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Natural products produced by microorganisms constitute an
important source of essential pharmaceuticals, including an-
timicrobial and anti-tumor drugs. These bioactive molecules
are microbial secondary metabolites synthesized by co-localized
genes termed Biosynthetic Gene Clusters (BGCs). The rapid
increase of microbial genomics resources, due to the availabil-
ity of high-throughput sequencing technologies, has spurred the
development of computational methods for microbial genome
mining for BGC discovery. Current machine learning meth-
ods, however, have limited successes in uncovering novel BGCs
due to an excessive number of false positives in their predic-
tions. To this end, we propose Deep-BGCpred, a framework
that effectively addresses the aforementioned issue by improv-
ing a deep learning model termed DeepBGC. The new model
embeds multi-source protein family domains and employs a
stacked Bidirectional Long Short-Term Memory model to boost
accuracy for BGC identifications. In particular, it integrates
two customized strategies, sliding window strategy and dual-
model serial screening, to improve the model’s performance
stability and reduce the number of false positive in BGC pre-
dictions. We compare the proposed model against other well-
established methods on common benchmarks and achieve new
state-of-the-art results with convincing evidences. We expect
that researchers working on genome mining for natural prod-
ucts may be greatly benefited from our newly proposed method,
Deep-BGCpred.
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Introduction

Natural products are chemical compounds produced by liv-
ing organisms. Particularly, bioactive compounds produced
by microorganisms constitute a major source of innovative
pharmaceuticals including antibacterial, anti-tumor, and im-
munosuppressive agents (1). To handle challenges posed by
the rapidly rising number of clinically drug-resistant bacte-
ria (2, 3), the emergence of new pathogens and viruses (4),
and the demand for new drugs for complex diseases (5), re-
searchers have been continuously working to discover novel
and structurally diverse bioactive compounds.
Many valuable bioactive compounds are microorganisms’
secondary metabolites, whose synthetic instruction is primar-
ily encoded in a set of genomically co-localized genes known

as Biosynthetic Gene Clusters (BGCs) (6–8). While BGC se-
quences indicate the existence of some potentially bioactive
natural products, they still have to be extracted, isolated and
purified from microorganisms and experimentally validated
(9). With the rapidly evolving high-throughout sequencing
technologies, it is progressively easier to collect complete
microbial genome sequences. Mining of these genomes has
revealed a vast abundance of BGCs, far exceeding the ex-
perimentally verified natural products, which indicates that
many BGCs are not expressed under laboratory conditions
(10). Therefore, the increasing of microbial genomics re-
sources accelerates a data-driven paradigm shift in natural
product based drug discovery.
Computational methods play a crucial role in the develop-
ment of the field of natural product genome mining. Current
methods for mining microbial genomes for BGC identifica-
tion can be roughly divided into two main types: rule-based
and machine learning approaches.
The rule-based approach utilizes manually curated “rules” to
identify BGCs based on their similarity to reference genes
and protein domain composition. The earlier attempts of
BGC identification mainly rely on traditional bioinformat-
ics programs, such as BLAST, to align BGC reference with
the manual curation (11, 12). For instance, PRISM 4 (13),
a comprehensive platform for prediction of BGCs and the
secondary metabolite chemical structures from microbial
genome sequences, operates in this manner. Another salient
example is antiSMASH (14–18), the most widely used rule-
based approach for mining microbial genomes for BGCs. Re-
cently, they present antiSMASH version 6.0 (9), which ex-
tends the previous versions by expanding and improving the
set of BGC detection rules. With the enrichment of the detec-
tion rules, it is conductive to improve the accuracy of iden-
tifying known BGCs. Although these rule-based approaches
are effective for identifying known BGC classes, the known
ones account for only a small part of the whole BGC classes,
little is known about the vast majority of BGC classes.
The machine learning models offer a new approach to po-
tentially improve the accuracy of BGC detection and discov-
ery in bacterial genome sequences. (19) developed a hidden
Markov model-based (HMM) probabilistic algorithm, Clus-
terFinder, that provides a general solution to the gene clus-
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ter identification of both known and unknown classes. Al-
though the HMM-based algorithm is effective, it only re-
members partial sequence genetic information and cannot
capture high-order interaction patterns between entities (20–
22). This shortcoming severely limits its capability to un-
ambiguously identify all BGCs in thoroughly studied bac-
terial genome. DeepBGC (23) addresses this limitation
by implementing a Bidirectional Long Short-Term Mem-
ory (Bi-LSTM) model and protein family (Pfam) (24) do-
main embedding representations (Pfam2vec) to properly pro-
cess genome sequence for BGC predictions. Unlike HMMs,
DeepBGC is capable of intrinsically capturing short- and
long-term dependency between adjacent and distant genomic
entities (25). It significantly outperforms ClusterFinder for
identifying BGCs in selected samples of bacterial genomes.

