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Age is the primary risk factor for many common human dis-1

eases including heart disease, Alzheimer’s dementias, cancers,2

and diabetes. Determining how and why tissues age differ-3

ently is key to understanding the onset and progression of such4

pathologies. Here, we set out to quantify the relative contri-5

butions of genetics and aging to gene expression patterns from6

data collected across 27 tissues from 948 humans. We show that7

gene expression patterns become more erratic with age in sev-8

eral different tissues reducing the predictive power of expres-9

sion quantitative trait loci. Jointly modelling the contributions10

of age and genetics to transcript level variation we find that the11

heritability (h2) of gene expression is largely consistent among12

tissues. In contrast, the average contribution of aging to gene13

expression variance varied by more than 20-fold among tissues14

with R2
age > h2 in 5 tissues. We find that the coordinated de-15

cline of mitochondrial and translation factors is a widespread16

signature of aging across tissues. Finally, we show that while17

in general the force of purifying selection is stronger on genes18

expressed early in life compared to late in life as predicted by19

Medawar’s hypothesis, a handful of highly proliferative tissues20

exhibit the opposite pattern. In contrast, gene expression varia-21

tion that is under genetic control is strongly enriched for genes22

under relaxed constraint. Together we present a novel frame-23

work for predicting gene expression phenotypes from genetics24

and age and provide insights into the tissue-specific relative con-25

tributions of genes and the environment to phenotypes of aging.26
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Introduction31

Organismal survival requires molecular processes to be car-32

ried out with the utmost precision. However, as individuals33

age many biological processes deteriorate resulting in im-34

paired function and disease. Such increases in the overall35

variance of molecular processes are predicted by Medawar’s36

germline mutation accumulation theory (1), which states that37

because older individuals are less likely to contribute their ge-38

netic information to the next generation, there is reduced se-39

lection to eliminate deleterious phenotypes that appear late in40

life (2). This theory also predicts that genes expressed early41

in life should be under increased selective constraint com-42

pared to genes expressed late in life. However, a key chal-43

lenge remains in both quantifying age-associated changes in44

biological processes across tissues and identifying how ge-45

netic variation influences such changes.46

At the organismal level, age-associated changes in the het-47

erogeneity of gene expression between individuals have been48

observed for a handful of genes in humans (3). In an anal-49

ysis of gene expression in monozygotic (identical) twins, 4250

genes showed age-associated differences in gene expression,51

suggesting a role for the environment in modulating gene ex-52

pression with age (2, 3). Similarly, the proportion of expres-53

sion quantitative trait loci (eQTLs) detected from blood in 7054

year olds declined by 2.7% when they were resampled at 8055

years old (4). However, the extent of this phenomenon, both56

across genes and tissues, remains unclear (5). Age-associated57

increases in the heterogeneity of gene expression have also58

been observed at the level of individual cell-to-cell variation;59

however, only some cell types appear to be impacted (6). In60

a recent study of immune T-cells from young and aged indi-61

viduals, no difference in cell-to-cell variability was observed62

in unstimulated cells, however, upon immune activation the63

older cells appeared more heterogeneous (7). It is not known64

why some cell-types and not others may be more likely to65

exhibit increased cellular variability.66

The relationship between the age at which a specific gene67

is expressed and the force of purifying selection has also re-68

cently been explored across a number of species (8, 9). These69

analyses have broadly confirmed that, on average, genes ex-70

pressed later in life are under less constraint compared to71

those expressed early in life. However, how these patterns72

vary across different tissues and are impacted by genetic vari-73

ation has not been systematically explored.74

Here we set out to understand how aging affects the molecu-75

lar heterogeneity of gene expression and to model the relative76

impact of age and genetic variation on this phenotype across77

tissues. First, using gene expression data from 948 individ-78

uals in GTEx V8 (10), we show that eQTLs are less predic-79

tive in older individuals, however to a different extent across80

various tissues. We show that gene expression heterogene-81

ity between individuals increases with age in these tissues.82

Using a regularized linear model-based approach to jointly83

model the impact of both age and genetic variation on gene84

expression we find that while the average heritability of gene85

expression is consistent across tissues, the average contribu-86

tion of age varies substantially. Furthermore, while the ge-87

netic regulation of gene expression is similar across tissues,88
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age-associated changes in gene expression are highly tissue-89

