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Abstract 20 

1. Metagenomics - shotgun sequencing of all DNA fragments from a community DNA extract - is routinely 21 

used to describe the composition, structure and function of microorganism communities. Advances in 22 

DNA sequencing and the availability of genome databases increasingly allow the use of shotgun 23 

metagenomics on eukaryotic communities. Metagenomics offers major advances in the recovery of 24 

biomass relationships in a sample, in comparison to taxonomic marker gene based approaches 25 

(metabarcoding). However, little is known about the factors which influence metagenomics data from 26 

eukaryotic communities, such as differences among organism groups, the properties of reference 27 

genomes and genome assemblies. 28 

2. We evaluated how shotgun metagenomics records composition and biomass in artificial soil invertebrate 29 

communities. We generated mock communities of controlled biomass ratios from 28 species from all 30 

major soil mesofauna groups: mites, springtails, nematodes, tardigrades and potworms. We shotgun-31 

sequenced these communities and taxonomically assigned them with a database of over 270 soil 32 

invertebrate genomes.  33 

3. We recovered 90% of the species, and observed relatively high false positive detection rates. We found 34 

strong differences in reads assigned to different taxa, with some groups (e.g. springtails) consistently 35 

attracting more hits than others (e.g. enchytraeids). Original biomass could be predicted from read counts 36 

after considering these taxon-specific differences. Species with larger genomes, and with more complete 37 

assemblies consistently attracted more reads than species with smaller genomes. The GC content of the 38 

genome assemblies had no effect on the biomass-read relationships.  39 

4. The results show considerable differences in taxon recovery and taxon specificity of biomass recovery 40 

from metagenomic sequence data. The properties of reference genomes and genome assemblies also 41 

influence biomass recovery, and they should be considered in metagenomic studies of eukaryotes. We 42 

provide a roadmap for investigating factors which influence metagenomics-based eukaryotic community 43 

reconstructions. Understanding these factors is timely as accessibility of DNA sequencing, and 44 
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momentum for reference genomes projects show a future where the taxonomic assignment of DNA from 45 

any community sample becomes a reality. 46 

Keywords 47 

shotgun metagenomics, invertebrates, genome completeness, eukaryotes, genome size, biomonitoring, 48 

taxonomic bias, species composition49 
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Introduction 51 

Biodiversity research, and particularly the investigation of hard-to-observe ecological communities increasingly 52 

relies on DNA- and RNA-based tools (Taberlet, Bonin, Zinger, & Coissac, 2018). If preconditions are met, e.g. 53 

nucleotide sequence databases exist (Margaryan et al., 2021) with curated taxonomic links (Schenk, Hohberg, 54 

Helder, Ristau, & Traunspurger, 2017), and experimental designs are robust (Zinger et al., 2019), these 55 

approaches can provide much needed data on soil invertebrate diversity. 56 

There are two main approaches to the molecular biomonitoring of communities: metabarcoding and 57 

metagenomics. Metabarcoding uses high-throughput-sequences of taxonomic marker genes (“barcodes”) which 58 

are PCR-amplified from a community DNA extract. Metabarcoding is becoming a standard tool in biodiversity 59 

research. Its use is supported by several years of research in distinct organisms groups (Taberlet et al., 2018), 60 

and the availability of barcode databases (Hebert, Cywinska, Ball, & deWaard, 2003; Nilsson et al., 2019). 61 

However, metabarcoding has an important long-known drawback: it relies on the amplification of a marker gene 62 

(Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012). This can result in biases in species recovery 63 

from the resulting sequence data, and in taxon-related distortions of the original biomass - sequencing read 64 

relationships (Piñol, Senar, & Symondson, 2019). However, the amplification step solves two important issues: 65 

one can effectively target the taxonomic groups of interest (e.g. insects), and avoid others (e.g. microorganisms) 66 

and small or rare organisms with low amounts of DNA can still be recorded. Metagenomics randomly sequences 67 

all DNA fragments from a community DNA extract, generally without enrichment of certain parts of the genome. 68 