Although current machine learning methods provide con-
vincing evidences that it could elevate the state of the art
in BGC detection and identification of novel BGC classes in
genome sequences (19, 23), few aspects of the current solu-
tions could still be refined in practice. On one hand, they
need to tune hyperparameters using a subset of real world
data to guarantee that the model trained on the artificial train-
ing set performs with the same accuracy on real genomes,
which inevitably requires training the model from scratch for
a particular application. This tends to raise their application
difficulty and compromise their performance stability for real
problems. On the other hand, existing methods still rely on
a rule-based post-processing to either merge or filter putative
clusters in order to suppress the number of false positives in
BGC predictions. For instance, DeepBGC introduces a post-
processing step to exclude potentially false-positive regions
in the predicted sequence, according to a manually curated
rule. This kind of rules, however, could over-simplify the
situation and prevent us from uncovering certain BGCs.

In this paper, we propose Deep-BGCpred, a unified frame-
work that effectively addresses the aforementioned cus-
tomization challenges that arise in natural product genome
mining. Deep-BGCpred embeds multi-source protein family
domains and employs a stacked Bidirectional Long Short-
Term Memory (Bi-LSTM) neural network for an enhanced
modeling of various correlations in bacterial genome se-
quences. Embedding Pfam domains from multiple sources
provides additional biological information that complement
the Pfam2vec embedding representation nicely. In addi-
tion, Deep-BGCpred integrates two customized strategies
(detailed in the next section), termed sliding window strat-
egy and dual-model serial screening, to maintain the model’s
performance stability in the analysis of the bacterial genome
sequence and reduce the number of false positives in BGC
identification.

We systematically evaluate the capability of Deep-BGCpred
by conducting benchmark experiments on real-word refer-
ence bacterial genomes. For the BGC identification, the pro-
posed method outperforms state-of-the-art machine learning
approaches by a large margin, which supports the claim that
the new model can effectively identify BGCs within genome
sequences. Remarkably, the proposed method correctly pre-

dicts more BGCs without producing too many false positives
that bothers some other machine-learning based methods. We
expect that researchers working on genome mining for natu-
ral products may be greatly benefited from the newly pro-
posed method, Deep-BGCpred.

Methods
In this section, we present the proposed deep-learning frame-
work for identifying BGCs from bacterial genomes and
classifying them into various natural product classes. The
pipeline of genome mining for BGCs is shown in Figure 1,
which consists of eight major steps, including input of a
genome sequence, gene prediction, protein family domain
prediction, prediction of each Pfam domain score, gene-
level score summary, candidate BGC identification, predic-
tion of BGC class, and non-BGC filtration. We propose
Deep-BGCpred, a deep-learning method for BGC identifica-
tion within genomes. A main contribution of Deep-BGCpred
is derived from our observation that the usage setting for a
typical deep-learning model is different between the train-
ing and the application stage (i.e. testing stage) in this field.
Specifically, the number of Pfam domains in a typical data in-
stance is inconsistent between the artificially created training
set and the real genomic data. Hence, we propose the sliding
window strategy to bridge the differences in the usage setting
under these two scenarios. Another contribution is the adop-
tion of a dual-model serial screening that could suppress the
number of false positive in BGC predictions.
In the rest of this section, we elaborate on details of the 8-step
workflow summarized in Figure 1.

Gene prediction with annotation of open reading
frame. Open reading frames (ORF) of the raw genomic se-
quence are predicted by using Prodigal (26) version 2.6.1
with the default parameters.

Protein family identification. Protein family domains are
identified using hmmscan (27) version 3.1b2 against the
Pfam (protein family) database version 31 (24). The hmm-
scan tabular output is filtered using BioPython SearchIO
module (28) version 1.70, keeping only the highest scoring
Pfam regions with evalue < 0.01. The resulting list of the
Pfam domain is sorted according to the gene and the starting
position of the domain.

