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Abstract  
 

Characterizing age- and risk-related hippocampal vulnerabilities may inform about 

the neural underpinnings of cognitive decline. We studied the impact of three risk-factors, 

Apolipoprotein (APOE)-e4, a family history of dementia, and central obesity, on CA1, CA2/3, 

dentate gyrus (DG) and subiculum in 158 cognitively healthy adults (38-71 years). Subfields 

were labelled with the Automatic Segmentation of Hippocampal Subfields (ASHS) and 

FreeSurfer (version 6) protocols. Volumetric and microstructural measurements from 

quantitative magnetization transfer and Neurite Orientation Density and Dispersion Imaging 

were extracted for each subfield and reduced to three principal components capturing 

apparent myelin/neurite packing, size/complexity, and metabolism. Aging was associated 

with an inverse U-shaped curve on myelin/neurite packing and affected all subfields. Obesity 

led to reductions in myelin/neurite packing and size/complexity regardless of APOE and FH 

status. However, amongst individuals with a healthy Waist-Hip-Ratio, APOE ε4 carriers 

showed lower size/complexity than non-carriers. Protocol type did not affect this risk pattern. 

These findings provide novel evidence for interactive effects between APOE and central 

obesity on the hippocampal formation of cognitively healthy adults. 

 

 

Keywords: Hippocampal subfields, ASHS, FreeSurfer, aging, dementia risk, family history, 

APOE, obesity, quantitative magnetization transfer, NODDI 
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Highlights 
 

• Age-related inverted U-shaped curve of hippocampal myelin/neurite packing  

• Obesity-related reductions of hippocampal myelin/neurite packing and 

size/complexity  

• APOE modifies the effects of obesity on hippocampal size/complexity 

• Age-related slowing of spatial navigation 

• No APOE, family history, or obesity effects on cognition 
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1. Introduction 
 

The world’s population is aging, creating an increase in age-related health issues, 

including cognitive decline (Beard et al., 2016). With respect to age-related memory 

impairments, the hippocampal formation, i.e., dentate gyrus, cornu Ammonis (CA) fields, and 

subiculum, warrants particular attention as it is critically involved in memory processing and 

is affected early in the progression of Alzheimer’s disease (AD). Magnetic resonance 

imaging (MRI) studies have, for example, shown reductions in total hippocampal volume 

associated with aging in cognitively healthy individuals (Raz, 2001), while hippocampal 

atrophy remains one of the supporting diagnostic features of amnestic Mild Cognitive 

Impairment (aMCI) and AD (de Flores et al., 2015a). The next challenge is to distinguish 

normal age-related hippocampal changes from potential pathological changes related to 

genetic and lifestyle risk factors of dementia in pre-symptomatic individuals (Jack et al., 

2013). Overall structural volumes may, however, lack sufficient sensitivity for early detection.  

Instead, multi-parametric quantitative MRI indices may provide an alternate route to detect 

subtle microstructural changes that, in turn, aid our understanding of both age- and 

dementia risk-related effects on the hippocampal formation and its subfields (Kodiweera et 

al., 2016; Metzler-Baddeley et al., 2019a; Metzler-Baddeley et al., 2019b; Nazeri et al., 

2015; Wolf et al., 2015).   

The objectives of this study were three-fold: Firstly, to characterize the pattern of age 

and age-independent dementia risk effects on hippocampal subfield macro- and 

microstructure in a sample of cognitively healthy adults (38-71 years of age) (Metzler-

Baddeley et al., 2019a; Metzler-Baddeley et al., 2019b).  The effects of three established 

risk factors of dementia, i.e., carriage of the Apolipoprotein E (APOE) ε4 genotype 

(Angelopoulou et al., 2021; Chai et al., 2021; Feringa and van der Kant, 2021; 

Koutsodendris et al., 2021; Liu et al., 2013), a positive family history (FH) of dementia in a 

first-grade relative (Alosco et al., 2014; Donix et al., 2010; Johnson et al., 2014; Tanzi, 2012; 

Wolf, 2012), and abdominal obesity (Arnoldussen et al., 2014; Beydoun et al., 2008; Chuang 
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et al., 2016; Pedditizi et al., 2016; Xu et al., 2011) and their potential interactions were 

studied (Metzler-Baddeley et al., 2019a; Metzler-Baddeley et al., 2019b; Mole et al., 2020). 

Secondly, to investigate the pattern of age and risk effects not only with volumetric but 

also with multi-parametric microstructural MRI from diffusion neurite density and dispersion 

imaging (NODDI) (Zhang et al., 2012) and quantitative magnetization transfer (qMT) (Eng et 

al., 1991; Henkelman et al., 1993; Henkelman et al., 2001; Sled, 2017) to aid our 

understanding of the biophysical properties underpinning aging and risk (Wolf et al., 2015).  

We also assessed whether the choice of protocol for the labelling of hippocampal subfields 

had an impact on the analysis of risk effects (Yushkevich et al., 2015a). For this purpose, the 

main subfields of the hippocampal formation, i.e., CA1, CA2/3, dentate gyrus (DG) and 

subiculum were segmented with two publicly available, automated protocols that make use 

of T1- and T2-weighted hippocampal images: The Bayesian inference labeling methods 

implemented in FreeSurfer 6.0  (Iglesias et al., 2015) and the Automatic Segmentation of 

Hippocampal Subfields (ASHS) that utilizes multi-atlas segmentation and machine learning 

techniques (Yushkevich et al., 2015b). Both protocols have recently been validated with 

histopathological evidence in patients with epilepsy (Menzler et al., 2021; Mizutani et al., 

2021).  

Thirdly, to explore whether individual differences in hippocampal subfield macro- and 

microstructure correlated with episodic memory and spatial navigation abilities known to rely 

on hippocampal processes (Brown et al., 2014; Hartley et al., 2005; Hoang et al., 2018; Kyle 

et al., 2015). 

The evidence regarding age-related atrophy in hippocampal subfields remains mixed. 