It is more quantitative than metabarcoding, since it skips the potentially biased PCR amplification step of 69 

taxonomic marker genes (Bista et al., 2018). A random selection of DNA fragments is sequenced from the DNA 70 

extracts, resulting in a less biased representation of the community in the sequence data. The taxonomic 71 

assignment of metagenomic sequences needs genome databases, and consequently, metagenomics is more 72 

frequently applied on microbial communities, where more complete genomic resources are available (Parks et 73 

al., 2020). There are several approaches to circumvent this limitation, from mitogenomes (Arribas et al., 2020) 74 

to shallow genome sequencing (Bohmann, Mirarab, Bafna, & Gilbert, 2020). As genome sequencing 75 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.16.468383doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?4YGxm5
https://www.zotero.org/google-docs/?FAW571
https://www.zotero.org/google-docs/?3oT0Mz
https://www.zotero.org/google-docs/?3oT0Mz
https://www.zotero.org/google-docs/?UVeI1i
https://www.zotero.org/google-docs/?hhvoxs
https://www.zotero.org/google-docs/?2acw10
https://www.zotero.org/google-docs/?srSGQr
https://www.zotero.org/google-docs/?IMRveK
https://www.zotero.org/google-docs/?I2EVMO
https://www.zotero.org/google-docs/?9uN2o8
https://www.zotero.org/google-docs/?9uN2o8
https://www.zotero.org/google-docs/?G4rSDq
https://www.zotero.org/google-docs/?SfQdaZ
https://doi.org/10.1101/2021.11.16.468383


 

5 

technologies mature, the generation of reference genomes for all eukaryotes receives increasing attention 76 

(Lewin et al., 2018). However, the technical issues affecting metagenomics are much less investigated than 77 

issues affecting metabarcoding, at least for eukaryotes.  78 

Here we evaluate how well metagenomics reflects composition and biomass in artificially composed (mock) 79 

communities of soil invertebrates. We use a large collection of soil invertebrate genomes to taxonomically assign 80 

metagenomic reads. We investigate the effects of metagenomic classification thresholds on correct and false 81 

identification. We evaluate the relationship between biomass and reads, and how this relationship is influenced 82 

by taxonomy and by the properties of the genome assemblies used for taxonomic assignments.  83 
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Material & Methods 84 

Mock community construction 85 

We constructed mock communities from 28 soil invertebrate species from six major taxonomic groups at the 86 

Senckenberg Museum of Natural History Görlitz. Specimens were either freshly collected and stored in 96% 87 

undenatured ethanol (Collembola, Gamasida, Oribatida), or they came from breeding cultures (Enchytraeidae, 88 

Nematoda, Tardigrada). Four different mock types were designed (Table 1). We varied the total body volume 89 

(the sum of body volumes of all individuals) across the four mock communities. The mocks contained very small 90 

species (Nematoda) with average body volumes per species of 0.10-0.15 x 10-6 µm³, up to large species 91 

(Collembola, Enchytraeidae, Gamasina, Oribatida) with average body volumes per species of 44.1-50.8 x 10-6 92 

µm³ (Table 1). We used body volume as a proxy of biomass, and refer to it as biomass throughout the text. In 93 

the first mock, all species were represented with equal biomass. In the second mock, very small to small species 94 

had more biomass (200-500%) compared to medium and large species. In the third mock a part of very small to 95 

small species (7 of 11) had larger biomass (200-400%) than medium to large species. In the fourth mock most 96 

small species had more biomass than large species, but some medium to large species also had high biomass. 97 

All four mock types were replicated three times.  98 

Table 1. Composition of mock communities. For species where different developmental stages were available, 99 

individuals of different sizes were used to achieve the necessary biomass [adults + juveniles, e.g. 100 

Paramacrobiotus richtersi in mock 1: 4 + 1]. 101 

   Number of individuals 

Taxon 

mean body 

length 

[µm] 

body 

volume [10-

6 µm³] mock 1 mock 2 mock 3 mock 4 

Tardigrada       

Paramacrobiotus richtersi (Murray, 1911) 700 12.1 4+1 9 0+9 2+5 

Nematoda       

Acrobeloides nanus (de Man, 1880) 340 0.15 355 1775 1420 710 

Panagrolaimus detritophagus Fuchs, 1930 380 0.10 521 1562 1562 521 

Panagrellus redivivus (Linnaeus, 1767) 620 0.28 190 570 380 190 
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Poikilolaimus oxycerca (de Man, 1895) 930 0.98 54 162 54 162 

