
Marker-free characterization of single live circulating tumor

cell full-length transcriptomes

Sarita Poonia1, Anurag Goel2, Smriti Chawla1, Namrata Bhattacharya2,13 , Priyadarshini Rai1, Yi Fang Lee3,4, Yoon Sim

Yap14, Jay West5,6, Ali Asgar Bhagat3,7,8 , Juhi Tayal9, Anurag Mehta10, Gaurav Ahuja1, Angshul Majumdar2,11,12 * , Naveen

Ramalingam5* , Debarka Sengupta1,2,11,13*

1. Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi),

Okhla, Phase III, New Delhi-110020, India.

2. Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi

(IIIT-Delhi), Okhla, Phase III, New Delhi-110020, India.

3. Biolidics Limited, 81 Science Park Drive, 02-03 The Chadwick, Singapore 118257, Singapore.

4. Current address: Thermo Fisher Scientific, 33 Marsiling Industrial Estate Rd 3, #07-06, Singapore 739256.

5. Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, CA 94080, USA.

6. Current address: BioSkryb Corporation, BioLabs, 701 W Main St, Suite 200, Durham, NC 27701, USA.

7. Current address: Department of Biomedical Engineering, Faculty of Engineering, National University of

Singapore, Engineering Drive 1, Singapore 117575, Singapore.

8. Current address: Institute for Health Innovation and Technology (iHealthtech), National University of

Singapore, 14 Medical Drive, Singapore 117599, Singapore.

9. Department of Research, Rajiv Gandhi Cancer Institute and Research Centre-delhi(RGCIRC-Delhi),D-18,

Sec V Rohini. New Delhi 110085.

10. Department of Laboratory Services and Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research

Centre-delhi(RGCIRC-Delhi),D-18, Sec V Rohini. New Delhi 110085.

11. Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi),

Okhla, Phase III, New Delhi-110020, India.

12. Department of Electronics & Communications Engineering, Indraprastha Institute of Information

Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi-110020, India.

13. Australian Prostate Cancer Research Centre-Queensland, Faculty of Health, School of Biomedical Sciences,

Centre for Genomics and Personalised Health, Queensland University of Technology, Translational

Research Institute, Brisbane, Australia.

14. National Cancer Centre Singapore, 11 Hospital Dr, Singapore 169610, Singapore

*Corresponding authors: {debarka@iiitd.ac.in, naveen.ramalingam@fluidigm.com, angshul@iiitd.ac.in}.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468747doi: bioRxiv preprint 

mailto:debarka@iiitd.ac.in
mailto:naveen.ramalingam@fluidigm.com
mailto:angshul@iiitd.ac.in
https://doi.org/10.1101/2021.11.16.468747
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

The identification and characterization of circulating tumor cells (CTCs) are important for

gaining insights into the biology of metastatic cancers, monitoring disease progression, and

medical management of the disease. The limiting factor that hinders enrichment of purified

CTC populations is their sparse availability, heterogeneity, and altered phenotypic traits relative

to the tumor of origin. Intensive research both at the technical and molecular fronts led to the

development of assays that ease CTC detection and identification from the peripheral blood.

Most CTC detection methods use a mix of size selection, immune marker based white blood

cells (WBC) depletion, and positive enrichment antibodies targeting tumor‐associated antigens.

However, the majority of these methods either miss out on atypical CTCs or suffer from WBC

contamination. Single-cell RNA sequencing (scRNA-Seq) of CTCs provides a wealth of

information about their tumors of origin as well as their fate and is a potent method of enabling

unbiased identification of CTCs. We present unCTC, an R package for unbiased identification

and characterization of CTCs from single-cell transcriptomic data. unCTC features many

standard and novel computational and statistical modules for various analysis tasks. These

include a novel method of scRNA-Seq clustering, named Deep Dictionary Learning using

K-means clustering cost (DDLK), expression based copy number variation (CNV) inference, and

combinatorial, marker-based verification of the malignant phenotypes. DDLK enables robust

segregation of CTCs and WBCs in the pathway space, as opposed to the gene expression space.

We validated the utility of unCTC on scRNA-Seq profiles of breast CTCs from six patients,

captured and profiled using an integrated ClearCell® FX and PolarisTM workflow that works by

the principles of size-based separation of CTCs and marker based WBC depletion.

Introduction

Cancer ranks as a prime reason for death and a vital barrier to longer life expectancy in every

country of the world (Sung et al., 2021). According to World Health Organization (WHO)

estimates, in 2019 (Mathers, 2020) among 183 countries, cancer ranked as the first or second

cause of death of people below the age of 70 years and ranked third or fourth in 23 countries

(Sung et al., 2021). The primary reason for 90% of cancer-related deaths is metastasis (Bittner,

Jiménez and Peyton, 2020), the process in which the cancer cells detach from the primary tumor,

enter into the circulation, and eventually colonize distant organs, causing the spread of disease
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(Krebs et al., 2014; Siegel, Miller and Jemal, 2015). In order to metastasize, cancer cells secrete

chemokines to attract immune cells (McAllister and Weinberg, 2014); (Liu and Cao, 2016),

facilitating tumor proliferation and intravasation (Gajewski, Schreiber and Fu, 2013; Kitamura,

2018). A�er cancer cells enter the bloodstream, they are subjected to various stressors, including

the lack of cell-cell and cell-matrix adhesion, shear pressures, and immune response. Despite

this, a few cancer cells make it through the tortuous journey and leave the vasculature to a

secondary site (Shenoy and Lu, 2016); (Follain et al., 2018).

Circulating tumor cells (CTCs) have recently attracted a lot of attention due to their critical role

in tumor metastasis. Around 40% to 80% of patients with metastatic breast cancers have been

found to have CTCs in their blood (Kwa and Esteva, 2018). The detection and characterization of

CTCs obtained from patient blood offer clinically relevant insights into tumor metastasis and

facilitate cancer diagnosis and treatment (Hong, Fang and Zhang, 2016). Various studies to date

have unequivocally highlighted the association between the abundance of CTCs in peripheral

blood and poor disease prognosis (Cristofanilli et al., 2004; Danila et al., 2007; Giuliano et al.,

2011; Rack et al., 2014; Bork et al., 2015; Tsai et al., 2016). Epithelial to mesenchymal transition

(EMT) is believed to play a crucial role in metastasis. Under EMT, tumor epithelial cells acquire

mesenchymal-like features for easy entry into the bloodstream (Bulfoni et al., 2016).

Recently developed platforms for CTC capture rely on diverse principles. These include

antibody-based capture (Nagrath et al., 2007; Riethdorf et al., 2007; Stott et al., 2010), size

exclusion (Xu et al., 2015), immune cell depletion (Ozkumur et al., 2013), and dielectrophoresis

(Chiu et al., 2016). CellSearch®, the only FDA-approved CTC capture platform, uses antibodies

targeting the EpCAM (Epithelial cell adhesion molecule) antigen for capturing CTC from

patients' blood (Ignatiadis, Sotiriou and Pantel, 2012; Habli et al., 2020; Iyer et al., 2020). The

expression of epithelial markers like EpCAM and CK (Creatine kinase) is used in affinity-based

detection platforms to detect and count CTCs, but EMT arguably causes tumor cells to

downregulate or lose expression of canonical epithelial markers, thereby making them hard to

recognize and capture while in the circulation (Iyer et al., 2020). As such, marker-based

enrichment strategies are sub-optimal for systematically charting heterogeneous CTC

subpopulations (Miller, Doyle and Terstappen, 2010; Farace et al., 2011; Wang et al., 2016).

