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Abstract 

Interpreting large-scale glycoproteomic data for intact glycopeptide 

identification has been tremendously advanced by software tools. However, 

software tools for quantitative analysis of intact glycopeptides remain lagging 
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behind, which greatly hinders exploring the differential expression and functions 

of site-specific glycosylation in organisms. Here, we report pGlycoQuant, a 

generic software tool for accurate and convenient quantitative intact 

glycopeptide analysis, supporting both primary and tandem mass spectrometry 

quantitation for multiple quantitative strategies. pGlycoQuant enables intact 

glycopeptide quantitation with very low missing values via a deep residual 

network, thus greatly expanding the quantitative function of several powerful 

search engines, currently including pGlyco 2.0, pGlyco3, Byonic and 

MSFragger-Glyco. The pGlycoQuant-based site-specific N-glycoproteomic 

study conducted here quantifies 6435 intact N-glycopeptides in three 

hepatocellular carcinoma cell lines with different metastatic potentials and, 

together with in vitro molecular biology experiments, illustrates core 

fucosylation at site 979 of the L1 cell adhesion molecule (L1CAM) as a potential 

regulator of HCC metastasis. pGlycoQuant is freely available at 

https://github.com/expellir-arma/pGlycoQuant/releases/. We have 

demonstrated pGlycoQuant to be a powerful tool for the quantitative analysis 

of site-specific glycosylation and the exploration of potential glycosylation-

related biomarker candidates, and we expect further applications in 

glycoproteomic studies.  

  

Introduction 

Protein glycosylation has long been known as a heterogeneous 

posttranslational modification (PTM) that increases protein diversity and exerts 

a profound effect on various biological processes1-4. With great strides made in 

mass spectrometry (MS)-based analytical methods and interpretation software 

tools5-10, the identification of intact glycopeptides on a proteome-wide scale is 

no longer a serious obstacle to glycosylation analysis11.  

However, the reliable and global quantitative analysis of intact 

glycopeptides remains a challenging barrier due to the lack of efficient software 

tools for the quantitative interpretation of proteome-scale intact glycopeptide 

mass spectrometry data6, 12. Although primary and tandem mass spectrometry 
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(MS1/MS2)-based quantitative strategies, such as label-free, isotope chemical 

labeling and isotope metabolic labeling approaches, have been accepted as 

gold standard methods for proteomics quantitative analysis13-15, the wide 

application of these strategies in large-scale quantitative intact glycoproteomic 

studies has been clearly impeded by the lack of mature software tools for 

quantitative data processing. Among the few software tools available for intact 

glycopeptide quantitation16, almost all suffer from impaired accuracy of 

quantitation and a large amount of quantitative missing values caused by 

inappropriate quantitative data processing procedures6, 12. 

A targeted mass spectrometry signal is easily affected by interference from 

nearby signals or noise, and its morphological characteristics cannot be entirely 

remained, resulting in impaired accuracy or missing values17. Deep learning-

based algorithms have led to very good performance on a variety of subjects18, 

19. Among them, the deep residual neural network (ResNet) introduced by He 

et al.20 has been accepted as an effective method for training computational 

vision object detection models that can represent much more complex functions 

than were previously practically feasible21-23. The main benefit of ResNet is that 

an image or matrix could be transformed to a well-trained vector that shows 

excellent performance in learning patterns from complex data and in matching 

two matrices24-26.   

Here, we present pGlycoQuant, a dedicated software tool for large-scale 

and global quantitative glycoproteomics that applies the ResNet deep learning 

to processing glycopeptide quantitative evidence between or within MS runs. 

We applied pGlycoQuant to state-of-the-art glycopeptide quantification analysis 

and comparison with other quantitation software tools, including MSFragger-

Glyco and ByologicTM. pGlycoQuant reports 1/10,000 missing values for 

glycopeptide quantification with match-between-run analysis, which is two 

magnitudes less than that of other quantitative software tools. The current 

version of pGlycoQuant supports both primary and tandem mass spectrometry 

quantitation for multiple quantitative strategies, including label-free, chemical 

labeling and metabolic labeling approaches, and is compatible with 
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identification results from several widely used search engines, including the 

Byonic27, MSFragger-Glyco8, Open-pFind28 and pGlyco series7, 29 engines. 

Furthermore, a pGlycoQuant-based site-specific N-glycoproteomic study 

quantified 6435 intact N-glycopeptides in three hepatocellular carcinoma (HCC) 

cell lines with different metastatic potentials and, together with in vitro molecular 

biology experiments, identified core fucosylation at site 979 of the L1 cell 

adhesion molecule (L1CAM) as a potential regulator of HCC metastasis.  

 

Results 

1. Development and optimization of pGlycoQuant  

The rapid development of software tools for large-scale glycoproteomic 

data interpretation has greatly facilitated intact glycopeptide identification6. 