Collembola       

Sphaeridia pumilis (Krausbauer, 1898) 300 5.7 9 9 37 9 

Proisotoma minuta (Tullberg, 1871) 880 11.0 5 4 5 5 

Podura aquatica Linnaeus, 1758 560 13.9 4 12 8 8 

Desoria trispinata (MacGillivray, 1896) 1090 17.3 3 6 6 6 

Isotomurus plumosus Bagnall, 1940 1250 31.0 2 2 2 2 

Deuterosminthurus bicinctus (Koch, 1840) 730 36.1 1+1 1+1 1+1 1+1 

Sinella curviseta Brook, 1882 1090 44.1 1 1 4 4 

Folsomia fimetaria (Linnaeus, 1758) 1400 53.2 1 1 2 3 

Oribatida       

Tectocepheus velatus (Michael, 1880) 240 4.8 11 33 11 22 

Minunthozetes semirufus (C. L. Koch, 1841) 280 5.6 9 28 19 10 

Pantelozetes paolii (Oudemans, 1913) 340 12.9 4 12 4 8 

Zygoribatula exilis (Nicolet, 1855) 360 13.7 4 12 8 12 

Chamobates voigtsi (Oudemans, 1902) 300 15.9 3 3 7 3 

Atropacarus striculus (C. L. Koch, 1835) 440 27.1 2 2 2 2 

Liebstadia similis (Michael, 1888) 470 35.5 2 1 5 3 

Eupelops occultus (C. L. Koch, 1835) 410 46.5 1 1 1 3 

Oribatella quadricornuta (Michael, 1880) 560 50.8 1 1 2 2 

Gamasida       

Gaeolaelaps aculeifer (Canestrini, 1883) 700 22.0 2+1 5 2+1 5+6 

Enchytraeidae       

Enchytraeus bulbosus Nielsen & Christensen, 

1963 4000  

fragments 

Enchytraeus albidus Henle, 1837 2500  

Enchytraeus luxuriosus Schmelz & Collado, 

1999 10500  

Enchytraeus bigeminus Nielsen & Christensen, 

1963 6500  

Enchytraeus crypticus Westheide & Graefe, 

1992 7500  

 102 

We used different formulas for body volume approximation. For Collembola we estimated body volumes as 103 

ellipsoid volumes (V(µm³) = 1.33 x π x a x b x c x 10-6, where a, b, c are axis lengths in µm). For Oribatida, 104 

Gamasida, and Enchytraeidae we estimated body volumes as cylinder volumes (V(µm³) = π x L x r² x 10-6, where 105 
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L is height and r is radius), for Tardigrada V(µm³) = L x d² x 0.785 x 10-6 (Hallas & Yeates, 1972), and for 106 

Nematoda V(µm³) = L x d² x 0.577 x 10-6 was used (Andrássy, 1956). Average sizes of mite, nematode, 107 

tardigrade and springtail specimens were measured in the populations used for mock community construction, 108 

as body sizes can vary among specimens depending on life stage and other factors.  109 

We used the tardigrade culture Paramacrobiotus richtersi (Murray, 1911) strain Hohberg-99 and the following 110 

cultures of nematodes: Acrobeloides nanus (de Man, 1880) strain Hohberg-99, Panagrolaimus detritophagus 111 

Fuchs, 1930 strain Hohberg-07, Panagrellus redivivus (Linnaeus, 1767) strain König-18 and Poikilolaimus 112 

oxycerca (de Man, 1895) strain Hohberg-01. Thousands of nematode specimens were extracted through sieves 113 

and milk filters from the culture plates into tap water. Nematode numbers and mean body volumes within the 114 

four stock solutions were then calculated by counting individuals of aliquots and measuring body length and 115 

width of 20 specimens per aliquot. After counting, we evaporated the water from each stock solution and added 116 