Various CTC capture platforms based on biophysical characteristics of cancer cells have been

established in recent years (Ferreira, Ramani and Jeffrey, 2016; Gabriel et al., 2016; Cheng et al.,

2019). Negative selection for pan-leukocyte marker CD45 has also been used as an alternative
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method. The promise of such antigen-agnostic platforms has not been explored adequately since

the risk of immune cell contamination cannot be ruled out entirely (Ferreira, Ramani and

Jeffrey, 2016; Gabriel et al., 2016). Isolation and molecular characterization of pure CTC

populations by mRNA sequencing necessitates the development of precise analytic methods

that are not based on epithelial markers and are able to spot the leukocyte contamination.

The advent of single-cell RNA sequencing (scRNA-Seq) has allowed in-depth, unsupervised

analysis of CTC transcriptomes (Guo et al., 2015; Macosko et al., 2015; Kiselev et al., 2017; Butler

et al., 2018; Wolf, Angerer and Theis, 2018; Kiselev, Andrews and Hemberg, 2019a; Chen et al.,

2020; Ranjan et al., 2021). So far, most scRNA-Seq studies involving CTCs have used

marker-based approaches to zero in on CTC subpopulations. Marker-agnostic methods for CTC

annotation are rare and o�en incapable of confirming the malignant identity of the cells. The

major challenges involved are as follows. 1. High levels of intra and inter-tumoural molecular

diversity among malignant cells (Tirosh et al., 2016; Li et al., 2017). 2. Presence of CTCs in

peripheral blood at an abysmally low concentration—one tumor cell within several millions of

blood cells, even in patients with advanced metastatic disease (0–10 CTCs per mL of blood)

(Alix-Panabières and Pantel, 2013). 3. CTCs o�en undergo EMT, thereby disguising their

epithelial markers (Mikolajczyk et al., 2011); (Iyer et al., 2020). 4. Batch effect across scRNA-Seq

studies (Kiselev, Andrews and Hemberg, 2019a); (Büttner et al., 2017).

To overcome these challenges, we present unCTC, an R package for unbiased characterization

of CTC transcriptomes, in contrast with WBCs. unCTC features various standard and novel

computational/statistical modules for clustering, copy number variation (CNV) inference, and

marker-based characterization of CTC and non-CTC clusters obtained by analyzing the

scRNA-Seq data. For clustering, DDLK, a deep dictionary learning based method is proposed.

DDLK uses pathway scores at single-cell level to accurately segregate CTC and WBC

populations. With unCTC, we demonstrated how in silico characterization of CTCs can unlock

the power of marker-free CTC capture. For this we used the ClearCell® Polaris™ workflow for

size-based capture, immune cell depletion and single cell gene expression profiles of potential

CTCs (Warkiani et al., 2014; Ramalingam et al., 2017). The unCTC workflow confers phenotypic

identity on the captured cells through multi-factorial analyses of the single cell expression

profiles.
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For validation of unCTC, we used seven distinct single-cell RNA-Seq (scRNA-Seq) datasets of

single CTCs and WBCs (Aceto et al., 2014; Ting et al., 2014; Yu et al., 2014; Sarioglu et al., 2015;

Jordan et al., 2016; Velten et al., 2017; Zheng et al., 2017). unCTC aided integrative analysis

perfectly segregated CTCs and WBCs. Apart from this, we subjected ClearCell Polaris selected

potential CTC full-length transcriptomes obtained from six individuals with breast cancer of

three molecular subtypes (ER-/PR-/HER2-, ER+/PR+/HER2-, and ER-/PR-/HER2+) to the unCTC

analysis pipeline. As control we used independent scRNA-Seq data of breast CTCs and WBCs.

Our unCTC based analysis of the data confirmed CTC capture efficiency of the

ClearCell-Polaris microfluidic workflow for marker-free CTC capture.

Results and Discussion

Overview of the unCTC workflow

Identification and characterization of CTC using scRNA-Seq profiles is ever-challenging due to

the dynamic nature of CTC phenotype. The unCTC workflow features a number of methods that

help in unbiased identification and characterization of single CTC transcriptomes. Clustering of

scRNA-Seq profiles is an important step towards this. Here we present a robust approach for

clustering single cell transcriptomes in a metaspace, spanning pathways, whose enrichment

scores are computed on single-cell gene expression readouts. Single-cell expression data are

typically sparse (Kiselev, Andrews and Hemberg, 2019b; Tian et al., 2019). Pathway scores

computed on gene-sets alleviate this problem to a great extent (Li et al., 2017; Chawla et al.,

2021), thereby assisting in robust detection of cellular subtypes. For unsupervised clustering,

each of the normalized and log-transformed expression vectors associated with CTCs is

converted into a vector of pathway enrichment scores, calculated using GSVA (gene set variation

analysis) (Hänzelmann, Castelo and Guinney, 2013). Such a transformation neutralizes batch

effects (Kim et al., 2018), and unravels cellular heterogeneity from a rather

functional/mechanistic point of view (H. Ding et al., 2019; Ramirez et al., 2020; Wang et al., 2020).

DDLK incorporates the K-means clustering cost into the Deep Dictionary Learning (DDL)

framework. Shallow learning and data dependency are the main caveats of dictionary learning

and deep learning respectively. Deep dictionary learning aims to mitigate these challenges

(Tariyal et al., 2016). DDLK is an example of semi-supervised clustering which projects the

single-cell gene expression data onto a range of well-understood biological pathways to obtain

robust cellular clusters.
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While DDLK robustly identifies phenotypically similar cell-groups from scRNA-Seq data

containing CTC expression profiles, cluster annotation may still remain elusive. To address this,

we integrated inferCNV function into the unCTC R package. InferCNV is an existing method,

capable of inferring copy number variation (CNV) from single-cell gene expression data

(Couturier et al., 2020). Chromosomes in cancer cells undergo substantial aberration. InferCNV

has been proved to be useful in capturing approximate CNV locations at single-cell resolution

(Durante et al., 2020; Zhou et al., 2020). InferCNV works as a sounding board for cell type

characterization, especially zeroing in on the malignant origin of CTCs. Further, inferCNV

along with cytoband information based on GRCH37 (Barrios and Prieto, 2017) also pinpoints the

precise position of chromosomal aberrations at the level of chromosomal arms, aiding in the

identification of altered genes.

CTCs undergo EMT and other biophysical stress during their journey to distant organs. In this

process, they partially lose their epithelial phenotype. Univariate differential expression studies

may turn out to be limitedly helpful in such scenarios. To circumvent this, unCTC allows

cumulative measurement of enrichment of a range of canonical markers indicating

malignant/epithelial/immune origin with the help of Stouffer’s method (Stouffer et al., 1949). In

our hands such gene set-based approaches turn out to be fruitful in bolstering single

marker-based and inferred CNV based characterization of cell-groups. The complete unCTC

workflow is outlined in Figure 1.