specific in their action. We use this joint model to identify90

each gene’s age of expression and show that while in most91

tissues late-expressed genes do tend to be under more relaxed92

selective constraint, among a handful of highly proliferative93

tissues the opposite trend holds.94

Results95

Expression quantitative trait loci exhibit varying pre-96

dictive power in old and young individuals across sev-97

eral different tissues. To gain insight into how gene regula-98

tory programs might be impacted by aging we analyzed tran-99

scriptomic data collected across multiple tissues from 948100

humans (GTEx version 8) (10). We hypothesized that aging101

might dampen the effect of expression quantitative trait loci102

(eQTLs) due to factors such as increased environmental vari-103

ance or molecular infidelity (Fig. 1A). To test this hypothesis104

we first classified individuals into young and old age groups105

conservatively grouping individuals above and below the me-106

dian age (55 years old, Fig. S1), respectively, restricting our107

analyses to tissues with at least 100 individuals in both groups108

(27 tissues in total, Fig. S2, Table S1). In each tissue we109

down-sampled to match the sample size of old and young in-110

dividuals while additionally controlling for co-factors such111

as ancestry and technical confounders (methods). Of note, a112

common approach to controlling for unobserved confounders113

in large gene expression experiments is to probabilistically114

infer hidden factors using statistical tools such as PEER (11).115

We noticed that many of the GTEx PEER factors were sig-116

nificantly correlated with sample age, with the top three cor-117

related PEER factors having a Pearson r of 0.33, -0.21, and118

-0.15 (Fig. S3). To prevent loss of age related variation, we119

recalculated a corrected set of PEER factors that were in-120

dependent of sample age (Methods). We then assessed the121

significance of GTEx eQTLs in the young and old cohorts122

respectively, comparing the distribution of P-values over all123

genes between old and young individuals (Fig. 1A). In 20 out124

of 27 (74%) of the assessed tissues, the P-value distribution125

was significantly different between young and old individu-126

als with genotypes more predictive of expression in younger127

individuals in 12/20 cases (e.g. Fig. 1D). These results were128

largely identical when the analyses were performed with the129

original non-corrected PEER factors (18/27 tissues, Fig. S4).130

These results suggest that the predictive power of eQTLs is131

impacted by the sample age across the vast majority of tis-132

sues. Furthermore this effect is more pronounced in older133

samples compared with younger samples.134

Age-associated increases in gene expression hetero-135

geneity reduce gene expression heritability. We hypoth-136

esized that the reduced predictive power of eQTLs in some137

older tissues might be in part due to an overall increase in138

expression heterogeneity in these tissues, potentially as a re-139

sult of increased environmental variance. To test if such an140

effect would broadly affect expression across all genes in a141

tissue (Fig. 2A) we calculated the distribution of pairwise142

distances among individual’s tissue-specific gene expression143

profiles using the Jensen-Shannon Divergence (JSD) (12, 13)144

as a distance metric. The JSD is a robust distance which is145

less impacted by outliers compared to other methods (e.g.146

Euclidean distance) (13). Comparing the distribution of pair-147

wise differences in transcriptional profiles within distinct age148

groups allows us to determine if gene expression signatures149

are more similar among younger individuals versus among150

older individuals.151

We compared the mean difference in gene expression dis-152

tances among old and young individuals as well as the slope153

of the inter-individual JSD and when grouping individuals154

into six bins spanning 20-80 years old (see methods, Fig. 2B,155

2C). These two strategies yielded highly similar results (Fig.156

2B R=0.8) and identified a cluster of 12 tissues exhibiting ro-157

bust increases in the average inter-individual expression dis-158

tance as a function of age (e.g. Fig. 2C). Our JSD analysis159

of old and young individuals was also negatively correlated160

with the results from our analysis of eQTLs across old and161

young individuals (Fig. S5, R=-0.48, P=0.01) highlighting162

that tissues with age-associated increases in inter-individual163

heterogeneity were likely to also exhibit reductions in the164

proportion of variance described by eQTLs. Conversely, tis-165

sues in which eQTLs explained a higher proportion of gene166

expression variance in older individuals exhibited a decrease167

in inter-individual gene expression variation.168

To expand our eQTL analyses to account for the combined169

impact of nearby SNPs, we utilized the multi-SNP regular-170

ized linear model of PrediXcan (14). This model has the171

benefit of combining genetic effects across many loci, in-172

stead of examining just a single eQTL variant. This com-173

bined genetic contribution to gene expression variance results174

in an estimate of the heritability (h2) for each gene. We ap-175

plied this model independently in old and young individuals176

to quantify h2 and found that the average per-gene difference177

in h2 between old and young individuals was strongly nega-178

tively correlated with the difference in JSD between samples179

(R=0.6, P=9.9e-4, Fig. 2D, Fig. S6). Together these results180

suggest that across numerous tissues aging is associated with181

an overall increase in gene expression heterogeneity. This in-182

creased expression variance drives a reduction in the average183

heritability of gene expression across these tissues.184

Jointly modeling the impact of age and genetics185

on gene expression identifies distinct, tissue-specific186

patterns of aging. A more powerful approach to understand187

how both genetics and age impact gene expression variation188

is to jointly model these factors simultaneously. We set out189

to extend the regularized linear model to incorporate an age190

factor (Fig. 3A) allowing us to parse apart the individual191

contributions of genetics (R2
genetics or h2), age (R2

age), and192

the environment (R2
environment), to the expression variance193

of each gene (e.g. Fig. 3B, Fig. 3C). We define R2
environment194

as all sources of variation not captured by h2 and R2
age. Es-195

timates of h2 in our extended model were highly consistent196

with those in the original PrediXcan approach (Fig. S 7).197

Employing our model across each tissue independently we198

find that average heritability of gene expression was largely199
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Fig. 1. eQTLs become less explanatory with age in many tissues. A) A hypothetical model of the differing power to detect eQTLs in old and young cohorts. B) QQ
plots of eQTL p-values (plotted as -log(P)) for old (red) and young (blue) individuals from a linear model correlating expression with the lead SNP for each gene in blood and
stomach tissue and C) all other tissues (Table S2). D) Examples of gene expression binned by genotype and age for four genes in which eQTLs are less explanatory in older
individuals in whole blood.

