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Abstract

Background: Integrating transcriptional profiles results in the identification of gene
expression signatures that are more robust than those obtained for individual datasets.
However, direct comparison of datasets derived from heterogeneous experimental
conditions is not possible and their integration requires the application of specific
meta-analysis techniques. The transcriptional response to hypoxia has been the focus of
intense research due to its central role in tissue homeostasis and in prevalent diseases.
Accordingly, a large number of studies have determined the gene expression profile of
hypoxic cells. Yet, in spite of this wealth of information, little effort have been done to
integrate these dataset to produce a robust hypoxic signature.

Results: We applied a formal meta-analysis procedure to a dataset comprising 425
RNAseq samples derived from 42 individual studies including 33 different cell types, to
derive a pooled estimate of the effect of hypoxia on gene expression. This approach
revealed that a large proportion of the transcriptome (8556 genes out of 20888) is
significantly regulated by hypoxia. However, only a small fraction of the differentially
expressed genes (1265 genes, 15%) show an effect size that, according to comparisons to
gene pathways known to be regulated by hypoxia, is likely to be biologically relevant.
By focusing on genes ubiquitously expressed we identified a signature of 291 genes
robustly and consistently regulated by hypoxia. Finally, by a applying a moderator
analysis we found that endothelial cells show a characteristic gene expression pattern
that is significantly different from other cell types.

Conclusion: By the application of a formal meta-analysis to hypoxic gene profiles, 1

we have developed a robust gene signature that characterizes the transcriptomic 2

response to low oxygen. In addition to identifying a universal set of hypoxia-responsive 3

genes, we found a set of genes whose regulation is cell-type specific and suggest a unique 4

metabolic response of endothelial cells to reduced oxygen tension. 5
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Introduction 6

Oxygen homeostasis is essential to sustain cellular metabolism in eukaryotes. Hypoxia 7

triggers multiple adaptive mechanisms, from metabolism reprogramming to tissular 8

restructuring, aimed to re-balancing oxygen supply and demand [1]. In multicellular 9

organisms this response can be very diverse, depending on cell type, extension and 10

degree of the oxygen deprivation, or pathological state. 11

Most of these responses are orchestrated at the transcriptional level, with the 12

Hypoxia Inducible Factors (HIFs) being the main drivers of the hypoxic gene expression 13

pattern [2]. The heterodimeric HIF transcription factor consists on a β subunit 14

(ARNT), constitutively expressed, and an α subunit (HIF1A, EPAS1, HIF3A) which, in 15

normoxic conditions, is marked for degradation by the concerted action of a family of 16

oxygen-dependent enzymes (EGLN family) and the von Hippel-Lindau (VHL) 17

ubiquitylation complex [3–5]. When oxygen concentration decreases, the α subunits 18

escape degradation, due to the reduced activity of the EGLNs, and are translocated to 19

the cell’s nucleus, where they bind to Hypoxia Response Elements along the β subunit. 20

Transcriptional activity of HIFs depends also on interaction with co-activators such as 21

CREB-binding protein or p300 whose binding is also regulated in an oxygen-dependent 22

manner [6, 7]. 23

Given the importance of the transcriptional response for tissue oxygen homeostasis 24

and its alteration in disease, a large number of works have attempted to identify the full 25

set of genes regulated by hypoxia by means of gene profiling experiments. Since these 26

studies were performed in a wide variety of experimental conditions including different 27

cell types, oxygen tensions and exposure times, the integrated analysis of their results 28

could be exploited to identify a set of genes ubiquitously regulated by hypoxia as well as 29

set of genes whose regulation by hypoxia is restricted to specific situations. However, 30

little effort has been done in this regard and, to the best of our knowledge, only two 31

attempts to integrate all the hypoxic gene profiling experiments have been done [8, 9]. 32

The first analysis of this type, based on the analysis of gene profiles generated by means 33

of DNA microarrays, produced the first list of genes universally induced by hypoxia and 34

revealed that the set of genes induced by hypoxia were more conserved than those 35

repressed by hypoxia [8]. A second, more recent study, exploited the information 36

derived from RNAseq experiments producing a more comprehensive list of 37

hypoxia-regulated genes and characterized HIF-isoform common and specific targets [9]. 38

In spite of their merit, none of this works employed formal meta-analysis approach for 39

their analysis which, given the heterogeneous nature of the data, is critical to draw 40

statistically sound conclusions [10]. In particular, in a random-effects meta-analysis 41

model, the effect sizes derived from individual studies are assumed to represent a 42

random sample from a particular distribution of these effect sizes (hence the term 43

random effects). In other words, instead of assuming a fixed effect of hypoxia on any 44

given gene across the different studies, under the random effects model we allow that 45

the true effect could vary from study to study to reflect for example the different 46

response in distinct cell types. In this study we aim to define core components of the 47

transcriptional response to hypoxia taking advantage of the wider public availability of 48

next generation sequencing data, RNA-seq in particular. Applying a random effects 49

model to the expression data gathered we are able to define a molecular signature 50

representing the early (<48h) transcriptional response to hypoxia, independently of cell 51

type. Given the abundance of studies testing the effects of hypoxia on endothelial cells 52

we have additionally examined cell-type specific alterations of gene expression. 53
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Materials and Methods 54

0.1 RNA-seq data download and processing 55

Raw reads of the RNA-seq experiments were downloaded from Sequence Read 56

Archive [11]. Pseudocounts for each gene were obtained with salmon [12] using 57

RefSeq [13] mRNA sequences for human genome assembly GRCh38/hg38 as reference. 58

Differential expression in individual subsets was calculated with the R package 59