96% ethanol. For the mock communities we added a calculated part of each of the stock solutions, holding the 117 

respective nematode volume, i.e. number x mean body volume. As enchytraeids are large compared to the other 118 

invertebrates, we used only body fragments. Tardigrades, collembolans and mites were individually counted into 119 

the mock communities. In order to achieve the needed biomass of the respective mock type, differently sized 120 

individuals (adults and juveniles) were used. All mock community samples were stored in 2 ml Eppendorf tubes 121 

in 96% undenatured ethanol at -20 °C until sequencing. 122 

Laboratory work and sequencing 123 

Before performing the DNA extraction, ethanol was evaporated in a SpeedVac Concentrator Plus (Eppendorf, 124 

Hamburg, Germany) to avoid losing material. This is especially important for potentially floating Nematoda and 125 

Tardigrada specimens. DNA was extracted with DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany). We 126 

included a negative control into the extractions to investigate possible cross-sample contamination. DNA 127 

concentration was measured on NanoDrop (Thermo Fisher Scientific, Waltham MA, USA) and QubitTM (with the 128 

dsDNA BR Assay Kit (Thermo Fisher Scientific, Waltham MA, USA). Fragment length was checked on 129 

TapeStation 2200 (Agilent Technologies, Santa Clara CA, USA). Libraries were prepared with the NEB Next® 130 

Ultra™ DNA Library Prep Kit (New England Biolabs, Ipswich MA, USA) and sequenced on an Illumina NovoSeq 131 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.16.468383doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?96ug6M
https://www.zotero.org/google-docs/?IPLX4Q
https://doi.org/10.1101/2021.11.16.468383


 

9 

6000 PE150 platform at Novogene (Hong Kong, China). Sequencing depth was 20 gigabase per mock 132 

community, and 1 gigabase for the negative control (2 x 150 bp, paired-end). 133 

Bioinformatics & data processing 134 

Sequences were trimmed and quality checked with Autotrim v0.6.1 (Waldvogel et al., 2018). Autotrim relies on 135 

Trimmomatic (Bolger, Lohse, & Usadel, 2014), FastQC (Andrews, 2017/2021) and MultiQC (Ewels, Magnusson, 136 

Lundin, & Käller, 2016). It removes Illumina sequencing adapters, performs a quality control of the reads, and 137 

combines all information into a single report. Taxonomic classification was performed with Kraken2 v2.0.8 138 

(Wood, Lu, & Langmead, 2019) against a designated soil invertebrate genome database (GenBank Bioproject 139 

PRJNA758215). This database contains short-read assemblies of over 250 species (FigShare doi: 140 

10.6084/m9.figshare.16922890, Supplemental Table 1), including all species used for the mock communities. 141 

Before conducting metagenomic classification, the reference genomes were used to build a Kraken2 database 142 

with the default k-mer size (k=35). Taxonomic identification of reads was performed on 21 classification 143 

thresholds (between 0.0 to 1.0, at 0.05 increments). At each classification threshold, we accounted for possible 144 

contamination by extracting the hits of each taxon found in the negative control from the hits of that taxon in 145 

every mock community. We plotted correctly identified taxa, false negatives and false positives against the 146 

Kraken2 classification threshold, and selected the best-performing assignments for further analysis. 147 

Data analysis 148 

Data analysis was conducted with R v3.6.1 in RStudio (Version 1.2.1335), with data formatted with tidyverse 149 

(Wickham et al., 2019). Graphs and plots were generated by using the package ggplot2 (Wickham, 2016). 150 

Unclassified reads, and classified reads representing less than 0.01 percent of the sample were removed from 151 

data. We evaluated false negatives and false positives at all 21 Kraken2 classification thresholds (FigShare doi: 152 

10.6084/m9.figshare.16922890). 153 

We predicted read abundances with the total number of sequences obtained for each mock library with a 154 

generalized linear model. Initial independent variables were sequencing success, taxon group (Collembola, 155 

Enchytraeidae, Nematoda, Oribatida, Gamasida, Tardigrada), mock species biomasses, genome completeness 156 
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(measured recovered complete Benchmarking Universal Single-Copy Orthologs, complete BUSCOs (Simão, 157 

Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015)), GC content and genome sizes. We estimated genome 158 

sizes with ModEst, a new method which performs very well in comparison with flow cytometry measurements 159 

(Pfenninger, Schönnenbeck, & Schell, 2021). First we performed a combinatorial model selection with MuMIn 160 

(Burnham & Anderson, 2003). The best performing model based of quasi-AIC scores can be written up as hits 161 

