) increased mutation opportunity due to ssDNA created by DSB and (ii)
increased mutation probability due to increased APOBEC3B expression. Note that increased APOBEC
expression would also increase APOBEC mutations in the "fog" regions proposed in [29].

On the other hand, the activity of APOBEC-D is positively influenced by APOBEC-C activity, without
direct relation to DSB. In fact, GeneSigNet inferred a negative influence from HR status to APOBEC-
D SigState, confirming different mutagenic processes are involved in clustered and dispersed APOBEC
mutations (Fig. 3A).

APOBEC hypermutation activates regulatory T cells – implications for immunotherapy In-
terestingly, GO enrichment analysis of the genes associated with APOBEC mutational signatures (genes
influenced by APOBEC-C SigState) revealed significant enrichment in positive regulation of regulatory T
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cell differentiation (Fig. 3A). Tumor cells with mutated DNA are likely to produce tumor-associated neoanti-
gens (mutated peptides presented at their surface) that allow the immune system to recognize and destroy
tumor cells. However, cells carrying a high mutation burden often develop mechanisms of immune tolerance
involving activation of regulatory T cells (Tregs) to protect themselves from the destruction [39,40]. Tregs,
a subtype of T cells that suppress the immune response, are important for maintaining cell homeostasis and
self-tolerance but can also interfere with anti-tumor immune response [41]. The top three genes (FOXP3,
BCL6, and LILRB2) positively influenced by APOBEC-C signature are all related to such inhibitory mech-
anism to immune response [42,43,44]. FOXP3 is a transcriptional regulator playing a crucial role in the
inhibitory function of Tregs. BCL6 is also essential for the stability of Tregs that promotes tumor growth.
LILRB2 is a receptor for class I MHC antigens and is involved in the down-regulation of the immune response
and the development of immune tolerance.

Patients with cancers displaying a high mutation burden can benefit from immunotherapy [45]. In partic-
ular, the APOBEC mutational signature was identified as a potential predictive marker for immunotherapy
response in some cancers [46,47]. However, an increased number of Tregs in a tumor may lead to resistance to
immune checkpoint inhibitors [48,49]. Thus, our finding suggests that a combined strategy targeting Tregs
in addition to immune checkpoint inhibitors would be most beneficial for a better outcome in APOBEC
hypermutated breast cancer tumors.

2.3 Insights from the analysis of lung adenocarcinoma data

We next analyzed lung adenocarcinoma (LUAD) data using 466 cancer samples from the TCGA project.
The exposure levels of 6 COSMIC mutational signatures (SBS1, 2, 4, 5, 13, and 40) present in the exome
sequencing data were integrated with the RNAseq expression data of 2433 genes belonging to the DNA
metabolic and immune system processes in GO terms to uncover influence between signatures and genes (see
Materials and Methods for details on the lung cancer data).

GeneSigNet uncovers immune response due to smoking Two prominent mutational signatures
in LUAD, SBS4 and SBS5, are assumed to result from exogenous causes [6]. SBS4 is associated specifically
with exposure to cigarette smoking in lungs. SBS5 is known to accompany the smoking signature but it is
also present in many other cancer types. Previous studies suggested that cigarette smoking stimulates an
inflammatory response [4]. Consistent with these findings, the genes identified by GeneSigNet as influenced
by SBS4 and SBS5 SigStates are indeed enriched with immune response genes (Fig. 4). In addition, tobacco

Lymphocyte Mediated 
Immunity 

IGHG1, IGKV1-5, C1QB, 
CD96, IGKV1D-33, SH2D1A, 

CD8A, IGHD, SUPT6H

Regulation of B cell 
Activation

HMGB3, CHRNB2, 
IGHG3, INHBA

INPPL1, 
MLF1, 

APOBEC3B

• Regulation of Catabolic Process 
PRKD1, DDIT4, TRIM8, WNT10B
• Positive Regulation of DNA Binding 