Marker-free capture of CTCs

Breast cancer is the most frequent type of cancer and one of the top causes of cancer-related

mortality (Kamal et al., 2017). In 2020, breast cancer overtook lung cancer as the world's most

common cancer. About 90% of breast malignancy related fatalities are attributable to metastasis

(Zhang et al., 2021). Breast cancer appears to be the form of cancer in which CTCs have been

studied the most (Bidard, Proudhon and Pierga, 2016). The expression of epithelial markers,

including EpCAM and CK, has traditionally been used in affinity-dependent detection platforms

to recognize and count CTCs, but these markers are downregulated during EMT. Furthermore,

most fluorescence-activated cell-sorting techniques face challenges due to acute scarcity of

CTCs, where the scarcity is typically less than 1 CTC/10 mL of blood in nonmetastatic

malignancies (Thery et al., 2019). Due to this inadequacy, a marker-free, robust method is

necessary for detecting and enriching CTCs in a large pool of blood cells. Marker-free methods
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for isolating CTCs are appealing because they enable researchers to examine a greater number

of CTCs that would otherwise be missed due to variable or absent protein (label) marker

expression on the CTC surfaces. It was possible to establish a marker-free method for isolating

CTCs by integrating the ClearCell® FX and PolarisTM systems (Iyer et al., 2020). As part of this,

CTCs are enriched in two steps - size-based enrichment by ClearCell, followed by CD45

(leukocyte marker) and CD31 (endothelial cell marker) based negative depletion by Polaris

(Warkiani et al., 2014; Ramalingam et al., 2017) (Figure 2). Using the ClearCell FX and Polaris

systems, we collected 81 single CTCs from six women with breast cancer of three subtypes

(ER-/PR-/HER2-, ER+/PR+/HER2-, and ER-/PR-/HER2+) (Supplementary Table S1). 72 CTCs

finally qualified the quality control criteria (Supplementary Table S2). In the subsequent

sections we illustrate unCTC based characterization of these cells, in contrast to two other best

practice integrative analysis methods namely — Seurat (Hao et al., 2021) and Symphony (Kang et

al., 2020).

DDLK clustering leads to near perfect segregation of CTCs and WBCs

The main aim of unCTC is to enable segregation of the CTC and WBC populations, obtained

a�er unbiased microfluidic enrichment of CTCs in patient blood. This problem is

fundamentally different from identifying CTC clusters or deciphering functional heterogeneity

among single- cell transcriptomes, a method that typically requires unsupervised clustering of

expression vectors. To cater to this objective, we chose to project expression vectors in a

meta-space spanned by well-characterized biomolecular pathways using GSVA that when

supplied with selected pathways, convert given expression vectors into vectors comprising

pathway enrichment scores (Hänzelmann, Castelo and Guinney, 2013). This is particularly

advantageous and confers robustness in data integration tasks (Jin et al., 2014). Expression

vectors, a�er conversion into vectors of pathway enrichment scores, are used for clustering the

associated single cell transcriptomes. Existing deep learning-based clustering techniques use

stacked autoencoders (Peng et al., 2016; Xie, Girshick and Farhadi, 2016; Yang et al., 2017; Fard,

Thonet and Gaussier, 2020) or their convolutional counterparts (Guo et al., 2017; Yang et al.,

2019). Unlike deep dictionary learning (DDL) (Tariyal et al., 2016), the problem with autoencoders

is that they have to estimate the parameters (encoder network + decoder network) twice. This

leads to overfitting and general degradation of results. Prior studies have shown DDL to be the

go-to framework for data constrained scenarios (Mahdizadehaghdam et al., 2019) (Tang et al.,

2020) (Fu et al., 2019) instead of conventional deep learning. DDLK (clustering technique
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incorporated in unCTC) incorporates K-means clustering cost into the deep dictionary learning

(DDL) framework, thereby enabling clustering of data of all sizes. We compared unCTC to two

popular single-cell integrative analysis suites, Seurat (Butler et al., 2018) and Symphony (Kang et

al., 2020). Seurat returns unsupervised clusters, whereas Symphony returns integrated single cell

representation alone.

Presently most single-cell studies involve integration of scRNA-Seq datasets coming from

different biological replicates, giving rise to significant batch effects (Sinha et al., 2019). Also,

due to small amounts of starting RNA, single-cell data, even if it comes from a single chip,

exhibits cell-to-cell technical variability. It is, therefore, imperative to ensure that a single-cell

pipeline is robust to such variance factors. To validate this, we constructed a challenging

multi-study (141 CTCs spanning breast, lung and pancreatic cancers; 1037 WBCs) dataset (Aceto

et al., 2014; Ting et al., 2014; Yu et al., 2014; Sarioglu et al., 2015; Jordan et al., 2016; Velten et al.,

2017; Zheng et al., 2017) for comparative assessment of unCTC in contrast to Seurat and

Symphony (Supplementary Table S3). We subjected the dataset to unCTC and two other best

practice methods Seurat and Symphony. Symphony and unCTC managed to visually segregate

CTCs and WBCs, whereas Seurat failed to separate the two categories (Figure 3). Symphony

does not cluster the cell. unCTC was able to find CTCs as part of a single cluster (Figure

4C,D).On the contrary, clusters returned by Seurat had a mixture of both cell types (Figure 4A,

B).

While clustering is the most popular means for unsupervised multivariate analysis of single

cells, cell-lineage annotation requires examination of marker-gene expression. Typically,

univariate statistics are applied to user-selected canonical markers to confer lineage identity on

CTCs and WBCs. Given the unpredictable expression dynamics of single markers in CTCs, it is

o�en useful to measure combined upregulation of tens of markers, reducing dependency on

individual genes. To this end, we used Stouffer’s method to combine expression levels of a range

of markers associated with cell-lineages of interest (Supplementary Table S4). Figure 4E

highlights cluster-specific enrichment scores of genes related to B and T lymphocytes, as well as

epithelial markers. Out of the three clusters retrieved by unCTC, cluster 2 exhibited the highest

enrichment of epithelial markers. This finding is concordant with annotations sourced from the

studies.
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unCTC recognizes CTCs selected by the ClearCell FX and Polaris workflow

We have recently demonstrated CTC characterization using supervised machine learning

methods (Iyer et al., 2020). Given the dynamic nature of CTC phenotypes, it is however useful to

characterize single CTC transcriptomes by unsupervised means. Further, classification-based

characterisation approaches are fallible in scenarios where the obtained CTCs are of atypical

phenotypes. unCTC alleviates this shortcoming by bringing to bear a spectrum of unbiased

single-cell characterization tools. As an extended validation, we subjected the 72 filtered single

cell transcriptomes associated with potential CTCs captured by the ClearCell® FX and PolarisTM

workflow. These come from a total of six women entailing three major subtypes of breast cancer

— ER-/PR-/HER2-, ER+/PR+/HER2-, and ER-/PR-/HER2+. As control we also considered the

CTC dataset published by Ebright et al. (Ebright et al., 2020) that comprises 824 cells from 45

patients with breast cancer of the ER+/PR+/HER2- subtype. For WBCs we considered 752

scRNA-Seq profiles processed in two distinct runs using the Smart-seq2 protocol (J. Ding et al.,

2019) (Supplementary Table S3). Symphony based integration of the transcriptomes showed

distinct localised cell populations, with ClearCell/Polaris enriched cells having no visible WBC

contaminants. A fraction of CTCs from the Elbright dataset overlapped with WBCs (Figure 5A).

Seurat identified a number of clusters with CTCs alone. However, it also returned a number of

clusters with a fair bit of mixing of the two kinds (Figure 5B). Clustering using DDLK grouped

the CTCs into three clusters whereas the WBCs clumped into one large cluster (Figure 5C).

Notably, we found ClearCell FX and Polaris selected CTCs clustered with one of the ER+

subgroups sourced from the study by Ebright and colleagues (Ebright et al., 2020). Seurat and

unCTC detected clusters and associated WBC-CTC distribution are depicted in Figure 5D, E

and Figure 5F, G respectively. Out of the 72 CTCs that finally qualified the filtering criteria

(obtained from ClearCell FX and Polaris workflow), ER+ cells were most prevalent (54 out of 72).

