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Abstract 22 

Freshwater systems are experiencing rapid biodiversity losses resulting from high rates 23 

of habitat degradation. Ecological condition is typically determined through identifying 24 

either macroinvertebrate or diatom bioindicator assemblages and comparing them to their 25 

known tolerance to stressors. These comparisons are typically conducted at family or 26 

genus levels depending on the availability of taxonomic keys and expertise for focal 27 

groups. The objective of this study was to test whether a more taxonomically 28 

comprehensive assessment of communities in benthic samples can provide a different 29 

perspective of ecological conditions. DNA metabarcoding was used to identify 30 

macroinvertebrates and diatoms from kick-net samples collected from sites with different 31 

habitat status.  Sites with ‘good’ condition were associated with higher beta diversity as 32 

well as slightly higher directed connectance and modularity indicating higher resilience 33 

compared with ‘fair’ condition sites.  Indicator value and correlation analyses used DNA 34 

metabarcoding data to detect 29 site condition indicator species consistent with known 35 

bioindicators and expected relative tolerances. DNA metabarcoding and trophic network 36 

analysis also recovered 11 keystone taxa.  This study demonstrates the importance of 37 

taxonomic breadth across trophic levels for generating biotic data to study ecosystem 38 

status, with the potential to scale-up ecological assessments of freshwater condition, 39 

trophic stability, and resilience.  40 

 41 

Key words: Biomonitoring, DNA metabarcoding, diatom, macroinvertebrate, benthos, 42 

bioindicators, water quality, food webs, COI, rbcL  43 
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Introduction 44 

We are currently experiencing rapid freshwater biodiversity declines on a global scale, 45 

as anthropogenic pressures including habitat destruction, water pollution, 46 

overexploitation and climate change continue to escalate. The process of slowing future 47 

freshwater biodiversity losses is complicated, due to the influence of surrounding land 48 

use, particularly upstream human activities, on environmental conditions within rivers, 49 

lakes, wetlands and ponds 1,2. Protecting and restoring aquatic ecosystems across 50 

spatial and temporal scales requires a multi-faceted approach, inclusive of ecological 51 

network analyses (e.g. trophic interactions) 1,3–5. Before we can take the actions 52 

necessary to conserve freshwater ecosystems, we need to assess freshwater condition 53 

through biomonitoring 4–6 and understand system stability and robustness to biodiversity 54 

loss and environmental stressors 7–9. Reproducible and scalable approaches for 55 

monitoring freshwater systems have never been more in demand than they are today. 56 

 57 

Freshwater biomonitoring methods have evolved alongside the intensifying 58 

biodiversity declines, as demands grow for faster generation of mass data production 59 

(i.e. “big data”) 10–12. Typically, benthic macroinvertebrates are targeted for conducting 60 

freshwater health assessments, due to their taxonomic diversity, localized habitat 61 

occupancy and taxa-specific responses to a range of environmental gradients 6,12–15.  62 

Across North America, reference sites are used for evaluations across watersheds, to 63 

account for variability in macroinvertebrate assemblages across ecoregions 13,16. 64 

Region-specific tolerance values can then be generated via the Hilsenhoff Biotic Index 65 

(HBI), which provides a single tolerance value based on the average benthic arthropod 66 
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community tolerance values to organic pollution (0 for very intolerant to 10 for highly 67 

tolerant) 14,17,18. 68 

 69 

More recently, freshwater riverine microalgae, also referred to as diatoms, are 70 

also being used as bioindicators of rivers and streams, because of their strong response 71 

to environmental changes 19–21. Although microscopic morphological identification is 72 

currently the method of choice for diatom biomonitoring, high-throughput DNA 73 

metabarcoding of environmental samples has facilitated scaling up, primarily because of 74 

the ability of this method to bypass time-consuming morphology-based identifications 22–75 

25. The combination of newly optimized and species-inclusive sample collection 76 

techniques (i.e. benthic kick-net 25) and reduced time taken to identify taxa 22 highlights 77 

the applicability of DNA metabarcoding as the ‘catch all’ approach for understanding 78 

freshwater condition. However, the ecological value of this ‘catch all’ method has not 79 

been investigated in real-world biomonitoring analyses. 80 

 81 

DNA metabarcoding overcomes biomonitoring bottlenecks and enhances the 82 

amount of species-level diversity detected from environmental samples 10,11,26–28.  The 83 

field is now in a position to move beyond simple biodiversity inventory measures such 84 

as richness, beta diversity, and community composition to associate species detections 85 

with known biological or ecological traits 29–31. One way to integrate and visualize this 86 

data, is through network analysis, a systems-level approach useful for integrating many 87 

layers of data.  For example, metabarcoding data can be used to identify known trophic 88 

interactions, these interactions can then be used to build directed networks, food webs, 89 
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to examine trophic relationships, identify keystone species, and clusters of potentially 90 

interacting species that can then be associated with their ecological traits such as 91 

tolerance to water pollution 9,12,32–36. Although trophic analysis is widely utilized in, for 92 

example, pollinator-plant, predator-prey systems; and network analysis has been widely 93 

utilized in the analysis of microbiome data 37 these approaches, are under-utilized in 94 

biomonitoring, particularly in river systems 9. Using species interactions to build trophic 95 

networks- can facilitate freshwater health assessments by visualizing the overall 96 

structural and functional relationships within a system 38,39.  More general network 97 

properties corresponding with ecosystem resilience and stability, such as 98 

connectedness and modularity, may also function like an early warning system for 99 

system collapse 32,40–44. 100 

 101 

Considering the role of multiple taxonomic groups (i.e. macroinvertebrates and 102 

diatoms) simultaneously as bioindicators can broaden the impact of freshwater 103 

assessments 45,46. Multi-taxa approaches provide a more holistic representation of 104 

freshwater ecosystem health through the combination of taxonomic diversity, different 105 

species’ environmental tolerances and network properties (i.e. connectedness, 106 

modularity) from more than one traditional bioindicator kingdom 45–48. This ultimately 107 

enables the detection of keystone taxa that have a very large effect on their 108 

environment without which the community would be very different or not exist 49. 109 

Despite the evidence that multi-taxa biomonitoring approaches should be adopted, this 110 

is rarely the case due to logistical, time and cost restrictions involved with collecting 111 

representative samples for each taxonomic group 46,50. There remains a lack of 112 
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integration between DNA-based sample collection techniques for biomonitoring of 113 

macroinvertebrates and diatoms 25. The lengthy and multi-step nature of field sampling 114 

techniques for multiple taxa, can be overall detrimental to the amount of freshwater data 115 

collection 50 and is particularly incompatible with community-based monitoring (CBM), 116 

which is fast becoming a driving force for freshwater health data generation 51. 117 