Transcription Factor Activity 
PRKD1, WNT10B, TRIM8

Pyrimidine Containing 
Compound Catabolic Process

NTHL1, TET3, APOBEC3A

• Detection of Stimulus Involved in 
Sensory Perception 

CALCA, AZGP1, CACNB3
• Tissue Homeostasis 

AZGP1, CALCA, B2M, CD34, IGHA2

• Positive Regulation of Binding 
KDM4D, HDAC8, ERCC2
• Response to Radiation 

KDM4D, TP53, ERCC2, XPA
• DNA Geometric Change 

ERCC2, TP53, XPA

• Hormone Metabolic Process 
MECP2, STAT5B, SHH
• T cell Differentiation in Thymus 

ITPKB, STAT5B, SHH

Cell Matrix Adhesion 
PTK2, MADCAM1, ROCK1, 

JAG1, ITGB5, ITGA4

GPR15, CXCL9, BCL6, 
ERCC1, NLRP12, HRH12

SBS5
SigState

SBS4
SigState

SBS2
SigState

SBS13
SigState

Fig. 4. Co-occurrence of the two SigStates corresponding to the smoking-related signatures SBS4 and SBS5 influences
the SigStates corresponding to the APOBEC related signatures SBS13 and SBS2. An extended network including
genes and GO terms associated with SigStates is provided in Figure S2 in Supplementary Information.
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smoking is known to induce GPR15-expressing T cells; although the exact role of GPR15 in response to
smoking is yet to be elucidated [50]. Consistent with previous studies, GeneSigNet inferred a strong asso-
ciation between GPR15 and SBS4 (without resolving the direction). In addition, the results of GeneSigNet
suggest that GPR15 is involved in the negative regulation of several genes related to chemotaxis, includ-
ing IL10, a cytokine with potent anti-inflammatory properties, and has a positive impact on lymphocyte
migration and leukocyte mediated cytotoxicity (Fig. 5).

Leukocyte mediated cytotoxicity 
DNASE1L3, GZMB, IL18RAP, NCR3

Lymphocyte migration
CCL24, XCL2, ITGB7, CCL20

Cell chemotaxis 
CXADR, F2RL1, TRPM4, PRKD1, IL10

GPR15

SBS4
SigState

Fig. 5. SBS4-induced GPR15 expression contributes to the activation of immune responses.

GeneSigNet also identified the influence of the signatures SBS4 and SBS5 on two APOBEC signatures –
SBS2 and SBS13. The APOBEC signatures are associated with immune response and this relationship is con-
sistent with the previously proposed immune activation due to smoking exposure [51]. Finally, GeneSigNet
correctly captured the association of SBS13 (consequently SBS2) with the expressions of APOBEC3B and
APOBEC3A enzymes, and also identified the association of SBS13 with pyrimidine related catabolic pro-
cesses, potentially reflecting the fact that SBS13 involves a pyrimidine to pyrimidine mutation (Fig. 4).

GeneSigNet points to the role of DNA geometric changes for APOBEC signature SBS2 As
discussed earlier, APOBEC can only act on single-stranded DNA (ssDNA). Interestingly, one of the GO
terms associated with SBS2 SigState identified by GeneSigNet is DNA geometric change (Fig. 4). DNA
geometric changes are local changes of DNA conformation such as bulky DNA adducts (a type of DNA
damage due to exposure to cigarette smoke) or DNA secondary structures such as ZDNA, cruciform, or
quadruplex. Indeed, these structures often involve the formation of ssDNA regions which, in turn, provide
mutation opportunities for APOBEC enzymes [52,53,54]. The formation of DNA secondary structures is
often associated with DNA supercoiling - a form of DNA stress that is resolved by Topoisomerase 1 (TOP1).
Interestingly, GeneSigNet identified a negative influence of TOP1 expression on one of the genes (XPA)
contributing to this GO term. This suggests a relation between DNA stress mediated by TOP1 and APOBEC
activity.