~ biomass + taxon_group + missing_buscos + genome_size. The final model was fitted with quasipoisson 162 

distribution to account for overdispersion. All predictors were scaled. Genome sizes were log-normalized before 163 

scaling. We evaluated the relative importance of the predictors by calculating model-specific variable importance 164 

scores in the R package vip (Greenwell & Boehmke, 2020).  165 

We evaluated the correspondence between community composition captured by metagenomic reads and 166 

original biomass composition with redundancy analyses in vegan (Oksanen et al., 2019). We tested 167 

metagenomic hit model statistical significance with an ANOVA-like permutation test for redundancy analysis 168 

(Legendre & Legendre, 2012).   169 
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Results 170 

The sequencing resulted in ~69 million paired-end reads on average per mock community replicate, with a 171 

standard deviation of ~1.5 million reads. Raw sequencing results are available on the European Nucleotide 172 

Archive (accession number: PRJEB45431). About ten million reads were recorded in the negative control. Of 173 

the reads passing quality filtering, ~95 million were assigned to taxa at a 0.95 classification threshold (Table 1). 174 

The number of correctly classified species remained stable across all classification thresholds (Fig. 1). We 175 

retained results at 0.95 as a trade-off for correct and false classifications. Of the 28 species from the mock 176 

community, 27 were correctly identified at most classification thresholds (Fig 1). However, the number of false 177 

positive classifications strongly decreased at more stringent thresholds, from 181 to 11. The number of false 178 

negative classifications remained low, stable and consistent - a single species (an oribatid mite: Atropacarus 179 

striculus) was missed at most classification thresholds. Missing this species was due to the stringency of the 180 

bioinformatic sequence processing: the species yielded very few sequencing reads which were then discarded 181 

during data filtering. 182 
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 183 

Some species consistently yielded more reads, regardless of their biomass ratios in the mocks (Fig. 2a). 184 

Sequencing depth differences among mock libraries and the GC content of the genomes had little predictive 185 

effect on assigned sequencing reads, so they were discarded during model selection. The final model (Fig. 2b, 186 

Table 2) showed that metagenomic sequencing success differed across the taxon groups. Compared to reads 187 

assigned to Collembola, assignment success to Tardigrada and Nematoda was slightly, but statistically 188 

insignificantly lower, while assignment success to Oribatida and Nematoda was statistically significantly lower 189 

(Table 2). Biomass of species was positively related to assigned metagenomic reads in all groups. Genome 190 

completeness had a statistically significant positive effect on metagenomic read assignment: overall more reads 191 

were assigned to taxa with more complete genomes, although this differed across taxon groups. Genome size 192 

had a statistically significant positive effect on metagenomic read assignment: more reads were assigned to taxa 193 

with larger genomes, regardless of the taxon group. Taxon groups were the most important predictors in the 194 

model (Fig. 2c). Replicates of the four mock community types were statistically significantly grouped together in 195 

the redundancy analysis (df = 3, F = 3.863, p < 0.001, Fig. 3). 196 

Fig. 1. Species identification success along different Kraken2 classification 
thresholds. Numbers over bars represent the actual numbers of correctly 
identified species, and false negative and false positive identifications.  
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  197 

Fig. 2. a) Biomass ratios of taxa and sequencing reads assigned to these taxa in four mock communities. b) 
GLM-predicted effects of biomass, genome completeness and genome size on taxonomically assigned 
metagenomic reads. c) Relative importance of GLM predictor variables. 
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Table 2. Model-predicted biomass, taxon group, genome completeness, genome size effects on assigned 198 

metagenomic read numbers. All predictors were scaled before model fitting. Genome size was log-normalized 199 

before scaling. Collembola served as a model intercept. 200 

 Estimate Standard error t p 

(Intercept) 14.286 0.106 134.852 0.000 

Biomass 0.215 0.055 3.942 0.000 

Enchytraeidae -7.380 1.787 -4.129 0.000 

Nematoda 0.516 0.339 1.521 0.129 

Oribatida -1.374 0.207 -6.632 0.000 

Tardigrada -0.372 0.356 -1.043 0.298 

Genome completeness 0.555 0.130 4.283 0.000 

Genome size 1.165 0.167 6.991 0.000 

 201 

 202 

203 

Fig. 3. Redundancy analysis ordination of mock community replicates along 
the taxonomically assigned metagenomic reads. 
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Discussion 204 