consistent among tissues ranging from 2.9%-5.7% with 40%200

of genes having an h2>10% in at least one tissue (Fig. 3D,201

S8). Thus, while the variation in expression of many indi-202

vidual genes is strongly influenced by genetics, on average,203

genetics explains a small proportion of overall gene expres-204

sion variation. In contrast, the average contribution of aging205

to gene expression varied more than 20-fold among tissues206

from 0.4%-7.9% with the average R2
age greater than the av-207

erage h2 in 5 tissues. Among these 5 tissues the expression208

of 39-54% of genes was more influenced by age than by ge-209

netics (i.e. R2
age >h2, Fig. S9) and across all tissues 45% of210

genes had an R2
age>10% in at least one tissue. Assessing the211

tissue-specificity of these trends on a per-gene basis we found212

while the estimated heritability of gene expression tended to213

be similar among different tissues, the age-associated compo-214

nent exhibited significantly more tissue specificity (P<2.2e-215

16, Fig. 3E). We note that the widespread signatures of216

age-associated gene expression variance that we identify are217

virtually undetectable when using the GTEx-provided PEER218

factors. Just 1.84% of the age-associated genes we identify219

have nonzero age coefficient when using these GTEx PEER220

factors (Fig. S10). Our model thus widely expands the util-221

ity of the GTEx dataset and exploration of critical biological222

signatures of aging. Together these results imply that age-223

associated patterns of gene expression exhibit substantially224

more tissue specificity than those that are influenced by ge-225

netics and among several tissues age plays a much stronger226

role in driving gene expression patterns than genetics.227

Coordinated decline of mitochondrial and translation228

factors is a widespread signature of aging across tis-229

sues. To understand the underlying biological implications230

of age-associated gene expression changes we applied gene231

set enrichment analysis (GSEA)(15) to each tissue indepen-232

dently, ranking genes either by the relative contribution of233

genetics (h2) or aging (R2
age). Comparing the distribution234

of P-values from enriched GO-annotations we found that235

pathways enriched for age-associated variance were substan-236

tially more enriched for significance than pathways associ-237

ated with genetic-associated variance (e.g. Fig. 4A). We238

found more age-associated pathway enrichment even in tis-239

sues for which the average age-associated contribution to240

gene expression was low (e.g. Pancreas, Fig. S11). This241

implies that while age-associated changes in gene expression242

vary widely in their magnitude among tissues, these changes243
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Fig. 2. Inter-individual gene expression heterogeneity increases with age for a subset of tissues. A) Hypothesized age-associated increase in gene expression
heterogeneity (top) and our approach for quantifying the inter-individual expression distance with age using the Jensen Shannon Divergence metric (JSD) for age-binned
individuals (bottom). B) Consistency of measuring the average age-associated change in gene expression heterogeneity across a tissue using a binary binning strategy
(y-axis, JSDold-JSDyoung ) or a 6 bin strategy (x-axis, slope of JSD across 6 bins). C) The distributions of JSD distances for two tissues in old and young bins. D) The
relationship between gene expression heterogeneity and the difference in expression heritability between old and young individuals.