DESeq2 [14] using local dispersion fit and apeglm [15] method for effect size shrinkage. 60

0.2 Meta-analysis 61

The meta-analysis intended to identify the effect of hypoxia on early gene expression in 62

human cells compared to normoxic controls. To identify studies to be included in the 63

meta-analysis Gene Expression Ommibus (GEO) repository was searched with the 64

terms ‘hypoxia[Description] AND “expression profiling by high throughput 65

sequencing”[DataSet Type]’ on february 11, 2021. The search resulted in a total of 394 66

studies. We only kept studies performed in human cells that determined steady-state 67

RNA levels in total (poly-A) RNA samples and excluded analysis that did not include 68

replicates, employed treatments other than reduced oxygen tension (e.g. chemical 69

inhibitors or other hypoxia mimetics) or those where gene expression was analyzed after 70

48h. A total of 46 studies (independent GSE entries) remained after application of the 71

inclusion/exclusion criteria and were used for the meta-analyses (supplementary table 72

S2). A pooled estimate of the size effect of hypoxia on expression was determined for 73

each gene using the R packages metafor [16] and meta [17] using as input the log2-Fold 74

change value and its associated standard error computed for each individual RNA-seq 75

experiment using the R package DESeq2 [14]. Given that the individual estimates 76

derive from an heterogeneous group of experiments, including different cell types and 77

experimental conditions, we assumed that these individual estimates derive from a 78

distribution of true effect sizes rather than a single one and thus applied a 79

random-effects model for the meta-analysis. As estimator of the between-study 80

heterogeneity we used the Maximum Likelihood (”ML”) method. 81

Subgroup analysis (Moderator analysis) was used to compare the pooled estimated 82

effect in studies grouped according to cell type analyzed. 83

0.3 Functional Enrichment Analysis 84

Enrichment of Gene Ontology terms was performed with the Bioconductor’s 85

clusterProfiler package [18] using a q cut-off value of 0.05. To reduce the redundancy, 86

highly similar GO terms were removed keeping a single representative by using the 87

”simplify” function using a cut-off value of 0.6 (upregulated genes) or 0.7 (downregulted 88

genes). The much larger number of enriched terms found for upregulated genes justified 89

the use of a more slightly more lenient cutoff value for the simplify function. 90
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Results 91

Meta-analysis strategy 92

In order to identify genes consistently regulated by hypoxia across a wide range of cell 93

types and experimental conditions, we integrated the results from 46 studies analyzing 94

the transcriptional response to hypoxia by means of RNA-seq (supplementary table S2). 95

Since some studies included several cell types, oxygen tensions or times of exposure to 96

hypoxia, we took subsets of the study’s data so that each one included a single cell line 97

and set of experimental conditions (figure 1). Thus, our initial data set included a total 98

of 81 subsets of normoxia-hypoxia paired samples, each one comprising a single cell line, 99

exposure time and oxygen tension (table 1).

Table 1. Datasets used in the meta-analysis. The number of independent GEO
entries (Series IDs, GSE) that met the criteria described under methods is shown
(”Studies”). For each study, only those samples corresponding to normoxic and hypoxic
conditions were retrieved ignoring any other treatment that the study could have included.
The total number of samples meeting these criteria is shown (”Samples”). In those cases
were a study included more than one cell line, different degrees of hypoxia or different
exposure times, the samples were divided into subsets including a single level for each
one of these variables. The total number of subsets generated is shown (”Subsets”).
The column ”Cell lines” indicates the number of different cell lines included in the
dataset. The rows contain values corresponding to the dataset prior (”Initial”) and after
(”Filtered”) filtering to remove outlier studies.

Dataset Studies Samples Subsets Cell lines
Initial 46 472 81 38
Filtered 42 425 69 33

100

Next, for each of these 81 subsets, we estimated the difference in the level expression 101

between normoxia and hypoxia conditions for all genes (”LFC”, figure 1). From these 102

analyses we extracted the information corresponding to individual genes (figure 1; Log2 103

Fold-change, ”LFC”, and the standard error associated to this estimate, ”SE”) across 104

the different studies and performed a formal meta-analysis on each one of these 105

gene-specific datasets to estimate the pooled effect of hypoxia across studies (figure 1 106

Meta-analysis). Thus, an independent meta-analysis was performed for each individual 107

gene by integrating the effects of hypoxia on that particular gene across the different 108

studies and conditions. The results provide a pooled estimate of the effect of hypoxia on 109

the expression of the gene under analysis and its statistical significance. As an example, 110

the results of the meta-analysis for the EGLN3 gene, encoding a cellular oxygen sensor 111

known to be directly regulated by HIF in response to hypoxia ( [19]), are shown in 112

supplementary figure S1. Finally, we compiled the pooled estimates for all genes 113

detected in more than one subset, together with the statistical significance value, to 114

produce a table representing the overall effect of hypoxia on gene expression (figure 1 115

”Compiled MA results”). 116

In order to refine the results of the meta-analyses, we sought to identify outlier 117

studies. To this end, we calculated the correlation of the effect of hypoxia across all 118

genes in each individual study compared to the estimated pooled effect derived from the 119

meta-analyses. As shown in figure 2A, this analysis revealed a few incoherent sets. 120