3 Discussion

Elucidating the nature of mutagenic processes and their interactions with cellular processes is of fundamental
importance for understating cancer etiology and guiding cancer therapy. Here, we propose GeneSigNet, a
new network-based approach which infers the relation between gene expression and the strength of mutation
patterns (signature exposures) allowing to uncover the relations between signatures and processes involved in
DNA repair and immune response among other cellular processes. Recognizing the limitations of the previous
clustering-based approach, GeneSigNetrelies on a construction of a sparse directed network. For each node
(gene or SigState), it selects a sparse set of incoming edges representing dominating incoming effects so
that their combination explains the activity of the node. Aiming to capture the most direct influences, the
method utilizes sparse partial correlation coefficients. In general, the inference of direction of influential
relations from statistical dependencies is highly challenging and GeneSigNet provides an important step
toward this direction that is independent of the specific application considered in this study.

Overall the relations discovered by GeneSigNet are consistent with the current knowledge, boosting
the confidence in the method’s applicability. In addition, GeneSigNet provided several new biological
insights concerning the relation between mutagenic processes and other cellular processes. For example,
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the uncovered relation between APOBEC hypermutation and activation of regulatory T-Cell can have an
important implication in immunotherapy. We note that focusing on a sparse set of edges reduces the power
of GO enrichment analysis and requires more specific biological knowledge for interpreting the results. Yet,
this potential disadvantage is compensated by the compelling mechanistic insights provided by the method.

4 Materials and Methods

4.1 Breast cancer data

The normalized gene expression data for 266 breast cancer (BRCA) patients were downloaded from Table
S7 in [55,56]. Gene expression profiles for 2,204 genes involved in either DNA metabolic or immune response
processes of the Gene Ontology (GO) database were selected for the analysis.

For mutational signatures, somatic mutation data were downloaded from the ICGC data portal (https://daco.icgc.org,
release 22). The 3,479,652 point mutations were assigned to mutational signatures using SigMa [11]. SigMa
divided all mutations into two groups, close-by Clustered and Dispersed mutations, and assigned these to
12 COSMIC v2 signatures which were previously identified as active in BRCA (Signatures 1, 2, 3, 5, 6, 8,
13, 17, 18, 20, 26 and 30; https://cancer.sanger.ac.uk/cosmic/signatures). From the signatures classified by
SigMa as described above, signature phenotype profiles 1D, 2C/D, 3C/D, 5D, 8C/D, and 13C/D that had
exposure levels of at least 10% within each group were selected for further analysis (the numbering refers
to the COSMIC signature index and C/D denotes signatures attributed to clustered and dispersed muta-
tions). Examining their correlation patterns among patients, some of the signatures were grouped as follows:
Signatures 3C/D and 8D were combined into DSB (double-stranded DNA break repair) related signatures,
and Signatures 2C and 13C/D into APOBEC related signatures. The remaining signatures are treated sep-
arately, resulting in Signature 1, 2D, 5, APOBEC, DSB. A log transformation was consequently performed
on exposures of each signature to make its distribution shape closer to a bell curve of normality.

Furthermore, we included binary information of homologous recombination deficiency as an additional
variable in the analysis. The binary alteration information was obtained by aggregating functional inactiva-
tion information for BRCA1/BRCA2 and 16 other HR genes as provided in Supplementary Tables 4a and
4b of Davies et al. [31]. The positive entries were assigned a real value of 4.218 in the SPCS model (Section
S2 in Supplementary Information) with the hyperparameter search for the best performance in terms of the
means of minimum least square errors and maximum Pearson correlation between responses and predictions
over all nodes.

4.2 Lung adenocarcinoma data

The expression data (RNA-seq) of the lung adenocarcinoma (LUAD) from The Cancer Genome Atlas
(TCGA) project were downloaded from the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/)
on 2020-06-05. Normalization and variance-stabilizing transformation (vst) of HTSeq count data were per-
formed using DESeq2. Tumor and normal samples were split into different groups and only one sample per
donor was kept in each group.