Volume reductions have previously been reported for CA1 (Malykhin et al., 2017; Mueller 

and Weiner, 2009; Raz et al., 2015; Uribe et al., 2018; Wisse et al., 2014), CA2-4 

(Daugherty et al., 2016; Malykhin et al., 2017; Mueller and Weiner, 2009; Raz et al., 2015; 

Wisse et al., 2014), subiculum (de Flores et al., 2015b; La Joie et al., 2010; Malykhin et al., 

2017; Wolf et al., 2015) and DG (de Flores et al., 2015b; La Joie et al., 2010) but were not 

consistently observed across all studies. A recent UK Biobank data analysis found non-
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linear age-related changes in all subfields of the hippocampal formation (Veldsman et al., 

2021). In this study, female APOE ε4 homozygotes over the age of 65 years exhibited the 

largest atrophy across CA1, CA3, CA4, subiculum and presubiculum, suggesting that age 

and sex modulated the effects of APOE (Veldsman et al., 2021) (see also Donix et al., 2010; 

Dounavi et al., 2020; Kerchner et al., 2014; Mueller et al., 2008; Mueller and Weiner, 2009; 

Reiter et al., 2017).  APOE ε4-related volume reductions in the molecular layer of the 

subiculum and the CA fields were also observed in a middle-aged cohort of cognitively 

healthy participants, while no effects were present for FH or cardiovascular risk (Dounavi et 

al., 2020) (Donix et al., 2010; Dounavi et al., 2020; Kerchner et al., 2014; Mueller et al., 

2008; Mueller and Weiner, 2009; Reiter et al., 2017).  

Furthermore, lifestyle-related factors, such as obesity and sedentary lifestyle, may have 

adverse effects on the hippocampus. For instance, abdominal visceral fat has been found to 

be associated with volume reductions (Anan et al., 2010) and increases in free water signal 

of the whole hippocampal formation (Metzler-Baddeley et al., 2019a). Obesity is related to 

pro-inflammatory states (Cox et al., 2015) and in rodent models was found to induce 

microglia activation and reduce long-term potentiation in the hippocampus (Hao et al., 2016). 

It is increasingly recognized that APOE ε4 may interact with obesity to augment disruptions 

in lipid, glucose, insulin, and immune response metabolism which in turn may increase AD 

risk (Jones and Rebeck, 2018; Mole et al., 2020; Zade et al., 2013). Consistent with this 

view, we have previously found interaction effects between APOE, FH, and obesity on white 

matter microstructure, that were particularly pronounced in the right parahippocampal 

cingulum (Mole et al., 2020). More specifically, APOE ε4 carriers with a positive FH exhibited 

obesity-related reductions in apparent myelin, while no effects were observed for those 

without a FH. These risk-effects were moderated by hypertension and inflammation-related 

blood markers. The parahippocampal cingulum is a limbic white matter pathway that 

connects the posterior cingulate and parietal cortices with the medial temporal lobes (Bubb 

et al., 2018) and is known to be affected in amnestic Mild Cognitive Impairment (Metzler-

Baddeley et al., 2012; Yu et al., 2017). It is therefore possible that adverse interactions 
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between genetic and lifestyle risk factors may increase the vulnerability of medial temporal 

lobe structures to neurodegeneration. However, the nature of these interactions and their 

impact on the subfields of the hippocampal formation remain poorly understood and require 

further elucidation. 

To this purpose we studied MRI data from 158 asymptomatic individuals from the Cardiff 

Aging and Risk of Dementia Study (CARDS) (38-71 years of age) (Coad et al., 2020; 

Metzler-Baddeley et al., 2019a; Metzler-Baddeley et al., 2019b; Mole et al., 2020), a sample 

well-characterized with regards to their genetic and lifestyle risk of dementia (Mole et al., 

2020). MRI measures consisted of intracranial volume (ICV) adjusted hippocampal subfield 

volumes and the following microstructural indices: i) NODDI intracellular signal fraction 

(ICSF) for apparent neurite density, ii) NODDI isotropic signal fraction (ISOSF) estimating 

free water, iii) NODDI neurite orientation dispersion index (ODI), iv) qMT macromolecular 

proton fraction (MPF) for apparent myelin (Ceckler et al., 1992; Schmierer et al., 2007), v) 

qMT forward exchange rate kf estimating tissue metabolism (Giulietti et al., 2012; Harrison et 

al., 2015) and vi) longitudinal relaxation rate R1 for apparent water, lipid/protein, and, to a 

lesser extent, iron content (Callaghan et al., 2015).  

Support for studying neurite properties comes from neuropathological evidence 

suggesting that human aging is associated with a reduction of neocortical dendritic spine 

density (Dickstein et al., 2013) with accompanying compensatory increases in the dendritic 

extent of DG granular cells (Flood et al., 1985; Flood et al., 1987). Likewise, recent in vivo 

NODDI studies found age-related reductions in neocortical neurite dispersion (Nazeri et al., 

2015) and increases in neurite dispersion of the whole hippocampus (Metzler-Baddeley et 

al., 2019b; Nazeri et al., 2015). With regards to AD pathology, ODI and ICSF were found 

sensitive to amyloid and tau pathology in the hippocampus (Colon-Perez et al., 2019) and in 

white matter in AD animal models (Colgan et al., 2016; Colon-Perez et al., 2019). In 

addition, qMT kf reductions were reported in the hippocampus, temporal lobes, parietal 

cortex and posterior cingulate in people with AD (Giulietti et al., 2012) and T1 and T2 

relaxometry measurements have been found sensitive to AD pathology in animal and human 
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imaging studies (Knight et al., 2016; Knight et al., 2019; Tang et al., 2018). In previous 

CARDS analyses, we observed age-related reductions in left hippocampus kf and R1 

(Metzler-Baddeley et al., 2019b) as well as APOE ε4-related reductions in left thalamus qMT 

MPF (Mole et al., 2020). These observations demonstrate that microstructural MRI indices 

may provide complementary information to volumetric measurements capturing age and 

risk-related differences in metabolic, macromolecular, and free water-related tissue 

properties (Callaghan et al., 2015; Giulietti et al., 2012; Harrison et al., 2015).  

It should be noted though that our previous CARDS analyses did not find risk effects on 

microstructural measurements of the whole hippocampal formation (Mole et al., 2020; see 

also Dounavi et al., 2020, Evans et al., 2020). An important limitation of these studies was 

the treatment of the hippocampal formation as a unitary structure, while this region 

comprises multiple subfields that are thought to be differentially vulnerable to age and 

disease-related processes. Notably the subiculum and CA1 regions have been proposed to 

be particularly vulnerable in aMCI and AD (Adler et al., 2018; Khan, et al., 2015; Lindberg et 

al., 2017) and in asymptomatic individuals with positive amyloid and tau cerebrospinal fluid 

(CSF) biomarkers (Tardif et al., 2018).  