However, only a few of them can be used for glycopeptide quantitation30, 31, and 

there is no mature software for quantitative data processing, mostly because of 

impaired accuracy and large numbers of quantitative missing values (Figure 

1a). Efficient tools for the comprehensive and accurate quantitative 

interpretation of proteome-scale intact glycopeptide mass spectrometry data 

are lagging behind and greatly needed. We developed pGlycoQuant, a 

dedicated software tool, for large-scale and global quantitative glycoproteomics. 

pGlycoQuant supports both primary and tandem mass spectrometry 

quantitation for multiple quantitative strategies, including label-free, chemical 

labeling and metabolic labeling approaches, and is compatible with several 

widely used search engines, including Byonic27, MSFragger-Glyco8, Open-

pFind28 and pGlyco series7, 29 (Figure 1b). pGlycoQuant consists of three steps: 

first reading the identification results from searching engines, then extracting 

the quantitation signals, and finally processing the quantitation results 

(Supplementary Figure 1). The whole workflows are described in the Online 

Methods. 

A deep learning model is embedded in pGlycoQuant to improve the 

matching performance between runs (Figure 1c, Supplementary Figure 2, 

Online Methods). pGlycoQuant applies the ResNet deep learning to processing 
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glycopeptide quantitative evidence between or within MS runs (Figure 1c, 

Supplementary Figure 2). A glycopeptide precursor is first mapped to a tensor 

of 1×128, and the best signal patterns are retained by the ResNet18 model. 

Then, a fully connected network that comprehensively utilizes multiple 

characteristics, including the similarity of isotopic peaks and distance of 

retention time between glycopeptides, is trained to measure the similarity 

scoring and accurate matching of two glycopeptide precursors in the same run 

for metabolic labeling data or between different runs for label-free data. This 

model also provides the matching score for each quantitation result as a 

softmax loss function is used in the network (Figure 1c, Supplementary Figure 

2). This individual matching score evaluates the accuracy of each quantitation 

result (Supplementary Figure 3).  

Figure 1. The development of pGlycoQuant. (a) Current glycopeptide 
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quantitation software tools suffer from suboptimal reproducibility for lower-

abundance signals, resulting in a high missing data rate. (b) pGlycoQuant 

supports both primary and tandem mass spectrometry quantitation for multiple 

quantitative strategies. (c) An embedded deep learning model of ResNet in 

pGlycoQuant.   

 

2. Comparative evaluation of pGlycoQuant  

To evaluate the performance of pGlycoQuant for intact glycopeptide 

quantitation, we comprehensively compared pGlycoQuant with prevalently 

used search engines that equipped with quantitative functions, namely Byonic-

Byologic and MSFragger-Glyco, for intact glycopeptide quantitation on three 

benchmark datasets, including SILAC-labeled 293T cell data, label-free HeLa 

cell data, and TMT-labeled mouse liver data (Figure 2a, Online Methods, 

Supplementary Table 1, Supplementary Table 2). 
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Figure 2. Evaluation of pGlycoQuant performance on intact glycopeptide 

quantitation of label-free data. (a) The comparison workflow. (b) pGlycoQuant 

reports few missing values, even reading the same identification results. (c) 
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Pearson correlation of two replicate runs from the same sample. (d) Box plot 

visualization of the fold change of the glycopeptide quantification results of the 

mixed-organism samples. Percent changes were calculated based on the 

mean quantities in three replicates of each sample, including results with 

partially missing values. The medians are indicated. The boxes indicate the 

interquartile ranges (IQRs), and the whiskers indicate 1.5 × IQR values; no 

outliers are shown. The white dotted lines indicate the theoretical fold changes 

of the organisms (1:1:1 (S10:S12:S15) for humans and 1:1.2:1.5 (S10:S12:S15) 

for yeast). (e) An example of a glycopeptide signal. MSFragger-Glyco reported 

missing values, but pGlycoQuant correctly identified the glycopeptide signal. 

The table on the left shows the strength of the glycopeptide reported by 

MSFragger-Glyco and pGlycoQuant. The plot on the right side shows the 

extracted ion currents (XICs) of the glycopeptide in the mass spectrometry data, 

the blue dotted line represents the retention time to identify the corresponding 

glycopeptide by MSFragger-Glyco, and the red dotted line represents the start 

and end times for pGlycoQuant quantification of the glycopeptide. 

 

Glycoproteome quantitative analysis has been hampered with the lack of 

high reproducibility and consistency, which is often manifested as data missing 

values. We defined two indicators, the proportion of missing values in line 

(PMVL) and the proportion of missing values in total (PMVT), to measure the 

proportion of missing values (Supplementary Figure 4). pGlycoQuant showed 

excellent coverage and extremely low proportion of missing values, while the 

performance of other software tools in this aspect was unsatisfactory 

(Supplementary Table 3). In label-free quantitation, 61.45% PMVL and 30.12% 

PMVT were reported by Byologic (Figure 2b, Supplementary Table 3). The 

missing value problem was ameliorated in MSFragger-Glyco (Figure 2b) but 

27.68% PMVL and 13.45% PMVT were still reported (Supplementary Table 3). 

pGlycoQuant reported minuscule missing values even when reading the same 

GPSMs (glycopeptide spectra matches) reported by the other software tools 

(Supplementary Table 3). The extremely low levels of missing values obtained 
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by pGlycoQuant can be attributed to the unique evidence generation and 

alignment methods (Supplementary Figure 5), which enable highly reproducible 

quantitation in large sample cohorts. For the SILAC-labeling data, pGlycoQuant 

also showed outstanding performance compared with the other tools 

(Supplementary Table 3). For example, for the GPSM shown in Supplementary 

Figure 6, pGlycoQuant reported the quantitation results according to the fixed 

and truly existing signals, which were ignored by other software tools. 