The TCGA LUAD exome mutation spectra were downloaded from Synapse (accession number: syn11801889)
and decomposed into COSMIC v3 signatures SBS1, SBS2, SBS4, SBS5, SBS13, SBS40, and SBS45 using
the quadratic programming (QP) approach available in the R package SignatureEstimation [57]. Only signa-
tures predominantly active in lung cancer (signatures that were present in at least 5% of samples and were
responsible for at least 1% of mutations) were considered based on the initial sample decomposition provided
by Alexandrov et al. [2] (Synapse accession number: syn11804065). Signature SBS45 is likely a sequencing
artifact so it was omitted from further analyses presented in this study. The same log transformation used
in BRCA analysis was performed on signature exposure data here.

We analyzed 466 tumor samples that had both gene expression and mutational signature exposure data
available. We analyzed 2,433 genes belonging to the DNA metabolic process and immune system process in
GO terms (genes that are not expressed in at least 10% of the samples were omitted). The gene expression
and mutational signature exposure data were combined to form an input data matrix.
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Supplementary Information
S1 Supplementary Methods

In the construction of a Gene-Signature Network (GSN), the nodes corresponding to genes and SigStates
are considered as random variables and the activity of these variables consists of expressions of genes and
exposures of mutational signatures over samples (Fig. 2A). We first describe a sparse estimation of partial
correlation (SPCS) to initialize a partially directed network (Fig. 2B). Then, a higher moment-based strategy
is adopted to decide the causality direction of bidirected edges in the network (Fig. 2C). Finally, a matrix
normalization, alternate scaling [26], is performed to bring the total incoming and outgoing effects of each
node to the same range.

The idea of SPCS is to decompose the problem of inferring a network of 𝑛 nodes into 𝑛 subproblems of
variable selection. For each subproblem, a single node (gene or SigState) is considered as the focused target
and the weights of incoming effects from the other 𝑛 − 1 nodes are obtained by minimizing a least square
error function subject to an 𝑙1 norm constraint.

In addition, to decide the direction of dependency between two variables (two nodes having effects on
each other in the GSN), we first remove confounding effects due to the presence of the other 𝑛− 2 variables
(the other 𝑛− 2 nodes in GSN) and utilize the higher moment-based strategy.

Finally, we apply alternate scaling, a matrix normalization method that iteratively maps rows and columns
of a matrix onto the a unit space (𝑙1 norm ball with unit radius). An overview of the method workflow is
presented in Section 2.1 and Figure 2 in the main text.

S1.1 A sparse partial correlation selection (SPCS)

Correlation networks are widely used to explore and visualize dependencies in high-dimensional data. How-
ever, without assuming prior knowledge, an ordinary correlation itself provides no means to distinguish
between causal and affected factors in underlying causal processes [21].

Bayesian networks can be used to infer causal relations of nodes representing their local conditional
dependencies via a directed acyclic graph (DAG) [18,58,59]. Alternative to constructing a DAG, directed
partial correlation (DPC) [19] and regression tree based GENIE3 [20] have been proposed to uncover condi-
tional dependencies in observed data. However, learning the structure of Bayesian networks from large data
is known to be computationally challenging [59]. In addition, these networks are always acyclic and thus they
do not support feedback loops [60]. DPC and GENIE3 return a complete list of interactions with non-zero
weights of connectivity strengths, hence generating fully-connected networks in which the the choice of an
optimal confidence threshold is left open. Other methods such as the sparse partial correlation estimation
(SPACE) [16] and its extension (ESPASE) [17], consider a penalized regression approach to construct the
gene regulatory network. Although both methods utilize a sparse variable selection, their estimations provide
symmetric weight matrices representing undirected-weighted networks.

To address these issues, we modeled causal dependencies as sparse partial correlation coefficients which
are obtained by minimizing a least square error subject to the unit 𝑙1 norm ball. Inspired by the theoretical
foundations for approximating partial correlations (see Box 1), SPCS selects the best combination of a small
number of explanatory factors that, under the conditional dependency assumption, explains the activity of
each node in the GSN (Fig. 2B).