consistently impact critical biological processes. A GSEA244

enrichment analysis of genes ranked by the tissue-averaged245

slope of the age-associated trend (βage) highlighted several246

key aging-associated pathways. Pathways associated with247

various mitochondrial and metabolic processes and transla-248

tion were enriched for having −βage values, implying age-249

associated decreases (Fig. 4B). A single immune pathway,250

the interferon-gamma response was enriched having +βage251

values (Fig. 4B). An additional 18 immune pathways were252

identified as having age-associated increases in gene expres-253

sion using a more lenient significance threshold (FDR<0.05)254

(Fig. S12). In contrast, no pathways were significantly en-255

riched when genes were ranked by average h2.256

To further explore the functional impact of age-associated257

gene expression changes we compared the R2
age of all258

nuclear-encoded mitochondrial genes (n=1120, (16)), and259

translation initiation, elongation, and termination factors,260

across tissues (Fig. 4C, Fig. S13). Genes in these path-261

ways were exceptionally enriched for age-associated gene ex-262

pression across several tissues. In some cases >10% of the263

average expression variation of mitochondrial or translation264

factor genes could be explained by age. βage was consis-265

tently negative in these mitochondrial and translation factor266

genes (Fig. 4D) highlighting that genes in these pathways267

exhibit a systematic decrease in expression as a function of268

age. Overall across tissues an average of 36% of all mi-269

tochondrial genes (406/1120), and 35% of translation fac-270

tors (119/337) exhibited age-associated declines, however in271

some tissues these proportions exceeded 60%. In contrast,272

the only pathway associated with age-associated increases273

in expression, interferon-gamma response genes, was largely274

specific to blood and arterial tissue (Fig. 4C), likely due to the275

role of this pathway in immune cells. Together these results276

demonstrate that the coordinated decline of mitochondrial277

genes and translation factors is a widespread phenomenon of278

aging across several tissues with potential phenotypic conse-279

quences.280

Distinct evolutionary signatures of gene expression281

patterns influenced by aging and genetics. Evolution-282

ary theory predicts that due to the increased impact of selec-283

tion in younger individuals, genes that increase as a func-284

tion of age (βage > 0) should be under reduced selective285

constraint compared to genes that are highly expressed in286

young individuals (βage < 0), a theory of aging known as287

Medawar’s hypothesis (1) (Fig. 5A). Several recent studies288

have demonstrated the generality of this trend across species289

(8, 9, 17) however the tissue-specificity of this theoretical290

prediction has not been explored. We sought to test the gener-291

ality of this trend across different tissues by comparing βage292

with the level of constraint on genes, quantified as the proba-293

bility loss of function intolerance (pLI) score from gnomAD294

4 | bioRχiv Yamamoto and Chung et al. | Gene Expression and Aging

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468753doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468753


A) B)

C)

Pancreas
Liver

Stomach
Adrenal Gland

Artery Coronary
Heart Atrial Appendage

Skin Lower Leg (Sun Exposed)
Testis

Thyroid
Cells Cultured fibroblasts
Breast Mammary Tissue

Skin Suprapubic (Not Sun Exposed)
Adipose Subcutaneous

Prostate
Colon Sigmoid

Esophagus Muscularis
Nerve Tibial

Heart Left Ventricle
Lung

Esophagus Gastroesoph. Junct.
Muscle Skeletal

Artery Aorta
Adipose Visceral Omentum

Esophagus Mucosa
Artery Tibial

Colon Transverse
Whole Blood

0.00 0.02 0.04 0.06 0.08
µR2

tis
su

es

R2

Age

Genetics

D) E)

Fig. 3. A joint predictive model of gene expression identifies tissue-specific contributions of age and genetics to transcript levels. A) A schematic of our multi-SNP
gene expression association model incorporating sample age. Common SNPs around each gene g are used in combination with an individual’s age to predict expression
within tissue t. Using this trained model, variation in gene expression can be separated into three parts: the components explained by genetics (R2

genetics or h2) , by age
(R2

age) and by all other factors (R2
environment). B) Ternary plot of the proportion of each genes expression variance explained by age , genetics and the environment. C)

Plot of normalized expression vs age for four genes with significant age-correlated expression. Line shows fitted βage from regularized linear model. D) Point estimates of
the mean R2

age and h2 for each tissue, error bar indicating confidence interval for the estimate. E) The tissue specificity score of R2 across 27 tissues for each gene from
either age genetics.

(18). As expected, across the vast majority of tissues βage295

was significantly negatively correlated with pLI (Fig. 5B,296

5C), in line with Medawar’s hypothesis. However, five tis-297

sues exhibited significant signatures in the opposite direc-298

tion including prostate, transverse colon, breast, whole blood,299

and lung tissue (P < 10−3). These five tissues with non-300

Medawarian trends are driven by highly constrained, func-301

tionally important genes being expressed at a higher rate in302

older individuals (Fig. S14). Using dN/dS (19) as an al-303

ternative metric of gene constraint yielded highly correlated304

results (R=-0.72, P=2.5e-5 Fig. S15, S16).305

To explore why these five tissues might exhibit distinctive306

evolutionary signatures of aging we compared the distribu-307

tion of significant βage parameters between Medawarian and308

non-Medawarian tissues among different hallmark pathways309

(20). We found 11 signatures exhibiting significantly in-310

creased βage (FDR<0.01) compared to non-Medawarian tis-311

sues (Fig. 5D, 5E) including DNA-damage, TGF-β sig-312

nalling, MYC targets, and epithelial-to-mesenchymal transi-313

tion pathways most prominently. All of these signatures are314

broadly correlated with cellular proliferation, differentiation,315

and cancer. These results highlight that gene expression pat-316

terns in tissues and cell-types that proliferate throughout the317

course of an individuals life may be subjected to distinct evo-318

lutionary pressures.319

We also explored the relationship between gene expression320

heritability and constraint. Across all tissues h2 was signifi-321

cantly negatively correlated with pLI (27/27 tissues, P-value322

< 10−3) (Fig. 5F, S17). While this trend was consistent323

across tissues, intriguingly it was strongest in heart tissues.324

The exception was liver, which also had the highest average325

R2
environment among all tissues, which was only nominally326

significant after multiple test correction (P<0.00185). These327

result indicate that genes in which the variance in expression328
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Fig. 4. Functional analysis of age-related genes reveals enriched biological processes. A) A QQ plot of p-values for pathways tested for enrichment using gene set
enrichment analysis (GSEA) with genes ranked by either h2 or R2

age in four example tissues. B) GSEA enrichments from genes ranked by the mean βage across tissues.
Pathways with a correct P < 0.02 are shown. C) Average gene expression variance explained by age for mitochondrial (MT) genes (red), translation factor genes (purple),
interferon gamma genes (blue) and remaining genes (yellow) across all tissues. D) Volcano plot of the variance explained by age vs βage for mitochondrial, translation factors,
interferon gamma factors, and remaining genes. Density plot of each axis show on top and right.