Among the rest there were 7 and 11 cells of the HER2+ and triple negative categories

respectively. One possible reason for not detecting HER2+ and triple negative CTCs as separate

categories is their inadequate numbers, which makes it difficult for unCTC to retain relevant

genes/pathways through several upstream filtering steps such as gene filtering and pathway

selection.
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Marker dependent characterisation of CTC clusters

Cell-lineages are best understood through enrichment of well-characterized lineage markers.

Two approaches can be adopted for this. First, investigating differential expression for single

markers, and second, for marker panels. For the second study (comprising ClearCell FX and

Polaris) we analyzed lineage identities for clusters identified by DDLK (Figure 6A). Multiple

well-known immune-cell markers were spotted among the top 200 differentially upregulated

genes (Supplementary Table S5) among cells in cluster 0 that predominantly contains WBCs

from the Ding et al. dataset. These are NKG7, PTPRC, PTPRCAP, IL32, CD74, and CD48.

Remaining clusters (clusters 1, 2, 3) comprise mostly CTCs (from Poonia and Ebright et al.

datasets).

Cluster 1 among these are found to have elevated expression levels of integrins (ITGA2B and

ITGB5). Integrins are principal adhesion molecules and play a central role in platelet function

and hemostasis. Recent studies have postulated CTC-platelet interaction based on RNA extracts

of single and clustered CTCs (Szczerba et al., 2019; Aceto, 2020). CTCs constantly interact with

factors in the blood such as platelets, circulating nucleic acids, and extracellular vesicles, which

influence their molecular profiles (Ward et al., 2021). Interestingly, we observed elevated

expression levels of platelet degranulation markers CLU and SPARC, which are known for

regulating PF4 (Beck et al., 2019), a critical endocrine factor previously described to be

associated with worse outcome in patients with lung cancer (Pucci et al., 2016). PF4 was also

found to have elevated expression in cluster 1 specific cells. Cluster 1 specific CTCs showed

elevated expression of numerous oncogenes with well-known roles in breast cancer progression.

CDKN1A (Koch et al., 2020), TIMP1 (Abreu et al., 2020), and PGRMC1 (Clark et al., 2016) are notable

among these. Cluster 2 that harbored the ClearCell/Polaris CTCs aside from CTCs from the

Elbright dataset expressed. This cluster exhibited a number of breast cancer associated

transcripts. Notable among these are — IL10 that drives breast cancer progression and

proliferation (Sheikhpour et al., 2018); BRIP1, whose genotypic alteration increases breast cancer

risk and elevated expression features invasive nature of the primary disease (Eelen et al., 2008);

IDO1 a key immune checkpoint protein (Dill et al., 2018), and OCT4/POU5F1, a cancer stem cell

marker (Jin et al., 2019). Cluster 3 can be best characterised by elevation of canonical epithelial

markers such as EPCAM, KRT18, and KRT19. Tumor suppressor SOD1 (Liu et al., 2020) was found

to be upregulated in these cells.
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Functional analysis of the cluster specific upregulated genes were performed using IPA

(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis)

(Krämer et al., 2014). Cluster 0 (WBC cluster) specific upregulated genes were largely unrelated

to cancer, whereas the remaining clusters (CTC specific) exhibited enrichment of cancer

associated pathways aligned with our above analysis of cluster marker genes (Figure 6B-E). We

also visualized select relevant pathways that had differentially elevated enrichment in specific

clusters (Supplementary Figure S1). Cluster-specific differential enrichment of pathways was

largely concordant with the insights gained based on analysis of differential expressed genes

(Supplementary Table S6).

The Poonia et al. dataset (ClearCell FX and Polaris) comes from ER-/PR-/HER2-,

ER-/PR-/HER2+, and ER+/PR+/HER2- breast cancer patients. For each subtype, we identified the

top 10 upregulated genes with a significant P-value and a Log Fold Change (LFC) > 2

(Supplementary Figure S2, Supplementary Table S7). ER+/ PR+/ HER2− subtype showed

elevated expression of ZEB2. Notably ZEB2 has known roles in promoting metastasis and cell

motility in estrogen receptor positive breast cancer (Burks et al. 2014). Another gene ATF3 is

known to be involved in promoting resistance to endocrine therapy in estrogen positive breast

cancer (Borgoni et al. 2020). EIF3C, which is known to promote proliferation (Zhao et al., 2017),

showed elevated expression levels in CTCs originating from the TNBC subtype.

We performed cluster characterization based on single markers and marker panels. It is

well-known that due to the loss of epithelial property, only a tiny percentage of CTCs would

display conventional epithelial markers (Iyer et al., 2020). Because of EMT in CTCs and high

dropout rates in scRNA-Seq data, single markers may not show substantial differential

expression; consequently, a combinatorial approach may be more beneficial than tracking

differential expression of individual genes. We curated markers from literature, and these

markers are highly expressed in immune cells and breast epithelia (Supplementary Table S4).

Stouffer's method (Stouffer et al., 1949) was used for combinatorial scoring of marker enrichment

at a single cell level. Scores obtained separated the WBC and CTC populations as expected

(Figure 7A). We then tracked differential expressions of single markers. Cluster 0 specific cells

were found to express high levels of leukocyte markers such as PTPRC and NKG7. EPCAM and

KRT18 exhibited relatively higher expression levels in cells specific to clusters 1, 2, and 3 (Figure

7B-E).
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Expression-based copy number variation inference

Duplications and deletions that result in the addition or loss of significant chromosomal regions

are referred to as copy number variations (CNV). As proven by the Cancer Genome Atlas

(Weinstein et al., 2013) and the International Cancer Genome Consortium (Mafficini and Scarpa,

2018), somatic CNVs, also known as copy number aberrations (CNAs), are prevalent in cancer.

These CNAs are strongly linked to the onset, development, and metastasis of cancer (Sudmant et

al., 2015; Jiang et al., 2016; Urrutia et al., 2018). With the growing popularity of single-cell

sequencing of tumor microenvironments, expression based CNV inference has become critical

in zeroing in on malignant cells in a marker-independent manner (Tickle et al., 2019). The

same strategy can be useful to characterize CTCs.

We subjected the CTC and WBC clusters, including potential CTCs captured by ClearCell FX

and Polaris workflow to inferCNV, a popular tool for CNV inference from single-cell expression

data (Tickle et al., 2019). Our marker based analyses already highlighted cluster 0 as the one

containing WBCs. We used transcriptomes from this cluster as reference for subtraction of the

copy number signals from the remaining CTC rich clusters (clusters 1, 2, and 3) (Figure 8). Since

this method is confounded by clusters, we performed a separate inferCNV analysis considering

ClearCell FX and Polaris selected CTCs separately from the rest of the CTCs (Supplementary

Figure S3). We spotted multiple locations of apparent copy number gains and losses in poonia

et al. dataset. Past studies demonstrated that in breast cancer, typical chromosomal gains are on

arms 1q32 and 1q42–q44 and chromosomal loss is rarely noticeable on the q arm (Orsetti et al.,

2006). Chromosome 1q harbors both tumor suppressor genes and oncogenes and are linked with

breast carcinogenesis. Two altered regions were identified in chromosome 1q: smallest

commonly deleted and overrepresented regions at 1q21-31 and 1q41-q44 respectively (Bièche,

Champème and Lidereau, 1995; Lobo, 2008); (Privitera, Barresi and Condorelli, 2021). Notably,

we found deletions for tumor suppressor genes — Retinoid acid receptor beta2 (3p24), thyroid

hormone receptor beta1 (3p24.3) and Ras association domain family 1A (3p21.3) genes in our

in-house data (Ingvarsson, 2001); (Senchenko et al., 2004); (Ling et al., 2015). Previous studies have

reported presence of CTC-like genomic gains in chromosome 19 at low frequency in primary

breast cancer. Furthermore, several studies have suggested that gains in chromosome 19 may

have a role in aggressive forms of breast cancer (Turner et al., 2010; Natrajan et al., 2012). 19q13

region is associated with copy number gains of signatures involved in dormancy and tumor

aggressiveness in CTCs. Some of the genes present in these signatures are involved in
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promoting EMT, invasion, metastasis are CEBPA (19q13.11), FXYD5 (19q13.12), PAK4 (19q13.2),

AKT2 (19q13.2) (Kanwar et al., 2015). We have found concordant indications from

inferCNV-based analysis of the ClearCell FX and Polaris selected CTCs (Supplementary Figure

S3). A summary of each possible event and the CNV state (1 = 2 copy loss, 2 = 1 copy loss, 3 =

neutral, 4 = 1 copy gain, 5 = 2 copy gain, 6 = 3+ copy gain) is given in the Supplementary Table

S8, with source data identities.