These same subsets were identified as outliers due to their low or negative correlation 121

with the rest of subsets in pair-wise comparisons 2B. In those cases where the lack of 122

positive correlation was clearly due to a mistake in the labeling of samples in GEO, as 123

indicated by a large negative correlation coefficient (figure 2, subsets ”S42” and ”S58”), 124

the treatment labels were correctly set and the study was kept. The remaining 125
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Figure 1. Integration of studies and gene-level meta-analysis. Normoxic
(Nx samples) and hypoxic (Hx samples) replicates from the relevant studies (”GSE1”,
”GSE2”,...”GSEn”) were processed to produce a table recording the effect of hypoxia on
the expression of each gene (Log2 fold-change,labeled as ”LFC”) and the standard error
associated to this estimation (”SE”). In those studies analyzing more than a single cell
line, time of exposure to hypoxia or oxygen tension, samples were grouped to generate
homogeneous subsets and the effect of hypoxia on gene expression was analyzed in each
individual subset. The figure represents this situation in the case of GSE2 (shaded in red
color), an hypothetical study that analyzed the effect of hypoxia in two different cell types.
Then, the results obtained for each individual gene were integrated into a random-effects
model meta-analysis to produce a pooled estimate of the effect of hypoxia on each gene.
Note that a meta-analysis is performed for each individual gene. Finally, the results of
the gene-level meta-analyses were integrated into a single list (”Compiled MA results”).

incoherent studies, having a correlation coefficient not significantly different to zero 126

(p > 0.01), were discarded. After these data sanity check procedures, the whole analysis 127

strategy (1) was repeated on this corrected and filtered dataset. Table 1 shows the 128

statistics of the data set after filtering and supplementary table S3 the full description 129

of each of the samples included in the final analysis. 130

Identification of a universal core of hypoxia-inducible genes 131

The results of the meta-analysis on the clean dataset, after filtering out the outlier 132

subsets and removing genes detected in less than 5% of the subsets, revealed 8556 genes 133

(out of a total of 20888) whose expression was significantly (FDR < 0.01) altered in 134

response to hypoxia (figure 3A and supplementary table S4), with similar number of 135

genes being induced (4481) and repressed (4075). These numbers are larger than the 136

typical values obtained in individual experiments, with median values around 1000 genes 137

in each category (Figure 3B), which is expected from the increased power to detect small 138

size effects due to the integration of a large number of samples in the meta-analysis. In 139

agreement, the median effect size (LFC) observed for the genes differentially expressed 140

(DE) according to the meta-analyses are -0.29 and 0.4 for down- and up-regulated genes 141

respectively, contrasting with the median effect size observed in individual studies of 142

-0.72 and 0.83 for up- and down-regulated genes respectively (figure 3C). 143

In the view of these results we tried to identify an minimum effect size likely to 144
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Figure 2. Identification of outlier subsets. A) The pooled effect of hypoxia on gene
expression was compared to the estimates obtained in each individual subset for all the
genes that were ubiquitously expressed (expression detected in more than 75% of subsets)
and that showed a strong (absolute size effect > 1) a significant (FDR < 0.01) response
to hypoxia according to the meta-analyses. Each dot represents the Pearson’s correlation
coefficient (r) and its statistical significance (FDR-adjusted p-value). The horizontal
and vertical dotted lines correspond to an adjusted p-value of 0.01 and a correlation
coefficient of zero respectively. Those subsets that did not showed significant correlation
with the meta-analyses pooled estimates (FDR > 0.01) or showed a negative correlation
(r < 0) are identified and labeled. B) Correlation between all pairs of datasets. The
figure shows the Pearson’s correlation coefficient for all pair-wise comparisons. The
color and shape of the ellipses indicate the strength of the correlation (value of Pearson’s
r) and its direction.

represent biologically relevant changes in gene expression. To this end, we compared the 145

proportion of genes belonging to biological processes known to be regulated by hypoxia, 146

among the genes selected according to increasing effect size (Log2 FC) cut-off values. 147

As shown in supplementary figure S2, the p-value for the association of biological 148

function and regulation by hypoxia reached a minimum at effect size (Log2FC) values 149

between 0.3 and 1.7. Since the choice of ES values only affects the distribution of genes 150

into categories (i.e.differentially expressed versus not altered) but does not change their 151

total number, the minimum p-value corresponds the least likely distribution expected by 152

chance. Thus, we decided to take these values as the lower boundary required to 153

produce a biological response to hypoxia. The median value of the effect sizes is 0.7, 154

corresponding to an induction of 1.6 times over basal levels (0.6 times normoxic level in 155

the case of repressed genes). 156

Thus, in response to hypoxia a total of 1265 genes, 1020 induced and 245 repressed, 157

show a statistically significant change in expression (FDR < 0.01) of a magnitude likely 158

to be biologically meaningful (|Log2FC| > 0.7) (figure 3A labeled in purple and blue). 159

The difference in the number of repressed and induced genes is a consequence of the 160

distribution of effect size values having a longer tail in the latter case (rug plot of the 161

x-axis in figure 3A and figure 3D left panel). The different shapes of the distribution of 162

effect size values also suggest that hypoxia has a relatively weak effect on gene 163

repression. In fact, while the number of significantly induced genes is about five times 164

higher that of repressed genes (1020 vs 245) for an effect size higher than 0.7, the ratio 165

increases to seventeen times more up-regulated than down-regulated genes (268 vs 15) 166

for effect sizes larger than 1.5. Since the meta-analyses included experiments done at 167

relatively short exposure times (27% of the subsets correspond to exposure times ranging 168
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Figure 3. Identification of a common set of hypoxia-regulated genes.. A) The
graph represents the pooled effect of hypoxia on gene expression (Log2FC hypoxia over
normoxia) against the statistical significance of the effect (-log10 FDR-adjusted p-value)
according to the meta-analysis. Genes are represented as dots and their color indicates
the effect of hypoxia: blue, genes not regulated by hypoxia (FDR−adjustedp−value ≥
0.01); green, genes mildly affected by hypoxia (FDR − adjustedp− value < 0.01 and
|Log2FC| < 1); red, genes robustly regulated by hypoxia (FDR− adjustedp− value <
0.01 and |Log2FC| ≥ 1). The y-axis was limited to a value of 65 for representation
purposes (a single gene was left out). B) Distribution of the number of genes found
significantly (FDR− adjustedp− value ≥ 0.01) down- (”DN”) or up-regulated (”UP”)
by hypoxia in individual studies. c) Distribution of the median effect size (Log2FC
Hypoxia over Normoxia) of hypoxia on repressed (”DN”) or induced (”UP”) genes in
individual studies. The red and blue dotted lines correspond to the median effect size
for repressed and induced genes respectively, according to the meta-analysis pooled
estimates.