is heritable tend to be under significantly less functional con-329

straint. In contrast, highly conserved genes that are intolerant330

to mutation are significantly less likely to exhibit heritable331

variation in gene expression, likely because their expression332

levels are additionally under constraint.333

Discussion334

Studying age-associated changes in gene expression provides335

critical insights into the underlying biological processes of336

aging. Here, we set out to quantify the relative contributions337

of aging and genetics to gene expression phenotypes across338

different human tissues. Our study finds that the predictive339

power of eQTLs is significantly impacted by age across sev-340

eral different tissues and that his effect is more pronounced in341

older individuals. These results extend upon previous work342

examining blood tissue (4) and highlight the varied impact of343

aging on eQTLs among different tissues. We show that this344

result is likely to be in part due to an increase in the inter-345

individual heterogeneity of gene expression patterns among346

older individuals, potentially as a result of the increased im-347

pact of the environment. However, our study is limited in348

it’s focus on bulk-tissue transcriptomic data. Early evidence349

from single cell studies already suggests that differences in350

gene expression heterogeneity vary among cell types of tis-351

sues as a function of age (6, 7, 21, 22). While these studies352

lack sufficient individual sample sizes and genetic diversity353

for the statistical approaches used herein, it is possible that354

in the future the availability of larger datasets will facilitate355

studying these phenomena at the single-cell level. The exten-356

sive tissue heterogeneity we observe suggests that patterns of357

aging will exhibit substantial cell-type specificity.358

We also present a novel approach to jointly model the impact359

of genetics and aging on gene expression variance to parse360

out the individual contributions of each of these factors. The361

increased complexity of our model has little impact on its362

accuracy with our expression heritability estimates strongly363

correlated with previous heritability measures across all tis-364

sues (mean Pearson’s r 0.89, Fig. S7). Using this model365

we show that age exhibits exceptionally varied affects on dif-366

ferent tissues, and indeed, in several tissues age contributes367

more to gene expression variance on average than genetics.368

These results also highlight a widespread coordinated sig-369

nature of age-associated decline in mitochondrial and trans-370
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A)
B)

C) D)

E)

F)

Fig. 5. Tissue-specific evolutionary signatures of aging. A) The expected relationship across genes between the per-gene age-associated slope of gene expression
(βage) and a genes level of constraint (measured by probability loss of function intolerance - pLI) . Medawar’s hypothesis predicts a negative relationship (shown in red)
between the time of expression and the level of constraint. B) βage across genes plotted as a function of pLI for a tissue exhibiting a Medawarian signature, and a non-
Medawarian signature. C) The slope of the relationship between βage and constraint across all tissues. D) Hallmark pathways in which the βage was significantly different
between Medawarian and non-Medawarian tissues. E) The relationship between βage and pLI among tissues showing the strongest Medawarian and non-Medawarian
signatures with genes in pathways from (D) highlighted in blue. F) The slope of the relationship between constraint (pLI) and heritability (h2) across tissues.

lation factors. Dysregulation in mitochondrial function and371

ribosome biogenesis have been documented as key players372

in aging, (23, 24), however our results highlight the tissue-373

specificity of these trends. Our model also allows us to quan-374

tify the tissue-specific evolutionary context of age-associated375

gene expression changes. We corroborate the inverse rela-376

tionship between age-at-expression and constraint, as pre-377

dicted by Medawar’s hypothesis and recently documented by378

others (8, 9, 17) across the vast majority of tissues. However,379

we also surprisingly identify five tissues which exhibit the op-380

posite pattern and show that age-associated signatures of in-381

creased proliferation and cancer are enriched in these tissues.382

These results highlight the distinct evolutionary forces that383

act on late-acting genes expressed in highly proliferative cell-384

types. Future work extending these analyses to the single-cell385

level will provide further insights into the cell-type-specific386

age-associated patterns of constraint, both in terms of gene387

expression levels and at the protein-coding level.388

Overall this work has several important implications. Our re-389

sults shed light on recent work on the prediction accuracy of390

polygenic risk scores (PRS) (25) which found that numerous391

factors, including age, sex, and socioeconomic status can pro-392

foundly impact the prediction accuracy of such scores even393

in individuals with the same genetic ancestry. Our results394

highlight that genetics are less predictive of expression phe-395

notypes in several different tissues in older individuals, po-396

tentially playing a role in differential PRS accuracy between397

young and old individuals. This also has important implica-398
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tions for disease association and prediction approaches that399