Materials and Methods

Description of datasets

We compiled two scRNA-Seq datasets for comprehensive evaluation of unCTC. In the first

study, we used seven distinct single-cell RNA-Seq (scRNA-Seq) datasets of circulating tumor

cells (CTCs) and white blood cells (WBCs) (Aceto et al., 2014; Ting et al., 2014; Yu et al., 2014;

Sarioglu et al., 2015; Jordan et al., 2016; Velten et al., 2017; Zheng et al., 2017). Six of the seven

datasets yielded 141 single CTCs. Two of the studies offered a total of 1037 WBCs. Notably, one

of these datasets (accession number: GSE67939), contains both blood and CTC transcriptomes

(Sarioglu et al., 2015). Another dataset (accession number: GSE74639) contains ten single CTCs

and six single primary tumor cells (Zheng et al., 2017). The CTC data entails three cancer types:

breast, lung, and pancreatic (Supplementary Table S3). This dataset was used to validate the

unCTC potential for integrative analysis and clustering.

In the second study, we utilized three publicly accessible scRNA-Seq datasets — (a) 81 potential

CTCs enriched by the ClearCell FX and Polaris workflow. The CTCs were six patients with

breast cancer of three subtypes—ER-/PR-/HER2-, ER+/PR+/HER2-, ER-/PR-/HER2+. This data is

referred to as Poonia et al. dataset. (b) As control we also considered 824 ER+/PR+ single CTCs

isolated directly from whole blood specimens of cancer patients using the CTC-iChip

microfluidic system (Ebright et al. dataset) (Ebright et al., 2020). (c) A total of 752 WBC

expression profiles (processed in two different runs). This dataset is referred to as Ding et al.

dataset (J. Ding et al., 2019) (Supplementary Table S3).
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Sample collection

In total 81 CTCs were collected from blood specimens of 6 breast cancer patients with distinct

molecular subtypes. Out of these, 11 CTCs were obtained from one patient with TNBC, 57 CTCs

from three patients with ER+/PR+/HER2- breast cancer and 13 CTCs from three patients with

ER-/PR-/HER2+ subtype (Supplementary Table S1). All blood samples were collected from

breast cancer patients at National Cancer Centre Singapore with informed consent of all human

participants and in accordance with institutional review board (IRB) guidelines (CIRB no.

2014/119/B). The SingHealth Centralised Institutional Review Board examined and approved the

clinical sample collection protocols. The immunohistochemical (IHC) testing of estrogen

receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2)

status was conducted based on the the latest guidelines of the American Society of Clinical

Oncology and the College of American Pathologists.

CTC enrichment

To perform CTC enrichment, 9 mL of blood samples were collected in K3 EDTA blood

collection tubes (Greiner Bio-One, 455036). For each run, 6–8.5 mL of whole blood was

processed. The red blood cells were first removed with addition of red blood cell (RBC) lysis

buffer (G-Biosciences®, St. Louis, MO, USA) followed by incubation of 10 min at room

temperature. A�er centrifugation, the lysed RBCs in the supernatant were removed. The

nucleated cell pellet was suspended in a ClearCell resuspension buffer before CTC enrichment

on the ClearCell FX system (Biolidics Limited)(Lee, Guan and Bhagat, 2018) as per the

manufacturer’s instructions.

Immunofluorescence suspension staining

CTC-rich blood samples were centrifuged at 300 g for 10 min and concentrated to 70 μL. The

cell staining was performed with the addition of the following markers and antibodies for one

hour: CellTracker™ Orange (CTO) (Thermo Fisher, C34551), Calcein AM (Thermo Fisher, L3224),

CD45 antibody conjugated with Alexa 647 (BioLegend®, 304020), and CD31 conjugated with

Alexa 647 (BioLegend, 303111). To improve the viability and RNA quality of the cells, 15 μL of

RPMI with 10% FBS (Gibco) and 3 μL of RNase inhibitor (Thermo Fisher, N8080119) were also

added. A�er incubation, 13 mL of PBS was added to dilute the staining reagents. The sample

was spun down at 300 g for 10 min and concentrated to 45 μL. In order to achieve optimal
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buoyancy in an integrated fluidic circuit (IFC), 45 μL of CTCs was mixed with a 30 μL Cell

Suspension Reagent (Fluidigm, 101-0434) to achieve 75 μL of cell mix.

Integrated fluidic circuit (IFC) operation

The Polaris IFC was first primed using the Fluidigm Polaris system to fill the control lines on

the fluidic circuit, load cell capture beads, and block the inside of polydimethylsiloxane (PDMS)

channels to avoid non-specific absorption/adsorption of proteins. Then to capture and maintain

the single cells in the sites, capture sites (48 sites) were preloaded with beads that are coupled on

IFC to build a tightly packed bead column during the IFC priming process. A�er the priming

stage, the cell mix (cells with suspension reagent) was laden in three inlets (25 μL each of cell

mix) on the Polaris IFC and single CTO+ & Calcein AM+ & CD45− & CD31− cells were selected

to capture sites. Finally, single-cell processing was achieved through template-switching

mRNA-Seq chemistry for full-length cDNA generation and pre-amplification on IFC.

mRNA-Seq library preparation and sequencing

SMARTer® Ultra® Low RNA Kit for Illumina® Sequencing (Clontech®, 634936) was employed to

generate pre-amplified cDNA. The Polaris cell lysis mixture was used to lyse the selected and

sequestered single cells. The 28 μL cell lysis mix is composed of 8.0 μL of Polaris Lysis Reagent

(Fluidigm, 101-1637), 9.6 μL of Polaris Lysis Plus Reagent (Fluidigm, 101-1635), 9.0 μL of 3

SMART CDS Primer II A (12 M, Clontech, 634936), and 1.4 μL of Loading Reagent (20X,

Fluidigm, 101-1004). The thermal profile for single-cell lysis is 37 °C for 5 min, 72 °C for 3 min,

25 °C for 1 min, and hold at 4 °C. The 48 μL preparation volume for reverse transcription (RT)

contains 1X SMARTer Kit 5X First-Strand Buffer (5X; Clontech, 634936), 2.5-mM SMARTer Kit

Dithiothreitol (100 mM; Clontech, 634936), 1 mM SMARTer Kit dNTP Mix (10 mM each;

Clontech, 634936), 1.2 μM SMARTer Kit SMARTer II A Oligonucleotide (12 μM; Clontech,

634936), 1 U/μL SMARTer Kit RNase Inhibitor (40 U/μL; Clontech, 634936), 10 U/μL

SMARTScribe™ Reverse Transcriptase (100 U/μL; Clontech, 634936), and 3.2 μL of Polaris RT

Plus Reagent (Fluidigm, 101-1366). All the concentrations correspond to those found in the RT

chambers inside the Polaris IFC. The thermal protocol for RT is 42 °C for 90 min (RT), 70 °C for

10 min (enzyme inactivation), and a final hold at 4 °C.