from 1-12h), it could be argued that the smaller effect size observed for repressed genes 169

is a consequence of short-time experiments failing to detect the effect on mRNA levels 170

due to their half-life. To test this hypothesis, we repeated the meta-analyses selecting 171

only subsets corresponding to treatments of 24-48h, significantly longer than the median 172

half-life of 5.7 h observed for human mRNAs under hypoxia [20]. As shown in figure 3D 173

left panel, both distributions show a small shift toward higher absolute effect size values, 174

but the difference between them remains unaltered. Thus, the relatively smaller effect 175

of hypoxia on gene repression does not appear to be due to the persistence of mRNA 176

molecules present prior hypoxia exposure. Finally, in order to get a list of core 177

hypoxia-responsive genes we identified those that were ubiquitously expressed. To that 178

end, we selected those genes whose expression, averaged across conditions, was 179

detectable in at least 90% of the analyzed subsets (figure 3A labeled in purple). The 180

resulting list included 178 genes consistently induced by hypoxia across conditions. 181

Functional enrichment of Gene Ontology terms, indicated that core hypoxia-induced 182

genes are mainly involved metabolic reprogramming but also in differentiation and 183
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morphogenesis, being the development of the circulatory system particularly prominent 184

(figure 4A). On the other hand, the 113 genes consistently repressed by hypoxia across 185

conditions, are involved in cell cycle progression, DNA replication and repair, 186

ribosome/rRNA biogenesis and metabolism of amino acids (figure 4B). In summary, the

Figure 4. Functional enrichment analysis of the core hypoxic signature.. Gene
Ontology terms significantly enriched among the core of hypoxia up- (A) and down- (B)
regulated genes.

187

application of a formal meta-analysis to hypoxia gene expression profiles using a 188

random effects model lead to the identification of a set of 291 ubiquitously expressed 189

genes whose expression is significantly altered by hypoxia by a factor of at least 0.7 190

log2-units. The identity of these genes can be found in supplementary table S5. 191

Consistency of Meta-analysis results 192

To test the consistency of the pooled estimates described above, we performed a set of 193

meta-analyses using as input all data subsets except for one and then compared the 194

estimated effect sizes with the actual LFC observed in the subset that was left out. The 195

process was repeated until all possibilities were exhausted. As shown in figure 5, in 196

almost all of the cases there was a strong correlation between the pooled estimates and 197

the actual effect sizes observed in the individual subset that was left out of the 198

meta-analyses, with 50% of the instances showing a Pearson’s correlation coefficient 199

over 0.82 and 75% of the cases above 0.73. Thus, the ensemble of pooled estimates it 200

likely to predict with high accuracy the response to hypoxia in new experiments not 201

included in the meta-analysis. 202
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Figure 5. Correlation between meta-analysis’s pooled estimates and effect
sizes in individual experiments.. A meta-analysis was performed for each gene using
as input 63 out of the 64 subsets and the correlation between the pooled estimates and
the effect sizes (Log-Fold change) in the subset that was left out of the meta-analysis was
calculated. The figure represent the distribution of the Pearson correlation coefficients
(Pearson’s r) observed in the 64 comparisons.

Comparison of Meta-analyses results with a reference hypoxia 203

signature 204

The core set of genes identified in the analyses described before can be considered a 205

signature of the transcriptional response to hypoxia. Thus, we next compared the core 206

of hypoxia-inducible genes derived from the meta-analysis with the Msig DB’s Hallmark 207

hypoxia geneset [21], a gene signature composed of 200 genes up-regulated in response 208

to low oxygen levels. As shown in figure 6A, the overlap between both gene sets was 209

relatively small, with less than one third (64 out of 200) of the genes in the Hallmark 210

hypoxia signature being present in the meta-analyses derived geneset, in spite of both 211

genesets being similar in size, median log-fold change and nearly universal expression 212

(supplementary table S1). Moreover, the overlap was only moderately increased when 213

the Hallmark hypoxia signature was compared to the geneset derived from the 214

meta-analysis without restricting to ubiquitously expressed genes (figure 6B). In order 215

to understand the cause for the reduced overlap, we analyzed the effect of hypoxia on 216

the expression of those genes present in the Hallmark hypoxia signature only 217

(supplementary table S6). As shown in figure 6C, around half of the genes (50 out of 218

103) in this group were not included in the meta-analyses-derived signature because the 219

pooled estimate of their induction by hypoxia was below the threshold value of 0.7, in 220

spite of being statistically significant (labeled as ”UP small ES” and shown in blue 221

color). However, the remaining genes (53 out of 103) did not show a statistically 222

significant induction by hypoxia (figure 6C labeled as ”Non DEG” and shown in green 223

color) or were repressed (figure 6C labeled as ”DN small ES” and shown in red color). 224