Deep-BGCpred training set. The positive training set for
Deep-BGCpred is curated from the Minimum Information
about a Biosynthetic Gene cluster (MIBiG) database version
1.5 (29), which contains 1,984 BGC sequences from 1,094
bacterial species. The negative samples of the training set
are generated according to the protocol outlined in (23) and
(19). In this case, we generate 10,128 non-BGC sequences
as negative samples. The detailed information of BGC train-
ing set is provided in Table S3 in the supplementary material.
There are 96,412 Pfam domains in the positive samples (i.e.
BGC sequence) such that each BGC contains an average of
48.59 Pfam domains, indicating that most BGC sequences
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Fig. 1. (a) A novel framework for identification of Biosynthetic Gene Clusters in bacterial genomes. (from top to bottom) raw genomic sequences
(solid line) are used for gene (arrowhead structures) prediction using Prodigal (26). Pfam domains (circles, Pentagons, and hexagons) are
annotated to each genes/open reading frames using hmmscan (27). Deep-BGCpred predicts the classification score for each Pfam domain
(blue bar). Pfam domain scores are summarized across genes, which are selected accordingly (red arrowheaded structures). Consecutive
candidate BGC genes are assembled into the putative BGCs (blue rectangles). BGCs are classified using random forest classifier based on
compound class. Non-BGC regions (gray dashlined rectangles) are filtered out by the screening strategy. (b) Sliding window strategy. Multiple
Pfam sequence fragments are extracted from the raw genome sequence by a sliding window as the input of Deep-BGCpred. (c) Dual-model
serial screening. Utilizing two methods, Deep-BGCpred and random forest classifier, to jointly reduce the false positive detections in a serial
way.

have only a few Pfam domains (see Figure S1 in the supple-
mentary material). A total of 9,633 unique Pfam domains
are annotated in the training set. The Pfam identifier (e.g.,
PF00008), Pfam summary information (e.g., PF00008: EGF-
like domain) and Clan identifiers (e.g., PF00008: CL0001)
for each protein family domain are also recorded in the train-
ing set.

Deep-BGCpred implementation. The proposed Deep-
BGCpred method is inspired by the work of DeepBGC (23),
which translates a genome sequence into pfam2vec embed-
ding vectors that are subsequently fed into a Bi-LSTM neu-
ral network for prediction. In addition to the Pfam2vec vec-
tors, the proposed method also transforms the Pfam domain
summary information and the Clan identifiers into the con-
tinuous vector representations. All these embedding vectors
are concatenated before feeding into the stacked Bi-LSTM
neural network, which is responsible to transform these input
features into predicted Pfam domain scores.
Deep-BGCpred is implemented using Keras version 2.1.6
with TensorFlow backend version 1.15.4. The overall ar-

chitecture of Deep-BGCpred is shown in Figure 2. It con-
sists of two parts: Pfam domain encoder and the stacked
Bi-LSTM model. Each Pfam domain is first transformed
into an embedding representation in the real-valued vector
form. Three types of Pfam domain information are encoded.
First, the Pfam domain identifiers are embedded into 102-
dimensional vectors via pfam2vec released by (23). Second,
the Pfam domain summary information are embedded into
960-dimensional vectors via a character-level convolutional
neural network (30). Third, the Clan identifiers are embedded
into 64-dimensional vectors through a Bi-LSTM neural net-
work. For detailed information about building the Pfam do-
main encoder, please see the supplementary material. For the
stacked Bi-LSTM model, it contains three sub-layers, namely
the stacked Bi-LSTM layer, the pooling layer, and the dense
layer. The stacked Bi-LSTM layer consists of a stateful Bi-
LSTM layer with 128 hidden units and dropout of 0.2 fol-
lowed by a forward LSTM layer with 128 hidden units. The
average pooling layer combines the local feature vector with
the previous layer to obtain the global feature vector. The
dense layer is composed of a time-distributed dense layers
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with a sigmoid activation and one output unit.
The output of Deep-BGCpred is a sequence of values, nor-
malized between 0 and 1, corresponding to the predicted
scores for a sequence of Pfam domains to be part of a BGC.
In each training epoch, all positive and negative samples
are shuffled randomly and concatenated to create artificial
genomes, where BGC is randomly scattered throughout the
genome and surrounded by non-BGC sequences. Training
is configured with 256 timesteps and a batch size of 64.
Thus, the training sequence of each epoch is separated into
64 subsequences, each trained in parallel in batches of 256
timesteps, processing a single training vector at each time
step. The final model is trained for 100 epochs and optimized
via Adam optimizer using a fixed learning rate of 10−4 and
weighted binary cross-entropy loss function.
To obtain the BGC region, the predicted score are first aver-
aged in each gene, then BGC genes are selected according
to a given threshold, and finally the consecutive BGC genes
are combined. Furthermore, the BGC region is filtered by ap-
plying the post-processing criteria defined in (19): (1) merge
BGC regions separated by at most one gene; (2) filter out the
BGC region with less than 2000 nucleotides; (3) eliminate
133 regions with no known biosynthetic domains published
in the ClusterFinder (19) submodules of antiSMASH (9).