Box 1: Partial correlations can be approximated by regression coefficients

Consider the ordinary correlation 𝜌12 between two random variables 𝑣1 and 𝑣2. If 𝑣1 and 𝑣2 are
correlated with 𝑛 − 2 other variables 𝑣3, 𝑣4, . . . , 𝑣𝑛, we may regard 𝜌12 as a mixture of a direct
correlation between 𝑣1 and 𝑣2 and an indirect portion due to the presence of other variables correlating
with 𝑣1 and 𝑣2. The partial correlation measuring the direct portion of the total correlation can be
defined as a correlation between 𝑣1 and 𝑣2 after removing effects due to other variables by a linear
regression and the least square linear regression coefficients are proportional to the partial correlation
coefficients [61].

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468828doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468828


Influence network model uncovers new relations between biological processes and mutational signatures 15

The entire network is represented as a weighted, directed graph, G = (V,E), where a set of nodes V
represents genes and SigStates, and a set of edges E represents the relationships among the nodes.

Let I = I𝑔 ∪ I𝑠 denote the index set for 𝑛 variables representing the types of nodes in V, where I𝑔 and
I𝑠 are the index sets for the two types of nodes corresponding to 𝑚 genes and 𝑛−𝑚 SigStates, respectively.
The nodes have observational activities over samples, and a 𝑝 × 𝑛 matrix 𝑋 = {𝑥𝑖𝑗} represents the data
consisting of expressions of 𝑚 genes and exposures of 𝑛−𝑚 mutational signatures across 𝑝 samples (patients).
Assuming the incoming effects on a focused variable 𝑓 from its upstream covariates, the observed value 𝑥𝑖𝑓 ,
corresponding to 𝑖-th sample, can be approximated as the following affine combination

𝑥𝑖𝑓 ≈
∑︁

𝑘∈I𝑔∖{𝑓}

𝑥𝑓𝑘𝑤𝑘𝑓 +
∑︁

𝑘∈I𝑠∖{𝑓}

𝑥𝑓𝑘𝑤𝑘𝑓 + 𝑤0𝑓 =
∑︁

𝑘∈I∖{𝑓}

𝑥𝑓𝑘𝑤𝑘𝑓 + 𝑤0𝑓 (S1)

where I ∖ {𝑓} denotes the index set of 𝑛 − 1 variables except for the focused response variable 𝑓 , and
𝑤*𝑓 ∈ 𝑅𝑛−1 denotes the contribution weights to the activation of 𝑓 from the other 𝑛 − 1 variables. Thus,
our goal is to find the minimum of the least square error function subject to a unit 𝑙1 norm constraint on
𝑤*𝑓 as following

minimize
𝑤*𝑓∈𝑅𝑛−1,𝑤0𝑓∈𝑅

𝑝∑︁
𝑖=1

⎛⎝𝑥𝑖𝑓 −
∑︁

𝑘∈I∖{𝑓}

𝑥𝑖𝑘𝑤𝑘𝑓 − 𝑤0𝑓

⎞⎠2

subject to
∑︁

𝑘∈I∖{𝑓}

|𝑤𝑘𝑓 | ≤ 1

(S2)

where 𝑤0𝑓 denotes the intercept adjusting the fitness between the response variable and its prediction. For
a focused node (affected) 𝑓 , the weight vector 𝑤*𝑓 = (𝑤1𝑓 , 𝑤2𝑓 , . . . 𝑤𝑓−1𝑓 , 𝑤𝑓+1𝑓 , . . . 𝑤𝑛𝑓 )

𝑇 , a solution of
the problem in Equation (S2), represents the weights of incoming effects from the other 𝑛− 1 nodes (causal
factors) in the network. The 𝑙1 norm constraint is used to avoid over-fitting issues and allow only dominant
incoming effects as causal factors. Thus, a non-zero 𝑤𝑘𝑓 (𝑘 ̸= 𝑓), selected for the node 𝑓 , denotes the partial
correlation coefficient representing the potential effect of the node 𝑘 on the node 𝑓 . In this setting, focusing
on the activity of every single node in the network, the optimization problem in Equation (S2) considers all
possible combinations of incoming effects from the other 𝑛− 1 nodes and selects the best combination with
their optimal influence weights to explain the focused activity under conditional dependency assumption.
Therefore, the causality relationship between nodes 𝑘 and 𝑓 is estimated in the presence of the other 𝑛− 2
variables. Note that the inequality constraint in Equation (S2) is proposed to provide a flexible estimation of
total weights of incoming effects for variable 𝑓 . It is based on the assumption that the total incoming effects
on a gene or SigState can be different from others depending on its responses to regulatory mechanisms.