 

 

Figure 1 displays the hippocampal subfield regions that were automatically segmented from 

T1 and T2-weighted images using the Automated Segmentation of Hippocampal Subfields 

(ASHS) (Yushkevich et al., 2015b) and the FreeSurfer Segmentation of Hippocampal 
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Subfields functionality (version 6) (Iglesias et al., 2015). Segmentations are shown for one 

participant with coronal images along the anterior-posterior hippocampal axis on a T2-

weighted image for ASHS and a T1-weighted image for FreeSurfer. Abbreviations: cornu 

Ammonis 1 (CA1), CA2/3, subiculum (SUB) and dentate gyrus (DG). 

 

However, one source of inconsistency when subdividing the hippocampal formation 

stems from different subfield and border segmentation protocols (Yushkevich et al., 2015a). 

Yushkevich et al. (2015a) compared 21 protocols for labelling hippocampal subfields, 

including those adopted here (ASHS and FreeSurfer). They found considerable differences 

with regards to the region within each segmentation was performed, the set of the employed 

anatomical labels, and the extents of specific anatomical labels. The largest discrepancies 

between the protocols were at the CA1/subiculum boundary and in the anterior portion 

relative to body and tail portions of the hippocampal formation.  

For this reason, we employed the two most widely used automated hippocampal subfield 

labelling protocols, i.e., FreeSurfer version 6.0 and ASHS.  We then assessed whether the 

type of protocol affected the pattern of risk-related differences in macro- and microstructure 

of the hippocampal formation. We focused our comparison on CA1, CA2/3, DG and 

subiculum as these regions have previously been implicated in aging and disease and were 

sufficiently large to extract meaningful microstructural information from diffusion and qMT 

images with a resolution of approximately 2mm3.  

While the microstructural measurements described above were chosen to capture 

complementary tissue properties (Wolf et al., 2015), they also share some overlapping 

information which can cause redundancies in the data analysis and reduce the statistical 

power of the analyses (Chamberland et al., 2019). We and others have previously 

demonstrated that Principal Component Analysis (PCA) can be successfully employed to 

reduce the dimensionality of multi-modal brain measurements and extract meaningful 

components of the underlying data structure (Bourbon-Teles et al., 2017; Chamberland et 

al., 2019; Geeraert et al., 2020; Metzler-Baddeley et al., 2017; Penke et al., 2010).  
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Here we adopted this approach to study potential dissociations between age- and age-

independent risk effects on principal components of hippocampal macro- and microstructure. 

More specifically, we modelled main and interaction effects of APOE, FH, WHR, protocol 

and hippocampal subfields on three principal components that reflected apparent 

myelin/neurite packaging, size/complexity and metabolism of hippocampal gray matter. 

These analyses controlled for the effects of age, sex (Veldsman et al., 2021) and verbal 

intelligence (Boyle et al., 2021), as we aimed to gain a better understanding of age and sex-

independent effects of APOE, FH and obesity and their potential interactions. Finally, we 

assessed age and risk effects on cognitive components of episodic memory and spatial 

navigation and explored brain-function correlations between the hippocampal subfield 

macro- and microstructure and cognition. 

 
 
2. Materials and Methods  

CARDS received ethical approval from the School of Psychology Research Ethics 

Committee at Cardiff University (EC.14.09.09.3843R2). Participants provided written 

informed consent in accordance with the Declaration of Helsinki.  

 

2.1 Participants 

Participants between the age of 38 and 71 years were recruited from the local 

community via Cardiff University volunteer panels, notice boards and local poster 

advertisements.  A detailed description of the CARDS sample can be found in Mole et al. 

(2020). All participants had a good command of the English language and were without a 

history of neurological and/or psychiatric disease, head injury with loss of consciousness, or 

drug or alcohol dependency. A total of 166 CARDS volunteers underwent MRI scanning at 

the Cardiff University Brain Research Imaging Centre (CUBRIC). Seven participants did not 

complete the MRI protocol, including the high resolution T2 images of the hippocampus, due 

to claustrophobia and/or feeling uncomfortable. Participants’ intellectual function was 

assessed with the National Adult Reading Test - Revised (NART-R) (Nelson, 1991) and 
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cognitive impairment was screened for with the Mini Mental State Exam (MMSE) (Folstein et 

al., 1975). One person with a MMSE score of 26 was excluded from the analysis. Thus, the 

current analysis was based on 158 datasets (see Table 1). 

 

Table 1. Summary of demographic, genetic, and lifestyle risk information of participants. 

  
n 158 

Age (in years) M = 55.7, SD = 8.2 

Females n 91 

NART M = 116.9, SD = 6.7 

MMSE  M = 29.1, SD = 0.9 

FH+ n 56 

APOE ε4+ n 61 

Central obesity* n 95 
*Based on waist-hip ratio ≥ 0.9 for males and ≥ 0.85 for females (Organisation, 2008). APOE 

= Apolipoprotein-E, FH = Family History of a dementia,  M = Mean, MMSE = Mini Mental 

State Exam (Folstein et al., 1975), NART = National Adult Reading Test(Nelson, 1991), SD 

= Standard Deviation. 

 

2.2 Assessment of dementia risk factors 

Central obesity was assessed with the Waist to Hip Ratio (WHR) following the World 

Health Organisation’s (Organisation, 2008) recommended protocol for measuring waist and 

hip circumference. Central obesity was defined as a WHR ≥ 0.9 for males and ≥ 0.85 for 

females. Individuals were categorized as centrally obese (WHR+) or normal WHR (WHR-). 

Saliva samples were collected with the Genotek Oragene-DNA kit (OG-500) for DNA 

extraction and APOE genotyping.  APOE genotypes ε2, ε3, and ε4 were determined by 

TaqMan genotyping of single nucleotide polymorphism (SNP) rs7412 and KASP genotyping 

of SNP rs429358. Genotyping was unsuccessful for one individual. Participants were 

categorized into those who carried at least one ε4 allele (APOE ε4) and those who did not 

(APOE ε4-). 
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Participants also self-reported their family history of dementia, i.e., whether a first-grade 

relative was affected by Alzheimer’s disease, vascular dementia or any other type of 

dementia. Two participants could not provide information about their family history (FH). The 

remaining participants were categorized into those with a positive FH (FH+) and those 

without (FH-). 