Compared to SILAC-labeling and label-free data, it is relatively easy to obtain 

quantitation results from TMT-labeling data, as only report ions should be 

considered. Unfortunately, Byologic currently does not support the quantitation 

of TMT-labeling data. MSFragger-Glyco could analyze the TMT-labeling data, 

but produced mediocre results on the PMVL and PMVT (3.77% and 1.89%, 

respectively, Supplementary Table 3). pGlycoQuant also reported a few missing 

values in TMT-labeling data analysis, which were reasonable according to the 

manual check (Supplementary Figure 7). 

After removal of the missing values, the quantitation precision was 

evaluated. Because of the high PMVL and PMVT, the number of glycopeptides 

with quantitation values reported by other software tools was much smaller than 

that of pGlycoQuant after reading the same identification results. Specifically, 

for the hardly quantifiable glycopeptides of other software tools, pGlycoQuant 

provides high-precision results. pGlycoQuant could recall ~98% of all 

glycopeptides without missing values (Supplementary Table 3).  

Here, we use Pearson correlation and standard deviation as the 

measurements of precision. For SILAC-labeling data quantitation, the standard 

deviation of the Byologic results was almost twice as larger as that of the 

pGlycoQuant counterparts (Supplementary Figure 8). This is attributed to the 

outlier results of the low intensity glycopeptides that result in poor reproducibility 

of proteins with lower abundance. For the label-free and TMT-labeling data, the 

pGlycoQuant results reported average Pearson correlation of ~0.99 and ~0.91, 

and average standard deviation of ~0.26 and ~0.17, respectively (Figure 2c, 

Supplementary Figure 9 and Supplementary Figure 10). Other software tools 
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also achieved comparable Pearson correlation and standard deviation, 

however, due to the removal of missing values during the analysis. Then, we 

used mixed-organism samples (human serum and budding yeast) containing 

two different proportions of the species32, to assess the precision of 

quantification on the basis of how well known ratios were recovered by the 

software tools. In comparison to Byonic and MSFragger-Glyco, pGlycoQuant 

demonstrated better quantification precision for both human and yeast 

glycopeptides (Figure 2d). By visualizing extracted ion currents (XICs) of the 

glycopeptide in two repeated runs of label-free data, we showed that the 

quantitative algorithm of pGlycoQuant can accurately locate the signal of the 

glycopeptide (Figure 2e). 

The above results demonstrate the outstanding quantitative performance 

of pGlycoQuant especially on results that are difficult to quantify with software 

tools, thanks largely to the deep-learning-based evidence matching 

approaches in pGlycoQuant. Moreover, the quality control in pGlycoQuant 

effectively removes low-quality quantitative data, further ensuring quantitative 

accuracy and precision. 

 

3. pGlycoQuant enabled large-scale quantitative analysis of the 

proteome and N-glycoproteome in different metastatic HCC cell lines  

The high accuracy and precision of pGlycoQuant enable further functional 

exploration of site-specific glycosylation. Quantitative analyses of the proteome 

and intact N-glycopeptides in three HCC cell lines with different metastatic 

potentials (Hep3B with no metastatic potential, MHCC97L with low metastatic 

potential and MHCCLM3 with high metastatic potential) were performed with 

four replicates for each MS quantitative analysis (Figure 3a, Online Methods). 

A total of 11312 proteins and 11001 intact N-glycopeptides were quantified 

(Supplementary Data 1, 2), among which those that appeared more than in 

duplicate were regarded as reliable. The results showed that a total of 9154 

proteins and 6435 intact N-glycopeptides were reliably identified and quantified 

from the proteomic and intact N-glycopeptide quantitation experiments, 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.15.468561doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468561
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

respectively (Figure 3b, Supplementary Data 1, 2), which was the largest intact 

glycopeptide quantitative result in the three cell lines thus far. The 6435 intact 

N-glycopeptides were attributed to 769 glycoproteins with 1357 N-glycosites 

and 143 N-glycans (Figure 3c). The quantitative ratios among the three cell 

lines showed high correlation, demonstrating reliable quantitative accuracy and 

good repeatability (Supplementary Figure 11,12). The criteria of ratio ≥2 or ≤0.5 

and p<0.01 were adopted as significant differential expression to further filter 

the quantitative results, resulting in 2438 proteins and 3030 intact glycopeptides. 

The details of the differential proteins and intact glycopeptides among cell lines 

are listed in Supplementary Data 3, 4.  