leverage expression quantitative trait loci to prioritize vari-400

ants (e.g. TWAS (26)). If a significant proportion of eQTLs401

exhibit age-associated biases in their effect size in a tissue of402

interest, then these approaches may be less powerful when403

applied to diseases for which age is a primary risk factor404

such as heart disease, Alzheimer’s dementias, cancers, and405

diabetes.406

The critical role of aging as a risk factor for many common407

human diseases underscores the importance of understanding408

its impact on cellular systems at the molecular level. Together409

our analyses provide novel insights into tissue-specific pat-410

terns of aging and the relative impact of genetics and aging411

on gene expression. We anticipate that future studies across412

tissues and cells of gene expression, chromatin structure, and413

epigenetics will further elucidate how both programmed and414

stochastic processes of aging drive human disease.415

Supplementary Note 1: Methods416

Data collection age groupings. We downloaded gene417

expression data for multiple individuals and tissues from418

GTEx V8 (10), which were previously aligned and processed419

against the hg19 human genome. Tissues were included in420

the analysis if they had >100 individuals in both the age≥ 55421

and <55 cohorts described below (Fig. S2). To compare gene422

expression heritability across individuals of different ages,423

for some analyses we split the GTEx data for each tissue into424

two age groups, "young" and "old," based on the median age425

of individuals in the full dataset, which was 55 (Fig. S1).426

Within each tissue dataset, we then equalized the number of427

individuals in the young and old groups by randomly down-428

sampling the larger group, to ensure that our models were429

equally powered for the two age groups.430

PEER factor analysis. We analyzed existing precomputed431

PEER factors available from GTEx to check for correlations432

between these hidden covariates and age. In particular, we433

fit a linear regression between age and each hidden covariate434

and identified significant age correlations using an F-statistic435

(Fig. S3). Because some of the covariates were correlated436

with age, we generated new age-independent hidden covari-437

ates of gene expression to remove batch and other confound-438

ing effects on gene expression while retaining age related439

variation. In particular, we first removed age contributions440

to gene expression by regressing gene expression on age and441

then ran PEER on the age-independent residual gene expres-442

sion to generate 15 age-independent hidden PEER factors.443

Quantifying the effect of eQTLs on gene expression in444

different age groups. Using the binary age groups defined445

above, we assessed the relative significance of eQTLs in old446

and young individuals by carrying out separate assessment of447

eQTLs identified by GTEx. For each gene in each tissue and448

each age group, we regressed the GTEx pre-normalized ex-449

pression levels on the genotype of the lead SNP (identified by450

GTEx) using 5 PCs, 15 PEER factors, sex, PCR protocol and451

sequencing platform as covariates, following the GTEx best452

practices. We confirmed our results using both our recom-453

puted PEER factors as well as the PEER factors provided by454

GTEx (Fig. S 4). To test for significant differences in ge-455

netic associations with gene expression between the old and456

young age groups, we compared the p-value distributions be-457

tween these groups for all genes and all SNPs in a given tissue458

using Welch’s t-test.459

Jensen-Shannon Divergence as a distance metric be-460

tween transcriptome profiles. To quantify differences in461

gene expression between individuals, we computed the pair-462

wise distance for all pairs of individuals in an age group using463

the square root of Jensen-Shannon Divergence (JSD) distance464

metric, which measures the similarity of two probability dis-465

tributions. Here we applied JSD between pairs of individuals’466

transcriptome vectors containing the gene expression values467

for each gene, which we converted to a distribution by nor-468

malizing by the sum of the entries in the vector. For two469

individuals’ transcriptome distributions, the JSD can be cal-470

culated as:471

JSD(P1,P2) =H(1
2P1 + 1

2P2)− 1
2(H(P1)+H(P2)) (1)

where Pi is the distribution for individual i and H is the Shan-472

non entropy function:473

H(X) =−
n∑
i=1

P (xi) log2(P (xi)) (2)

JSD is known to be a robust metric that is less sensitive to474

noise when calculating distance compared to traditional met-475

rics such as Euclidean distance and correlation. It has been476

shown that JSD metrics and other approaches yield similar477

results but that JSD is more robust to outliers (12). The square478

root of the raw JSD value follows the triangle inequality, en-479

abling us to treat it as a distance metric.480

Slope of JSD versus age. In addition to comparing JSD481

between the two age groups defined above, "young" and482

"old", we also binned all GTEx individuals into 6 age groups,483

from 20 to 80 years old with an increment of 10 years. We484

then computed pairwise distance and average age for each485

pair of individuals within each bin using the square root of486

JSD as the distance metric. We applied a linear regression487

model of JSD versus age to obtain slopes, confidence inter-488

vals, and p-values.489

Multi-SNP gene expression prediction. We used a multi-490

SNP gene expression prediction model based on PrediXcan491

(14) to corroborate our findings from the eQTL and JSD anal-492

yses on the two age groups, "young" and "old". For each493

gene in each tissue, we trained a multi-SNP model separately494

within each age group to predict individual-level gene expres-495

sion.496

Yg,t =
∑
i

βi,g,tXi+ ε (3)