 118 

The objective of this study is to leverage trans-kingdom metabarcoding data generated 119 

from the same benthic kick-net samples to identify species associated with site 120 

condition in relation to known site condition and bioindicator taxa.  Specifically, we: 1) 121 

use the cytochrome c oxidase subunit I (COI) (macroinvertebrate mitochondrial DNA 122 

marker) and ribulose bisphosphate large subunit (rbcL) (diatom chloroplast DNA 123 

marker) for the metabarcoding of benthic kick-net samples to generate biodiversity 124 

metrics (richness, effective number of exact sequence variants (ESVs), beta diversity) 125 

to assess subtly varying site condition (fair/good), 2) use multi-marker metabarcodes to 126 

identify site condition bioindicators for comparison with known stress tolerance, and 3) 127 

conduct an exploratory analysis of known trophic interactions to further assess the 128 

structure and stability of trophic networks across site conditions. We expect to 129 

determine unique bioindicators and keystone taxa, in addition to the well-known groups 130 

of bioindicator taxa because metabarcoding results are expected to both reflect and 131 

complement traditional sampling methods. We also predicted that ‘good’ quality sites 132 

would be more complex networks reflecting their ability to support a diverse array of 133 

taxa and functions.  134 

 135 
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Results 136 

 A total of 3.2 million COI and 3.9 million rbcL sequence reads were generated for 137 

this study (Supplementary Tables 2 and 3).  Following bioinformatic processing of raw 138 

reads, removing rare clusters, noise, chimeras, and pseudogenes a total of 4,026 COI 139 

and 1,573 rbcL ESVs (1,304,473 and 574,866 reads, respectively) were retained.  140 

Rarefaction curves indicate that the sequencing depth was sufficient to capture the ESV 141 

diversity for both diatoms and macroinvertebrates across all four sites (Supplementary 142 

Fig. 1).  After the COI and rbcL datasets were rarefied and normalized to the 15th 143 

percentile of library sizes and merged, 45,937 reads in 2,933 ESVs were retained for 144 

further ESV level analyses.   145 

 146 

Diversity Analyses 147 

At the order level, ‘fair’ sites show higher richness than ‘good’ sites for both 148 

diatoms and macroinvertebrates (Supplementary Fig. 3 & Supplementary Fig. 4). 149 

Diatoms from 12-17 orders were detected from samples from ‘fair’ sites and 9-16 orders 150 

from ‘good’ sites. Orders Naviculales, Cymbellales, Fragiliariales and Thalassiosirales 151 

were most prevalent across both ‘good’ and ‘fair’ sites. Genera within Thalassiosirales, 152 

Thalassiophysales and Bacillariales are known tolerant taxa 52–54 and had higher read 153 

abundance in ‘fair’ versus ‘good’ sites (Supplementary Fig. 3). We detected 154 

macroinvertebrates from 5 phyla: Platyhelminthes (flat worms), Nematoda 155 

(roundworms), Mollusca (molluscs), Arthropoda, and Annelida. Macroinvertebrates from 156 

30-51 orders were detected from samples from ‘fair’ sites and 12-29 orders from ‘good’ 157 

sites.  Traditional indicators of poorer water quality in river systems 16, including 158 
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Haplotaxida, Gastropoda and Diptera and Odonata had higher read abundance in ‘fair’ 159 

sites. Although we appreciate that read abundance does not necessarily reflect 160 

organismal abundance in the environment, due to known issues with primer-bias and 161 

differential recovery of taxa with different body sizes, the relative abundance of these 162 

taxa across site conditions does correlate with what we would expect based on known 163 

species tolerances to pollution 55,56.  164 

 165 

The higher richness of ESVs compared to effective number of ESVs shows that 166 

the diversity across both site conditions is driven largely by many rare ESVs.  The 167 

diversity detected in ‘fair’ sites was about twice as high in ‘good’ sites when measured 168 

using richness (macroinvertebrates: t-test, p.adj = 0.0039; diatoms: t-test, p.adj = 169 

0.0240) but the effective number of ESVs were not found to be significantly different 170 

among site conditions (macroinvertebrates: t-test, p.adj = 0.92; diatoms: t-test. p.adj = 171 

0.39; Fig. 1).  Within each site condition diversity was similar between 172 

macroinvertebrates and diatoms (t-test, p.adj > 0.05; Fig. 1).   173 

  174 
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 175 

Figure 1.  Observed richness is driven by a large number of rare ESVs.  A) ESV 176 

richness and B) The effective number of ESVs is shown for each condition and 177 

taxonomic group. 178 

 179 

NMDS plots based on binary Bray-Curtis dissimilarities of ESVs across sites 180 

show good separation among fair and good sites using either diatoms or 181 

macroinvertebrates (diatoms stress = 0.04, linear R2 = 0.99; macroinvertebrates stress 182 

= 0.06, linear R2 = 0.98; Fig. 2). Diatoms and macroinvertebrates are both correlated 183 

with dissolved oxygen, turbidity, and pressure (mmHg).  Additionally, 184 

macroinvertebrates are also correlated with pH and temperature.  PERmutational 185 

ANalysis Of Variance (PERMANOVA) for diatoms showed that habitat status (good or 186 

fair) explained 22% of the variation in beta diversity (p-value = 0.001), whereas 187 

sampling site explains 25% of the variation (p-value = 0.004; Supplementary Table 4).  188 

For macroinvertebrates, habitat status explained 19% of the variation in beta diversity 189 

(p-value = 0.001), whereas site explained 35% of the variation (p-value = 0.002; 190 
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Supplementary Table 4).  The PERMANOVA reflects a combination of both dispersion 191 

(diatom site and status; macroinvertebrate site) and location effects as shown in the 192 

ordinations.  Within each site condition (fair or good), dissimilarities were lower in fair 193 

sites and higher in good sites for diatoms but had a similar overlapping distribution for 194 

macroinvertebrates (Supplementary Fig. 5). 195 

 196 

 197 

 198 

Figure 2.  Beta diversity was greater within ‘good’ sites, especially for diatoms.  199 

Beta diversity within ‘fair’ sites, tended to be lower, especially for diatoms.  Sample 200 

replicates cluster by site, and sites cluster by site status.  Environmental variables that 201 

correlate with beta diversity patterns are shown if they have a p-value < 0.05.  Based on 202 

binary Bray Curtis dissimilarities from libraries where read counts were rarefied to the 203 
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15th percentile.  Abbreviations: dissolved oxygen (DO); pressure (mmHg), temperature 204 

(Temp). 205 

 206 

Bioindicators 207 

Results of indicator species analyses based on a rarefied read count matrix 208 

detected 29 site condition indicator species (Table 1). We recovered 28 fair condition 209 

indicators and one good condition indicator.  The site condition indicators detected 210 

using the indicator value method (IndVal) and the point biserial correlation coefficient (r) 211 

were largely similar.  The main differences between these statistics lie in their 212 

interpretation (Supplementary Fig. 6).  The A and B components of the IndVal method 213 

indicate the predictive value and sensitivity/fidelity of the indicator 57.  In this study, most 214 

of our site condition indicators have very high predictive value (close to 1) but only 215 

moderate sensitivity/fidelity.  The point biserial correlation coefficient represents the 216 

ecological preference of species for a particular site condition and can range from -1 to 217 