Random forest training set. The putative BGCs predicted
by Deep-BGCpred are then classified using the random for-
est classifier. Different from the work in (23), eight classes
are classified by the random forest classifier: non-BGC class,
and seven classes of BGC based on biosynthetic product
(i.e. Alkaloids, non-ribosomal peptide (NRP), Polyketide
(PK), ribosomally synthesized and post-translationally mod-
ified peptides (RiPP), Saccharide, Terpene, and other unclas-
sified BGCs).
To further reduce the number of false positives in predictions,
we build a customized dataset for training the random for-
est classifier. The biosynthetic product classes are extracted
from the MIBiG database version 1.5, producing 2,018 la-
belled training samples. The non-BGC samples are taken
from two sources: data generation based on the negative
samples released by (23), and the non-BGC samples incor-
rectly predicted by Bi-LSTM network in the preceding stage
of the training process. To generate negative samples (from
the first source), we adopt a novel data augmentation technol-
ogy, using the Pfam domain similarity network in the EMBL
database (31) to extract negative samples. Specifically, the
Pfam domains in the non-BGC sequence are randomly re-
placed by other similar Pfam domains, which is analogous
to the synonym replacement in natural language processing
(NLP) (32). The probability of a Pfam domain in the se-
quence being replaced is equal to max(2/sequence length,
0.02). In other words, we force at least two Pfam domains to
be replaced in the sequence. 2,000 negative samples are gen-
erated using this simple yet universal technique. In the end, a
total of 2,102 non-BGC samples are collected for training the
random forest classifier. Tables S4, S6, and S7 summarize a
brief description of the random forest training set.

Sliding window strategy. The Bi-LSTM network is trained
with 1,984 positive and 10,128 negative samples described
above. Since this training set is artificially created, the neg-
ative samples bear certain characteristics distinct from that
of the real-world data (e.g. real distribution and number of
the annotated Pfam domains) (23). Current machine learning
methods need to tune hyperparameters using a subset of real-
world data to guarantee that the model trained on the artificial
training set would perform with a similar accuracy on real
genomes, which inevitably requires training the model from
scratch for a particular application. This, however, tends to
raise their application difficulty.
We focus on alleviating the inconsistency of the number of
Pfam domains between the artificial created training set and
real-word data. When analyzing real genomes, tens of thou-
sands of Pfam domains are typically fed into the model si-
multaneously to predict whether it is part of the BGC. How-
ever, each sample in the artificially created training set con-
tains only 256 Pfam domains. Obviously, this is an incon-
sistency in the typical traits of training data and real-world
data. From the machine learning perspective, this inconsis-
tency may compromise a model’s performance stability in
real-world applications.
Sliding window strategy aims at intercepting multiple Pfam
sequence fragments from continuous Pfam sequences to en-
sure a consistency of how we process data during training and
real-world applications, without requiring excessive adjust-
ment of hyperparameters in the real-world application. The
flowchart of predicting the Pfam score based on the sliding
window strategy is shown in Figure 3. First, multiple Pfam
sequence fragments are extracted from a continuous Pfam se-
quence using a sliding window, where the window size is 256
and the step size is 10. Second, each Pfam sequence frag-
ments are then fed into the Bi-LSTM network to obtain the
BGC classification score for each Pfam domain. Third, the
final score of Pfam domain is obtained by calculating the av-
erage value of Pfam domain at each site in genomic order.