 

2.3 Cognitive assessment 

Immediate and 30 minutes delayed verbal and visual recall were assessed with the Rey 

Auditory Verbal Learning Test (RAVLT) (Rey, 1941; Schmidt, 1996) and the complex Rey 

figure Test (Rey, 1941). Short term topographical memory was measured with the Four 

Mountains Test (Chan et al., 2016). Spatial navigation was assessed with a virtual Morris 

Water Maze Task (Hamilton et al., 2002) where participants had to find and navigate to a 

hidden platform in a water pool. This task also included a motor control condition without a 

visible platform. Working memory capacity and executive functions were assessed with 

computerized tests from the Cambridge Brain Sciences battery (Hampshire et al., 2012; 

Owen et al., 2010). Working memory capacity was tested with digit and spatial span, 

distractor suppression with an adapted version of the Stroop test (Double-Trouble), problem 

solving with a version of the Tower of London task (the Tree task), abstract reasoning with 

grammatical reasoning and the odd-one-out task, as well as the ability to manipulate and 

organize spatial information with a self-ordered spatial span task. In addition, participants 

performed a paired-associate learning (PAL) and a choice-reaction time (CRT) task. 

Cognitive outcome measures were the number and latencies of correct responses as well as 

spatial navigation path length. 

 

2.4 MRI data acquisition  

MRI data were acquired on a 3T MAGNETOM Prisma clinical scanner (Siemens 

Healthcare, Erlangen, Germany).  For hippocampal subfield segmentation and volumetric 

analyses, T1- and T2-weighted anatomical images were collected. T1-weighted images were 
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acquired with a three-dimension (3D) magnetization-prepared rapid gradient-echo (MP-

RAGE) sequence (256 x 256 acquisition matrix, TR = 2300 ms, TE = 3.06 ms, TI = 850ms, 

flip angle θ = 9°, 176 slices, 1mm slice thickness, FOV = 256 mm and acquisition time of ~ 6 

min). High resolution (0.4 x 0.4 x 2.5 mm voxel) T2-weighted anatomical images of the 

hippocampus were acquired with a turbo-spin-echo sequence in the coronal plane with TR = 

3300 msec, TE = 84 msec, TI =, flip angle = 155°, 30 slices, 2.5mm slice thickness, FOV = 

256 mm and acquisition time of ~ 8 min.  

High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al., 2002) data (2 x 2 x 2 

mm voxel) for the NODDI analyses were collected with a spin-echo echo-planar dual shell 

HARDI sequence with diffusion encoded along 90 isotropically distributed orientations 

(Jones et al., 1999) (30 directions at b-value = 1200 s/mm2 and 60 directions at b-value = 

2400 s/mm2) and six non-diffusion weighted scans with dynamic field correction and the 

following parameters: TR = 9400ms, TE = 67ms, 80 slices, 2 mm slice thickness, FOV = 256 

x 256 x 160 mm, GRAPPA acceleration factor = 2 and acquisition time of ~15 min. 

Quantitative magnetization transfer weighted imaging (qMT) data were acquired with an 

optimized 3D MT-weighted gradient-recalled-echo sequence (Cercignani and Alexander, 

2006) to obtain magnetization transfer-weighted data with the following parameters: TR = 32 

ms, TE = 2.46 ms; Gaussian MT pulses, duration t = 12.8 ms; FA = 5°; FOV = 24 cm, 2.5 x 

2.5 x 2.5 mm3 resolution. The following off-resonance irradiation frequencies (Θ) and their 

corresponding saturation pulse nominal flip angles (ΔSAT) for the 11 MT-weighted images 

were optimized using Cramer-Rao lower bound optimization: Θ = [1000 Hz, 1000 Hz, 2750 

Hz, 2768 Hz, 2790 Hz, 2890 Hz, 1000 Hz, 1000 Hz, 12060 Hz, 47180 Hz, 56360 Hz] and 

their corresponding ΔSAT values = [332°, 333°, 628°, 628°, 628°, 628°, 628°, 628°, 628°, 

628°, 332°]. The longitudinal relaxation time, T1, of the system was estimated by acquiring 

three 3D gradient recalled echo sequence (GRE) volumes with three different flip angles (θ = 

3°,7°,15°) using the same acquisition parameters as used in the MT-weighted sequence (TR 

= 32 ms, TE = 2.46 ms, FOV = 24 cm, 2.5 x 2.5 x 2.5 mm3 resolution). Data for computing 

the static magnetic field (B0) were collected using two 3D GRE volumes with different echo-
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times (TE = 4.92 ms and 7.38 ms respectively; TR= 330ms; FOV= 240 mm; slice thickness 

2.5 mm) (Jezzard and Balaban, 1995).  

 

2.5 Hippocampal subfield segmentations 

Whole brain T1 and high resolution T2- weighted images were used as input images 

to segment subregions of the hippocampal formation with the FreeSurfer (version 6.0) 

(Iglesias et al., 2015) (Figure 1) and ASHS (Yushkevich et al., 2015b) hippocampal subfields 

segmentation tools. Detailed descriptions of the two pipelines are available on 

https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfields and 

https://www.nitrc.org/projects/ashs.  

In brief, the FreeSurfer version 6.0 cross-sectional segmentation pipeline firstly 

requires the fully automated analysis of the T1-weighted images with reconall 

(http://surfer.nmr.mgh.harvard.edu/) that involves skull stripping, correction for motion 

artefacts and field inhomogeneities, the registration of native data to and from the standard 

Talairach space, parcellation of cortical regions and the segmentation of subcortical 

structures including the hippocampi (Fischl, 2012). These processing steps were followed by 

a hippocampal subfield segmentation pipeline that utilises both T1 and T2- weighted images 

to identify anatomical landmarks for the bilateral segmentation of 12 subfields, i.e., CA1, 

CA2/3, CA4, subiculum, presubiculum, parasubiculum, molecular layer of the subiculum and 

CA fields, granule cell layer of the dentate gyrus, fimbria, hippocampus-amygdala transition 

area, hippocampal tail, and fissure (Iglesias et al., 2015). This pipeline is based on a 

statistical atlas of the hippocampus constructed from manual segmentation labels from both 

in vivo and high-resolution ex vivo data that were used to develop a Bayesian inference 

algorithm for the automatic segmentation of the hippocampus proper from T1 and T2- 

weighted structural images (Iglesias et al., 2015).  