+1, reflecting negative to positive correlations, and the closer to the absolute value of 1, 218 

the stronger the correlation 58.  The advantage of including this measure, is that this 219 

method can detect both positive and negative correlations.  This method recovered 220 

many of the same species as the indicator value method, all positively correlated with 221 

site condition.  We also populated Table 1 with Biological Condition Gradient (BCG) 222 

scores from the Diatoms of North America Database (NADED; https://diatoms.org/) 25 223 

and HBI scores for macroinvertebrates 16. 224 

 225 

Trophic interactions 226 
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An exploratory analysis using food webs for each site based on the automated 227 

retrieval of resource-consumer interactions was conducted (Fig. 3).  GloBI annotation of 228 

resource to consumer interactions was possible for 71% (548/777) of our target taxa at 229 

the species and genus ranks.  After filtering out interactions with off-target taxa (E.g., 230 

bacteria, fungi, plants, vertebrates), common names and insufficiently identified taxa 231 

(E.g., Chironomid, Lumbriculiid, Oligochaeta), and taxonomically unidentified substrates 232 

(E.g., CPOM - coarse particulate organic matter, detritus) target taxa representation 233 

was reduced to 34% (266/777).  After filtering out off-target interactions, 22% (171/777) 234 

of our original target taxa were left represented in our interaction list.  For each site, this 235 

means that 25.8 - 32.3% of the original target taxa were represented in each network.  236 

These trophic networks represent the current state of interaction annotations between 237 

diatoms and macroinvertebrates in GloBi and were used to visualize the trophic 238 

structure within each site and measure the network properties that would allow us to 239 

learn more about the stability of each site.  Food webs generated from ‘fair’ habitat 240 

status sites tend to have more nodes (taxa), links (resource to consumer interactions), 241 

greater trophic height (longer food chains), and more clusters (Table 2).  Food webs 242 

generated from ‘good’ habitat status sites, however, had slightly higher directed 243 

connectance (links/species2) and modularity (strength of divisions of a network into 244 

clusters).  Similar to other described small-world type networks, our networks are highly 245 

clustered with relatively short path lengths 59. This means that most of the nodes in the 246 

network are not connected to each other, but the ones that are connected likely have 247 

neighbours that are also connected to each other, i.e., form clusters. Clair15 classified 248 

as a ‘good’ site had the smallest and sparsest food web, with lower numbers of nodes 249 
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and trophic links.  The Clair12 site classified as ‘fair’ had the greatest number of trophic 250 

links and trophic height.  Fair condition sites tended to have more macroinvertebrate 251 

predators that are also tolerant to organic wastes (Table 3).   252 

 253 
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 269 

Figure 3.  Food webs from ‘fair’ sites had higher trophic height and more 270 

macroinvertebrate predators.  Vertical food webs with the lowest trophic level, mainly 271 

producers (diatoms), at the bottom.  Estimated trophic position for each node in the food 272 

web was determined using chain averaged trophic level (trophic height). 273 

 274 

 275 

Directed graphs of resource-consumer interactions were also generated for each 276 

site (Fig. 4).  This was done to identify clusters of potentially interacting taxa and to 277 

identify potential keystone taxa.  Vertices (taxa) belonging to a cluster are encircled by a 278 

black line and the taxonomic composition of these clusters are detailed in 279 

Supplementary Tables 6-9.  4-5 clusters with more than one taxon were identified in 280 

‘good’ sites and 7 clusters were identified from each ‘fair’ site (Table 2).  281 

Macroinvertebrate and diatom keystone genera for both ‘good’ and ‘fair’ sites were 282 

identified using two centrality measures: degree and hub scores and the top 3 scoring 283 

taxa from each site are summarized in Table 4. Degree and hub scores for all taxa are 284 

shown in Supplementary Tables 5-8.  Generally, the distribution of degree and hub 285 

scores did not differ among sites assessed as ‘good’ or ‘fair’ (Supplementary Tables 5-286 

8).  While there were a few outlier invertebrates with a particularly high degree with 287 

many links to other taxa, diatoms in general tended to have higher hub scores than 288 

macroinvertebrates (Fig. 5).  This reflects the large number of links from diatoms to a 289 

variety of macroinvertebrate consumers that themselves tend to feed on a variety of 290 

diatom species.  Using the network terminology described by Kleinburg 60, this makes 291 
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diatoms ‘hubs’ and diatom-consumers ‘authorities’.  Diatoms play a key ecological role 292 

in linking macroinvertebrates together in trophic networks and this is reflected by the 293 

Kleinburg hub scores.  Overall network modularity was assessed as low (0.1-0.15) to 294 

medium (0.15-0.2), being slightly higher for good sites (Table 2).  In this study, we 295 

detected a greater number of clusters (containing more than one taxon) from networks 296 

with lower modularity. Though we detected more clusters, the strength of overall graph 297 

modularity was relatively weak, i.e. differential density of links within and between 298 

clusters not as stark. 299 

 300 

 301 

Beaver18 − Good Claire12 − Fair

Claire15 − Good Laurel7 − Fair
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 302 

Figure 4.  Freshwater benthic food webs show low to medium levels of 303 

modularity.  Though these are directed graphs with interactions that point from 304 

resource to consumer, arrow heads were removed from the plot to improve readability.  305 

Trophic links (edges) are shown in grey.  The small grey loops indicate cannibals, taxa 306 

known to consume members of the same taxon.  Nodes (taxa) were arranged in a circle 307 

and colored according to taxonomy (blue-macroinvertebrates; green-diatoms).  Clusters 308 

of taxa, as well as isolated taxa, are circled in black.   309 

 310 
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 311 

Figure 5.  Kleinburg hub scores reflect the importance of diatoms in linking 312 

macroinvertebrate consumers together in trophic networks.  Two measures used 313 

to detect potential keystone taxa are shown: degree centrality and Kleinberg’s hub 314 

centrality scores.  Degree shows the number of connections into and out of each taxon 315 

node.  Hub scores reflect the number of connections out of each taxon node (hubs), 316 

from resource to consumer, weighted more heavily when the consumers are 317 
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themselves linked to by many other hubs.  Sites are shown as follows: A) Beaver18 318 

(good), B) Clair15 (good), C) Clair12 (fair), and D) Laurel7 (fair). 319 

 320 

 321 

Discussion 322 

This study presents a trans-kingdom assessment of the parameters associated with a 323 

subtle variation in habitat status (fair/good).  Multi-marker metabarcoding data detected 324 

both macroinvertebrates and diatoms from kick-net samples.  We used this data to 325 

examine the biodiversity and network parameters associated with fair and good sites.   326 

 327 

Macroinvertebrate bioindicator taxa are targeted globally as a means of 328 

identifying water quality status through assessment of assemblages in relation to 329 

environmental metadata 13. However, it can be difficult to understand aquatic health in 330 

relation to macroinvertebrate assemblages when evaluating ‘test’ sites which do not 331 

have corresponding reference sites and only have low-resolution regional tolerance 332 

values (e.g. to family and not species level) 48. This can be especially challenging for 333 