The ability to quantify the proteome and intact glycopeptides at such a 

large scale provides opportunities to investigate the role of glycosylation in the 

metastasis of HCC. Gene Ontology (GO) analyses of the proteome and 

glycoproteome showed that differential proteins were mainly concentrated in 

the cytoplasm and nucleus (Supplementary Figure 13a), were associated with 

ion binding and RNA/DNA binding (Supplementary Figure 13b), and 

participated in cellular metabolism and signal transduction (Supplementary 

Figure 13c), while differential intact N-glycopeptide-related glycoproteins were 

more likely to be located in the membrane and extracellular regions 

(Supplementary Figure 14a), to be related to enzyme binding and hydrolase 

activity (Supplementary Figure 14b), and to be involved in cell 

adhesion(Supplementary Figure 14c).   

Then, we used volcano plots and box plots to visually show the distribution 

and dispersion degree of the differential proteins and intact glycopeptides. The 

differences in glycopeptides were more diffuse than those in proteins (Figure 

3d-g) in the three cell lines. Further principal component analysis (PCA) showed 

that compared to proteomes, differences in intact glycopeptides were more 

likely to distinguish the three HCC cell lines with different metastatic potentials 

(Figure 3h, i). Thus, we drilled down for in-depth information on intact 

glycopeptide data to explore the role of site-specific N-glycosylation in the 
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metastasis of HCC.  

Figure 3. Large-scale quantitative analyses of the proteome and N-
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glycoproteome of different metastatic HCC cell lines with pGlycoQuant. (a) 

Experimental workflow. (b) The numbers of proteins and intact glycopeptides 

quantified from proteomic and intact N-glycopeptide quantitation experiments, 

respectively (the blue bar represents the number of proteins/glycopeptides 

quantified in more than two replicates). (c) General information on 6435 reliably 

quantified intact N-glycopeptides. Volcano map of differential proteins (d) and 

intact glycopeptides (e) among three cell lines. Box diagram with four replicates 

for the quantitation of proteins (f) and intact glycopeptides (g). Principal 

component analysis (PCA) plot of differential proteins (h) and differential intact 

glycopeptides (i) among three cell lines. 

 

4. Site-specific N-glycoproteomic analyses revealed great 

heterogeneity and implied altered core fucosylation to be highly 

associated with in vitro cell invasion and metastasis  

Statistical analyses of the site-specific N-glycoproteome enable further 

visualization of glycoproteome heterogeneity and investigation of system-wide 

glycosylation patterns33. Firstly, we performed overall statistical analyses on 

site-specific N-glycoproteome data from three cell lines. It was demonstrated 

that ~79.5% of the glycosites (1079 of the 1357) quantified in this study were 

annotated in the UniProt database (Figure 4a). In addition to quantifying 456 

previously proven glycosties (456 published and 48 imported), we provided 

experimental evidence for 575 UniProt-predicted glycosites (572 sequence 

analyses and 3 by similarity) and 278 non-UniProt-recorded glycosites (Figure 

4a). Sequence motif analysis showed that the majority of N-glycosites share N-

X-S (40%) and N-X-T (58%) sequons, while only 2% of the glycosites have the 

N-X-C sequon (Figure 4b). The distribution of singly or multiply glycosylated 

proteins and the degree of glycan microheterogeneity showed that more than 

half of the glycoproteins (481 of the 769 identified glycoproteins) had only one 

glycosite (Figure 4c), while 75% of glycosites contained more than one glycan 

(Figure 4d). Glycans with 8-12 monosaccharides dominated in these data 

(Figure 4e). A network between glycan types and glycosites on glycoproteins 
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revealed that the fucosylation type was prevalent in the HCC cells, and 

fucosylation and sialylation occurred more frequently on multiply-glycosylated 

proteins, thus contributing more to heterogeneity (Figure 4f). A heatmap 

displaying the frequency of glycan pairs co-occurring at the same site illustrated 

that oligomannose appears to co-occur with several groups of complex/hybrid, 

fucosylation and sialylation types with high frequency (Figure 4g), which further 

indicates site-specific microheterogeneity.   

 

Figure 4. Characteristics of site-specific N-glycans quantified in HCC cell lines. 

(a) The status of quantified glycosites recorded in the UniProt database. (b) 
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Recognition of the sequence motif of N-glycosylation (N-X-S/T/C, where N is 

asparagine, X is any amino acid except proline, S is serine, T is threonine, and 

C is cysteine.) (c) The number and percentage of N-glycosites located on a 

certain protein. (d) The number and percentage of N-glycans linker to a certain 

glycosite. (e) The glycan size distribution in 6435 glycopeptides from three HCC 

cell lines. (f) Glycoprotein-glycan network maps of specific glycans (outer circle, 

143 in total) modifying specific glycoproteins (inner bar, 769 in total). (g) A 

glycan co-occurrence heatmap representing the number of times glycan pairs 

appear together at the same glycosite, indicating which glycans contribute most 

to the microheterogeneity of the 1019 glycosites with more than one glycan 

modifying them.  