The 90 μL preparation volume for PCR contains 1X Advantage® 2 PCR Buffer [not short

amplicon (SA)](10X, Clontech, 639206, Advantage 2 PCR Kit), 0.4-mM dNTP Mix (50X/10 mM,
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Clontech, 639206), 0.48-μM IS PCR Primer (12 μM, Clontech, 639206), 2X Advantage 2

Polymerase Mix (50X, Clontech, 639206), and 1X Loading Reagent (20X, Fluidigm, 101-1004). All

the concentrations correspond to those found in the PCR chambers inside the Polaris IFC. The

thermal protocol for preamplification consists of 95 °C for 1 min (enzyme activation), five cycles

(95 °C for 20 s, 58 °C for 4 min, and 68 °C for 6 min), nine cycles (95 °C for 20 s, 64 °C for 30 s,

and 68 °C for 6 min), seven cycles (95 °C for 30 s, 64 °C for 30 s, and 68 °C for 7 min), and final

extension at 72 °C for 10 min. The preamplified cDNAs are harvested into 48 separate outlets on

the Polaris IFC carrier. The cDNA reaction products were then converted into mRNA-Seq

libraries using the Nextera® XT DNA Sample Preparation Kit (Illumina, FC-131-1096 and

FC-131-2001, FC-131-2002, FC-131-2003, and FC-131-2004) following the manufacturer’s

instructions with minor modifications. Specifically, reactions were run at one-quarter of the

recommended volume, the tagmentation step was extended to 10 min, and the extension time

during the PCR step was increased from 30 to 60 s. A�er the PCR step, samples were pooled,

cleaned twice with 0.9× Agencourt® AMPure® XP SPRI beads (Beckman Coulter), eluted in Tris

+ EDTA buffer and quantified using a high-sensitivity DNA chip (Agilent). The pooled library

was sequenced on Illumina NextSeq® using reagent kit v3 (2 × 74 bp paired-end read).

Preprocessing of scRNA-Seq datasets

The unCTC R package accepts scRNA-Seq data in two forms: transcripts per million (TPM) and

raw count data. In the first study, we downloaded scRNA-Seq count data from all respective

sources. The second study includes three different datasets, including our own. Ding et al.

dataset (raw count) was downloaded from the Broad Institute's single-cell gateway. Ebright et al.

and Poonia et al. datasets were obtained by processing the associated FASTQ files. We used the

FastQC tool to perform quality checks on both datasets for average percent GC content, mean

quality score, and per-sequence quality score (Andrews, 2010). For alignment purposes of

Ebright data set, we used the hg19 reference genome and hg19 GTF file from Ensembl (release

75) (Howe et al., 2021). To estimate the expression levels of genes, we used RNA-Seq by

Expectation-Maximization. v.1.3.1 (RSEM) (Li and Dewey, 2011) with two scripts:

rsem-prepare-reference and rsem-calculate-expression. Finally, length-normalized TPM datasets

(reporting expression of 57773 transcripts) were obtained for both studies. Supplementary

Figure S4 shows the steps used in preprocessing of the single-cell RNA-Seq datasets. For

alignment purposes of Poonia data set, An index for RNA-Seq by expectation maximization

(RSEM) was generated based on the hg19
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RefSeq transcriptome downloaded from the UCSC Genome Browser database. Read data were

aligned directly to this index using RSEM/bowtie. Quantification of gene expression levels in

counts for all genes in all samples was performed using RSEM v1.2.4. Genomic mappings were

performed with TopHat 2 v2.0.13, and the resulting alignments were used to calculate genomic

mapping percentages. Raw sequencing read data were aligned directly to the human rRNA

sequences NR_003287.1 (28s), NR_003286.1 (18S) and NR_003285.2 (5.8S) using bowtie 2

v2.2.4.

Data integration, filtration, and normalization

RSEM so�ware returns both read count data and TPM data (Poonia et al. and Ebright et al.)

From these datasets, we discarded cells with a total read-count less than 50000. As per this

criterion, 9 CTCs were removed from the Poonia et al. scRNA-Seq dataset (Supplementary

Table S2). All 824 cells in the Ebright et al. dataset qualified this criterion. Poonia and Ebright

et al. datasets were integrated with Ding et al. dataset containing WBC expression profiles and

genes that are common across the datasets were retained. Further gene/cell filtering steps were

implemented as follows. We eliminated cells with fewer than 1500 expressed genes (non-zero

read count). On the other hand we considered genes with non-zero expression in at least five

cells. Linnorm normalization technique method was used with default parameters for single-cell

normalization and batch correction (Yip et al., 2017). Normalized expression values are

log-transformed a�er the addition of 1 as pseudo count. Linnorm normalization and log

transformation are applied to both count matrix and TPM matrix.

Expression values to pathway enrichment scores

For computing gene-set enrichment scores we used the Gene Set Variation Analysis (GSVA) R

so�ware package (Hänzelmann, Castelo and Guinney, 2013). GSVA needs mainly two inputs:

normalized and log-transformed expression matrix and gene sets. We used the C2 collection

from MSigDB (Subramanian et al., 2005). This contains over 6000 literature-curated gene-sets.

Before passing the geneset and expression matrix to the GSVA function, a filtering step is

applied on genesets that removes genes that are not present in the normalized expression

matrix. We set min.sz as 10, max.sz as 500, max.diff as FALSE. Since the calculations for each
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gene-set are independent of each other, we calculated enrichment scores in parallel. Here we

used four parallel threads to speed up the computation (parallel.sz=4).

DDLK clustering

Unsupervised clustering of GSVA enrichment scores was performed using K-means friendly

deep dictionary learning (DDL). To specify the optimal value of clusters for K-means clustering,

the elbow method is used.

The popular way to express K-means clustering is via the following formulation:

(1)
𝑖=1

𝑘

∑
𝑗=1

𝑛

∑ ℎ
𝑖𝑗

‖𝑧
𝑗

− µ
𝑖
‖

2

2

ℎ
𝑖𝑗

 = 1,  𝑖𝑓 𝑥
𝑗
 ϵ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑖

ℎ
𝑖𝑗

 = 0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where zj denotes the jth sample and µi the ith cluster.

An alternate formulation for K-means is via matrix factorization (Bauckhage, 2015).

(2)‖𝑍 − 𝑍𝐻𝑇 𝐻𝐻𝑇( )
−1

𝐻‖
𝐹

2

where Z is the data matrix formed by stacking zj’s as columns and H is the matrix of binary

indicator variables hij. We prefer expressing K-means as (2) in this work.

Since DDL is not a popular framework, we review it briefly. Dictionary learning (Tošić and

Frossard, 2011) learns a basis (D) such that the data (X) can be generated / synthesized from the

coefficients (Z).

(3)𝑋 = 𝐷𝑍

The term dictionary learning is relatively new. The same problem has been known as matrix
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factorization in the past. One can see that (3) is factoring the data matrix X into D and Z. In its

most basic form, dictionary learning / matrix factorization is solved via the following –

(4)
𝐷,𝑍

min ‖𝑋 − 𝐷𝑍‖
𝐹
2

where is the squared Frobenius norm defined as the sum of the squares of all the terms in‖ ‖
𝐹
2

the matrix.

In DDL, instead of learning one layer of the dictionary, multiple layers are learned instead.