DNA metabarcoding-derived bioindicator species data, which requires tandem 334 

morphological-based studies for abundance assessments to be made33. 335 

 336 

In our study, we utilized an integrated approach to rapidly identify site-specific 337 

bioindicator species. Through a combination of DNA-derived taxonomic assignments 338 

and indicator value/correlation analyses, we were able to determine site condition 339 

bioindicators without needing to identify species via morphology, or limit analyses to 340 
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only EPT taxa. Biological Control Gradient (BCG) scores for the 15 diatom bioindicator 341 

species identified were between a 3 and 5, with the Gomphonema species being the 342 

only exception (BCG score of 2). A score between 3 and 5 is representative of an 343 

impaired system and reflects the point where diatom assemblages change due to 344 

increased human activity 61. Gomphonema as a genus which tends to be located within 345 

unimpaired systems 62, however, as this information is based on the ecoregion of 346 

California as opposed to eastern Canada 63, this may indicate that Gomphonema are 347 

more tolerant to poorer water quality in southern Ontario. Similarly, the Hilsenhoff Biotic 348 

Index (HBI) scores for identified ‘fair’ macroinvertebrate bioindicators ranged from 6 to 349 

10, which falls within the ‘Fairly Poor’ to ‘Very Poor’ water quality categories 16. The one 350 

‘good’ macroinvertebrate bioindicator species identified scored a HBI value of 4.0, 351 

whose presence in a system translates to ‘Very Good’ water quality status 16. 352 

Considering that the HBI was developed to detect organic pollution in aquatic systems 353 

through species weighting via relative abundance 16,17, our site condition indicator 354 

species have been determined using rarefied read counts from metabarcoding data, 355 

without the need to quantify species abundance, and yet is still reflective of this index.  356 

 357 

Despite the subtle habitat quality difference between the two site types, we have 358 

shown that it is still possible to identify site condition indicator species, especially for 359 

diatom taxa, which are lacking BCG metrics for Canadian systems 61. The habitat 360 

quality class used to assign our sites as ‘fair’ and ‘good’, are based on an amended HBI 361 

equation, which weighted each taxa present based on its tolerance value 16,25. Unlike 362 

the HBI scores for macroinvertebrates, the BCG approach for assessing freshwater 363 
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health and level of ecological impairment includes nutrient concentrations, other 364 

anthropogenic stressors, and possible confounding variables, and facilitates 365 

understanding of correlations between diatom assemblages and variables such as 366 

percentage of forest in watershed 61.  367 

 368 

Beyond metrics of water quality, understanding the stability of aquatic ecosystem 369 

networks is important for predicting long-term resilience in the face of local and global 370 

environmental change scenarios 64–67. Generating networks of trophic interactions in 371 

freshwater systems can provide insight into ecosystem function, structure and 372 

robustness 65,68. It has previously been shown that longer food webs are less stable and 373 

top predators more likely to go extinct 69–71.  The trophic networks in our study show 374 

small-world characteristics, whereby most nodes are not neighbors of each other, but 375 

the neighbors of a node are likely to be neighbors of each other forming clusters 59. The 376 

short path lengths observed in our networks suggest that the effects of perturbations 377 

(e.g. species removal) would be distributed rapidly throughout the networks detected in 378 

our sites in a non-random fashion 38,59,72. Our networks also show relatively low 379 

modularity, with ‘good’ sites displaying marginally higher modularity. Higher network 380 

modularity is suggested to reflect higher stability, often through enhancing species 381 

persistence 40,73,74. By extension, lower network modularity may indicate that food webs 382 

in fair sites may be more susceptible to disturbance 41. In terms of effects of 383 

environmental stressors such as pollutants, more modular networks are likely to limit the 384 

propagation of both pollutants and their indirect effects through the food web 75. Despite 385 

higher richness in ‘fair’ sites, effective number of ESVs does not significantly differ 386 
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among site conditions, indicating that rare taxa are more common in these ‘fair’ sites.  387 

Analyzing trait data for top predators at each site also indicates that ‘fair’ sites have 388 

more predators that also happen to be more resistant to poor water quality.  389 

Additionally, beta diversity, directed connectance, and modularity are all higher in ‘good’ 390 

sites, meaning these ‘good’ sites are expected to be more stable against persistent 391 

pollutant stress compared to ‘fair’ sites 73,75. 392 

In addition to determining stability through modularity, it is vital to determine 393 

presence of keystone taxa and trophic hubs, whose loss would likely cause cascading 394 

extinctions of many other species within freshwater food webs 76. Through targeting 395 

both diatoms and macroinvertebrates, we were able to determine keystone taxa from 396 

both producer and consumer trophic levels. Arthropod keystone taxa included genera 397 

from several traditional bioindicator groups (Ephemeroptera, Trichoptera and 398 

Chironomidae), of which perform a range of feeding strategies (e.g. collector-gatherer, 399 

collector-filterer and shredder). Despite diatoms often being excluded from network 400 

studies 48, the higher hub scores obtained for diatoms may reflect the importance of 401 

these producers as a food source for many different invertebrates 77. Several taxa such 402 

as Amphora, Gomphonema, Crictopus, and Polypedilum were identified as both 403 

keystone taxa and site condition bioindicators further reinforcing the ability of eDNA 404 

metabarcoding approaches to generate a robust picture of site condition and stability.   405 

 406 

Conclusion 407 

There is an urgent need for more effective approaches to decipher biodiversity and 408 

ecosystem status as a consequence of environmental change especially due to global 409 
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warming.  Our study demonstrates that multi-taxa metabarcoding, is effective in 410 

identifying bioindicators of fine-scale freshwater condition and link these with their 411 

known tolerance to stressors.  Unlike traditional methods, the use of multi-marker 412 

metabarcoding and indicator species analysis does not rely solely on the presence of 413 

EPT groups for making assessments of water quality, and enables a holistic measure of 414 

ecosystem health, even across previously identified subtle gradients of habitat quality 415 

status. While biodiversity analyses allowed us to distinguish site conditions based on 416 

alpha and beta diversity, correlation with environmental variables, as well as community 417 

composition, the addition of trophic network analyses also allowed us to identify clusters 418 

of taxa with known interactions, flag keystone taxa, and to assess ecosystem stability.  419 

Trophic networks derived from eDNA data provide information on which key indicator 420 

interactions could signal a change in environmental conditions of a site, as opposed to 421 

only looking at presence/absence of traditional bioindicator taxa.  Despite excluding leaf 422 

litter/detritus/fungi/microbes as resources for invertebrates in our food webs, we were 423 

still able to reconstruct highly connected systems and present trans-kingdom keystone 424 

taxa. In the same way that metabarcoding is considered a scalable approach to 425 

biomonitoring by automating the taxonomic assignment process; the annotation of 426 

trophic interactions also needs to be automated to be a scalable approach.  The 427 

continued growth of online biotic interaction databases, from ecological studies, and text 428 

mining from the literature 42,78, may one day help make the construction of global food 429 

webs a reality.  Going forward, applying additional eDNA markers to target taxonomic 430 

groups such as fish, amphibians, and mammals, would greatly increase the level of 431 

trophic complexity in the networks and potentially identify additional bioindicator and 432 
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keystone species, which may currently be overlooked in traditional biomonitoring 433 

strategies. Our work will set the stage for larger-scale studies involving sampling across 434 

a wide range of environmental gradients to further establish site condition bioindicator 435 

trends and potential influence of stressors on long-term ecosystem trophic networks. 436 