S1.2 Solving SPCS model

An accurate solution of the problem in Equation (S2) is critical for the robust estimation of causality flows
in the Gene-Signature Network. Although the least square error function in Equation (S2) is convex, the 𝑙1
norm sparsity constraint is non-differentiable and derivative-based techniques such as Lagrange multipliers
and Karush-Kuhn-Tucker (KKT) conditions are not directly applicable due to the non-smoothness. Another
attempt to resolve such an issue is to decompose the inequality of the 𝑙1 norm into 2𝑛 inequality constraints
[62]. However, biological networks are often large in scale and it is practically difficult to accurately minimize
such a large scale objective function over the exponential number of constraints within a reasonable time.
Thus, to solve the non-smooth constrained optimization, we rewrite the initial formulation in Equation (S2)
as an unconstrained form with a penalty term

minimize
𝑤*𝑓∈𝑅𝑛−1,𝑤0𝑓∈𝑅

𝑝∑︁
𝑖=1

⎛⎝𝑥𝑖𝑓 −
∑︁

𝑘∈I∖{𝑓}

𝑥𝑖𝑘𝑤𝑘𝑓 − 𝑤0𝑓

⎞⎠2

+ 𝜆𝑓 ·
∑︁

𝑘∈I∖{𝑓}

|𝑤𝑘𝑓 | (S3)

where a tuning parameter 𝜆𝑓 controls the strength of the penalty term, chosen for a focused variable 𝑓
to provide a balance between the least square error term and the 𝑙1 norm constraint in the formulation in
Equation (S2). For a given 𝑓 , the criterion to define a reasonable value of 𝜆𝑓 is not trivial, in general, due to
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the incompleteness of information linked to biological relevance. In fact, the exact relationship between the
radius of the 𝑙1 norm ball in Equation (S2) and the tuning parameter 𝜆𝑓 in Equation (S3) is data-dependent.
Therefore, it is reasonable to use a data-driven strategy for choosing 𝜆𝑓 . Akaike information criterion (AIC)
is a statistical technique that provides the relative quality of statistical models for a given data by combining
the maximum likelihood estimation of fitness with the number of parameters for inference [63]. The AIC is
used in this work to decide the value of 𝜆𝑓 providing a solution with reasonable total incoming effect on 𝑓
from its dominating factors.

S1.3 Higher moment-based strategy for causality direction

The solution to the problem in Equation (S2) may provide similar weights in both directions for some
pairs of variables due to the presence of effects from confounding factors and noise in addition to their
real dependencies. This uncertainty may require a complimentary analysis to decide the direction of causal
relations for these pairs.

One way to decide causality relations is to perform perturbation experiments. However, optimization of
experimental design to predict which combination of perturbations allows to discover causality flows in a
given network topology is often challenging and costly [64]. Hence, revealing causality directions by analyzing
purely observational data has become a special focus of network biology [65]. Under a confounder-free
assumption, higher moment statistics [66] indicate causality direction between two dependent variables from
purely observational data. Alternative to the directionality decision for bivariate distributions, a confounder
model [25] was recently designed to assign causality directions for several factors under a standard dependency
assumption. By combining the key ideas of the two methods, we propose a higher moment-based strategy to
decide causality directions for the bidirected edges in the network obtained using the SPCS. The idea is to
generate a bivariate distribution for a focused pair by removing confounding effects from their observed values,
and then decide the causality direction between them using higher moment statistics on the corresponding
residuals (Fig. 2C).