The ASHS software (https://sites.google.com/site/hipposubfields) implements a multi-

atlas segmentation technique that involves registering the target MRI with a bank of T2-

weighted atlas MRIs including manually labeled subregions. Here the ASHS UPenn PMC 
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Atlas package was chosen for this purpose. Multi-atlas label fusion is then applied to select 

a consensus segmentation based on the shared similarity between target and atlas images. 

Systematic segmentation errors are minimized with a learning-based bias correction 

technique. Joint label fusion and corrective learning are then repeated by bootstrapping 

seeded by the segmentation results from the previous phase. ASHS leads to the 

segmentation of 10 region of interests, i.e., CA1, CA2, CA3, DG, subiculum, entorhinal 

cortex, Brodmann area 35, Brodmann area 36, collateral sulcus and miscellaneous regions. 

To allow meaningful extraction of lower resolution microstructural data, ASHS CA2 and CA3 

regions were combined using the fslmaths utility from the Oxford Centre for Functional MRI 

of the Brain (FMRIB) Software Library (version 6.0) (Jenkinson et al., 2012) . 

For the purpose of comparing between the two segmentation techniques and for 

allowing meaningful extraction of lower resolution microstructural values, the present 

analysis focused on CA1, CA2/3, dentate gyrus and subiculum regions that were shown to 

be affected by aging and AD (de Flores et al., 2015a). 

Mean hippocampal subfield and intracranial volumes (ICV) were extracted for each 

brain. Subfield volumes were then adjusted for ICV to correct for inter-individual differences 

in head size using the formula (subfield volume x 1000)/ ICV (from FreeSurfer or ASHS 

respectively).  

 

2.6 HARDI and qMT data processing 

A detailed description of the microstructural data processing has been provided 

(Metzler-Baddeley et al., 2019a; Metzler-Baddeley et al., 2019b).  In brief, the dual-shell 

HARDI data were split and b = 1200 and 2400 s/mm2 data were corrected separately for 

distortions induced by the diffusion-weighted gradients and motion artifacts with appropriate 

reorientation of the encoding vectors (Leemans and Jones, 2009) in ExploreDTI (Version 

4.8.3) (Leemans A et al., 2009). EPI-induced geometrical distortions were corrected by 

warping the diffusion-weighted image volumes to the T1 –weighted anatomical images 

(Irfanoglu et al., 2012). After preprocessing, the NODDI model (Zhang et al., 2012) was fitted 
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to the HARDI data with the fast, linear model fitting algorithms of the Accelerated 

Microstructure Imaging via Convex Optimization (AMICO) framework (Daducci et al., 2015) 

to gain ISOSF, ICSF, and ODI maps.  

Using Elastix (Klein et al., 2010), MT-weighted GRE volumes were co-registered to 

the MT-volume with the most contrast using a rigid body (6 degrees of freedom) registration 

to correct for inter-scan motion. Data from the 11 MT-weighted GRE images and T1-maps 

were fitted by a two-pool model using the Ramani pulsed-MT approximation (Ramani et al., 

2002).  This approximation provided MPF and kf maps. MPF maps were thresholded to an 

upper intensity limit of 0.3 and kf maps to an upper limit of 3.0 using the FMRIB’s fslmaths 

imaging calculator to remove voxels with noise-only data.  

All microstructural maps were spatially aligned with the hippocampal subfield masks 

by co-registration with the T1- weighted anatomical space as reference image with linear affine 

registration (12 degrees of freedom) using FMRIB’s Linear Image Registration Tool (FLIRT). 

Spatial alignment of microstructural maps to ASHS hippocampal subfield masks involved an 

additional warping to the T2-weighted space with FLIRT. 

 

2.7 Statistical analysis 

Statistical analyses were conducted in SPSS version 26 (IBM, 2011). All data were 

examined for normal distribution and for outliers, defined as above or below three times the 

interquartile range (75th percentile value - 25th percentile value).  

Missing data: FreeSurfer hippocampal subfield segmentations could be performed 

for all 158 datasets and ASHS segmentations for a total of 153 datasets. For FreeSurfer one 

volume and for ASHS two volume measurements were excluded as outliers. For the 

microstructural data, 1% of the data were excluded as outliers for FreeSurfer and 5% for 

ASHS segmentations. 

For the principal component analysis (PCA), each participant’s volumetric and 

microstructural data for the 16 hippocampal subfield segmentations [2 (FreeSurfer, ASHS) x 

2 (left, right) x 4 (CA1, CA2/3, DG, subiculum)] were concatenated to form n = 2528 
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observations. The dependent variables were represented by the seven brain measurements 

(ICV-adjusted volumes, MPF, kf, R1, ODI, ISOSF, ICSF). Bartlett’s test of sphericity and the 

Kaiser-Meyer-Olkin (KMO) test were used to check that the data were suitable for PCA 

[KMO = 0.57, Chi2 (21) = 2842.2, p < 0.001]. PCA was then carried out using a procedure 

with orthogonal Varimax rotation of the component matrix. Components were extracted 

based on the Kaiser criterion of including all components with an eigenvalue > 1 (IBM, 

2011), by inspecting Cattell’s scree plots (Cattell, 1952) and by assessing each component 

with regards to their interpretability. Component loadings that exceeded a value of 0.5 were 

considered as significant. The dimensionality of the cognitive data for all 158 participants 

was also reduced with PCA using the same procedure as described above [KMO = 0.61, 

Chi2 (630) = 2463.37, p < 0.001].  

Each participant’s PCA least squares regression component scores (DiStefano et al., 

2009) were subsequently entered as dependent variables in a multivariate analysis of 

covariance (MANCOVA) that tested for main and interaction effects of the risk factors APOE 

genotype (e4+, e4-), FH (FH+, FH-), and WHR (WHR+, WHR-) as well as for the effects of 

the segmentation protocol (FreeSurfer, ASHS) and hippocampal subfield segmentations 

(bilateral CA1, CA2/3, DG, subiculum). Age, sex and IQ-scores from the NART-R (Nelson, 

1991) were included as covariates. Similarly, MANCOVA tests for risk effects on cognitive 

component scores, while controlling for age, sex, and IQ, were completed.  

