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Tissue-specific impacts of aging and genetics on
gene expression patterns in humans
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Age is the primary risk factor for many common human dis-
eases including heart disease, Alzheimer’s dementias, cancers,
and diabetes. Determining how and why tissues age differ-
ently is key to understanding the onset and progression of such
pathologies. Here, we set out to quantify the relative contri-
butions of genetics and aging to gene expression patterns from
data collected across 27 tissues from 948 humans. We show that
gene expression patterns become more erratic with age in sev-
eral different tissues reducing the predictive power of expres-
sion quantitative trait loci. Jointly modelling the contributions
of age and genetics to transcript level variation we find that the
heritability (h?) of gene expression is largely consistent among
tissues. In contrast, the average contribution of aging to gene
expression variance varied by more than 20-fold among tissues
with Rgge > h2 in 5 tissues. We find that the coordinated de-
cline of mitochondrial and translation factors is a widespread
signature of aging across tissues. Finally, we show that while
in general the force of purifying selection is stronger on genes
expressed early in life compared to late in life as predicted by
Medawar’s hypothesis, a handful of highly proliferative tissues
exhibit the opposite pattern. In contrast, gene expression varia-
tion that is under genetic control is strongly enriched for genes
under relaxed constraint. Together we present a novel frame-
work for predicting gene expression phenotypes from genetics
and age and provide insights into the tissue-specific relative con-
tributions of genes and the environment to phenotypes of aging.

A RY and RC contributed equally to this work
aging | genetics| eQTL | Medawar

Correspondence: psudmant@berkeley.edu, nilah@berkeley.edu

Introduction

Organismal survival requires molecular processes to be car-
ried out with the utmost precision. However, as individuals
age many biological processes deteriorate resulting in im-
paired function and disease. Such increases in the overall
variance of molecular processes are predicted by Medawar’s
germline mutation accumulation theory (1), which states that
because older individuals are less likely to contribute their ge-
netic information to the next generation, there is reduced se-
lection to eliminate deleterious phenotypes that appear late in
life (2). This theory also predicts that genes expressed early
in life should be under increased selective constraint com-
pared to genes expressed late in life. However, a key chal-
lenge remains in both quantifying age-associated changes in
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biological processes across tissues and identifying how ge-
netic variation influences such changes.

At the organismal level, age-associated changes in the het-
erogeneity of gene expression between individuals have been
observed for a handful of genes in humans (3). In an anal-
ysis of gene expression in monozygotic (identical) twins, 42
genes showed age-associated differences in gene expression,
suggesting a role for the environment in modulating gene ex-
pression with age (2, 3). Similarly, the proportion of expres-
sion quantitative trait loci (eQTLs) detected from blood in 70
year olds declined by 2.7% when they were resampled at 80
years old (4). However, the extent of this phenomenon, both
across genes and tissues, remains unclear (5). Age-associated
increases in the heterogeneity of gene expression have also
been observed at the level of individual cell-to-cell variation;
however, only some cell types appear to be impacted (6). In
a recent study of immune T-cells from young and aged indi-
viduals, no difference in cell-to-cell variability was observed
in unstimulated cells, however, upon immune activation the
older cells appeared more heterogeneous (7). It is not known
why some cell-types and not others may be more likely to
exhibit increased cellular variability.

The relationship between the age at which a specific gene
is expressed and the force of purifying selection has also re-
cently been explored across a number of species (8, 9). These
analyses have broadly confirmed that, on average, genes ex-
pressed later in life are under less constraint compared to
those expressed early in life. However, how these patterns
vary across different tissues and are impacted by genetic vari-
ation has not been systematically explored.

Here we set out to understand how aging affects the molecu-
lar heterogeneity of gene expression and to model the relative
impact of age and genetic variation on this phenotype across
tissues. First, using gene expression data from 948 individ-
uals in GTEx V8 (10), we show that eQTLs are less predic-
tive in older individuals, however to a different extent across
various tissues. We show that gene expression heterogene-
ity between individuals increases with age in these tissues.
Using a regularized linear model-based approach to jointly
model the impact of both age and genetic variation on gene
expression we find that while the average heritability of gene
expression is consistent across tissues, the average contribu-
tion of age varies substantially. Furthermore, while the ge-
netic regulation of gene expression is similar across tissues,
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age-associated changes in gene expression are highly tissue- 14
specific in their action. We use this joint model to identify 1
each gene’s age of expression and show that while in most 1
tissues late-expressed genes do tend to be under more relaxed 147
selective constraint, among a handful of highly proliferative 1
tissues the opposite trend holds. 149

150

Results !