 437 

Methods 438 

Field Sampling 439 

 Samples were collected in November 2019 from Grand River tributaries across 440 

four study sites in Waterloo, Ontario (Supplementary Table 1; Supplementary Fig. 1). 441 

No specific permissions were required for sampling these sites because they are on 442 

public land and the field studies did not involve endangered or protected species. Status 443 

and location data were provided by Dougan & Associates based on a 2018 benthos 444 

biomonitoring project for the City of Waterloo (Supplementary Table 1). Clair15 and 445 

Clair12 are close in proximity, however Clair12 is directly downstream of several 446 

sewage outflows. The four selected sites were a subset of the sites from this project and 447 

were chosen based on accessibility and habitat quality. Hilsenhoff Biotic Index ranges 448 

(weighted by species) informed the habitat quality scale 79 which categorized sites into 449 

‘Good’ (4.51-5.50) and ‘Fair’ (5.51-6.50).  450 

 451 

Benthic kick-net samples were collected in triplicate within riffles, following the Canadian 452 

Aquatic Biomonitoring Network [CABIN] protocol 80, as previously described in 25. All 453 

samples were collected in 1L sample jars and placed in a cooler to transport back to the 454 
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lab. Upon arrival at the lab, samples (n = 12) were preserved using >99% ethanol and 455 

stored in a -20°C freezer until processing.  456 

 457 

DNA Extraction 458 

 DNA from all samples was extracted following the methods previously detailed in 459 

25. Briefly, samples were homogenized using blenders decontaminated with 460 

ELIMINase1 (Decon Labs, Pennsylvania, USA), rinsed with deionized water, and 461 

treated with UV light for 30 minutes. Homogenate was transferred to 50 mL Falcon 462 

tubes, one tube was centrifuged at 2400 rpm for two minutes. Supernatant was 463 

removed and pellets were dried at 70 ̊C. Approximately 300 mg dried tissue was used 464 

with the DNeasy Power Soil kit (Qiagen, CA) following the manufacturer’s protocol. 465 

Final elution was in 50 μL of buffer C6 (TE). Negative controls with no tissue were 466 

included with each batch of extractions. All negative controls failed to amplify and were 467 

not sequenced.  468 

 469 

DNA Amplification, Library Preparation and Sequencing 470 

Diatom rbcL 471 

 DNA amplification of samples for generation of diatom sequences is detailed in 472 

25. Briefly, we targeted a 312 bp region of the chloroplast ribulose bisphosphate 473 

carboxylase large chain (rbcL) gene using five diatom specific primers: forward primers 474 

Diat_rbcL_708F_1, Diat_rbcL_708F_2 and Diat_rbcL_708F_3  combined in an 475 

equimolar mix; reverse primers Diat_rbcL_R3_1 and Diat_rbcL_R3_2  were also 476 

combined 23. The PCR cocktail was comprised of 17.5 μL HyPureTM molecular biology 477 
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grade water, 2.5 μL 10X reaction buffer (200 mM Tris- HCl, 500 mM KCl, pH 8.4), 1 μL 478 

MgCl2 (50 mM), 05. μL dNTPs mix (10 mM), 0.5 μL of both forward (10 mM) and 479 

reverse (10 mM) equimolar mixes, 0.5 μL Invitrogen’s Platinum Taq polymerase (5 U) 480 

and 2 μL of DNA for a final reaction volume totaled 25 μL.  The PCR protocol was as 481 

follows: 35 cycles of denaturation at 95 ̊C for 45 seconds, annealing at 55 ̊C for 45 482 

seconds and extension at 72 ̊C for 45 seconds. PCR amplification was also performed 483 

in two-steps: the first step used the taxon-specific primers listed above, with the second 484 

PCR used 2 μL of amplicons from the first PCR as template, with Illumina-adapter tailed 485 

taxon-specific primers. One negative PCR control was included with each PCR step, 486 

which both came back negative thus were not carried through to sequencing. All PCRs 487 

were completed in Eppendorf Mastercycler ep gradient S thermal cycler. Successful 488 

amplification was confirmed using 1.5% agarose gel electrophoresis before purifying 489 

second PCR amplicons with the MinElute Purification kit (Qiagen).  490 

 491 

Macroinvertebrate COI 492 

Three fragments within the standard COI DNA barcode region were amplified with 493 

the following primer sets: (B/ArR5 [~310 bp] called BR5, LCO1490/230_R [~230 bp] 494 

called F230R, and mICOIintF/jgHCO2198 [~313 bp] called ml-jg 81–84 using a two-step 495 

PCR amplification regime as described above, with the exception of the cycler conditions 496 

which were: initial denaturation of 95°C for 5min, 35 cycles of 94°C for 40s, 46°C for 1min 497 

and 72°C for 30s with a final extension of 72°C for 5min before holding at 10°C until PCRs 498 

were removed from the cycler.   499 

 500 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.14.468533doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.14.468533
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

Purified amplicons were quantified using a QuantIT PicoGreen daDNA assay kit 501 

and all samples were then normalised to 3 ng/µL, pooling the COI fragments for each 502 

sample before indexing with Ilumina Nextera adapters (FC-131-2001). Once indexed, 503 

samples were pooled into a single library and purified with AMpure magnetic beads. 504 

QuantIT PicoGreen dsDNA assay kit was once again used to quantify the library and 505 

Bioanalyzer was used to determine fragment length. rbcL and COI fragments were 506 

sequenced separately over two partial MiSeq runs. The purified libraries were diluted to 507 

4 nM and sequenced according to manufacturers protocol, using a 10% PhiX spike-in 508 

before being sequenced using Illumina MiSeq with a V3 MiSeq sequencing kit (300 bp 509 

X 2; MS-102-2003). 510 

 511 

Bioinformatic Processing 512 

 Illumina MiSeq paired-end reads for both COI and rbcL were processed using the 513 

MetaWorks-1.3.1 pipeline 85,86 available from 514 

https://github.com/terrimporter/MetaWorks. MetaWorks is an automated Snakemake 87 515 

bioinformatic pipeline that runs in a conda 88 environment. SeqPrep v1.3.2 89 was used 516 

to pair raw reads requiring a minimum Phred score of 20 in the overlap region to ensure 517 

99% base-calling accuracy and a minimum of 25 bp overlap. CUTADAPT v2.6 was 518 

used to trim primers from sequences, using a Phred score cutoff of 20 at the ends, 519 

leaving a minimum fragment length of at least 150 base pairs, no more than 3 N’s 520 

permitted 90. Global exact sequence variants (ESV) 91 were generated for the primer-521 

trimmed reads. Reads were dereplicated using the ‘derep_fulllength’ command with the 522 