We further analyzed different distributions of glycan size and glycan type 

in all quantified intact glycopeptides and the uniformly up-/downregulated 

glycopeptides in three cell lines with increased metastatic potential. It could be 

concluded that upregulated glycopeptides tend to have longer glycans (mostly 

with 8-12 monosaccharides) than downregulated glycopeptides 

(Supplementary Figure 15a). Comparing glycan types in all quantified 

glycopeptides showed that fucosylation and sialylation were more associated 

with upregulated glycopeptides, while oligomannose was dominant in 

downregulated glycoppetides (Supplementary Figure 15b).  

Glycosyltransferases (GTs) and glycoside hydrolases (GHs) coregulate the 

synthesis of glycans and are key factors affecting protein glycosylation. Thus, 

we then analyzed glycan-related enzymes. We quantify 164 glycan-related 

genes, including 85 GTs and 44 GHs, from the proteome quantitative results of 

9154 proteins (Supplementary Figure 16, Supplementary Data 5). Among them, 

we noted that a GT that regulates core fucosylation synthesis, alpha-(1,6)-

fucosyltransferase (FUT8), was significantly changed in the three cell lines 

(Supplementary Figure 16), which implies that core fucosylation is highly 

correlated with HCC cell metastasis. 
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5. Site-979-specific core fucosylation of L1CAM was identified and 

validated in vitro as a potential regulator of HCC metastasis 

Consequently, we further analyzed core-fucosylated glycoproteins, and our 

screen identified a glycoprotein, L1CAM, in which glycosite 979 is highly core-

fucosylated and upregulated in three cell lines with increasing metastatic 

potential. A total of 35 site-specific glycans, including 5 glycosites and 20 

glycans were quantified in L1CAM (Figure 5a, b). L1CAM is a highly 

glycosylated protein known to regulate cell attachment, invasion and migration 

in several cancers and is associated with poor prognosis34-36. For example, 

Mahal and Hernando et al.37 demonstrated that glycoprotein targets of FUT8 

were enriched in cell migration proteins, including the adhesion molecule 

L1CAM, in melanoma metastases. However, little is known about the site-

specific glycosylation of L1CAM associated with cell invasion and metastasis. 

We found that core fucosylation with glycan composition 

Hex[5]HexNAc[4]NeuAc[1]Fuc[1] at glycosite 979 was significantly high in 

L1CAM in all three cell lines (Supplementary Figure 17a) through normalization 

within one cell line. After normalization among the three cell lines, it was obvious 

that all fucosylated glycans at site 979 of L1CAM were consistently upregulated 

with increasing metastatic potential of the cell lines (Supplementary Figure 17b). 

Further analysis of the protein expression levels of L1CAM and FUT8 from 

proteomic quantitation data revealed that the upregulated of fucosylation at site 

979 of L1CAM with increasing metastatic potential was caused by different 

reasons (Figure 5c): from no metastatic potential to low metastatic potential, 

the increased fucosylation at site 979 was caused by the increased expression 

of FUT8; from low metastatic potential to high metastatic potential, the 

increased fucosylation at site 979 was mainly due to the increased protein 

content of L1CAM. The western blot results were consistent with the of MS-

based proteomic quantitative results interpreted by pGlycoQuant (Figure 5d-f). 

Based on the above results and the known ability of L1CAM support invasion 

and metastasis, we hypothesize that increased core fucosylation at site 979 of 

L1CAM reduces L1CAM cleavage by plasmin, facilitating HCC cell line invasion 
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and metastasis (Figure 5g).    

Figure 5. Site-979-specific core fucosylation of L1CAM is upregulated in three 

HCC cell lines with increasing metastatic potential. (a) Site-specific N-

glycosylation of L1CAM in three HCC cell lines. (b) Graphical view of five 

identified glycosites located in specific positions and domains of L1CAM. The 
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orange bar chart represents the Ig-like C2 type, and the green bar chart 

represents fibronectin type III. (c) Change trends of protein L1CAM, site-979-

specific glycan Hex[5]HexNAc[4]NeuAc[1]Fuc[1], and protein FUT8 in three 

HCC cell lines from low metastatic potential to high metastatic potential. (d) 

Western blot validation of the protein expression levels of L1CAM and FUT8 in 

three HCC cell lines. (e) L1CAM levels in three HCC cell lines. (f) FUT8 levels 

in three HCC cell lines. (g) Hypothesis of increased core fucosylation at site 

979 of L1CAM facilitating HCC cell line invasion and metastasis. The glycan 

symbols are as follows: green circle for Hex, blue square for HexNAc, purple 

diamond for sialic acids and red triangle for fucose.  

 

We performed several experiments to investigate the impact of site-979-

specific core fucosylation of L1CAM on in vitro HCC cell metastasis. We first 

examined whether L1CAM is required for the maintenance of existing 

metastasis by the silencing of L1CAM in LM3 cells. Consistently, siL1CAM cells 

displayed decreased L1CAM protein (Supplementary Figure 18a) and reduced 

cell migration and invasion in comparison to siCtrl cells (Supplementary Figure 

18b-d). To confirm the role of site-979-specific core fucosylation of L1CAM in in 

vitro HCC cell metastasis, we next investigated whether L1CAM 

overexpression with or without the site-979 mutation has the same ability to 

promote HCC cell metastatic capacity and whether the core fucosylation of 

L1CAM contributes to that effect. L1CAM overexpression triggered significant 

increases in 97L cell migration and invasion in vitro, while site-979-mutated 

L1CAM overexpression with the same protein amount showed no prometastatic 

effects (Figure 6a-d). Further silencing of FUT8 in 97L cells (Figure 6e), which 

resulted in reduced core-fucosylated L1CAM (Figure 6f), decreased in vitro cell 

migration and invasion (Figure 6g-i;). These results suggest that site-979-

specific core fucosylation is critical to prometastatic phenotype in HCC cell lines. 