A forest plot representing the pooled estimate of the LFC for these genes shows that 225

they cluster around the value of zero and that, in many cases, confidence interval for the 226

point estimate is wide (Figure 6D). Altogether these results suggest that these 53 genes 227

are either not induced by hypoxia or show a cell-type specific induction. An example of 228

the latter is the HMOX1 whose expression is induced, repressed or left unaltered 229

depending on the cell-type and/or experimental conditions (supplementary figure S3). 230

Interestingly, among the genes whose regulation by hypoxia depends on the specific 231

experimental conditions are ALDOB, GCK and LDHC that are paralogs of ALDOA, 232

HK1 and LDHA respectively all of which are strongly and consistently induced by 233

hypoxia. 234

Altogether, these results suggest that the meta-analyses derived gene signature 235
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improves the gene sets derived from individual studies by excluding genes whose 236

regulation is cell type or condition specific and those with effect sizes of small 237

magnitude. 238

Figure 6. Comparison of Meta-analyses-derived and Hallmark hypoxic sig-
natures.. Venn diagrams showing the number of genes shared by the Hallmark hypoxic
signature (labeled HM) and the meta-analysis derived (labeled MA) core geneset (A),
including genes expressed in over 90% of the studies, or an extended geneset including
genes expressed only in some experimental conditions (B). (C) Effect of hypoxia (pooled
estimates from meta-analyses) in Hallmark hypoxia signature genes not present in the
meta-analyses geneset. Genes showing a statistically significant induction or repression
by hypoxia are shown as blue or red dots respectively, while those whose expression is
not significantly altered are shown as green dots. (D) Forest plot showing the estimated
effect of hypoxia on the expression of Hallmark genes not significantly up-regulated
(those labelled in red and green colors in panel C) together with the confidence interval
for the point estimate. For comparison, the paralogs of ALDOB and LDHC, ALDOA
and LDHA respectively, are included and labelled in red color.

Cell-type specific effects of hypoxia on gene expression 239

The results shown above indicate that, for some genes such as HMOX1, the effect of 240

hypoxia varies depending on the specific experimental conditions. Thus, we next 241

studied whether cell type could influence the response to hypoxia. To that end we took 242

advantage of the relatively large representation of endothelial cell types in the compiled 243

dataset and performed a subgroup analysis (moderator analysis) to test the hypothesis 244

that the differences in effect sizes were associated to the cell type used in the study. To 245

avoid interference with other variables, we only took into consideration experiments 246

studying gene expression in samples exposed to hypoxia for 24h and genes expressed in 247

at least 10 non-endothelial and 7 endothelial subsets. This analysis revealed a group of 248
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822 genes whose regulation by hypoxia was significantly different (FDR < 0.01) in 249

endothelial as compared to non-endothelial cell lines (supplementary table S7), with 250

most of the genes (712 out of 822) showing a significantly weaker regulation by hypoxia 251

in endothelial cells. 252

Since many of the non-endothelial cell lines included in this analysis derive from 253

tumors, whereas endothelial cells are primary non-transformed cells, it could be argued 254

that the differential effect of hypoxia on endothelial is a consequence of this difference 255

between both groups. To test this possibility, we repeated the group analysis comparing 256

the effect of hypoxia on gene expression on three groups of samples: transformed 257

(tumor-derived, ”Tumoral”), endothelial cells (non-transformed endothelial cells, 258

”NonT Endoth”) and other non-transformed cells different of no-endothelial lineage 259

(non-transformed other than endothelial cells, ”NonT Other”). As before, only 260

experiments performed at 24h and genes expressed in a sufficient number of samples per 261

group (at least 7 endothelial 10 subsets of the other two groups) were considered. This 262

analysis identified 579 genes whose regulation by hypoxia differed significantly 263

(FDR < 0.01) between groups (supplementary table ST7 Endoth Specific2). Pair-wise 264

comparisons showed that the effect of hypoxia on gene expression was very similar for 265

tumor cells and non-endothelial cells (Pearson’s correlation coefficient 0.903) for the 579 266

genes identified asdifferentially expressedbetween groups (Figure 7A). In contrast, the 267

response to hypoxia of almost all these in endothelial cells was significantly different to 268

that observed in the other two groups (Pearson’s correlation coefficients of 0.207 and 269

0.259 for the pairs NonT-Endo vs NonT-Other and NonT-Endo vs Tumoral respectively) 270

(Figure 7A). Altogether these results indicate that there is a subset of genes whose 271

response to hypoxia is significantly different in endothelial cells as compared to other 272

cell types regardless their transformed status. This conclusion is supported by the 273

heatmap in figure 7B that, by representing the effect of hypoxia on each gene (rows) 274

across all samples (columns) sorted according to cell type, shows that the different 275

response to hypoxia associates with the endothelial group for all clusters of genes. 276

Next we performed an enrichment analysis to identify ontology terms 277

over-represented in the set of genes showing an altered response to hypoxia in 278

endothelial cells. This analysis revealed that many terms related to metabolism, mostly 279

carbohydrate catabolic pathways, were significantly (FDR < 0.05) over-represented as 280

well as terms related to ”response to hypoxia”. As shown in 7C, genes encoding for 281

enzymes involved in glycolysis (e.g. HK1, PGK1 and GPI) and synthesis of glycogen 282

(e.g. GYS1 and GBE1) as well as genes coding for proteins related to lipid metabolism 283