Significant omnibus effects were further investigated with post-hoc comparisons 

using univariate analysis of covariance (ANCOVA) and independent t-tests. Relationships 

between brain structure and cognitive component scores were studied using hierarchical 

linear regression models that first entered as independent variables age and sex, and then 

in a second model volumetric and microstructural measurements of CA1, CA2/3, DG and 

subiculum in a stepwise fashion to predict the variance in the cognitive component data. To 

reduce the number of independent variables entered into the regression model and hence 

model overfit, macro- and microstructural measurements were averaged over protocol and 

hemisphere for each subfield.    
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First and post-hoc models were corrected for multiple comparisons with a False 

Discovery Rate (FDR) of 5% using the Benjamini-Hochberg procedure (Benjamini and 

Hochberg, 1995). The 5% FDR was applied to all statistical tests that related to the same 

theoretical inference (Lakens, 2014).  

All reported p-values, unless stated otherwise, were Benjamini-Hochberg adjusted 

(pBHadj) and two-tailed. Information about effects sizes was provided with the partial eta 

squared index hp
2 for MANCOVA analyses and R2 for regression analyses. 

 
 
3. Results 

 

3.1 Principal Component Analysis (PCA) of brain measurements 

PCA extracted three components that explained 67% of the variance in the 

hippocampal macro- and microstructural data (Table 2). The first component explained 

28.2% of the data variance and had positive loadings > 0.5 from MPF, R1 and ICSF sensitive 

to myelin and neurite packing. The second component explained an additional 24.5% of the 

variance and had positive loadings > 0.5 from ODI and ICV-adjusted volumes and a 

negative loading from ISOSF and thus captured tissue size and complexity. The third 

component explained 14.3% of variance and had a high loading from kf, that may reflect 

tissue metabolism. 
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Table 2. Rotated Component Matrix of the Principal Component Analysis within the macro- 

and microstructural data from FreeSurfer and ASHS hippocampal subfields (N = 2528)*.  

 PC1  

Myelin/neurite 

packing 

PC2 

Size/Complexity 

PC3 

Metabolism 

ICSF 0.62 -0.05 -0.02 

ISOSF -0.34 -0.71 -0.10 

ODI -0.21 0.85 0.01 

MPF 0.88 0.05 0.003 

R1 0.80 -0.02 0.005 

kf -0.02 -0.02 0.99 

ICV-adjusted 

volume 

-0.05 0.70 -0.08 

* Rotation Method: Varimax with Kaiser normalization. 

 

3.2 Multivariate Analysis of Covariance (MANCOVA) of macro- and microstructural PCs 

Omnibus effects: There were significant main effects for age [F(3,2124) = 13.72, 

pBHadj < 0.001, hp
2 = 0.02], sex [F(3,2124) = 22.24, pBHadj < 0.001, hp

2 = 0.03], WHR 

[F(3,2124) = 6.8, pBHadj < 0.001, hp
2 = 0.01], protocol [F(3,2124) = 128.7, pBHadj < 0.001, hp

2 = 

0.15] and hippocampal subfield [F(9,6378) = 322.2, pBHadj < 0.001, hp
2 = 0.3]. Significant 

interaction effects were present between protocol and hippocampal subfield [F(9,6378) = 

111.29, pBHadj < 0.001, hp
2 = 0.14] and between APOE and WHR [F(3,2124) = 5.51, pBHadj = 

0.005, hp
2 = 0.008]. 

Post hoc effects: Protocol and hippocampal subfield had significant effects on the 

myelin/neurite packing PC1 [Protocol: F(1,2126) = 21.5, pBHadj < 0.001, hp
2 = 0.01; Subfield: 

F(3,2126) = 236.7, pBHadj < 0.001, hp
2 = 0.25] and the size/complexity PC2 [Protocol: 
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F(1,2126) = 381.7, pBHadj < 0.001, hp
2 = 0.15; Subfield: F(3,2126) = 1483.2, pBHadj < 0.001, 

hp
2 = 0.68]. Overall ASHS relative to FreeSurfer segmentations had smaller PC1 values 

[t(2248) = -3.9, pBHadj < 0.001] (Figure 2 A) but larger PC2 values [t(2248) = 11.2, pBHadj < 

0.001] (Figure 2B). With regards to the subfields, subiculum was associated with the largest 

PC1 myelin/neurite packing values (Figure 2C), while CA2/3 had the lowest PC2 

size/complexity values (Figure 2D). No effects were observed for the PC3 Metabolite 

component. 

 

 

Figure 2 Violin plots with overlaid box plots of the difference between; A) the Automatic 

Segmentation of Hippocampal Subfields (ASHS) and the FreeSurfer (version 6) 

segmentation protocols in the myelin/neurite packing principal component (PC); B) in the 

size/complexity PC, C) between the hippocampal subfields cornu Ammonis (CA) 1, CA2/3, 

dentate gyrus (DG) and subiculum in the myelin/neurite packing principal component (PC); 

D) in the size/complexity PC. Boxplots display the median and the interquartile range and 

violin plots the kernel probability density, i.e., the width of the yellow area represents the 

proportion of the data located there. 
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Furthermore, protocol and subfields interacted with each other in both components 

[PC1: F(3,2126) = 37.1, pBHadj < 0.001, hp
2 = 0.05; PC2: F(3,2126) = 385.7, pBHadj < 0.001, 

hp
2 = 0.35] (Figure 3). FreeSurfer compared with ASHS segmentations were associated with 

larger PC1 myelin/neurite packing values, primarily due to larger values in the subiculum 

(Figure 3A). In contrast, ASHS compared with FreeSurfer segmentations showed larger PC2 

size/complexity values (Figure 3B), due to larger estimations in CA1, CA2/3 and DG but not 

subiculum. 

 

 

Figure 3 Violin plots with overlaid box plots displaying the effects of protocol as a function of 

hippocampal subfields on; A) the myelin/neurite packing principal component; B) the 

size/complexity component. Boxplots display the median and the interquartile range and 
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violin plots the kernel probability density. ASHS = Automated Segmentation of Hippocampal 

Subfields, CA = cornu Ammonis, DG = dentate gyrus, SUB = subiculum. 