‘sizein’ and ‘sizeout’ options of VSEARCH v2.14.1 92. VSEARCH was also used to 523 
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denoise the data using the unoise3 algorithm 93. These steps were taken to remove 524 

sequences with errors and rare reads (clusters with only one or two reads) 94. Putative 525 

chimeric sequences were removed using the ‘uchime3_denovo’ algorithm in VSEARCH.  526 

An ESV x sample table was created using the ‘search_exact’ method in VSEARCH.   527 

  528 

Diatom rbcL ESVs were classified using the rbcL diatom reference set available from 529 

https://github.com/terrimporter/rbcLdiatomClassifier 25,95. The reference sequence set is 530 

based on rbcL sequences from the Diat.barcode project 96,97 and reformatted to train a 531 

naive Bayesian classifier to make rapid, accurate taxonomic assignments 98.  This 532 

method makes assignments to the species rank and produces a statistical measure of 533 

confidence for each taxon up to the domain rank to help reduce false positive taxonomic 534 

assignments. Species level assignments used a 90% bootstrap support cutoff, no cutoff 535 

was needed at the genus rank, to expect at least 90% correct taxonomic assignments 536 

assuming the query sequences are represented in the reference database.  537 

Macroinvertebrate COI ESVs were classified using the COI Classifier v4 available from 538 

https://github.com/terrimporter/CO1Classifier/releases/tag/v4 99, comprised of a curated 539 

reference sequence set mined from BOLD 100 and GenBank 101, and uses the RDP 540 

classifier v2.12 that uses a naive Bayesian algorithm 98,102.  We used a 0.70 bootstrap 541 

support cutoff at the species rank (90% correct), and no cutoff at the genus rank was 542 

needed, to expect 95% correct taxonomic assignments assuming the query sequences 543 

are represented in the reference database. 544 

 545 
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As we were using protein coding markers in this study, we also screened out 546 

obvious pseudogenes to try to reduce noise in the dataset and avoid inflating richness 547 

estimates 103. For rbcL, we removed putative pseudogenes using removal method 1: 548 

rbcL ESVs were translated into every possible reading frame, plus strand only, using 549 

ORFfinder v0.4.3, keeping the longest open reading frame (ORF).  ORFs with shorter or 550 

longer outlier sequence lengths were removed as putative pseudogenes.  For COI, 551 

putative pseudogenes were identified and removed in the METAWORKS pipeline using 552 

removal method 2 since a hidden Markov model (HMM) was available for this marker. 553 

COI ESVs were translated into ORFs as described above, and for each ESV, the 554 

longest ORF was retained.  Amino acid ORFs were used for HMM profile analysis and 555 

ORFs with low outlier sequence bit scores were removed as putative pseudogenes.   556 

 557 

Data Analyses 558 

RStudio v1.3.1093 was used with R v4.0.3 to analyze the data 104,105. Plots were 559 

created with ggplot2 except for specialized plots where indicated 106.  Sites were plotted 560 

using the ‘ggmap’ package with stamen maps (Map tiles by Stamen Design, under CC 561 

BY 3.0. Data by OpenStreetMap, under ODbL. Available from 562 

http://maps.stamen.com/#watercolor/12/37.7706/-122.3782 ) 107.To account for variable 563 

reads in each library, sample read number was normalized to the 15th percentile library 564 

size using the ‘rrarefy’ function in the vegan package 108,109. Rarefaction curves were 565 

plotted using a slightly modified ‘rarecurve’ function (Supplementary Fig. 2).  566 

Sequencing depth was found to be sufficient to capture amplicon diversity across 567 
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samples, as each curve reached a plateau, even after rarefying to the 15th percentile 568 

read depth.  Unless otherwise stated, all further analyses are based on rarefied data. 569 

 570 

We checked for differences in richness, the average number of ESVs per 571 

sample, site conditions (fair or good, 2 sites per condition, 3 replicates per site), and 572 

taxonomic groups (Arthropoda, Bacillariophyta).  However, since richness is insensitive 573 

to species frequencies (rare species are weighted equally to common species), we also 574 

calculated the numbers equivalent, i.e., the effective number of equally-frequent 575 

species, using the exponential of Shannon entropy 110 in the vegetarian package 111, 576 

which is less sensitive to rare ‘species’.  Our richness and effective number of ESVs 577 

were found to be normally distributed using a quantile-quantile plot using the ggqqplot 578 

function in R as well as the Shapiro-Wilk test using the shapiro.test function in R (p = 579 

0.27).  T-tests were used to compare sample means across site conditions and across 580 

taxa within site conditions.  The Holm method was used to adjust for multiple 581 

comparisons.  To illustrate the range of biodiversity detected using multi-marker 582 

metabarcoding, as well as among-sample variability, we plotted a heatmap to visualise 583 

the detection of diatom and macroinvertebrate orders (Supplementary Fig. 3 and 584 

Supplementary Fig. 4). We reviewed our taxa and removed any non-freshwater taxa 585 

from our indicator lists.  This may due to taxonomic misidentification in the underlying 586 

reference database 112.   587 

 588 

A non-metric multi-dimensional scaling (NMDS) analysis on binary Bray-Curtis 589 

(Sorensen) dissimilarity matrix was conducted using the vegan ‘metaMDS’ function 113. 590 
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A scree plot was run using the ‘dimcheckMDS’ command from the goeveg package to 591 

determine the number of dimensions (k=2) to use with the vegan metaMDS function 114. 592 

Shephard’s curve and goodness of fit plots were created using the vegan ‘stressplot’ 593 

and ‘goodness’ functions. The vegan ‘vegdist’ command was used to build a binary 594 

Bray Curtis dissimilarity matrix. We checked for heterogeneous distribution of 595 

dissimilarities using the ‘betadisper’ function. We used the ‘adonis’ function to perform 596 

permutational multivariate analysis of variance (PERMANOVA). PERMANOVA 115 was 597 

performed to assess whether sites or site status had any significant interactions or 598 

explained any variation in beta diversity. Environmental variables (temperature, 599 

percentage dissolved oxygen, pressure, specific conductance, pH and turbidity) were 600 

fitted to the NMDS plot using the ‘envfit’ function in vegan with 999 permutations. Only 601 

significant variables (p<0.05) were plotted. 602 

   603 

We used the ‘multipatt’ function from the indicspecies R package to: identify 604 

species that could be used as indicators of site quality using the Indicator Value method 605 

(IndVal); and to identify species correlated with environmental conditions at fair and 606 

poor sites using the point biserial correlation coefficient 57,58.  Both functions used the 607 

“.g” version to correct for unequal group sizes and we set duleg=TRUE to avoid 608 

considering site group combinations.  We included taxa at the species rank where we 609 

could, otherwise we retained the genus level assignment and appended the ESV ID.  610 