We performed a shotgun metagenomic experiment on soil invertebrate mock communities of known composition. 205 

We assigned metagenomic reads to a genome database of soil invertebrates. We investigated how 206 

metagenomic reads record the presence of taxa in the mocks, whether read numbers reflect biomass, and how 207 

taxonomic, genome, and assembly properties influence biomass - read relationships. 208 

Almost all species (27/28) were consistently detected at most classification thresholds. The single false negative 209 

species (A. striculus) was also detected with very low read numbers, and it was missed only because of stringent 210 

quality filtering. The number of false positives was high at low classification thresholds, and rapidly dropped at 211 

higher thresholds (Fig. 1). Eleven false positive assignments were retained even at the highest classification 212 

threshold. Possible explanations include contamination and bioinformatic issues. Cross-contamination is 213 

sometimes observed in mock metagenomes (Bista et al., 2018) but it cannot cause false positives here as all 214 

species were present in all mocks. Gut content may also result in the detection of unexpected taxa (Paula et al., 215 

2016). However, most species used in these mocks are not predators. The predatory tardigrade P. richtersi was 216 

exclusively feeding on a nematode species which was also present in all the mock communities (A. nanus). The 217 

most likely explanation is related to some aspects of the metagenomic read assignment. The first candidate is 218 

the assignment algorithm itself, although comparisons show that Kraken is conservative (Harbert, 2018). 219 

Assignment of reads to closely related taxa is an unlikely cause since eight of the 12 false positive species (at 220 

0.95 classification threshold) had no genus-level relatives in the mocks. Unmasked repeats might also 221 

erroneously attract reads during the assignment. Eukaryotes are rich in low complexity regions, and cross-222 

assignment of these regions might be a considerable source of false positives in all eukaryotic metagenomes 223 

(Clarke et al., 2018). The effects of repeat regions in eukaryotic metagenomics assignments should be 224 

evaluated, although repeat identification is not trivial, especially for understudied taxa (Clarke et al., 2019). 225 

The relationship between sequencing reads and the initial biomass of organisms is a central topic in the DNA-226 

based analysis of community composition. In theory, more shotgun metagenomics reads should be assigned to 227 

species which are represented with higher biomass in a sample. However, this relationship might still be 228 
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influenced by several factors. Here we investigated taxonomic effects, the impact of genome completeness, 229 

genome size, and GC content. We found that read counts were most strongly influenced by taxonomy, followed 230 

by genome size, genome completeness and biomass (Fig. 2c). We found no statistically significant effects of GC 231 

content on read assignment, although this was expected based on previous results with bacterial metagenomes 232 

(Browne et al., 2020).  233 

There were consistently more reads assigned to some taxonomic groups than to others (Fig. 2b, Table 2). The 234 

impact of taxonomy on sequencing reads recovery seems to be systemic, with some species having many reads 235 

in all mocks, some species having only few reads (Fig. 2a), and one species was even missed due to the stringent 236 

filtering (Fig. 1). Species represented with low biomass in mocks were already found to result in false negatives 237 

in metagenomics (Bista 2018), and A. striculus was indeed represented with a relatively low biomass in the 238 

mocks. However, low biomass alone does not explain the strong taxon effect on read assignment. We suspect 239 

that the most important cause for the strong taxon effects is likely caused by differences in DNA yields among 240 

different taxa (Sato et al., 2019; Schiebelhut, Abboud, Daglio, Swift, & Dawson, 2017; Tourlousse et al., 2021). 241 

Some taxa, e.g. oribatid mites are very hardy, and their cuticles might present obstacles to tissue homogenisation 242 

during DNA extractions. Indeed, the single false negative species was an oribatid mite. Cells of different taxa 243 

might react differently to extraction (Costea et al., 2017; Morgan, Darling, & Eisen, 2010), with some species 244 

consistently yielding lower quality DNA in lower quantities (or no DNA at all) than others (Schiebelhut et al., 245 