152

Expression quantitative trait loci exhibit varying pre-
dictive power in old and young individuals across sev-
eral different tissues. To gain insight into how gene regula-
tory programs might be impacted by aging we analyzed tran-
scriptomic data collected across multiple tissues from 943
humans (GTEx version 8) (10). We hypothesized that aging
might dampen the effect of expression quantitative trait loci
(eQTLs) due to factors such as increased environmental vari-
ance or molecular infidelity (Fig. 1A). To test this hypothesis
we first classified individuals into young and old age groups
conservatively grouping individuals above and below the me-
dian age (55 years old, Fig. S1), respectively, restricting our
analyses to tissues with at least 100 individuals in both groups
(27 tissues in total, Fig. S2, Table S1). In each tissue we
down-sampled to match the sample size of old and young in-
dividuals while additionally controlling for co-factors such
as ancestry and technical confounders (methods). Of note, a
common approach to controlling for unobserved confounders
in large gene expression experiments is to probabilistically
infer hidden factors using statistical tools such as PEER (11). )
We noticed that many of the GTEx PEER factors were sig-1
nificantly correlated with sample age, with the top three cor- e
related PEER factors having a Pearson r of 0.33, -0.21, and ”e
-0.15 (Fig. S3). To prevent loss of age related variation, we e
recalculated a corrected set of PEER factors that were in-
dependent of sample age (Methods). We then assessed the e
significance of GTEx eQTLs in the young and old cohorts e
respectively, comparing the distribution of P-values over all o
genes between old and young individuals (Fig. 1A). In 20 out

of 27 (74%) of the assessed tissues, the P-value dlStrlbuthIl

was significantly different between young and old individu- o
als with genotypes more predictive of expression in younger
individuals in 12/20 cases (e.g. Fig. 1D). These results were
largely identical when the analyses were performed with the
original non-corrected PEER factors (18/27 tissues, Fig. S4).'®
These results suggest that the predictive power of eQTLs is '*
impacted by the sample age across the vast majority of tis- '
sues. Furthermore this effect is more pronounced in older '
samples compared with younger samples. 189

164

184

190

Age-associated increases in gene expression hetero- ™'
geneity reduce gene expression heritability. We hypoth- '
esized that the reduced predictive power of eQTLs in some ¢
older tissues might be in part due to an overall increase in '*
expression heterogeneity in these tissues, potentially as a re- 1%
sult of increased environmental variance. To test if such an 1ss
effect would broadly affect expression across all genes in a 197
tissue (Fig. 2A) we calculated the distribution of pairwise 1ss
distances among individual’s tissue-specific gene expression s

2 | bioRxiv

profiles using the Jensen-Shannon Divergence (JSD) (12, 13)
as a distance metric. The JSD is a robust distance which is
less impacted by outliers compared to other methods (e.g.
Euclidean distance) (13). Comparing the distribution of pair-
wise differences in transcriptional profiles within distinct age
groups allows us to determine if gene expression signatures
are more similar among younger individuals versus among
older individuals.

We compared the mean difference in gene expression dis-
tances among old and young individuals as well as the slope
of the inter-individual JSD and when grouping individuals
into six bins spanning 20-80 years old (see methods, Fig. 2B,
2C). These two strategies yielded highly similar results (Fig.
2B R=0.8) and identified a cluster of 12 tissues exhibiting ro-
bust increases in the average inter-individual expression dis-
tance as a function of age (e.g. Fig. 2C). Our JSD analysis
of old and young individuals was also negatively correlated
with the results from our analysis of eQTLs across old and
young individuals (Fig. S5, R=-0.48, P=0.01) highlighting
that tissues with age-associated increases in inter-individual
heterogeneity were likely to also exhibit reductions in the
proportion of variance described by eQTLs. Conversely, tis-
sues in which eQTLs explained a higher proportion of gene
expression variance in older individuals exhibited a decrease
in inter-individual gene expression variation.

To expand our eQTL analyses to account for the combined
impact of nearby SNPs, we utilized the multi-SNP regular-
ized linear model of PrediXcan (14). This model has the
benefit of combining genetic effects across many loci, in-
stead of examining just a single eQTL variant. This com-
bined genetic contribution to gene expression variance results
in an estimate of the heritability (h?) for each gene. We ap-
plied this model independently in old and young individuals
to quantify h?2 and found that the average per-gene difference
in h2 between old and young individuals was strongly nega-
tively correlated with the difference in JSD between samples
(R=0.6, P=9.9e-4, Fig. 2D, Fig. S6). Together these results
suggest that across numerous tissues aging is associated with
an overall increase in gene expression heterogeneity. This in-
creased expression variance drives a reduction in the average
heritability of gene expression across these tissues.