Each test was run using a taxon x sample table containing rarefied read counts.  We 611 

analyzed the diatom and macroinvertebrate species assemblages independently, to 612 

determine the strongest indicators within each taxonomic group. 613 
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 614 

For trophic analyses, we worked with taxa at the species and genus rank as 615 

described above except that we did not append ESV IDs to genera.  The list of target 616 

taxa was manually reviewed and edited to account for insufficiently identified species 617 

assignments with ‘sp.’, ‘cf.’, or an alphanumeric code 116. We also summarized 618 

identifications at the variety level, containing ‘var.’, to the species rank.  We obtained 619 

biotic interactions for each taxon from the Global Biotic Interactions (GloBI) database 31 620 

using the ‘get_interactions_by_taxa’ function in the rglobi package in R 117. In our first 621 

search, we retrieved interactions for some of the species and genera in our target list.  622 

For species that were not detected, we collapsed the taxonomic assignment to the 623 

genus rank and conducted a second search.  For all searches conducted at the genus 624 

rank, the retrieved interactions were pooled across the species within the genus.  We 625 

filtered interactions to only keep ones where both the resource and consumer were 626 

detected in a site. We then filtered the interactions to only keep those that described the 627 

directed resource to consumer relationship (ex. “eatenBy”, “preyedUponBy”).  With the 628 

cheddar package, we used our directed resource to consumer interactions to calculate 629 

several measures of trophic complexity including number of nodes (species), trophic 630 

links (interactions), linkage density (links/species), directed connectance 631 

(links/species2), characteristic path length (average of path lengths from each node to a 632 

basal species), as well as trophic height (chain averaged trophic length) 118–120.  The 633 

food webs were visualized using the ‘PlotWebByLevel’ function with the chain averaged 634 

trophic level method.  635 

 636 
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For network analysis, we used the same resource to consumer relationships from 637 

above to build directed graphs using the ‘graph.data.frame’ function in the igraph 638 

package.  We used the walktrap method to identify communities of potentially 639 

interacting (co-occurring) taxa, also referred to as modules, clusters, groups, or 640 

subgraphs in the literature.  The ‘cluster_walktrap’ function identifies clusters via 641 

random walks, with the assumption that short random walks tend to stay in the same 642 

community, and edges within a cluster are denser than edges between clusters.  For 643 

each site, we also assessed overall network modularity, the strength of divisions of a 644 

network into modules (clusters).  We categorized modularity as follows: very low (< 0.1), 645 

low (0.1-0.15), medium (0.15-0.2), high (0.2-0.3), and very high (> 0.3) 121. We used two 646 

different measures to identify keystone taxa, that is, nodes with high centrality.  First, we 647 

calculated degree by recording the number of edges (co-occurrences) into and out of a 648 

vertex (species).  Second, we calculated Kleinberg’s hub centrality scores (hub scores) 649 

that takes into consideration the authority and hubbiness of a vertex 60.  An authority 650 

refers to the number of links into a vertex and hubbiness refers to the number of links 651 

out to other vertices with high authority.  Degree and hub scores were calculated for 652 

every taxon in the network and for each measure, the top 3 taxa from each site were 653 

retained as a potential keystone taxon.  The network was circularized with vertices 654 

ordered by cluster membership.   655 

 656 
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Figure 1.  Observed richness is driven by a large number of rare ESVs.  A) 969 

richness and B) The effective number of ESVs is shown for each condition and 970 

taxonomic group. 971 

 972 

Figure 2.  Beta diversity was greater within ‘good’ sites, especially for diatoms.  973 

Beta diversity within ‘fair’ sites, tended to be lower, especially for diatoms.  Sample 974 

replicates cluster by site, and sites cluster by site status.  Environmental variables that 975 

correlate with beta diversity patterns are shown if they have a p-value < 0.05.  Based on 976 

binary Bray Curtis dissimilarities from libraries where read counts were rarefied to the 977 

15th percentile.  Abbreviations: dissolved oxygen (DO); pressure (mmHg), temperature 978 

(Temp). 979 

 980 

Figure 3.  Food webs from ‘fair’ sites had higher trophic height and more 981 

macroinvertebrate predators.  Vertical food webs with the lowest trophic level, 982 

producers (diatoms), at the bottom.  Estimated trophic position for each node in the food 983 

web was determined using chain averaged trophic level (trophic height). 984 

 985 

Figure 4.  Freshwater benthic food webs show low to medium levels of 986 

modularity.  Though these are directed graphs with interactions that point from 987 

resource to consumer, arrow heads were removed from the plot to improve readability.  988 

Trophic links (edges) are shown in grey.  The small grey loops indicate cannibals, taxa 989 

known to consume members of the same taxon.  Nodes (taxa) were arranged in a circle 990 
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and colored according to trophic position (green-producers (diatoms); blue-991 

macroinvertebrates).  Clusters of taxa, as well as isolated taxa, are circled in black.   992 

 993 

Figure 5.  Kleinburg hub scores reflect the importance of diatoms in linking 994 

macroinvertebrate consumers together in trophic networks.  Two measures used 995 

to detect potential keystone taxa are shown: 1) degree centrality and Kleinberg’s hub 996 

centrality scores.  Degree shows the number of connections into and out of each taxon 997 

node.  Hub scores reflect the number of connections out of each taxon node (hubs), 998 

from resource to consumer, weighted more havily when the consumers are themselves 999 

linked to by many other hubs.  Sites are shown as follows: A) Beaver18 (good), B) 1000 

Clair15 (good), C) Clair12 (fair), and D) Laurel7 (fair). 1001 

 1002 
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Table 1. Diatom (n=15) and macroinvertebrate (n=17) habitat status indicator taxa. 1014 

Based on rarefied data using ESV richness. Only shows species with a p-value < 0.05. 1015 
Site 
Status 