Where βi,g,t is the coefficient or effect size for SNP Xi in497

gene g and tissue t and ε includes all other noise and environ-498

mental effects. The regularized linear model for each gene499
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considers dosages of all common SNPs within 1 megabase500

of the gene’s TSS as input, where common SNPs are de-501

fined as MAF > 0.05 and Hardy-Weinberg equilibrium P >502

0.05. We removed covariate effects on gene expression prior503

to model training by regressing out both GTEx covariates504

and age-independent PEER factors (described above). Co-505

efficients were fit using an elastic net model which solves the506

problem ((27)):507

minβ0,β
1

2N

N∑
j=1

(Yj−β0−XT
j β)2 +λ(1−α

2 ||β||22 +α||β||1)

(4)
The minimization problem contains both the error of our508

model predictions (Yj − β0 −XT
j β)2 and a regularization509

term λ(1−α
2 ||β||

2
2 + α||β||1) to prevent model overfitting.510

The elastic net regularization term incorporates both L1511

(||β||1)) and L2 (||β||22) penalties. Following PrediXcan,512

we weighted the L1 and L2 penalties equally using α = 0.5513

(14). For each model, the regularization parameter λ was514

chosen via 10-fold cross validation. The elastic net models515

were fit using Python’s glmnet package and R2 was eval-516

uated using scikit-learn. From the trained models for each517

gene, we evaluated training set geneticR2 (or h2) for the two518

age groups and subtracted h2
young − h2

old to get the differ-519

ence in gene expression heritability between the groups. We520

compared this average difference in heritability to the mean521

JSDold− JSDyoung and log(Pold)− log(Pyoung) using P-522

values from the eQTL analyses across genes.523

Joint model for expression prediction using SNPs and524

age. To uncover linear relationships between gene expres-525

sion and both age and genetics, we built a set of gene expres-526

sion prediction models using both common SNPs and stan-527

dardized age as input. An individual’s gene expression level528

Y for a gene g and tissue t is modeled as:529

Yg,t =
∑
i

βi,g,tXi+βage,g,tA+ ε (5)

Where A is the normalized age of an individual. Coefficients530

were fit using elastic net regularization, as above, which sets531

coefficients for non-informative predictors to zero. The sign532

of the fitted age coefficient (βage,g,t), when nonzero, reflects533

whether the gene in that tissue is expressed more in young534

(negative coefficient) or old (positive coefficient) individuals.535

We also evaluated the training set R2 using the fit model sep-536

arately for genetics (across all SNPs in the model) and age.537

To check consistency of tissue-specific gene expression her-538

itability estimates from our model and the original PrediX-539

can model trained on GTEx data, we evaluate Pearson’s r be-540

tween our heritability estimates and those of PrediXcan (Fig.541

S7), using heritability estimates from the original PrediXcan542

model available in PredictDB.543

Tissue specificity of age and genetic associations.544

We evaluated the variability of age and genetic associations545

across tissues using a measure of tissue specificity for age546

and genetic R2 (28). We measured the tissue-specificity of a547

gene g’s variance explained R2
g using the following metric:548

Sg =

∑n
t=1(1− R2

g,t

R2
g,max

)

n−1 (6)