Jointly modeling the impact of age and genetics
on gene expression identifies distinct, tissue-specific
patterns of aging. A more powerful approach to understand
how both genetics and age impact gene expression variation
is to jointly model these factors simultaneously. We set out
to extend the regularized linear model to incorporate an age
factor (Fig. 3A) allowing us to parse apart the individual
contributions of genetics (Rgenetlcs or h?), age (Rage) and
the environment (R2 ;. ), to the expressmn variance
of each gene (e.g. Fig. 3B, Fig. 3C). We define Renwmnment
as all sources of variation not captured by h? and Rage Es-
timates of h? in our extended model were highly consistent
with those in the original PrediXcan approach (Fig. S 7).

Employing our model across each tissue independently we
find that average heritability of gene expression was largely

Yamamoto and Chung etal. | Gene Expression and Aging
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Fig. 1. eQTLs become less explanatory with age in many tissues. A) A hypothetical model of the differing power to detect eQTLs in old and young cohorts. B) QQ
plots of eQTL p-values (plotted as -log(P)) for old (red) and young (blue) individuals from a linear model correlating expression with the lead SNP for each gene in blood and
stomach tissue and C) all other tissues (Table S2). D) Examples of gene expression binned by genotype and age for four genes in which eQTLs are less explanatory in older

individuals in whole blood.

consistent among tissues ranging from 2.9%-5.7% with 40% 22
of genes having an h?>10% in at least one tissue (Fig. 3D, 2
S8). Thus, while the variation in expression of many indi- 224
vidual genes is strongly influenced by genetics, on average, 22
genetics explains a small proportion of overall gene expres- 2z
sion variation. In contrast, the average contribution of aging 227
to gene expression varied more than 20-fold among tissues

from 0.4%-7.9% with the average Rgge greater than the av- s
erage h? in 5 tissues. Among these 5 tissues the expression 2z
of 39-54% of genes was more influenced by age than by ge- 23
netics (i.e. R2,. >h?, Fig. S9) and across all tissues 45% of 2

age
genes had an R, >10% in at least one tissue. Assessing the 2%

age
tissue-speciﬁcitygof these trends on a per-gene basis we found 2%
while the estimated heritability of gene expression tended to 24
be similar among different tissues, the age-associated compo- 23
nent exhibited significantly more tissue specificity (P<2.2e- 2%
16, Fig. 3E). We note that the widespread signatures of 2
age-associated gene expression variance that we identify are 2%
virtually undetectable when using the GTEx-provided PEER 2
factors. Just 1.84% of the age-associated genes we identify
have nonzero age coefficient when using these GTEx PEER 2¢
factors (Fig. S10). Our model thus widely expands the util- 24

243
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ity of the GTEx dataset and exploration of critical biological
signatures of aging. Together these results imply that age-
associated patterns of gene expression exhibit substantially
more tissue specificity than those that are influenced by ge-
netics and among several tissues age plays a much stronger
role in driving gene expression patterns than genetics.

Coordinated decline of mitochondrial and translation
factors is a widespread signature of aging across tis-
sues. To understand the underlying biological implications
of age-associated gene expression changes we applied gene
set enrichment analysis (GSEA)(15) to each tissue indepen-
dently, ranking genes either by the relative contribution of
genetics (h?) or aging (Rgge). Comparing the distribution
of P-values from enriched GO-annotations we found that
pathways enriched for age-associated variance were substan-
tially more enriched for significance than pathways associ-
ated with genetic-associated variance (e.g. Fig. 4A). We
found more age-associated pathway enrichment even in tis-
sues for which the average age-associated contribution to
gene expression was low (e.g. Pancreas, Fig. S11). This
implies that while age-associated changes in gene expression
vary widely in their magnitude among tissues, these changes
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Fig. 2. Inter-individual gene expression heterogeneity increases with age for a subset of tissues. A) Hypothesized age-associated increase in gene expression

heterogeneity (top) and our approach for quantifying the inter-individual expression d

istance with age using the Jensen Shannon Divergence metric (JSD) for age-binned

individuals (bottom). B) Consistency of measuring the average age-associated change in gene expression heterogeneity across a tissue using a binary binning strategy
(y-axis, JSDg1a-JSDyoung) OF @ 6 bin strategy (x-axis, slope of JSD across 6 bins). C) The distributions of JSD distances for two tissues in old and young bins. D) The
relationship between gene expression heterogeneity and the difference in expression heritability between old and young individuals.