Phylum Species / Genus + ESV ID Indicator 
Value 

Point biserial 
correlation 
coefficient 

BCG 
score 

HBI 
score 

Fair Annelida Bothrioneurum vejdovskyanum 0.913 0.680  7.0 

Fair Annelida Nais stolci 0.913 0.596  8.0 

Fair Annelida Tubifex tubifex 0.911 0.309  10.0 

Fair Arthropoda Candona candida 0.913 0.508  8.0 

Fair Arthropoda Cricotopus triannulatus 1.000 0.751  7.0 

Fair Arthropoda Cypridopsis vidua 0.913 0.553  8.0 

Fair Arthropoda Libellula ml-jg_Zotu156 1.000 0.560  9.0 

Fair Arthropoda Microtendipes pedellus 0.913 0.524  6.0 

Fair Arthropoda Orthocladius oliveri 0.949 -  6.0 

Fair Arthropoda Polypedilum convictum 1.000 0.741  6.0 

Fair Arthropoda Simulium vittatum 0.959 0.605  7.0 

Fair Arthropoda Tanytarsus guerlus 0.987 0.547  6.0 

Fair Bacillariophyta Amphora rbcL_Zotu149 0.836 - 4.0 6.0 

Fair Bacillariophyta Amphora rbcL_Zotu201 0.913 0.477 4.0  

Fair Bacillariophyta Amphora rbcL_Zotu71 1.000 0.633 4.0  

Fair Bacillariophyta Cyclotella rbcL_Zotu109 0.913 0.581 5.0  

Fair Bacillariophyta Cyclotella rbcL_Zotu76 1.000 0.720 5.0  

Fair Bacillariophyta Discostella rbcL_Zotu32 0.913 0.583 3.0  

Fair Bacillariophyta Fallacia rbcL_Zotu128 1.000 0.598 4.0  

Fair Bacillariophyta Gomphonema pumilum 
rbcL_Zotu146 

1.000 0.566 2.0  

Fair Bacillariophyta Gomphonema rbcL_Zotu9 0.992 0.477 2.0  

Fair Bacillariophyta Nitzschia rbcL_Zotu206 1.000 0.793 4.0  

Fair Bacillariophyta Nitzschia rbcL_Zotu25 0.962 0.559 4.0  

Fair Bacillariophyta Nitzschia rbcL_Zotu340 0.913 0.767 4.0  

Fair Bacillariophyta Nitzschia rbcL_Zotu91 1.000 0.701 4.0  

Fair Bacillariophyta Sellaphora rbcL_Zotu69 1.000 0.924 4.0  

Fair Bacillariophyta Tabularia rbcL_Zotu150 1.000 0.544 4.0  

Fair Mollusca Pisidium casertanum 0.896 -  6.0 

Good Arthropoda Optioservus ovalis 0.984 0.534  4.0 

Abbreviations: zero radius OTU (Zotu) also known as an exact sequence variant 1016 
+ = non-aquatic species (bird feather mite); * = non-aquatic species (hoverfly) 1017 
BCG: Biological Condition Gradient (averaged across species for genus); BCG attributes for 1018 
each taxon: 2 ‘Highly sensitive taxa’; 3 ‘Intermediate sensitive taxa’; 4 ‘Intermediate tolerant, 1019 
ubiquitous taxa’; 5 ‘Tolerant taxa’ (Hausman et al., 2016) 1020 
HBI: Hilsenhoff Biotic Index (species-level); Tolerance values for each taxon range from 0 (very 1021 
intolerant of organic wastes - 10 (very tolerant of organic wastes) (Mandaville, 2002)  1022 
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Table 2.  ‘Good’ sites tended to have higher directed connectance and modularity 1023 

whereas ‘fair’ sites tended to have a greater number of nodes, trophic links, and 1024 

trophic height.  1025 

Sites Status 
# 
Nodes 

# 
Trophic 
links 

Linkage 
density 

Directed 
connectance 

Characteristic 
path length 

Trophic 
height Modularity 

Clusters*
(total 
clusters) 

Beaver
18 Good 83 316 3.8 0.05 2.4 3.7 0.08 

5 (8) 

Clair15 Good 45 106 2.4 0.05 2.2 2.9 0.16 4 (16) 

Clair12 Fair 108 402 2.7 0.03 2.3 4.8 0.06 7 (10) 

Laurel7 Fair 105 390 3.7 0.04 3 4.4 0.06 7 (15) 

*Number of clusters with more than one taxon (total clusters including isolated taxa) 1026 

 1027 

Table 3.  More top predators that are tolerant to organic wastes are found in fair 1028 

sites compared to good condition sites.  Taxa with a trophic height greater than 3 1029 

are listed below, except for Clair 15 where the top macroinvertebrate predator is listed.     1030 

Site 
Condition 

Site Predators (Trophic Height) Functional 
Feeding Group1 

Tolerance2,3 

Good Beaver 18 Oecetis (3.00)  
Hydropsyche (3.48)  
Conchapelopia (3.66) 

PR 
CG/CF/PR 
PR 

5 
1-6 
6 

Good Clair 15 Dicranota (2.9375) PR 3 

Fair Clair 12 Demicryptochironomus (3.00) 
Parachironomus (3.30)  
Procladius (3.58)  
Hydropsyche (3.59)  
Conchapelopia (3.77)  
Enallagma (4.18)  
Libellula (4.80) 

CG/PR 
PR/CG/PA 
PR/CG 
CG/CF/PR 
PR 
PR 
PR 

8 
10 
9 
1-6 
6 
8 
9 3 

Fair Laurel 7 Conocephalus (3.00),  
Oecetis (3.00),  
Orconectes (3.00),  
Carabus (3.33),  
Libellula (3.41),  
Hydropsyche (3.51), 
Conchapelopia (3.67),  
Argiope (4.38),  
Graphoderus (4.41) 

PR 
PR 
CG/PR 
PR 
PR 
CG/CF/PR 
PR 
PR 
PR 

- 

5 
6 

- 
9 
1-6 
6 
- 
5 

1 Functional feeding groups are from the EPA freshwater traits database or GloBI 1031 
2 Ranges for tolerance values are from Mandaville (2002).  Values range from 0 1032 

(intolerant to organic waste) to 10 (very tolerant to organic waste) 1033 
3 For Libellula the tolerance for Libellulidae is given; ‘-‘ indicates a tolerance value is 1034 

unavailable; For Orconectes the tolerance for Cambaridae given 1035 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.14.468533doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.14.468533
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 

 

Table 4.  Diatom (n=6) and macroinvertebrate (n=5) putative keystone taxa. 1036 

Phylum Genus* Functional feeding 
guild 

BCG 
Score 

HBI 
score 

Bacillariophyta Navicula  4.0  

Bacillariophyta Fragilaria  3.0  

Bacillariophyta Rhoicosphenia  3.0  

Bacillariophyta Amphora  4.0  

Bacillariophyta Diatoma  2.0  

Bacillariophyta Gomphonema  2.0  

Arthropoda Cricotopus (Chironomidae) Collector-Gatherer  7.0 

Arthropoda Hydropsyche (Trichoptera) Collector-Filterer  4.0 

Arthropoda Polypedilum (Chironomidae) Shredder  6.0 

Arthropoda Baetis (Ephemeroptera) Collector-Gatherer  6.0 

Platyhelminthes Dugesia N/A  6.0 

*Keystone taxa selected from top three degree and top three hub scores from each site 1037 

N/A: Not applicable 1038 

BCG: Biological Condition Gradient (averaged across species for genus) 1039 

HBI: Hilsenhoff Biotic Index (genus-level) 1040 

 1041 

Data Availability 1042 

Raw sequences will be available from NCBI SRA on acceptance. The MetaWorks-1.3.1 1043 

is available from https://github.com/terrimporter/MetaWorks, the rbcLdiatomClassifier v1 1044 

and COIClassifier v4 we used are available on GitHub at 1045 

https://github.com/terrimporter/rbcLdiatomClassifier and 1046 

https://github.com/terrimporter/CO1Classifier. Scripts and files used to generate outputs 1047 

can be found at https://github.com/terrimporter/RobinsonEtAl2021_MacroinvertDiatom.  1048 
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