Previous studies have reported that the cleavage of L1CAM by plasmin inhibits 

its ability to mediate neural cell invasion and metastatic outgrowth38, 39. Here, 

we observed that 97L cells with site-979-mutated L1CAM overexpression 
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indeed tended to be more easily cleaved by plasmin than unmutated cells 

(Figure 6j), which to a certain extent accounted for the impact of altered core 

fucosylation at site 979 of L1CAM on L1CAM cleavage by plasmin. 
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Figure 6. In vitro validation of site-979-specific core fucosylation of L1CAM is a 

potential regulator of HCC metastasis. (a) Western blot of L1CAM levels in 97L 

cells overexpressing control vector, pL1CAM-FLAG vector or pL1CAM 

(N979Q)-FLAG vector. (b) Wound healing assay in monolayers of 97L-

overexpressing cells (vector, L1CAM-OE and L1CAM-N979Q). The scratch 

area of the cells was detected with an inverted microscope (10X). (c) Transwell 

migration assay and (d) Matrigel invasion assay (scale bar = 100 µm) in 97L- 

overexpressing cells (vector, L1CAM-OE and L1CAM-N979Q). (e) Western blot 

of L1CAM levels in 97L cells transfected with negative control (Ctrl) and FUT8 

siRNA. (f) Lectin enrichment in the lysate of 97L cells transfected with Ctrl or 

FUT8 siRNA followed by western blot with anti-L1CAM (ab-all) antibody. Input 

showed no effect of FUT8 knockdown on L1CAM expression. (g) Wound 

healing assay in monolayers of 97L-knockdown cells (siCtrl and siFUT8). The 

scratch area of the cells was detected with an inverted microscope (10X). (h) 

Transwell migration assay and (i) Matrigel invasion assay (scale bar = 100 µm) 

in 97L-knocknown cells (siCtrl and siFUT8). (j) Western blot of cleaved L1CAM 

(ab3) and full-length L1CAM (ab-all) in whole lysates of 97L-overexpressing 

cells (vector, L1CAM-OE and L1CAM-N979Q) after treatment with plasmin. 

Cells were transfected for 24 h and then incubated with plasmin (300 μg/mL) 

for 8 h. The grayscale values of the western blot data (a, e) and scratch area of 

the wound healing assay were measured by Image J. β-Actin was used for the 

normalization of loading in all western blot data (a, e). The data shown are 

representative of three independent experiments and are presented as the 

means ± SD. P values were determined by the two-tailed unpaired t-test. ∗p < 

0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 compared to the control (n = 3). 

 

 

Discussion   

Since the identification of intact glycopeptide has been greatly facilitated by 

software tools5, 40, 41, there is an urgent need to develop efficient tools for 

accurate intact glycopeptide quantitation to assist in exploring differences in 

site-specific glycosylation6, 12. The main challenge in accurate quantitation by 
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LC–MS-based methods is to correctly extract the targeted mass spectral signal 

since it is easily interfered with nearby signals or noise. Herein, we developed 

pGlycoQuant to support multiple common glycopeptide quantitative strategies. 

pGlycoQuant applies a ResNet deep learning model to process glycopeptide 

quantitative evidence between or within MS runs. The ResNet model can learn 

the in-depth representation of glycopeptide quantitative evidence in complex 

mass spectrometry data, improving the sensitivity and precision in detecting 

low-abundance glycopeptides signals. Moreover, the deep-learning model 

reports the matching score, which is difficult to measure by the traditional 

algorithms. We benchmarked our pGlycoQuant with several prevalently used 

software tools on three different quantitation strategy-based datasets, and the 

results demonstrated that pGlycoQuant outperforms other tools in terms of 

precision and reproducibility.  

Precise and minuscule-value glycoproteome quantitation with pGlycoQuant 

at the site-specific glycosylation level provides us with new opportunities and 

horizons to explore the role of glycosylation organisms. The combination of 

large-scale quantitative analyses of the proteome and glycoproteome in three 

different metastatic HCC cell lines demonstrates a generic application of 

pGlycoQuant for investigating the role of site-specific glycosylation, yielding the 

largest intact glycopeptide quantitative data in three HCC cell lines and enabling 

the visualization of glycoproteome heterogeneity and the investigation of 

system-wide glycosylation patterns. Based on the convincing quantitative 

results obtained by pGlycoQuant, fortunately, the site-979-specific core 

fucosylation of L1CAM was identified in a screen and validated as a potential 

regulator of HCC metastasis in vitro, which presents the necessity and 

possibility of pGlycoQuant in biological research.  