The dual-model serial screening. In addition to excluding
BGC regions with no known biosynthetic domains, the pro-
posed Deep-BGCpred framework performs dual-model se-
rial screening to reduce the number of false positives. As
shown in Figure 1(c), we adopt the proposed Deep-BGCpred
method and random forest classifier to jointly reduce the false
positive rate in a serial way. Specifically, this strategy can be
divided into two steps. The first step is to use Deep-BGCpred
to output the prediction score of a given Pfam domain, sum-
marize the Pfam score at the gene level, and then select BGC
genes with any given threshold and merge consecutive BGC
genes. The second step is to predict the class of the BGC re-
gions using the random forest multi-label classifier. In both
steps, the samples predicted as non-BGC are filtered. Even
the samples predicted as BGC in the first step are likely to be
removed by the random forest classifier in the second step.
The random forest classifier specially learns the effective in-
formation of non-BGC samples that Deep-BGCpred has not
learned. Specifically, the negative samples predicted incor-
rectly in Deep-BGCpred are fed into the training pool of the
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Fig. 2. The overall architecture of the proposed Deep-BGCpred method (left to right blocks). It consists of four parts: input, Pfam domain encoder, the stacked Bi-LSTM
model, and output layer. Each row represents a timestep in which Deep-BGCpred processes a single Pfam domain in the input sequence, which is maintained in genomic
order. Three types of Pfam domain information are embedded into the vector representation: Pfam domain identifier, Pfam domain summary information, and Clan identifier.
These embedding vectors are concatenated and fed into the stacked Bi-LSTM model. In each timestep, output from the stacked Bi-LSTM model is processed through a
fully-connected node with sigmoid activation function that outputs the score of a given Pfam domain.

Fig. 3. The flow chart of Pfam score prediction based on the sliding window strategy.

random forest classifier for learning. On the other hand, the
first step can only predict whether a sequence belongs to
BGC, while the second step can classify the BGC in more
detail (i.e. Non-BGC class or one of the seven biosynthetic
products), which illustrate this strategy achieves the BGC
classification from coarse-grained to fine-grained.

Results and Discussion
Deep-BGCpred validation on the BGC sequence
dataset. Deep-BGCpred is built upon a strong-performing
DeepBGC (23) to further improve BGC identification. To
ensure adequate comparison between DeepBGC and our pro-
posed deep learning method, we train and validate Deep-
BGCpred with the BGC sequence dataset constructed by
(23). The BGC sequence dataset is randomly divided into
two sets: approximately 95% of the samples are used for
training and the remaining ones are for test.
Figure 4 plots the tendency curves of the training perfor-
mance calculated on the BGC sequence dataset, as well as
those calculated simultaneously on test data during learn-
ing iterations. From the figure, we can clearly find that the
test accuracy and recall of Deep-BGCpred evidently outper-
forms DeepBGC after 10 epochs. In particular, the proposed

method can obtain a relatively high test recall after 10 epochs,
and attains more than 20% gain compared with DeepBGC. It
implies that the proposed method identifies more BGCs.

Deep-BGCpred validation on real bacterial genomes.
To illustrate the capability of the proposed framework, we
curate twelve whole bacterial genomes containing 256 man-
ually annotated BGC regions from (19) for BGC identifi-
cation. Raw annotated results for each Pfam domain are
parsed from the Genebank output file. The detailed in-
formation of annotated BGC regions in twelve bacterial
genomes is shown in Table S8 in the supplementary mate-
rial. The comparison methods include: DeepBGC (23); Clus-
terFinder_original (19), the original ClusterFinder HMM
model; ClusterFinder_retrained (23), ClusterFinder HMM
retrained with up-to-date data. Deep-BGCpred integrates
sliding window strategy and dual-model serial screening for
BGC identification.
We evaluate the performance of the proposed framework and
compare it with the baseline methods by testing its ability to
(1) accurately identify BGC position (i.e. Pfam domain level)
throughout the whole bacterial genomics, and (2) distinguish
BGC from non-BGC sequence (i.e. BGC level).
First, to evaluate the capability of the machine learning meth-
ods to accurately identify BGC positions within the whole
bacterial genomes, we conduct experiments on Pfam domain
level. Figure 5 (a) plots the Pfam domain level Receiver Op-
erating Characteristic (ROC) curve calculated on 12 manu-
ally annotated reference bacterial genomes. We can clearly
find that the proposed framework achieves the best perfor-
mance. It achieves AUC with 0.942, which is superior to the
results of Clusterfinder_original and Clusterfinder_retrained
with 0.839 and 0.916, respectively, and outperforms Deep-
BGC by a small margin. However, most of the annotated
Pfam domains in the real bacterial genome do not belong to
BGC, which is highly imbalanced. Precision Recall Curve
(PRC) is more informative than the ROC curve when evalu-