Where n is the total number of tissues, R2
g,t is the variance549

explained by either age or genetics for the gene g in tissue t550

andR2
g,max is the maximum variance explained for g over all551

tissues. This metric can be thought of as the average reduc-552

tion in variance explained relative to the maximum variance553

explained across tissues for a given gene. The metric ranges554

from 0 to 1, with 0 representing ubiquitously high genetic or555

age R2 and 1 representing only one tissue with nonzero ge-556

netic or age R2 for a given gene. We calculate Sg separately557

for R2
age and R2

genetics across all genes.558

Functional constraint analysis. We quantified gene con-559

straint using probability of loss of function intolerance (pLI)560

from gnomAD 2.1.1 (18). We analyzed the relationships be-561

tween pLI vs βage and pLI vs heritability across genes. For562

these analyses, genes were only included if age or genetics563

were predictive of gene expression (R2 > 0) for that gene. For564

genes withR2 > 0, we used linear regression to determine the565

direction of the relationship between pLI and βage and heri-566

tability for each tissue. The F-statistic was used to determine567

whether pLI was significantly related to these two model out-568

puts. For pLI vs βage, a significant negative slope was consid-569

ered a Medawar trend (consistent with the Medawar hypothe-570

sis) and a significant positive slope a non-Medawar trend. We571

also analyzed the evolutionary constraint metric dN/dS (19)572

and its tissue-specific relationship with βage by determining573

the slope and significance of the linear regression, as above.574

Non-Medawar tissue analysis. To explore the non-575

Medawar trend in some tissues, we assessed the distribution576

of βage across Medawar and non-Medawar tissues for genes577

within each of the 50 MSigDB hallmark pathways (20). Sig-578

nificant differences between the distributions were called us-579

ing a t-test, and p-values were adjusted for multiple hypothe-580

sis testing using a Benjamini-Hochberg correction.581

Code availability. All analyses were performed in R ver-582

sion 4.0.2 and Python 3.6. All code is available online at583

https://github.com/sudmantlab/gene_expression_aging.584
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Fig S 1. Sample distribution of each GTEx tissue by age
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Fig S 3. Correlation of GTEx covariates with age.
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Fig S 4. QQ plot of eQTL p-values for old (red) and young (blue) cohorts across 27 tissues using GTEx PEER factors.
Significant differences between p-value distributions annotated for each tissue.
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Fig S 5. Scatter plot showing the correlation between the difference in average JSD between young and old individuals
and difference in eQTL log(p-value) between young and old
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Fig S 6. High correspondence of age-related changes in gene expression associations for single SNP and multi-SNP mod-
els. Scatter plot showing the correlation between the difference in heritability estimated by the multi-SNP linear model (PrediXcan)
in young and old individuals and difference in eQTL log(p-value) in young and old individuals
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Fig S 7. Pearson’s r of heritability estimate from PrediXcan (PredictDB) vs our model for each tissue

Fig S 8. Cumulative distribution of R2
age and h2 for all modeled genes within 27 tissues.
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Fig S 9. Proportion of genes within a tissue that have R2
age > h2
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Fig S 10. Scatter plot of each gene’s βage of multiSNP model using GTEx PEER factors vs age-independent PEER factors for Whole Blood

Fig S 11. GO gene set enrichment P-values across all tissue for genes ranked by either h2 or R2
age
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Fig S 12. GO Biological Processes common enrichment in all tissues with genes ranked by average βage (FDR 0.05)

Fig S 13. Relationship between the average βage and average R2 across tissues for genes associated with specific mitochondrial and translation pathways
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Fig S 14. More highly constrained, late expressed genes in non-Medawar tissues than in Medawar tissues. We plot the proportion of genes within each quadrant of
the gene constraint (pLI) vs. age of expression (βage) plots stratified by whether the tissue showed a significant Medawar or Non-Medawar trend.

Fig S 15. Linear regression estimates of evolutionary constraint (dN/dS data from ortholog comparison between 8,175 human and chimpanzee genes) vs age-
associated gene expression (βage) across tissues for R2

age > 0. 10/27 tissues have significant p-values (p-value < 0.001)
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Fig S 16. Consistency of Medawarian trend measures. We plot the slope of gene constraint metrics (pLI and dN/dS) vs βage for each tissue

Fig S 17. Gene expression heritability vs pLI for two tissues
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TISSUE #(old individuals) #(young individuals)
Adipose_Subcutaneous 349 345
Adipose_VisceralOmentum 267 292
AdrenalGland 119 150
Artery_Aorta 207 232
Artery_Coronary 126 122
Artery_Tibial 318 370
Breast_MammaryTissue 215 256
Cells_Culturedfibroblasts 247 275
Colon_Sigmoid 183 203
Colon_Transverse 166 257
Esophagus_GastroesophagealJunction 161 233
Esophagus_Mucosa 266 337
Esophagus_Muscularis 226 312
Heart_AtrialAppendage 252 192
Heart_LeftVentricle 248 224
Liver 125 117
Lung 310 304
Muscle_Skeletal 420 434
Nerve_Tibial 325 327
Pancreas 136 213
Prostate 110 142
Skin_NotSunExposedSuprapubic 319 313
Skin_SunExposedLowerleg 379 368
Stomach 133 239
Testis 210 190
Thyroid 344 343
WholeBlood 475 480

Table S 1. Number of old and young individuals per tissue
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Tissue Short name
Adipose_Subcutaneous AdiposeS
Adipose_VisceralOmentum AdiposeV
AdrenalGland AdrenalGland
Artery_Aorta ArteryA
Artery_Coronary ArteryC
Artery_Tibial ArteryT
Breast_Mammary_Tissue Breast
Cells_Cultured_fibroblasts Fibroblast
Colon_Sigmoid ColonS
Colon_Transverse ColonT
Esophagus_Gastroesophageal_Junction EsophagusGast
Esophagus_Mucosa EsophagusMuco
Esophagus_Muscularis EsophagusMus
Heart_Atrial_Appendage HeartAA
Heart_Left_Ventricle HeartLV
Liver Liver
Lung Lung
Muscle_Skeletal Muscle
Nerve_Tibial Nerve
Pancreas Pancreas
Prostate Prostate
Skin_Not_Sun_Exposed_Suprapubic SkinNotSun
Skin_Sun_Exposed_Lower_leg SkinSun
Stomach Stomach
Testis Testis
Thyroid Thyroid
Whole_Blood Blood

Table S 2. Tissues with short names
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