consistently impact critical biological processes. A GSEA 27
enrichment analysis of genes ranked by the tissue-averaged 21
slope of the age-associated trend (B.4c) highlighted several 27
key aging-associated pathways. Pathways associated with 27
various mitochondrial and metabolic processes and transla- 27«
tion were enriched for having —f,4c values, implying age- 275
associated decreases (Fig. 4B). A single immune pathway, 27
the interferon-gamma response was enriched having +f3age 277
values (Fig. 4B). An additional 18 immune pathways were 27
identified as having age-associated increases in gene expres- 27
sion using a more lenient significance threshold (FDR<0.05) 2s0
(Fig. S12). In contrast, no pathways were significantly en-

riched when genes were ranked by average h2.
281

To further explore the functional impact of age-associated 22
gene expression changes we compared the R2,, of allzss
nuclear-encoded mitochondrial genes (n=1120, (16)), and 2s«
translation initiation, elongation, and termination factors, 2
across tissues (Fig. 4C, Fig. S13). Genes in these path- 2s
ways were exceptionally enriched for age-associated gene ex- 2s7
pression across several tissues. In some cases >10% of the 2
average expression variation of mitochondrial or translation 2s
factor genes could be explained by age. .z Was consis- ze
tently negative in these mitochondrial and translation factor 2o
genes (Fig. 4D) highlighting that genes in these pathways 20
exhibit a systematic decrease in expression as a function of 2s
age. Overall across tissues an average of 36% of all mi- 2s

4 | bioRxiv

tochondrial genes (406/1120), and 35% of translation fac-
tors (119/337) exhibited age-associated declines, however in
some tissues these proportions exceeded 60%. In contrast,
the only pathway associated with age-associated increases
in expression, interferon-gamma response genes, was largely
specific to blood and arterial tissue (Fig. 4C), likely due to the
role of this pathway in immune cells. Together these results
demonstrate that the coordinated decline of mitochondrial
genes and translation factors is a widespread phenomenon of
aging across several tissues with potential phenotypic conse-
quences.

Distinct evolutionary signatures of gene expression
patterns influenced by aging and genetics. Evolution-
ary theory predicts that due to the increased impact of selec-
tion in younger individuals, genes that increase as a func-
tion of age (Bage > 0) should be under reduced selective
constraint compared to genes that are highly expressed in
young individuals (Bage < 0), a theory of aging known as
Medawar’s hypothesis (1) (Fig. 5A). Several recent studies
have demonstrated the generality of this trend across species
(8, 9, 17) however the tissue-specificity of this theoretical
prediction has not been explored. We sought to test the gener-
ality of this trend across different tissues by comparing Bage
with the level of constraint on genes, quantified as the proba-
bility loss of function intolerance (pLI) score from gnomAD

Yamamoto and Chung etal. | Gene Expression and Aging
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either age genetics.

(18). As expected, across the vast majority of tissues Bage st2
was significantly negatively correlated with pLI (Fig. 5B, a1
5C), in line with Medawar’s hypothesis. However, five tis- a1
sues exhibited significant signatures in the opposite direc-ais
tion including prostate, transverse colon, breast, whole blood, 1
and lung tissue (P < 1073). These five tissues with non- si7
Medawarian trends are driven by highly constrained, func- sis
tionally important genes being expressed at a higher rate in s
older individuals (Fig. S14). Using dN/dS (19) as an al- w20
ternative metric of gene constraint yielded highly correlated
results (R=-0.72, P=2.5e-5 Fig. S15, S16).

322
To explore why these five tissues might exhibit distinctive sz
evolutionary signatures of aging we compared the distribu- sz
tion of significant 8,4 parameters between Medawarian and ses
non-Medawarian tissues among different hallmark pathways 2
(20). We found 11 signatures exhibiting significantly in- s
creased a5 (FDR<0.01) compared to non-Medawarian tis- ses
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and h? for each tissue, error bar indicating confidence interval for the estimate. E) The tissue specificity score of R? across 27 tissues for each gene from

sues (Fig. 5D, 5E) including DNA-damage, TGF-3 sig-
nalling, MYC targets, and epithelial-to-mesenchymal transi-
tion pathways most prominently. All of these signatures are
broadly correlated with cellular proliferation, differentiation,
and cancer. These results highlight that gene expression pat-
terns in tissues and cell-types that proliferate throughout the
course of an individuals life may be subjected to distinct evo-
lutionary pressures.