This is expressed as,

(5)𝑋 = 𝐷
3
φ 𝐷

2
φ 𝐷

1
𝑍( )( )

Here D1, D2, D3 are three layers of dictionaries and φ is the activation function between two

layers. It is shown for three layers as an example, it can be more than three.

The solution to the unsupervised formulation is expressed as follows –

(6)
𝐷

1
,𝐷

2
,𝐷

3
,𝑍

min ‖𝑋 − 𝐷
3
φ 𝐷

2
φ 𝐷

1
𝑍( )( )‖

𝐹

2

In [9], a greedy solution to (6) was proposed. This was not optimal in the sense that there was

feedback from shallow to deeper layers but not vice versa. To overcome this the joint solution

was proposed in (Singhal and Majumdar, 2018) based on the majorization minimization (MM)

approach.

In this work, we will use the ReLU activation function for two reasons – 1. It is easier to

incorporate as an optimization constraint, and 2. ReLU has been proven to have better function

approximation capabilities. Therefore our basic framework for DDL (with ReLU) will be

expressed as follows,

(7)
𝐷

1
,𝐷

2
,𝐷

3
,𝑍,𝐻  

min ‖𝑋 − 𝐷
1
𝐷

2
𝐷

3
𝑍‖

𝐹

2 𝑠. 𝑡.  𝐷
2
𝐷

3⬽𝑍≥0, 𝐷
3
𝑍≥0, 𝑍≥0
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                                                             𝑅𝑒𝐿𝑈 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

We propose to incorporate the K-means cost (2) into the DDL formulation (7). The basic idea

is to use the features generated by DDL as inputs for clustering. However, instead of solving it

piecemeal we jointly optimize the following cost function –

(8)
𝐷

1
,𝐷

2
,𝐷

3
,𝑍,𝐻

min ‖𝑋 − 𝐷
1
𝐷

2
𝐷

3
𝑍‖

𝐹

2

  

+ µ‖𝑍 − 𝑍𝐻𝑇 𝐻𝐻𝑇( )
−1

𝐻‖
𝐹

2

                           𝐷𝐷𝐿                              𝐾 − 𝑚𝑒𝑎𝑛𝑠

𝑠. 𝑡.  𝐷
2
𝐷

3
𝑍≥0, 𝐷

3
𝑍≥0, 𝑍≥0 

We solve (8) using alternating minimization. Initially, we ignore the non-negativity

constraints in (8); later on, we will discuss how they can be handled. The updates for different

variables are as follows,

𝐷
1

←
𝐷

1

min ‖𝑋 − 𝐷
1
𝐷

2
𝐷

3
𝑍‖

𝐹

2 

(9)𝐷
1
𝑘 = 𝑋𝑍

1
†,  𝑤ℎ𝑒𝑟𝑒 𝑍

1
= 𝐷

2
𝑘−1𝐷

3
𝑍𝑘−1 

𝐷
2

←
𝐷

2

min ‖𝑋 − 𝐷
1
𝐷

2
𝐷

3
𝑍‖

𝐹

2 

(10)𝐷
2
𝑘 = 𝐷

1
𝑘( )†

𝑋𝑍
2
,  𝑤ℎ𝑒𝑟𝑒 𝑍

2
= 𝐷

3
𝑘−1𝑍𝑘−1 

𝐷
3

←
𝐷

3

min ‖𝑋 − 𝐷
1
𝐷

2
𝐷

3
𝑍‖

𝐹

2 

(11)𝐷
3
𝑘 = 𝐷

1
𝑘𝐷

2
𝑘( )†

𝑋 𝑍𝑘−1( )
†
 

(12)𝑍←
𝑍

min ‖𝑋 − 𝐷
1
𝐷

2
𝐷

3
𝑍‖

𝐹

2 + µ‖𝑍 − 𝑍𝐻𝑇 𝐻𝐻𝑇( )
−1

𝐻‖
𝐹

2

To solve Z, we need to take the gradient of the expression in (12) and equate it to zero. The
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derivation is given below.

∇ ‖𝑋 − 𝐷
1
𝐷

2
𝐷

3
𝑍‖

𝐹

2 + µ‖𝑍 − 𝑍𝐻𝑇 𝐻𝐻𝑇( )
−1

𝐻‖
𝐹

2( ) = 0 

⇒ 𝐷
1
𝐷

2
𝐷

3( )𝑇𝑋 − 𝐷
1
𝐷

2
𝐷

3( )𝑇 𝐷
1
𝐷

2
𝐷

3( )𝑇𝑍 − 𝑍 µ𝐼 − µ𝐻𝑇 𝐻𝐻𝑇( )
−1

𝐻( ) = 0

⇒ 𝐷
1
𝐷

2
𝐷

3( )𝑇𝑋 = 𝐷
1
𝐷

2
𝐷

3( )𝑇 𝐷
1
𝐷

2
𝐷

3( )𝑇𝑍 + 𝑍 µ𝐼 − µ𝐻𝑇 𝐻𝐻𝑇( )
−1

𝐻( )
The last step of the derivation implies that Z is a solution to Sylvester's equation of the form AX

+ XB = C. There are many efficient solvers for the same.

The final step is to update H. This is obtained by solving,

(13)𝐻𝑘 ←
𝐻

min ‖𝑍 − 𝑍𝐻𝑇 𝐻𝐻𝑇( )
−1

𝐻‖
𝐹

2

This is the K-means algorithm applied on Z.

In the derivation so far, we have not accounted for the ReLU non-negativity constraints. Ideally

imposing the constraints would require solving them via forward-backward type splitting

algorithms; such algorithms are iterative and hence would increase the run-time of the

algorithm. We account for these constraints by simply putting the negative values in Z, Z1 and Z2

to zeroes in every iteration.

The algorithm is shown in a succinct fashion below. Once the convergence is reached, the

clusters can be found from H. Since (8) is a non-convex function, we do not have any guarantees

for convergence. We stop the iterations when the H does not change significantly in subsequent

iterations.

Algorithm: DDL+K-means

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒:  𝐷
1
0, 𝐷

2
0, 𝐷

3
0, 𝑍0, 𝐻0            

𝑅𝑒𝑝𝑒𝑎𝑡 𝑡𝑖𝑙𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

     𝑈𝑝𝑑𝑎𝑡𝑒 𝐷
1
𝑘, 𝐷

2
𝑘, 𝐷

3
𝑘 𝑢𝑠𝑖𝑛𝑔 (9),  (10),  (11)
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     𝑈𝑝𝑑𝑎𝑡𝑒 𝑍𝑘 𝑏𝑦 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑆𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟'𝑠 𝑒𝑞𝑛  

    𝑈𝑝𝑑𝑎𝑡𝑒 𝐻𝑘 𝑏𝑦 𝐾 − 𝑚𝑒𝑎𝑛𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔
𝐸𝑛𝑑 

DEGs identification

Differential genes between clusters obtained from DDLK clustering were calculated using the

Limma (Ritchie et al., 2015) package with its voom (Law et al., 2014) method. We first used the

normalized expression matrix to construct a DEGlist object. The DEGlist object was passed to

the calcNormFactors() function of the edgeR R package (Robinson, McCarthy and Smyth, 2010),

while setting normalisation factor = 1 and method = none, followed by Voom transformation. We

reported top 200 upregulated genes in each cluster that qualify adjusted p-value and log fold

change (LFC) thresholds and then functional analysis of the cluster specific upregulated genes

were performed using Ingenuity Pathway Analysis (IPA) (Krämer et al., 2014).

Differential pathways

The R package Limma was used to obtain differential pathways between clusters identified by

the DDLK clustering (Ritchie et al., 2015). The moderated t-statistic was used for differential

pathway analysis. Pathways with positive log fold change and adjusted P-value < 0.05 were

considered specifically enriched in a cell-group.