 

Age had a significant effect on the myelin/neurite packing PC1 [F(1,2126) = 37.3, 

pBHadj < 0.001, hp
2 = 0.02].  More specifically, age was associated with a reversed U-shape in 

PC1 values having a peak in the forties, with youngest and oldest participants showing the 

lowest values (Figure 4A). Sex had an effect on the size/complexity PC2 [F(1,2126) = 56.3, 

pBHadj < 0.001, hp
2 = 0.03], with males showing reduced PC2 values compared with females 

[t(2279) = 5.3, pBHadj < 0.001] (Figure 4B). 

 

 

Figure 4 Violin plots with overlaid box plots displaying the effects of A) age on the 

myelin/neurite packing principal component (PC) and B) of sex on the size/complexity PC. 
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Boxplots display the median and the interquartile range and violin plots the kernel probability 

density. 

 

Figure 5 Violin plots with overlaid box plots displaying the effects of Waist-Hip-Ratio 

(WHR); A) the myelin/neurite packing principal component (PC); B) the size/complexity PC. 

Boxplots display the median and the interquartile range and violin plots the kernel probability 

density.  
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Figure 6 Column figure displaying the mean and standard errors of the 

size/complexity principal component (PC) as a function of Apolipoprotein E (APOE)  

genotype and Waist-Hip-Ratio (WHR). APOE4+ = APOE ε4- carriers, APOE4- = APOE ε4-

non-carriers; WHR+ = individuals with WHR in abdominal overweight/obese range; WHR- = 

individuals with WHR in healthy range. *** pBHadj < 0.001 

 

WHR affected myelin/neurite packing and size/complexity components [PC1: 

F(1,2126) = 11.6, pBHadj = 0.002, hp
2 = 0.005; PC2: F(1,2126) = 5.5, pBHadj = 0.036, hp

2 = 

0.003] as centrally obese individuals relative to those with a normal WHR had lower values 

in both components [PC1: t(2231) = 4.14, pBHadj < 0.001; PC2: t(2231) = 4.15, pBHadj < 0.001] 

(Figure 5). Moreover, WHR interacted with APOE on size/complexity [F(1,2126) = 15.2, 

pBHadj < 0.001, hp
2 = 0.007] (Figure 6). Whilst APOE ε4- individuals exhibited obesity-related 

size/complexity reductions [t(1341) = 4.14, pBHadj < 0.001], this was not the case for APOE 

ε4+ individuals [t(880) = 1.6, p= 0.1] (Figure 6).  
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3.3 Exploring the pattern of age and risk effects across hippocampal subfields 

To explore the patterns of age and risk effects across the four hippocampal subfields 

CA1, CA2/3, DG, and subiculum, separate ANCOVAs were carried out on the PC data for 

each subfield concatenated across hemisphere and protocol.  

Significant age effects (controlled for sex and NART-R IQ) on the myelin/neurite 

packing PC1 were observed for CA1 [F(4,564) = 12.9, pBHadj < 0.001, hp
2 = 0.08], for CA2/3 

[F(4,567) = 5.7, pBHadj < 0.001, hp
2 = 0.04], for DG [F(4,556) = 7.4, pBHadj < 0.001, hp

2 = 0.05] 

and subiculum [F(4,568) = 11.7, pBHadj < 0.001, hp
2 = 0.08]. 

Trends for WHR effects (controlled for age, sex and NART-R IQ) on the 

size/complexity PC2 were present in CA1 (pBHadj = 0.06), CA2/3 (pBHadj = 0.06) and DG (pBHadj 

= 0.09) but not for the subiculum (p = 0.6). Trends for interaction effects between APOE and 

WHR were present for CA1 (p = 0.06) and DG (p = 0.06) but not for CA2/3 (p = 0.32) or 

subiculum (p = 0.6). 

 

3.4 PCA of the cognitive data  

Four principal components were extracted that explained together 44% of the 

variance in the cognitive data (Table 3). The first PC explained 15.2% of the variance and 

had high loadings > 0.5 from all RAVLT measures and hence reflected verbal recall 

performance. The second PC explained 13.5% of the variance with loadings from first move 

latencies in the virtual spatial navigation task. The third PC explained an additional 9.5% of 

the variance with loadings from spatial navigation path length. The fourth PC explained 5.8% 

of data variance and had loadings from immediate and delayed recall of the Rey figure, 

hence reflecting visual recall abilities. 
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Table 3. Rotated component matrix of the principal component analysis of the cognitive 

performance a 

Cognitive Tests Components 

Verbal 
Memory 

Spatial 
Navigation 
First Move  

Spatial 
Navigation 

Path Length 

Visual 
Memory 

RAVLT List A 1st IR 0.78 0.01 -0.02 0.06 
RAVLT List A 2nd IR 0.85 0.02 -0.03 0.01 
RAVLT List A 3rd IR 0.84 0.09 -0.01 -0.03 
RAVLT List A 4th IR 0.81 0.02 -0.05 -0.17 
RAVLT List A 5th IR 0.75 0.03 -0.01 -0.08 
RAVLT List B 1st IR 0.47 -0.25 -0.06 0.06 
RAVLT List A 6th RaD 0.81 -0.02 0.07 0.13 
RAVLT List A DR 0.81 0.01 0.02 0.14 
Four Mountains Test 0.23 -0.10 -0.23 0.50 
Rey Copy 0.13 -0.13 0.06 0.43 
Rey Figure IR -0.02 -0.09 -0.02 0.80 
Rey Figure DR 0.02 -0.03 -0.04 0.85 
Digit Span 0.13 -0.27 -0.09 0.001 
Spatial Span -0.14 -0.06 -0.23 0.30 
Double Trouble -0.01 -0.16 -0.21 0.19 
Tree Task 0.07 -0.04 -0.09 -0.21 
Odd one out -0.07 -0.16 -0.02 -0.03 
Paired Associate Learning 0.09 -0.11 -0.25 -0.20 
Self-ordered search -0.28 0.02 --0.11 -0.07 
Grammatical Reasoning 0.01 -0.29 -0.02 0.06 
Choice Reaction Time -0.01 0.41 0.15 -0.34 
Spatial Navigation:      
FM Block 2      0.35 0.75 -0.07 -0.03 
FM Block 3 0.01 0.78 -0.15 0.03 
FM Block 4 -0.05 0.76 -0.22 -0.02 
FM Block 5 0.01 0.67 -0.40 0.01 
FM Block 6 -0.2 0.74 0.03 -0.03 
TL Block 2 -0.04 0.63 0.44 -0.06 
TL Block 3 0.18 0.35 0.32 -0.22 
TL Block 4 0.12 0.41 0.45 -0.25 
TL Block 5 -0.23 0.43 0.57 -0.16 
TL Block 6 -0.11 0.66 0.09 -0.30 
PL Block 2 -0.02 -0.001 0.68 0.08 
PL Block 3 0.22 -0.22 0.58 -0.02 
PL Block 4 0.15 -0.14 0.71 -0.09 
PL Block 5 -0.16 -0.08 0.80 -0.03 
PL Block 6 -0.16 -0.06 0.09 -0.45 
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Loadings > 0.5 are highlighted in bold. Abbreviations: DR = delayed recall, IR = immediate 