Ziyi Yang et al. | Deep-BGCpred bioRχiv | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2021. ; https://doi.org/10.1101/2021.11.15.468547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468547
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

Fig. 4. Training and test performance changing curves on the BGC sequence dataset. Solid and dotted curves denote the training and test performance, respectively. (a)
Accuracy. (b) Precision. (c) Recall.

Clusterfinder_original Clusterfinder_retrained DeepBGC Deep-BGCpred

Fig. 5. All competing methods validation on the Pfam domain level using the (a)
Receiver Operating Characteristic (ROC) curves and (b) Precision Recall Curve
(PRC). For ROC curves, the False Positive Rate (FPR) on the x-axis and the True
Positive Rate (TPR) on the y-axis.

ating the models on imbalanced datasets. The Pfam domain
level PRC calculated on 12 annotated genomes is shown in
Figure 5 (b). As shown, Deep-BGCpred outperforms all the
competing methods by a large margin at Pfam domain level.
The average precision (AP) of Deep-BGCpred holds roughly
a 5% lead over the second-best result. It implies that Deep-
BGCpred predictions are of high precision and are composed
of less false positives at Pfam domain level. Moreover, we re-
port the Pfam domain level performance for each competing
methods under a certain threshold. Table ?? shows the Pfam
domain level performance comparison between all compet-
ing methods under threshold= 0.9 setting. It can be observed
that our method gets the best performance across almost all
evaluation metrics, except the second for recall. Although re-
call of our method slightly worse than Clusterfinder_original,
Deep-BGCpred outperforms Clusterfinder_original on preci-
sion by a large margin. Deep-BGCpred attains more than
35% gain compared with Clusterfinder_original. This im-
plies that many ClusterFinder predictions are false positives.
Second, we evaluate whether the proposed framework could
accurately discriminate between BGC and non-BGC se-
quences compared with all competing methods. True BGC
coverage of each method is calculated for each annotated true
BGC region as the fraction of the region that is covered by all

Table 1. Pfam domain level performance comparison on competing machine learn-
ing methods under threshold= 0.9.

Model Precision Recall F1
ClusterFinder_original 19.71% 81.19% 31.71%
ClusterFinder_retrained 35.30% 77.97% 48.60%

DeepBGC 49.65% 77.83% 60.63%
Deep-BGCpred 55.50% 80.23% 65.62%

its overlapping predicted BGC regions of a given method. A
BGC region is considered a true positive when its coverage
rate is above a given coverage threshold. Given a coverage
threshold, each predicted BGC region is considered as the
true positive if it overlaps with a true BGC region and as
a false positive if it does not. We adopt the BGC-level F1
score as the evaluation metric. BGC-level precision is cal-
culated by dividing the number of true positives by the to-
tal number of predicted BGCs, and BGC-level recall is cal-
culated by dividing the number of true positives by the to-
tal number of true BGCs. The BGC-level F1 score is cal-
culated based on BGC-level precision and BGC-level recall.
Figure 6 shows the BGC-level F1 score comparison between
all competing methods under fixed coverage rate setting. As
shown, our method achieves the best performance across all
coverage rates. The superiority of Deep-BGCpred is evident.
The performance gaps between our method and DeepBGC
increase as the coverage rate is decreased from 60% to 1%.
Besides, our method outperforms ClusferFinder_orginal and
ClusterFinder_retrained by a large margin in all coverage rate
tested. It implies that our method can accurately distinguish
BGC region and non-BGC region compared with the com-
peting methods.