(e.g. SCD, SREBF2 and HILPDA) were not induced by hypoxia in endothelial cells in 284

sharp contrast with their consistent up-regulation in other cell types. Similarly, some 285

typical hypoxia-regulated genes such as NDRG1, CITED2, BNIP3 and LOXL2 showed 286

blunted induction. 287

Thus, group analysis identified a endothelial specific transcriptional response to 288

hypoxia characterized by a weakened glycolytic response. 289

Discussion 290

The integration of multiple datasets representing the transcriptional response to a given 291

stimulus, allows for the identification of consistent changes in gene expression. However, 292

transcriptional profiles are noisy, and correlation between different studies show poor 293

correlation [22,23]. Fortunately, the application of meta-analysis, appears to be a good 294

and practical solution to reduce noise and increase signal across different studies [10]. 295

Herein we describe the application of a formal meta-analysis procedure to identify genes 296

whose expression is significantly modulated across a number of different gene profiling 297

studies. This approach not only provides the identity of the genes but also a pooled 298
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Figure 7. Regulation of metabolic genes is blunted in endothelial cells. A)
Pairwise comparison of the effect of hypoxia across groups. The pooled effect of hypoxia
was determined for each group of samples in a sub-group analysis and and their values
compared to determine genes showing statistically significant differences across groups.
The scatter plots show the pooled estimates (Log2-FC) for the 579 genes, each represented
by a dot, showing a statistically significant response to hypoxia (FDR < 0.05) across
groups. Each plot compares the LFC in two groups (showed on the margins of the
graph). Plots in the diagonal represents the distribution of values in each sample and
those in the upper half of the figure show density representation of the distribution of
data points. B) Heatmap showing the effect of hypoxia on gene expression (values of
LFC) in a color code as shown in the legend. The 579 differentially regulated across
groups are shown in rows sorted according to their similarity in expression across samples.
Columns represent samples and were sorted according to the cell type. C) The boxplots
represent the distribution of the original LFC values in each group of samples for a
group of selected genes. The red dotted line represents the value of zero. Differences
between groups were significant in all cases (ANOVA, FDR < 0.05) and a post-hoc
pair-wise comparison showed that the differences between endothelial cells and the other
two groups were significant(Student’s t-test, p < 0.001), whereas the difference between
the other two groups was not (p > 0.05).

estimate of the effect of the condition on the expression. Moreover, by applying a 299

random effects model, this stategy takes into account the wide variability in gene 300

expression expected from the integration of transcriptomes derived from different 301

experimental conditions. The application of this approach to 69 paired 302

normoxic/hypoxic transcriptomes representing a total of 425 samples resulted in the 303

identification of 8556 genes, roughly 41% of the detectable genes, as significantly 304

(FDR < 0.01) regulated in response to changes in oxygen tension. These results beg 305

answering the question of the biological relevance of statistically significant but small 306
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effects of gene expression. For example, the median effect size for significantly 307

up-regulated genes was 0.4, corresponding to a fold induction of 1.31 times over 308

normoxia. Thus, for fifty percent of the significantly-induced genes the level of mRNA 309

in hypoxia is at most 1.31 times higher than control levels. For some genes this small 310

increase in expression could have important biological consequences. However, 311

statistical significance by itself does not warrant biological relevance. For this reason we 312

sought to identify an effect size that it is likely to have an impact of cellular 313

biochemistry. To this end we recorded the changes in expression of genes known to have 314

an impact on different biological processes upon exposure to hypoxia and took the 315

median effect size value, 0.7 log2 units, as threshold. However, as only a fraction of the 316

genes in a category are induced to initiate the biological response, this value is likely to 317

be an underestimation. The application of the effect size threshold, together with 318

selection of genes expressed in at least 90% of the datasets, resulted in the identification 319

of a core set of 291 genes robustly regulated by hypoxia. 320

The Hallmark subset of MSigDB contains signatures generated by a computational 321

method based on the identification of overlaps across different gene sets and retaining 322

those genes that display coordinate expression [21]. In spite of being an invaluable and 323

widely used resource, our results suggests that the hypoxia signature shows some 324

shortcomings. For one thing, the signature lacks many hypoxia-regulated genes, 325

containing only a fraction of the genes strongly and consistently regulated by hypoxia 326

across different cell types and experimental conditions (Figure 6). The 114 core genes 327

identified by the meta-analysis and not present in the Hallmark signature, include well 328

characterized hypoxia-induced genes such as BCKDHA, EGLN1, several KDM family 329

members and LOXL2 among others (supplementary table S6). On the other hand, the 330

Hallmark signature includes some genes that are induced only in specific cell types or 331

experimental conditions (Figure 6D) and thus, cannot be considered general hypoxia 332

responsive genes. This result is particularly interesting as it explains the contradictory 333

reports regarding the effect of hypoxia on specific genes such as HMOX1 [24–28] and 334

PPARG1 [29–35] Thus, these results suggest that meta-analysis derived gene signatures 335

are superior to other consolidated methods to identify the genes characteristic of 336

biological processes. Given the widely use of MSigDB genesets in functional enrichment 337

analysis, this conclusion could have far reaching implications. 338

Finally, the application of a formal meta-analysis approach permits the application 339

of all associated statistical tests, including moderator analysis, to study the effect of 340

different factors on the regulation of gene expression. Through the application of this 341

analysis we found that endothelial cells are deficient in the induction of a relatively 342

large set of genes in response to hypoxia. Among those genes are many enzymes 343

involved in the metabolism of glucose, in particular those involved in glycolysis and 344

synthesis of glycogen. It is known that HIF1A, but not EPAS1, is responsible for the 345

hypoxic induction of glycolytic genes [36], it is tempting to speculate that the specific 346

pattern of expression observed in endothelial cells could be a consequence of the relative 347

importance of EPAS1 over HIF1A isoform in this cell type. In contrast to the case of 348

endothelial cells, moderator analysis did not identified large differences in the response 349

to hypoxia comparing normal and transformed cells. This result suggest that, in general, 350

oncogenic transformation does not substantially affect the transcriptional response to 351

hypoxia. 352

Altogether our results suggest approaches based on formal meta-analyses are 353

powerful method to identify universal as well as condition-specific gene expression 354

patterns. 355

13/21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.468418doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468418
http://creativecommons.org/licenses/by-nc/4.0/