We also explored the relationship between gene expression
heritability and constraint. Across all tissues h? was signifi-
cantly negatively correlated with pLI (27/27 tissues, P-value
< 1073) (Fig. 5F, S17). While this trend was consistent
across tissues, intriguingly it was strongest in heart tissues.
The exception was liver, which also had the highest average
R2 ironment @mong all tissues, which was only nominally

significant after multiple test correction (P<0.00185). These
result indicate that genes in which the variance in expression

bioRxiv | 5


https://doi.org/10.1101/2021.11.16.468753

329

330

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.16.468753; this version posted November 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A) Cotn Trnsrse e
20
15
10
5
§ = | =—— |
So
o
; Pancreas Whole Blood Age
= Genetics
o

L

0 1 2 3 4 0 1 2 3 4
-log(Expected)
6) D)
0.125- It
o all translation factors (n=337) !
o all nuclear encoded MT genes (n=1120) l
0.1001 response to interferon gamma (n=196)
. remaining genes
° ° °
°
ot
? e
® 0.075+4 °
o g ?
o, %0
0.050 4 ?8o0o%0
4 o
]
89 o %2 N
0.0254 ¢ o %4
e 8°
0o ¢
oo004,
SRR < QS>>0 O > ON N o K LD
B & S T KNG B2 L EE T 8.2 8 O S L L L S
SRR SN R e e S
@ LV N & v% %S O8N
& ) K N NS
v <& & Q/eoQ

Age

p adjusted

§ o017
0183

§ 80
00108

setSize
100
200
300
400
500

Enrichment e

N

Fig. 4. Functional analysis of age-related genes reveals enriched biological processes. A) A QQ plot of p-values for pathways tested for enrichment using gene set

2
age

enrichment analysis (GSEA) with genes ranked by either h2 or R
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interferon gamma genes (blue) and remaining genes (yellow) across all tissues. D) Volcano plot of the variance explained by age vs 3. for mitochondrial, translation factors,
interferon gamma factors, and remaining genes. Density plot of each axis show on top and right.

is heritable tend to be under significantly less functional con- s«
straint. In contrast, highly conserved genes that are intolerant sso
to mutation are significantly less likely to exhibit heritable ss:
variation in gene expression, likely because their expression as
levels are additionally under constraint. 353

354

355

Discussion

356

Studying age-associated changes in gene expression provides 37
critical insights into the underlying biological processes of ¢
aging. Here, we set out to quantify the relative contributions ase
of aging and genetics to gene expression phenotypes across sso
different human tissues. Our study finds that the predictive s
power of eQTLs is significantly impacted by age across sev- s
eral different tissues and that his effect is more pronounced in as
older individuals. These results extend upon previous work s
examining blood tissue (4) and highlight the varied impact of ss
aging on eQTLs among different tissues. We show that this ses
result is likely to be in part due to an increase in the inter- ser
individual heterogeneity of gene expression patterns among ass
older individuals, potentially as a result of the increased im- as
pact of the environment. However, our study is limited in sz

6 | bioRxiv

it’s focus on bulk-tissue transcriptomic data. Early evidence
from single cell studies already suggests that differences in
gene expression heterogeneity vary among cell types of tis-
sues as a function of age (6, 7, 21, 22). While these studies
lack sufficient individual sample sizes and genetic diversity
for the statistical approaches used herein, it is possible that
in the future the availability of larger datasets will facilitate
studying these phenomena at the single-cell level. The exten-
sive tissue heterogeneity we observe suggests that patterns of
aging will exhibit substantial cell-type specificity.

We also present a novel approach to jointly model the impact
of genetics and aging on gene expression variance to parse
out the individual contributions of each of these factors. The
increased complexity of our model has little impact on its
accuracy with our expression heritability estimates strongly
correlated with previous heritability measures across all tis-
sues (mean Pearson’s r 0.89, Fig. S7). Using this model
we show that age exhibits exceptionally varied affects on dif-
ferent tissues, and indeed, in several tissues age contributes
more to gene expression variance on average than genetics.
These results also highlight a widespread coordinated sig-
nature of age-associated decline in mitochondrial and trans-
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Fig. 5. Tissue-specific evolutionary signatures of aging. A) The expected relationship across genes between the per-gene age-associated slope of gene expression

(Bage) and a genes level of constraint (measured by probability loss of function intolerance - pLlI) .

Medawar’s hypothesis predicts a negative relationship (shown in red)

between the time of expression and the level of constraint. B) 3.z across genes plotted as a function of pLI for a tissue exhibiting a Medawarian signature, and a non-
Medawarian signature. C) The slope of the relationship between ... and constraint across all tissues. D) Hallmark pathways in which the 3., was significantly different
between Medawarian and non-Medawarian tissues. E) The relationship between ... and pLI among tissues showing the strongest Medawarian and non-Medawarian
signatures with genes in pathways from (D) highlighted in blue. F) The slope of the relationship between constraint (pLI) and heritability (h.2) across tissues.

lation factors. Dysregulation in mitochondrial function and ass
ribosome biogenesis have been documented as key players ass
in aging, (23, 24), however our results highlight the tissue- as
specificity of these trends. Our model also allows us to quan- sss

types. Future work extending these analyses to the single-cell
level will provide further insights into the cell-type-specific
age-associated patterns of constraint, both in terms of gene
expression levels and at the protein-coding level.

tify the tissue-specific evolutionary context of age-associated

gene expression changes.