Specifically, for a pair of variables having similar effects on each other in 𝑊 , we first calculate their
residuals by removing effects due to the presence of the other 𝑛 − 2 variables [61]. Upon the removal, the
pair of residuals can be assumed to follow a bivariate distribution and only the dependency between the
focused pair remains in their residuals. Thus, the causal variable can be distinguished from the affected by
comparing the higher moments of the two residual distributions. Under the confounder-free assumption, the
causal factor is closer to normality than the affected and the skewness and kurtosis are the higher moment
statistics used to measure close-normality of the residual distributions.

Let 𝑥*𝑗 and 𝑥*𝑓 be 𝑗-th and 𝑓 -th columns of the given data matrix 𝑋 representing the activities of the
variables 𝑗 and 𝑓 respectively. Then, the residuals corresponding to the variables 𝑗 and 𝑓 can be obtained as

𝑟𝑗 = 𝑥*𝑗 −
∑︁

𝑘∈I∖{𝑗,𝑓}

𝑥*𝑘𝑤𝑘𝑗

𝑟𝑓 = 𝑥*𝑓 −
∑︁

𝑘∈I∖{𝑓,𝑗}

𝑥*𝑘𝑤𝑘𝑓

(S4)

where 𝑟𝑗 and 𝑟𝑓 are column vectors of size 𝑝, representing the residuals of variables 𝑗 and 𝑓 after removing
effects due to the other 𝑛−2 variables besides 𝑗 and 𝑓 . As described in [66], the causal factor is closer to the
normal distribution than the affected under a confounder-free assumption, and the higher moment statistics,
skewness and kurtosis can be used to measure the close-normality of the residual distributions. Comparing
the distribution shapes of 𝑟𝑗 and 𝑟𝑓 , we assign a causality direction between 𝑗 and 𝑓 as following

𝐸𝑑𝑔𝑒(𝑗, 𝑓) =

⎧⎪⎨⎪⎩
𝑗 → 𝑓 and 𝑤𝑓𝑗 := 0, if |𝑤𝑗𝑓 | > |𝑤𝑓𝑗 | and |𝛿𝑗 | > |𝛿𝑓 | and |𝛾𝑗 | > |𝛾𝑓 |
𝑗 ← 𝑓 and 𝑤𝑗𝑓 := 0, if |𝑤𝑗𝑓 | < |𝑤𝑓𝑗 | and |𝛿𝑗 | < |𝛿𝑓 | and |𝛾𝑗 | < |𝛾𝑓 |
𝑗 ↔ 𝑓, otherwise

(S5)

where 𝛿𝑗 = 𝐸[(𝑟𝑗 − 𝜇𝑟𝑗 )
3]/𝜎3

𝑟𝑗 and 𝛿𝑓 = 𝐸[(𝑟𝑓 − 𝜇𝑟𝑓 )
3]/𝜎3

𝑟𝑓
describe the skewness while 𝛾𝑗 = 𝐸[(𝑟𝑗 −

𝜇𝑟𝑗 )
4]/𝜎4

𝑟𝑗 − 3 and 𝛾𝑓 = 𝐸[(𝑟𝑓 − 𝜇𝑟𝑓 )
4]/𝜎4

𝑟𝑓
− 3 describe the kurtosis of residuals 𝑟𝑗 and 𝑟𝑓 , respectively,

where 𝜇· and 𝜎· are the mean and standard deviation of the respective variables. In practice, we accept
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the direction with stronger weight if one direction provides a stronger weight than the threshold 𝜏 while the
opposite direction provides a weaker weight compared to 𝜏 . The edge with the smaller weight is consequently
removed from the network. The higher moment-based strategy in Equation (S5) is used to decide the direction
if |𝑤𝑓𝑗 | ≥ 𝜏 and |𝑤𝑗𝑓 | ≥ 𝜏 .

We explored different thresholds for edge weight cut-off 𝜏 to obtain the best set of directed edges. The
optimal threshold value was chosen (𝜏 = 0.0391 for BRCA and 𝜏 = 0.0521 for LUAD) to maximize the
fraction of consistent directions in the set of recovered edges.