Currently, pGlycoQuant is compatible with many search engines, including 

pFind, pGlyco2.0, pGlyco3, MSFragger-Glyco, and Byonic, providing a 

convenient way to quantify the glycoproteome at the site-specific level for the 

majority of users. Although pGlycoQuant is shown here in the context of N-

glycoproteomic quantitation, it is also applicable to intact O-glycopeptide 
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quantitation. With a deep residual network for precise reporting with minuscule 

missing values, pGlycoQuant makes it possible to quantitatively investigate 

site-specific glycosylation and illuminate its functions. 

 

Online Methods 

Workflow of pGlycoQuant. As shown in Supplementary Figure 1, the 

workflow of pGlycoQuant consists of three steps: 

Step 1: Reading the identification results. pGlycoQuant can read the 

identification results from pGlyco, Byonic and MSFragger-Glyco. High 

confidence peptide-spectrum matches (PSMs) produced by identification 

software tools are read into the program.  

Step 2: Extracting the quantitation signals. For each input PSM, 

pGlycoQuant calculates the theoretical distribution of isotopic peaks using a 

stepwise convolution algorithm and identifies experimental isotopic peaks in a 

range of MS scans where the peptide may be expected. pGlycoQuant 

constructs chromatograms for individual isotopic peaks of the peptides17. These 

“isotopic chromatograms” are called the “feature” in other papers, but this word 

is confused with the computational word “feature” in machine learning, so they 

are called the “evidence” of a peptide in this paper. For the chemical labeling 

data, pGlycoQuant picks the reported ion peaks in MS2 scans according to the 

input parameters. 

Step 3: Quantitation of peptide and protein intensities. (1) Metabolic label 

data. The chromatogram area of light and heavy peptides is recorded as the 

peptide intensity, and the sum of all corresponding peptide intensities is the 

protein intensity. Furthermore, pGlycoQuant calculates the similarity score 

based on the well-trained deep learning model (see the additional step below) 

to measure the accuracy of the quantitation result. (2) Label-free data. Unlike 

metabolic label quantitation, for each identified peptide in one run, pGlycoQuant 

detects the corresponding evidence in other runs, i.e., matches evidence 

between runs. Given an identified peptide in one run, pGlycoQuant constructs 

its evidence in the full MS scans and then calculates the similarity scores of all 
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the evidence with the same precursor mass in a ±2 min. (user defined) retention 

time window in another run. This similarity score of two pieces of evidence is 

calculated based on the same well-trained neutral network in metabolic label 

quantitation, but the pair of pieces of evidence with the maximum similarity 

score is selected to obtain the quantitation result between different runs. (3) 

Chemical label data. The peptide and protein intensities are calculated by 

summing the intensities of the reported ion peaks of the corresponding PSMs.  

Additional Step: Training a deep-learning-based evidence matching model. 

As illustrated in Supplementary Figure 2, we use label-free data to train the 

deep learning model. A total number of 3000 high score peptides 

simultaneously identified in two runs with very similar retention times were 

selected, and the pairs of evidence are defined as positive samples. A total of 

3000 peptides identified in only one run are selected, and the evidence in the 

identified run and random evidence in another run with different precursor 

masses are defined as negative samples. These positive and negative samples 

are used to train the following deep learning model. 

We consider the evidence as a matrix, similar to a picture in computational 

vision. The matrix is then transformed to a 512*1 vector by the ResNet18 model. 

This transformation is the critical operation to measure the pattern of a peptide 

evidence. The two vectors from two pieces of evidence are then combined into 

a 1024*1 vector, which is the input of a fully connected neural network. This 

network is designed to describe the similarity of the two original pieces of 

evidence, and a 16*1 vector is its output. Moreover, given a pair of pieces of 

evidence, 10 classical features are also extracted as a 10*1 vector. Another 

fully connected neural network with a softmax loss function is designed to 

output the final matching score of the two original pieces of evidence. This final 

matching score, called the similarity score in this paper, is in the interval of [0, 

1], where 0 corresponds to very dissimilar and 1 to very similar evidence. 

 

Comparison of pGlycoQuant with other N-glycoproteome quantitation 

software tools. To guarantee a fair comparison, we adopted the following 
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procedure based on previously suggested rules: (1) To prevent differences 

introduced by identification, pGlycoQuant reads the identification results 

reported by other software tools and calculates the quantitation results. (2) 

Missing values are analyzed, and two proportions at the protein level and 

protein quantitation value level are reported. (3) After the removal of the missing 

values, we compare the Pearson correlation and standard deviation of the 

intensities at the PSM, glycopeptide and protein levels without normalization. 

The key indicators are listed below (see Supplementary Figure 4): 

PMVL (proportion of missing value in line) = No. peptides with more than one 

missing value/No. all peptides 

PMVT (proportion of missing value in total) = No. individual missing values/No. 

all quantitation values 

Pearson correlation = 
𝐸(𝑋𝑌)−𝐸(𝑋)𝐸(𝑌)

√𝐸(𝑋2)−(𝐸(𝑋))2√𝐸(𝑌2)−(𝐸(𝑌))2
, where X and Y are vectors of 

protein or peptide intensities in one run, respectively. 