Yamamoto and Chung etal. |

We corroborate the inverse rela- *°
tionship between age-at-expression and constraint, as pre- **°
dicted by Medawar’s hypothesis and recently documented by '
others (8, 9, 17) across the vast majority of tissues. However, *?
we also surprisingly identify five tissues which exhibit the op- *°
posite pattern and show that age-associated signatures of in- 3
creased proliferation and cancer are enriched in these tissues. **
These results highlight the distinct evolutionary forces that 3%
act on late-acting genes expressed in highly proliferative cell- *’

Gene Expression and Aging

Overall this work has several important implications. Our re-
sults shed light on recent work on the prediction accuracy of
polygenic risk scores (PRS) (25) which found that numerous
factors, including age, sex, and socioeconomic status can pro-
foundly impact the prediction accuracy of such scores even
in individuals with the same genetic ancestry. Our results
highlight that genetics are less predictive of expression phe-
notypes in several different tissues in older individuals, po-
tentially playing a role in differential PRS accuracy between

as  young and old individuals. This also has important implica-
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tions for disease association and prediction approaches that «ss
leverage expression quantitative trait loci to prioritize vari- ss4
ants (e.g. TWAS (26)). If a significant proportion of eQTLS 455
exhibit age-associated biases in their effect size in a tissue of «s
interest, then these approaches may be less powerful when ss7
applied to diseases for which age is a primary risk factor «s
such as heart disease, Alzheimer’s dementias, cancers, and sse
diabetes.

The critical role of aging as a risk factor for many common 4
human diseases underscores the importance of understanding 4
its impact on cellular systems at the molecular level. Together 2
our analyses provide novel insights into tissue-specific pat- 463
terns of aging and the relative impact of genetics and aging %+
on gene expression. We anticipate that future studies across 45
tissues and cells of gene expression, chromatin structure, and 46
epigenetics will further elucidate how both programmed and 47

stochastic processes of aging drive human disease. 468
469

Supplementary Note 1: Methods ::
Data collection age groupings. We downloaded gene
expression data for multiple individuals and tissues from
GTEx V8 (10), which were previously aligned and processed
against the hgl9 human genome. Tissues were included in
the analysis if they had >100 individuals in both the age > 55 "
and <55 cohorts described below (Fig. S2). To compare gene
expression heritability across individuals of different ages,
for some analyses we split the GTEx data for each tissue into
two age groups, "young" and "old," based on the median age ,,,
of individuals in the full dataset, which was 55 (Fig. SI).,,
Within each tissue dataset, we then equalized the number of
individuals in the young and old groups by randomly down- ,,,
sampling the larger group, to ensure that our models were ,,
equally powered for the two age groups. 7o
480
PEER factor analysis. We analyzed existing precomputed
PEER factors available from GTEx to check for correlations ss:
between these hidden covariates and age. In particular, we 4
fit a linear regression between age and each hidden covariate s
and identified significant age correlations using an F-statistic s
(Fig. S3). Because some of the covariates were correlated sss
with age, we generated new age-independent hidden covari- 4
ates of gene expression to remove batch and other confound- 47
ing effects on gene expression while retaining age related s
variation. In particular, we first removed age contributions ss
to gene expression by regressing gene expression on age and
then ran PEER on the age-independent residual gene expres- 4
sion to generate 15 age-independent hidden PEER factors. s
492
Quantifying the effect of eQTLs on gene expression in «:
different age groups. Using the binary age groups defined 4o+
above, we assessed the relative significance of eQTLs in old 4
and young individuals by carrying out separate assessment of s
eQTLs identified by GTEX. For each gene in each tissue and
each age group, we regressed the GTEx pre-normalized ex-
pression levels on the genotype of the lead SNP (identified by «s7
GTEXx) using 5 PCs, 15 PEER factors, sex, PCR protocol and s
sequencing platform as covariates, following the GTEx best

8 | bioRxiv

practices. We confirmed our results using both our recom-
puted PEER factors as well as the PEER factors provided by
GTEx (Fig. S 4). To test for significant differences in ge-
netic associations with gene expression between the old and
young age groups, we compared the p-value distributions be-
tween these groups for all genes and all SNPs in a given tissue
using Welch’s t-test.