Complementary to the partial correlation measurement, the higher moment-based strategy provides a
causality direction between two correlated variables based on their distribution shapes and locations if the
dependency direction is not solved by the SPCS. Particularly, this strategy is proposed to remove false
directed-edges from the initial partial correlation network.

S1.4 Normalization of incoming and outgoing effects

The magnitudes of the causal effects in the network may provide valuable information to prioritize the
candidate associations of genes and SigStates with underlining biological processes because the edge weights
denote the contribution scores from causal factors to their affected targets. Hence, it is reasonable to bring
the total incoming and outgoing effects of nodes to the same range in the GSN. The total incoming effect
on each node was attempted to be normalized into the 𝑙1 norm constraint in Equation (S2). However, the
total outgoing effects are free from normalization. Moreover, an additional update described in Equation
(S5) performed to remove edges from the initial network obtained by the SPCS model in Equation (S2).

We adopted a matrix normalization technique, alternate scaling [26], to rescale columns and rows of the
weight matrix 𝑊 into the unit 𝑙1 norm ball. This procedure begins with rows in which each is mapped
into the unit ball. Then do the same operation on columns, then on rows, and so on, until the sequence of
matrices converges. The absolute difference of two consequence updates, by rows (𝑊𝑟𝑜𝑤𝑠) and by columns
(𝑊𝑐𝑜𝑙𝑢𝑚𝑛𝑠), is used as the convergence criterion such that ‖𝑊𝑟𝑜𝑤𝑠−𝑊𝑐𝑜𝑙𝑢𝑚𝑛𝑠‖𝐹 < 10−15. In the cases of the
BRCA and LUAD analysis, the convergence was achieved after only 5 and 6 iterations, respectively. Note
that this normalization increases the sparsity of the GSN since every column and row of 𝑊 is iteratively
mapped onto the 𝑙1 norm space (‖𝑤𝑘*‖𝑙1 ≤ 1 for 𝑘-th row and ‖𝑤*𝑘‖𝑙1 ≤ 1 for 𝑘-th column of 𝑊 ) which
rescales the weights to lower values, even assigning zero weights to weak associations during the iterative
procedure.
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S2 Supplementary Figures
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Fig. S1. Information flow over the SigStates in BRCA is initiated by activation of the HRD related mutations
which gives arise to base substitution load in the DSB repair SigState. Consequently, the increased DSB mutations
then produce a carry-over effect on the other SigStates in its downstream. Statistically significant GO terms (𝑞-value
< 0.01), enriched for the sets of genes whose expression status were affected by SigStates are shown as corner-rounded
rectangle nodes. Genes in the upstream or downstream of SigStates are shown in the rectangles if the corresponding
partial correlations are strong (|𝑤𝑖𝑗 | ≥ 0.01) even if the corresponding GO terms are not strongly significant (𝑞-
value>0.01). The upstream and downstream sets for SigStates and the corresponding GO terms enriched for the
genes in those sets are available as a resource at the GeneSigNet Github repository (https://github.com/ncbi/
GeneSigNet).
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Fig. S2. Information flow over the SigStates in LUAD analysis. Statistically significant GO terms (𝑞-value < 0.01),
enriched for the sets of genes whose expression status were influencing in or affected by SigStates are shown as rounded
rectangle nodes. Set of genes in upstream or downstream of SigStates are shown the rectangles if the corresponding
partial correlations are strong (|𝑤𝑖𝑗 | ≥ 0.01) even if the corresponding GO terms are not strongly significant (𝑞-
value>0.01). The upstream and downstream sets for SigStates and the corresponding GO terms enriched for the
genes in those sets are available as a resource at the GeneSigNet Github repository (https://github.com/ncbi/
GeneSigNet).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468828doi: bioRxiv preprint 

https://github.com/ncbi/GeneSigNet
https://github.com/ncbi/GeneSigNet
https://doi.org/10.1101/2021.11.16.468828

	Influence network model uncovers new relations between biological processes and mutational signatures