Standard deviation = 
𝑅𝐻−𝑅𝐿

2
 , where R is the vector of log2-transformed 

quantitation ratios of two runs. RH and RL are the 84.13% and 15.87% 

percentiles, respectively. This robust standard deviation was introduced in the 

MaxQuant paper. For a normal distribution, these would be equal to each other 

and to the conventional definition of a standard deviation. 

 

Quantitative and comparative analyses of intact N-glycopeptide results 

from three benchmark datasets. Three benchmark datasets, namely, SILAC-

labeled 293T cell data, label-free HeLa cell data, and TMT-labeled mouse liver 

data, were generated with the different quantitative strategies. In brief, for the 

SILAC-labeled 293T data, 293T cells were cultured in K0R0 and K6R6 media. 

Then, proteins were extracted from the labeled cells, mixed at a 1:1 ratio and 

digested. For the label-free HeLa data, HeLa cells were directly collected and 

used for protein extraction and digestion. For the TMT-labeled mouse liver data, 

proteins were extracted from ground mouse livers and digested. The digests 

were divided into two aliquots, each of which was labeled with the TMT6plexTM 

label reagents TMT6-127 and TMT6-130, respectively, following the 
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TMT6plexTM isobaric label reagent product manual (Thermo Fisher Scientific, 

Waltham, MA, U.S.A.), and mixed with 1:1. Finally, as with any quantitative 

strategies, glycopeptides were enriched from the desalted digests using ZIC-

HILIC method and analyzed by LC–MS/MS. Detailed sample preparation and 

data acquisition methods are described in Supplementary Note 1. 

 

Quantitative analyses of the proteome and N-glycoproteome in three HCC 

cell lines with SILAC labeling. We used the SILAC strategy to label the three 

cell lines MHCC97L, Hep3B and MHCCLM3 with K0R0, K4R6 and K8R10 

labeling, respectively. Then, proteins were extracted from the labeled cells, 

mixed at a 1:1:1 ratio and digested. The tryptic digests were then subjected to 

chromatographic fractionation with HILIC and used for direct proteomic 

quantitation and intact N-glycopeptide quantitation after ZIC-HILIC enrichment 

by four replicates of LC–MS/MS analysis. See Supplementary Note 1 for details. 

For the SILAC labeling, cells were cultured following the experimental 

procedure described in Supplementary Note 1 and collected after culturing for 

8 generations with over 95% labeling efficiency. To confirm the performance of 

our SILAC labeling experiments, we mixed the proteins from different labeling 

cells at a 1:1:1 ratio, digested them and quantitatively analyzed them by LC–

MS/MS. We used housekeeping proteins, including actin, tubulin and GAPDH, 

which are usually stable in organisms, as standards to evaluate the labeling 

efficiency. All the relative quantitative results of these housekeeping proteins 

showed no significant changes among the three cell lines (Supplementary Data 

3), which demonstrated a good SILAC experiment and guaranteed the 

feasibility of further quantitative analysis. 

 

Benchmark, software versions. pGlycoQuant supports quantitation of the 

identification results from Byonic, MSfragger, pFind and pGlyco services. The 

following search engines and quantitation engines/modes were used in this 

study for the pGlycoQuant-supporting quantitation test and comparison. Search 

engines: pGlyco3, MSFragger-Glyco, and Byonic. Quantitation engines/mode: 
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pGlycoQuant, MSfragger-Glyco, and Byologic. The detailed versions are listed 

in Supplementary Table 1. 

 

Database searching. Three benchmark datasets, including SILAC-labeled 

293T cell data, label-free HeLa cell data, and TMT-labeled mouse liver data, 

were searched using different software tools (Supplementary Table 1) for 

quantitative performance comparison. The detailed searching parameters are 

shown in Supplementary Table 2. The proteome data of SILIAC-labeled HCC 

cell lines were analyzed using Open-pFind software28 with open search mode 

for identification followed by pGlycoQuant for quantitation. The intact 

glycopeptide data of SILIAC-labeled HCC cell lines were analyzed using 

pGlyco3 followed by pGlycoQuant for quantitation with the same parameters in 

Supplementary Table 2. 

 

In vitro functional validation and molecular biology experiments. We 

utilized western blotting to detect the expression of L1CAM and FUT8 in the 

three cell lines Hep3B, MHCC97L, and MHCCLM3 and verify MS-based 

proteomic quantitative results. The 97L cells were transfected with FUT8 siRNA, 

pL1CAM-FLAG plasmid and pL1CAM (N979Q)-FLAG plasmid, and the LM3 

cells were knocked down by L1CAM siRNA. The effect of transfection was 

tested through western blot or lectin enrichment and immunoblot assays. For 

functional validation experiments, wound healing assays and transwell 

migration assays were adopted to validate the migration capacity of the above 

transfected cells. The invasive ability of these cells was evaluated by Matrigel 

invasion assay. The details of the above experiments are described in 

Supplementary Note 2. 
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