Supporting Information 356

S1 Figure 357

Acknowledgments 358

This work was supported by Grants SAF2017-88771-R and PID2020-118821RB-I00 359

funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making 360

Europe” and by grant IND2019/BMD-17134 funded by Autonomous Autonomous 361

Community of Madrid. 362

References

1. G. L. Semenza. Hypoxia-inducible factors in physiology and medicine. Cell,
148(3):399–408, Feb 2012.

2. G. P. Elvidge, L. Glenny, R. J. Appelhoff, P. J. Ratcliffe, J. Ragoussis, and J. M.
Gleadle. Concordant regulation of gene expression by hypoxia and
2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha,
HIF-2alpha, and other pathways. J Biol Chem, 281(22):15215–15226, Jun 2006.

3. M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M.
Asara, W. S. Lane, and W. G. Kaelin. HIFalpha targeted for VHL-mediated
destruction by proline hydroxylation: implications for O2 sensing. Science,
292(5516):464–468, Apr 2001.

4. P. Jaakkola, D. R. Mole, Y. M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell,
A. von Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, P. H. Maxwell,
C. W. Pugh, and P. J. Ratcliffe. Targeting of HIF-alpha to the von
Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.
Science, 292(5516):468–472, Apr 2001.

5. P. H. Maxwell, M. S. Wiesener, G. W. Chang, S. C. Clifford, E. C. Vaux, M. E.
Cockman, C. C. Wykoff, C. W. Pugh, E. R. Maher, and P. J. Ratcliffe. The
tumour suppressor protein VHL targets hypoxia-inducible factors for
oxygen-dependent proteolysis. Nature, 399(6733):271–275, May 1999.

6. L. H. Kasper, F. Boussouar, K. Boyd, W. Xu, M. Biesen, J. Rehg, T. A. Baudino,
J. L. Cleveland, and P. K. Brindle. Two transactivation mechanisms cooperate
for the bulk of HIF-1-responsive gene expression. EMBO J, 24(22):3846–3858,
Nov 2005.

7. D. Lando, D. J. Peet, J. J. Gorman, D. A. Whelan, M. L. Whitelaw, and R. K.
Bruick. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the
transcriptional activity of hypoxia-inducible factor. Genes Dev, 16(12):1466–1471,
Jun 2002.

8. A. Ortiz-Barahona, D. Villar, N. Pescador, J. Amigo, and L. del Peso.
Genome-wide identification of hypoxia-inducible factor binding sites and target
genes by a probabilistic model integrating transcription-profiling data and in
silico binding site prediction. Nucleic Acids Res, 38(7):2332–2345, Apr 2010.

9. H. Bono and K. Hirota. Meta-Analysis of Hypoxic Transcriptomes from Public
Databases. Biomedicines, 8(1), Jan 2020.

14/21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.468418doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468418
http://creativecommons.org/licenses/by-nc/4.0/


10. Fangxin Hong and Rainer Breitling. A comparison of meta-analysis methods for
detecting differentially expressed genes in microarray experiments.
Bioinformatics, 24(3):374–382, 02 2008.

11. Rasko Leinonen, Hideaki Sugawara, and Martin Shumway. The sequence read
archive. Nucleic Acids Research, 39(SUPPL. 1):148–162, 2011.

12. Rob Patro, Geet Duggal, Michael I. Love, Rafael A. Irizarry, and Carl Kingsford.
Salmon provides fast and bias-aware quantification of transcript expression.
Nature Methods, 14(4):417–419, 2017.

13. Nuala A. O’Leary, Mathew W. Wright, J. Rodney Brister, Stacy Ciufo, Diana
Haddad, Rich McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-White,
Danso Ako-Adjei, Alexander Astashyn, Azat Badretdin, Yiming Bao, Olga
Blinkova, Vyacheslav Brover, Vyacheslav Chetvernin, Jinna Choi, Eric Cox, Olga
Ermolaeva, Catherine M. Farrell, Tamara Goldfarb, Tripti Gupta, Daniel Haft,
Eneida Hatcher, Wratko Hlavina, Vinita S. Joardar, Vamsi K. Kodali, Wenjun Li,
Donna Maglott, Patrick Masterson, Kelly M. McGarvey, Michael R. Murphy,
Kathleen O’Neill, Shashikant Pujar, Sanjida H. Rangwala, Daniel Rausch,
Lillian D. Riddick, Conrad Schoch, Andrei Shkeda, Susan S. Storz, Hanzhen Sun,
Francoise Thibaud-Nissen, Igor Tolstoy, Raymond E. Tully, Anjana R. Vatsan,
Craig Wallin, David Webb, Wendy Wu, Melissa J. Landrum, Avi Kimchi, Tatiana
Tatusova, Michael DiCuccio, Paul Kitts, Terence D. Murphy, and Kim D. Pruitt.
Reference sequence (RefSeq) database at NCBI: Current status, taxonomic
expansion, and functional annotation. Nucleic Acids Research,
44(D1):D733–D745, 2016.

14. Michael I. Love, Wolfgang Huber, and Simon Anders. Moderated estimation of
fold change and dispersion for rna-seq data with deseq2. Genome Biology, 15:550,
2014.

15. Anqi Zhu, Joseph G. Ibrahim, and Michael I. Love. Heavy-Tailed prior
distributions for sequence count data: Removing the noise and preserving large
differences. Bioinformatics, 35(12):2084–2092, 2019.