Copy number variation analysis at chromosomal p or q arm

To infer copy number variation (CNV) landscape in single cancer cells, we used the inferCNV R

package (Tickle et al., 2019). WBC cluster (identified through marker based analysis) was used as

a healthy reference to estimate copy number aberrations in the CTC clusters. InferCNV plot

shows significant CNVs between the control and test scRNA-Seq profiles. We used 1 as cutoff

for the minimum average read counts per gene among reference cells, clustered according to the

annotated cell types. To infer the location of a particular gain or loss on a chromosome at p or

q-arm level, we used the cytoband information based on GRCh37 (Barrios and Prieto, 2017).

Combinatorial evaluation of lineage markers
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Stouffer’s method allows combining Z scores across multiple variables to arrive at a single score

indicating enrichment of a certain property (or phenotype) (Gupta et al., 2020). We used this to

measure enrichment of a spectrum of lineage indicating genes (breast epithelial and immune

cell subtypes). This is particularly helpful for CTCs, since single markers may not exhibit

adequate statistical significance for differential expression.

Conclusion

Circulating tumor cells provide a window into their respective tumors of origin and cancer

evolution. Most of the existing CTC enrichment methods are incomprehensive since they miss

CTCs that do not express canonical epithelial markers. Single-cell expression studies allow

inspection of molecular profiles of CTC rich cell populations obtained from an enrichment

device. To date, there is no comprehensive computational resource that allows identification of

diverse/unknown CTC phenotypes from scRNA-Seq data, comprising CTCs and WBCs. unCTC

enables this by providing a number of unsupervised and semi-supervised means to interrogate

CTC and WBC transcriptomes.

We demonstrated DDLK, a novel clustering approach that leverages pathway enrichment scores

to yield robust grouping of single cells, even when the datasets are sourced from disparate

studies. This is particularly helpful since typical single-cell studies feature multiple replicates. It

should be noted that DDLK is meant to discover broad groups in an scRNA-Seq data. It is

neither tested nor expected to aid discovery of heterogeneous subpopulations. For that one can

refer to our previous works describing the dropClust so�ware suite (Sinha et al., 2018, 2019).

With the help of unCTC, we could spot CTCs, with unknown phenotypes. Expression based

CNV inference corroborated our findings with precise genomic locations indicating

amplification/deletion that are previously known in breast cancers.

CTCs are crucial biomarkers to monitor cancer progression and treatment response. Given the

increasing throughput and sharply dropping price associated with single cell expression

profiling, we predict unCTC will play an important role in constructing cancer specific

molecular atlas of CTCs.
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Figures

Figure 1. unCTC: A unified, end-to-end computational framework for marker-free

characterisation of CTCs. Schematic diagram depicting the analysis workflow as well as the

key methods supported by the unCTC R package. The first step involves processing raw FASTQ

files to obtain the expression matrix. Novel DDLK clustering method is used to robustly cluster

single CTC transcriptomes. Notably, DDLK works on pathway enrichment scores as opposed to

expression values. Clusterwise differential expression analysis is performed to gain insights into

diverse CTC and WBC subtypes. Expression levels of well-known epithelial and immune

markers are tracked to approximate broad cell-type identities. Similar analysis is also carried out

at the level of well-known gene-sets/pathways. Further, differential enrichment of pathway

specific genes can be analysed to infer functional attributes. Finally, expression based

pseudo-CNV inference allows unbiased characterisation of the identified clusters, thereby

highlighting the malignant cells.

Figure 2. ClearCell® FX and PolarisTM workflow for marker-free enrichment of CTCs. (A) The

schematic diagram depicting the key steps involved in the capture and isolation of CTCs using a

two pronged system. ClearCell® FX uses a spiral chip to size-sort CTCs. PolarisTM performs

single cell capture and cDNA synthesis of potential CTCs a�er depletion of cells that are

CD45/CD31 positive. Finally cDNA thus received is subjected to library preparation and

RNA-sequencing.

Figure 3. unCTC enables integrative analysis of CTCs and WBCs. A multi-study CTC/WBC

dataset was created to test the efficacy of unCTC alongside two best practice integrative

scRNA-Seq analysis pipelines namely Seurat and Symphony. Both Symphony and unCTC

accurately segregated the CTCs and WBCs, as visible from the low-dimensional representation

of the cells.

Figure 4. Cluster purity. (A) Visualisation of cluster identity using Seurat. (B) CTC/WBC

composition for each cluster, obtained using Seurat. (C,D) Equivalent figures depicting unCTC

clustering and cluster purity respectively. (E) Boxplots depicting distribution of Stouffer’s scores

computed basis known B cell, T cell and epithelial cell markers respectively, for cells in each of

the unCTC identified clusters.
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Figure 5. Clustering of CTCs obtained from ClearCell® FX - PolarisTM system. (A-C)

Visualisation of ClearCell® FX - PolarisTM in presence of independent breast CTC and WBC

scRNA-Seq profiles, using Symphony, Seurat and unCTC respectively. (D,E) Seurat and unCTC

cluster identities. Notably, Symphony does not cluster single cells. unCTC accurately segregates

CTCs and WBCs. CTCs obtained from ClearCell® FX - PolarisTM system co-cluster with breast

CTCs from Ebright data (Ebright et al., 2020) . (F,G) CTC-WBC distribution across clusters

detected by Seurat and unCTC respectively.

Figure 6. Functional annotations of the highly enriched circulating tumor cell-associated

genes identified using unCTC. (A) Heatmap depicting the expression of top 200 differentially

elevated genes across four clusters detected by unCTC. Color bars indicate cluster identity,

source data information as well as molecular subcategories. (B-E) Bar plots depicting gene set

enrichment using disease and functional annotation modules of IPA. The lists of cluster specific

differentially elevated genes can be found in Supplementary Table S5.

Figure 7. Lineage identity analysis using known markers and gene-sets. (A) Box plot

depicting distribution of Stouffer’s scores (Stouffer et al., 1949) associated with genesets, specific

to immune cells and breast epithelia (Supplementary Table S4). Cluster 0 shows enrichment of

immune cell specific markers whereas the remaining clusters show enrichment of markers

specific to breast epithelia. (B, C) Box plots depicting differential enrichment of select immune

cell markers i.e. PTPRC and NKG7 respectively. (D, E) Box plots depicting differential

enrichment of select epithelial markers i.e. EPCAM and KRT18 respectively.

Figure 8. Expression based inference of CNV landscape across malignant cell clusters.

Heatmap obtained from inferCNV tool (Tickle et al., 2019) depicting putative CNV landscape

across malignant cell clusters, while considering cluster 0 (WBCs) as reference.

Figure S1. Heatmap of differential pathway enrichment scores across four clusters detected by

unCTC. Color bars indicate cluster identity, source data information as well as molecular

subcategories.
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Figure S2. Heatmap depicting differential gene expression across ClearCell® FX and PolarisTM

selected CTCs across three molecular subtypes.

Figure S3. (A) Heatmap obtained from inferCNV tool (Tickle et al., 2019) depicting putative

CNV landscape across CTCs obtained from ClearCell® FX and PolarisTM system (referred to as

Poonia dataset) as well as CTCs from the Ebright dataset. Cluster 0 (WBCs) is used as reference.

(B) Table depicting some breast cancer relevant CNVs with their copy number states and precise

genomic locations.

Figure S4. Computational workflow depicting key steps involved in the generation of TPM

matrix using the raw RNA-Seq FASTQ files.

Data availability

All raw and processed sequencing data generated in this study have been submitted to the NCBI
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