Jensen-Shannon Divergence as a distance metric be-
tween transcriptome profiles. To quantify differences in
gene expression between individuals, we computed the pair-
wise distance for all pairs of individuals in an age group using
the square root of Jensen-Shannon Divergence (JSD) distance
metric, which measures the similarity of two probability dis-
tributions. Here we applied JSD between pairs of individuals’
transcriptome vectors containing the gene expression values
for each gene, which we converted to a distribution by nor-
malizing by the sum of the entries in the vector. For two
individuals’ transcriptome distributions, the JSD can be cal-
culated as:

1 1 1
JSD(Py, P») :H(§P1+§P2)—§(H(P1)+H(P2)) @)

where P; is the distribution for individual ¢ and H is the Shan-
non entropy function:

n

H(X)=—> Pl(x;)logy(P(z:))

i=1

(2)

JSD is known to be a robust metric that is less sensitive to
noise when calculating distance compared to traditional met-
rics such as Euclidean distance and correlation. It has been
shown that JSD metrics and other approaches yield similar
results but that JSD is more robust to outliers (12). The square
root of the raw JSD value follows the triangle inequality, en-
abling us to treat it as a distance metric.

Slope of JSD versus age. In addition to comparing JSD
between the two age groups defined above, "young" and
"old", we also binned all GTEx individuals into 6 age groups,
from 20 to 80 years old with an increment of 10 years. We
then computed pairwise distance and average age for each
pair of individuals within each bin using the square root of
JSD as the distance metric. We applied a linear regression
model of JSD versus age to obtain slopes, confidence inter-
vals, and p-values.

Multi-SNP gene expression prediction. We used a multi-
SNP gene expression prediction model based on PrediXcan
(14) to corroborate our findings from the eQTL and JSD anal-
yses on the two age groups, "young" and "old". For each
gene in each tissue, we trained a multi-SNP model separately
within each age group to predict individual-level gene expres-
sion.

Yo=Y BigiXite 3)

K]

Where 3; 4 is the coefficient or effect size for SNP X; in
gene g and tissue ¢ and e includes all other noise and environ-
mental effects. The regularized linear model for each gene
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considers dosages of all common SNPs within 1 megabase s«
of the gene’s TSS as input, where common SNPs are de- sss
fined as MAF > 0.05 and Hardy-Weinberg equilibrium P >
0.05. We removed covariate effects on gene expression prior
to model training by regressing out both GTEx covariates
and age-independent PEER factors (described above). Co-
efficients were fit using an elastic net model which solves the

problem ((27)): ::
1 & 1-a !
mingo, gy D05~ = X} B 1 ol e
= (4) 556

The minimization problem contains both the error of our sss
model predictions (Y; — o — X} 3)* and a regularization sss

term A(15%||8|13 + a|B]1) to prevent model overfitting. 57
The elastic net regularization term incorporates both L1 5
(IB]]1)) and L2 (]|B]|2) penalties. Following PrediXcan,

we weighted the L1 and L2 penalties equally using v = 0.5 %°
(14). For each model, the regularization parameter A was %°
chosen via 10-fold cross validation. The elastic net models '
were fit using Python’s glmnet package and R? was eval- 52
vated using scikit-learn. From the trained models for each %°
gene, we evaluated training set genetic R? (or h?) for the two %+
age groups and subtracted h3,,,, — h?4 to get the differ- %
ence in gene expression heritability between the groups. We 5%
compared this average difference in heritability to the mean %7
JSDo1q — JSDyoung and log(Ppq) —log(Pyoung) using P- 5

values from the eQTL analyses across genes. 569
570

Joint model for expression prediction using SNPs and *"'
age. To uncover linear relationships between gene expres- *
sion and both age and genetics, we built a set of gene expres- *°
sion prediction models using both common SNPs and stan- ***
dardized age as input. An individual’s gene expression level

Y for a gene g and tissue ¢ is modeled as: o

576

(5) 577

Yg,t = Zﬁz,g,th+6age,g,tA+€ .
’ 579
Where A is the normalized age of an individual. Coefficients se
were fit using elastic net regularization, as above, which sets s
coefficients for non-informative predictors to zero. The sign
of the fitted age coefficient (Bqge,g,t), When nonzero, reflects se
whether the gene in that tissue is expressed more in young 5
(negative coefficient) or old (positive coefficient) individuals. s
We also evaluated the training set R? using the fit model sep-
arately for genetics (across all SNPs in the model) and age. sss
To check consistency of tissue-specific gene expression her- 7
itability estimates from our model and the original PrediX- o
can model trained on GTEX data, we evaluate Pearson’s r be- g,
tween our heritability estimates and those of PrediXcan (Fig. ZZ;
S7), using heritability estimates from the original PrediXcan
model available in PredictDB.