Deep-BGCpred compared with the rule-based meth-
ods. To further illustrate the capability of the proposed
framework, we compare Deep-BGCpred with the rule-based
methods on the twelve manually annotated genome dataset.
The compared methods include: antiSMASH version 6.0 (9)
and PRISM 4 (13). It is crucial for us to accurately identify
true positive regions, such that we adopt the BGC-level recall
as the evaluation metric to compare the ability of all compet-

6 | bioRχiv Ziyi Yang et al. | Deep-BGCpred

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2021. ; https://doi.org/10.1101/2021.11.15.468547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468547
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

Fig. 6. BGC-level F1 score comparison on real annotated bacterial genome dataset
with varying coverage rate settings.

ing methods in identifying true BGC regions.
Figure 7 shows the BGC-level recall of the two types of
methods on real bacterial genome dataset with varying cov-
erage rate. The machine learning method to identify BGC
is threshold-dependent, selecting BGC genes by a given
threshold and then identifying potential BGC regions. Here,
we present the results of machine learning methods with
the threshold = 0.7,0.8,0.9, respectively. Since most of
the ClusterFinder predictions are false positives, we do not
present its predicted results in this subsection. As shown in
Figure 7, with the decrease of threshold, the BGC-level re-
call of Deep-BGCpred and DeepBGC are improved. For in-
stance, when coverage rate= 60%, the BGC-level recall of
Deep-BGCpred is 65.63%, 72.66%, and 76.95% with thresh-
olds 0.9, 0.8, and 0.7, respectively. When threshold= 0.7, the
proposed method outperforms all competing methods by a
large margin on all coverage rate settings. The results suggest
that the advantage of the machine learning method is that the
threshold can be adjusted to enhance the overall accuracy of
uncovering novel BGC regions. In addition, we can observe
that the BGC-level recall of the machine learning methods
rise more quickly than that of the rule-based methods as cov-
erage rate decreases. The superiority of Deep-BGCpred is
evident when the coverage rate is lesser than 60%. It implies
that Deep-BGCpred excels at identifying novel BGC regions
compared with all competing methods.
We plot the whole genome view of the true annotated BGC
regions and the predicted BGC regions by all competing
methods on twelve annotated bacterial genomes, as shown
in Figure S2 in the supplementary material. For simplicity,
only part of the contig is displayed in Figure 8. As shown
in the figure, PRISM 4 identifies the least number of BGCs
and has the lowest false positive rate. This result also indi-
cates that PRISM 4 has a relatively weaker ability to iden-
tify novel BGC regions. Compared with PRISM 4, anti-
SMASH exhibits better capability to identify the true posi-
tive regions. However, it cannot detect the novel BGC region
when a certain BGC region does not conform to the human-
coded rule sets. From the snapshot of Streptomyces ghanaen-
sis, we observe that there are two BGC regions identified by
Deep-BGCpred but missed by all other competing methods.
It implies that our method has the potential for identifying

previously unknown sources for natural products in existing
bacterial genome sequences.

Conclusion
In this paper, we introduce the unified Deep-BGCpred frame-
work for BGC identification from bacterial genome se-
quences. Deep-BGCpred is built upon a strong-performing
DeepBGC to further improve BGC identification. In addi-
tion, two customized strategies, sliding window strategy and
dual-model serial screening, are integrated into the proposed
framework to boost the model’s performance stability and re-
duce the number of false positives in predictions. We apply
the proposed framework to the real-world reference bacte-
rial dataset to verify is ability to predict BGC genomic posi-
tions and identify BGC regions. Our empirical results show
that the proposed method outperforms other commonly used
machine learning methods, DeepBGC and ClusterFinder. In
particular, We demonstrate that the proposed method can
identify new BGCs that are missed by all other existing ap-
proaches (rule-based and machine learning methods). This is
important as it implies that the proposed method can uncover
previously unknown sources of natural products in the ex-
isting bacterial genome sequences. By incorporating the two
customized strategies, we fix a common problem that existing
ML-based solutions tend to wrongly recognize a long BGC
as few fragmented and shorter BGCs. In summary, the pro-
posed method establishes a new state of the art on the com-
mon benchmark in the field of BGC mining. Particularly, the
method manifests a strong potential to be capable of uncover-
ing unknown BGCs, which would offer valuable insights for
the search of new natural products.

Supplementary Note 1: Supporting informa-
tion Available
The Supplementary Material is available on the “Supple-
mentary Material.docx” file.
Data S1: Detailed information on the data set, provided as
an Excel spreadsheet (XLSX).
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