16. Wolfgang Viechtbauer. Conducting meta-analyses in R with the metafor package.
Journal of Statistical Software, 36(3):1–48, 2010.
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Supporting Information Legends

Table S1. Comparison of Meta-analysis derived core genes and Hall Mark
hypoxia signature.MA, Meta-analysis; HM, MSig’s Hypoxia Hall Mark; Size, number
of genes in the signature; Ub., Number of genes present in more than 90% of the analyzed
subsets; 1QLFC, Log2 Fold Change first quartile;1QLFC, Log2 Fold Change third quartile.

Signature Size Ub. 1QLFC 3QLFC
MA 178 178 0.76 1.33
HM 200 195 0.67 1.14

Table S2. Studies selected from database search. GSE ID, GEO Series ID; The
oxygen tensions hypoxia exposure times (in hours) and cell type(s) included in the study
are shown in columns O2, Hx time and CT respectively.

Table S3. Metadata of studies kept after filtering original datasets. Columns
A-P correspond to the information associated to samples in the NCBI’s Sequence Read
Archive (SRA).GSE ID, GEO Series ID; The oxygen tension hypoxia exposure time(in
hours) and cell type and transformed status of each sample is recorded in columns O2,
Hx time, Cell type/CT and transformed respectively.
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Figure S1. Meta-analysis of the effect of hypoxia on EGLN3 gene expression.
Forest plot representing the individual effect size (LFC) estimates as grey boxes whose
size is inversely proportional to the precision of the estimate. Each estimate derives
from the study indicated on the left column ()”Study”), which includes information about
GEO record and experimental conditions: cell line, concentration of oxygen (percentage
of oxygen in gas mixture) during exposure to hypoxia and length of hypoxia in hours.
The pooled effect size estimate is shown at the bottom as a blue diamond. The columns
on the left indicate the values of the effect size (Log2FC), the 95% confidence interval
for the estimate and the weight of each observation on the pooled effect.
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Figure S2. Identification of an effect size value that maximizes the asso-
ciation between gene expression and cellular responses to hypoxia.. Genes
showing an statistically significant change in expression (FDR < 0.01) of a magni-
tude (|Log2FC|) above the indicated values (x axis) were categorized as differentially
expressed in response to hypoxia. Then, genes were further classified into mutually
exclusive subgroups according to their membership regarding the indicated biolog-
ical processes. Finally, the association between the response to hypoxia and the
biological process was assessed using a Fisher’s exact test. Each graph shows the
p-value for the the association between the indicated biological process (Gene On-
tology Biological Processes: ”DNA DEPENDENT DNA REPLICATION” (CELLCY-
CLE1), ”CELL CYCLE DNA REPLICATION” (CELLCYCLE2), ; MSig DB Hallmark:
”G2M CHECKPOINT” (CELLCYCLE3), ...) and the response to hypoxia at different
Log2 FC cut-off values.

Table S4. Compiled Meta-analyses results. Gene symbol, Human Genome Nomen-
clature gene symbol; N, number of Nx-Hx sample pairs were gene expression was detectable;
G.random, pooled estimate of effect size (log2 Hx/Nx); seG.random, Standard Error of
the pooled estimate; lciG.random and uciG.random, lower and upper 95% confidence
intervals for the pooled estimate; pval.random; estatistical signicance for the pooled
estimate being equal to zero; ajdP.random, FDR-adjusted p-values.

Table S5. Effect of hypoxia on the expression of the genes identified in
the meta-analysis as the core hypoxic signature. Columns A-E as in table S4.
Remaining columns indicate the effect of hypoxia (log2 Hx/Nx) on the gene indicated in
column Gene Symbol as determined in the study indicated in the column name. Study
column names contain the following four pieces of information: GSE ID, cell type,
exposure time (in hours) and percentaje of oxygen sepparated by underscores.
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Figure S3. Meta-analysis of the effect of hypoxia on HMOX1 gene expression.
Forest plot representing the individual effect size (LFC) estimates as grey boxes whose
size is inversely proportional to the precision of the estimate. Each estimate derives from
the study indicated on the left column (”Study”), which includes information about
GEO record and experimental conditions: cell line, concentration of oxygen (percentage
of oxygen in gas mixture) during exposure to hypoxia and length of hypoxia in hours.
The pooled effect size estimate is shown at the bottom as a blue diamond. The columns
on the left indicate the values of the effect size (Log2FC), the 95% confidence interval
for the estimate and the weight of each observation on the pooled effect.
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Table S6. Effect of hypoxia on the expression of the genes included in gene
signatures. Columns A,D-G as in table S4. Columns MA and HM indicate whether the
gene (row) is included in the Meta-analysis and MSigDB’s Hall Mark gene signatures
respectively.

Table S7. Genes whose regulation by hypoxia is significantly different in
endothelial cells compared with the rest of cell types. Gene symbol, Human
Genome Nomenclature gene symbol; N yes and N no, number of Endothelial and not-
endothelial Nx-Hx sample pairs respectively were gene expression was detectable; MD yes
and MD no, pooled estimate of effect size (log2 Hx/Nx) for the endothelial and non-
endothelial groups of samples; pval.random; estatistical signicance for the difference
between groups being equal to zero; ajdP.random, FDR-adjusted p-values.

Table S8. Genes whose regulation by hypoxia is significantly different in
endothelial cells compared with the other non-transformed and transformed
cell types. Columns as in table S4. Suffixes ”e”, ”o” and ”t” refer to endothelial,
other-non transformed and transformed cells respectively.
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