593
Tissue specificity of age and genetic associations. s
We evaluated the variability of age and genetic associations ’;’
across tissues using a measure of tissue specificity for age ser

Yamamoto and Chung etal. | Gene Expression and Aging

and genetic R? (28). We measured the tissue-specificity of a
gene g’s variance explained Rg using the following metric:

n R,
(1= RZ rr’m)
Sy = — : (6)

Where n is the total number of tissues, Rg)t is the variance
explained by either age or genetics for the gene g in tissue ¢
and R;max is the maximum variance explained for g over all
tissues. This metric can be thought of as the average reduc-
tion in variance explained relative to the maximum variance
explained across tissues for a given gene. The metric ranges
from O to 1, with O representing ubiquitously high genetic or
age R? and 1 representing only one tissue with nonzero ge-
netic or age R? for a given gene. We calculate S, separately
for Ry and RZ, 10 across all genes.

Functional constraint analysis. We quantified gene con-
straint using probability of loss of function intolerance (pLI)
from gnomAD 2.1.1 (18). We analyzed the relationships be-
tween pLI vs Bage and pLI vs heritability across genes. For
these analyses, genes were only included if age or genetics
were predictive of gene expression (R? > 0) for that gene. For
genes with R? > 0, we used linear regression to determine the
direction of the relationship between pLI and (a4e and heri-
tability for each tissue. The F-statistic was used to determine
whether pLI was significantly related to these two model out-
puts. For pLIvs B¢, a significant negative slope was consid-
ered a Medawar trend (consistent with the Medawar hypothe-
sis) and a significant positive slope a non-Medawar trend. We
also analyzed the evolutionary constraint metric dN/dS (19)
and its tissue-specific relationship with 3,s. by determining
the slope and significance of the linear regression, as above.

Non-Medawar tissue analysis.To explore the non-
Medawar trend in some tissues, we assessed the distribution
of Bage across Medawar and non-Medawar tissues for genes
within each of the 50 MSigDB hallmark pathways (20). Sig-
nificant differences between the distributions were called us-
ing a t-test, and p-values were adjusted for multiple hypothe-
sis testing using a Benjamini-Hochberg correction.

Code availability. All analyses were performed in R ver-
sion 4.0.2 and Python 3.6. All code is available online at
https://github.com/sudmantlab/gene_expression_aging.
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Fig S 2. Sample number for individuals above and below the median age by tissue for 47 GTEx tissues
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TISSUE #(old individuals) #(young individuals)
Adipose_Subcutaneous 349 345
Adipose_VisceralOmentum 267 292
AdrenalGland 119 150
Artery_Aorta 207 232
Artery_Coronary 126 122
Artery_Tibial 318 370
Breast_ MammaryTissue 215 256
Cells_Culturedfibroblasts 247 275
Colon_Sigmoid 183 203
Colon_Transverse 166 257
Esophagus_GastroesophagealJunction 161 233
Esophagus_Mucosa 266 337
Esophagus_Muscularis 226 312
Heart_AtrialAppendage 252 192
Heart_LeftVentricle 248 224
Liver 125 117
Lung 310 304
Muscle_Skeletal 420 434
Nerve_Tibial 325 327
Pancreas 136 213
Prostate 110 142
Skin_NotSunExposedSuprapubic 319 313
Skin_SunExposedLowerleg 379 368
Stomach 133 239
Testis 210 190
Thyroid 344 343
WholeBlood 475 480

Table S 1. Number of old and young individuals per tissue
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Tissue Short name
Adipose_Subcutaneous AdiposeS
Adipose_VisceralOmentum AdiposeV
AdrenalGland AdrenalGland
Artery_Aorta ArteryA
Artery_Coronary ArteryC
Artery_Tibial ArteryT
Breast_ Mammary_Tissue Breast
Cells_Cultured_fibroblasts Fibroblast
Colon_Sigmoid ColonS
Colon_Transverse ColonT
Esophagus_Gastroesophageal _Junction EsophagusGast
Esophagus_Mucosa EsophagusMuco
Esophagus_Muscularis EsophagusMus
Heart_Atrial_Appendage HeartAA
Heart_Left_Ventricle HeartLV

Liver Liver

Lung Lung
Muscle_Skeletal Muscle
Nerve_Tibial Nerve
Pancreas Pancreas
Prostate Prostate
Skin_Not_Sun_Exposed_Suprapubic SkinNotSun
Skin_Sun_Exposed_Lower_leg SkinSun
Stomach Stomach

Testis Testis

Thyroid Thyroid
Whole_Blood Blood

Table S 2. Tissues with short names
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