2017). However, differential DNA extraction efficiency does not explain why soft-bodied enchytraeids yield 246 

considerably less DNA than all other taxa (Fig. 2b). Differences in DNA content relative to body size (or biomass) 247 

might be responsible for this: some taxa may contain higher amounts of DNA per unit biomass than others. The 248 

association of DNA content with body size can be positive or negative depending on the organism group 249 

(Gregory, 2001).  250 

Strong taxonomic effects on biomass-read relationships are interesting not only for metagenomic, but also for 251 

metabarcoding studies. It is generally assumed that primer mismatch is the most important source of 252 

taxonomically biased biomass-read relationships in metabarcoding (Collins et al., 2019; Lamb et al., 2019; Piñol 253 

et al., 2019). Our results suggest that taxon-specific differences in DNA extraction efficiency and/or DNA content 254 
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might also play a role in taxonomic bias. However, recognizing this bias is difficult in metabarcoding: both primer 255 

bias, and factors influencing extraction DNA yields are likely phylogenetically conserved. Parallel metabarcoding 256 

and metagenomics studies on the same mock communities are necessary to evaluate the relative importance of 257 

primer bias versus DNA yield in biomass - read relationships (see e.g. (Bista et al., 2018).  258 

Despite considerable taxonomic effects, biomass was a statistically significant predictor of reads (Fig. 2a, Table 259 

2). This is in line with other metagenomic mock community studies on multicellular eukaryotes, such as benthic 260 

invertebrates (Bista et al., 2018) and pollen samples (Peel et al., 2019). The biomass effect on reads, although 261 

considerably smaller than taxon effects (Fig. 2c), was still sufficient to reflect compositional differences among 262 

the four mock types (Fig. 3). This confirms the suitability of shotgun metagenomics for a semi-quantitative 263 

comparison of soil invertebrate communities. 264 

We found that reference genome properties influence taxonomic assignments and read-biomass relationships, 265 

and that these need to be considered in metagenomic studies on eukaryotes. We showed that reference 266 

genomes size influences metagenomic assignments, with larger genomes attracting more reads than smaller 267 

genomes (Fig. 2b). This is known from microbial studies where it was shown that average genome size of a 268 

microbial community influences metagenomics results (Beszteri, Temperton, Frickenhaus, & Giovannoni, 2010). 269 

We found that genome completeness recorded as BUSCO scores may also influence metagenomic 270 

assignments, with more complete genomes attracting more reads. This suggests that reference genome 271 

assembly properties should also be considered in metagenomic assignments, even though previous findings 272 

show that even low coverage reference genomes can perform well (Sarmashghi, Bohmann, P. Gilbert, Bafna, & 273 

Mirarab, 2019). GC content of genomes might also influence metagenomic assignments (Browne et al., 2020), 274 

although in our case this effect was limited (Table 2).  275 

Our results outline a roadmap for future shotgun metagenomic work on metazoan mock communities. In the wet 276 

lab, DNA extraction needs to be optimized and likely adapted to taxa of interest. Differences in DNA content per 277 

unit biomass among and within major taxon groups should be evaluated and corrected for. In bioinformatics, 278 

assignment algorithms should be evaluated, adapted and developed with eukaryotes in mind. The performance 279 
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of distinct genomic regions (i.e. conventional marker genes, mitogenomes, coding regions, ultraconserved 280 

regions, repeat elements) should be evaluated, especially with respect to false positive detections. Genome 281 

databases will likely remain incomplete for some time. An important direction is to evaluate how incomplete 282 

databases (i.e. databases not containing the target species, but congenerics or even less related species) 283 

perform in taxonomic assignments.   284 

Conclusion 285 

Metagenomics is a promising alternative to metabarcoding also for eukaryotic communities. Although theory 286 

suggests that metagenomic reads should well represent biomass relationships in communities, differences 287 

among organisms related to DNA extraction efficiency and genome properties have strong influences on the 288 

biomass - read relationships. These effects need to be further investigated and quantified in parallel 289 

metabarcoding - metagenomic experiments. The effects of taxonomy, genome and assembly properties should 290 

be considered in analyses. Generalized linear models provide an excellent opportunity for this. With affordable 291 

sequencing and increasingly accessible eukaryotic reference genomes metagenomics is becoming a viable 292 

alternative to metabarcoding for describing community composition and structure.  293 
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