recall, RaD = recall after distraction, RAVLT = Rey Auditory Verbal Learning Test. 

a Rotation method: Varimax with Kaiser normalization. 

 

3.5 MANCOVA of cognitive PCs 

There were significant omnibus effects of age [F(4,99) = 7.2, pBHadj < 0.001, hp
2 = 

0.23] and sex [F(4,99) = 22.24, pBHadj =0.02, hp
2 = 0.14]. Age affected first move latencies in 

the spatial navigation task [F(1,102) = 19.6, pBHadj < 0.001, hp
2 = 0.16] such that latencies 

increased with age (r = 0.38, p < 0.001). Sex had an effect on verbal recall performance 

[F(1,102) = 10.6, pBHadj = 0.008, hp
2 = 0.16] with women performing better in the RAVLT than 

men. There were no effects of risk. 

 

3.6 Regression analysis of brain-cognition relationships 

Table 4 summarizes the results of the linear hierarchical regression analyses. As age 

and sex had significant effects on the cognitive components, they were first entered as 

independent variables prior to testing for the effects of hippocampal subfield macro- and 

microstructure. For the PC4 Visual Recall, 16% of the data were explained by a final model 

that included contributions from the CA fields, i.e., CA2/3 ICSF, CA1 volume and CA1 

ISOSF. In addition, 17% of the variance in the PC2 Spatial Navigation First Move Latencies 

was explained by age and sex. The regression models for the PC1 and PC3 were not 

significant.   

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 16, 2021. ; https://doi.org/10.1101/2021.11.12.468385doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Table 4. Results of hierarchical stepwise regression analyses testing first for the effects of 

age, sex, verbal intelligence and secondly for the effects of macro- and microstructural 

measurements from CA1, CA2/3, Dentate Gyrus (DG) and subiculum on cognitive 

components*  

Cognitive component R2 F-value  
(pBHadj) 

 

Final Model predictors  
(b, t-value, pBHadj) 

PC1 Verbal Recall 0.02 1.0 ns - 

PC2 Spatial Navigation 

First Move Latencies 

0.17 8.1 (0.001) Age (0.35, 3.4, 0.005) 

Sex (0.25, 2.4, 0.025) 

 

PC3 Spatial Navigation 

Path Length 

0.02 0.9 ns - 

PC4 Visual Recall 0.16 4.1 (0.02) CA1 ISOSF  

(0.3, 2.4, 0.04) 

CA1 volume  

(0.23, 2.03, 0.025) 

CA2/3 ICSF 

(0.3, 2.8, 0.015) 
*Accounting for age, sex, NART-R IQ, APOE, FH and WHR. ASHS = Automated 

Segmentation of Hippocampal Subfields, CA = cornu Ammonis, DG = dentate gyrus, PC = 

principal component, FS = FreeSurfer, pBHadj = Benjamini-Hochberg adjusted p-value 

significant at 5% False Discovery Rate, SUB = subiculum 

 

4. Discussion  

Dissociating the effects of healthy aging on hippocampal subfields from those related to 

genetic and lifestyle risk of dementia could be key to effectively targeting interventions for 

older-age memory impairments. Thus, the primary objective of the present study was to 

investigate age and age-independent effects of three major risk factors, i.e., carriage of the 

APOE ε4 genotype, a positive FH of dementia, and central obesity, on the macro- and 

microstructure of the hippocampal formation in a sample of 158 cognitively healthy adults. 
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We characterized properties of the hippocampal formation with subfield volumes based 

on T1 and high-resolution T2-weighted images as well as with microstructural measurements 

from NODDI and qMT imaging to gain complementary information about apparent myelin, 

neurite packing, free water, and metabolism. Accounting for overlapping information 

between the various MRI measurements, PCA was employed to reduce the data 

dimensionality to three principal components that reflected myelin/neurite packing, 

size/complexity, and metabolic gray matter properties. These components were then 

investigated across the main subfields of the hippocampal formation, i.e., CA1, CA2/3, DG, 

and subiculum, which were shown to be particularly vulnerable to the impact of aging and 

disease (de Flores et al., 2015b). Subfields were segmented using two widely employed and 

freely available, automated segmentation protocols, i.e., ASHS and FreeSurfer (version 6). 

This allowed us to assess any potential interaction effects between the type of protocol and 

risk factors on the analysis of hippocampal subfield properties. 

While type of labelling protocol and hippocampal subfields were associated with absolute 

differences in component measures, they did not interact with the risk factors, suggesting 

that risk effects did not significantly differ between ASHS and FreeSurfer segmentations. 

Overall ASHS segmentations resulted in larger size/complexity but lower myelin/neurite 

packing estimates (Figure 2). ASHS segmentations of CA1, CA2/3 and DG were larger than 

those of FreeSurfer while subiculum labels were larger for FreeSurfer than ASHS (Figure 3). 

Myelin/neurite packing signals were largest in the subiculum for both protocols but 

particularly so for FreeSurfer (Figure 3). Both ASHS and FreeSurfer CA2/3 labels were the 

smallest subfields while CA1 and DG were comparable in size/complexity. The subiculum 

was smaller than CA1 and CA2/3 for ASHS but larger for FreeSurfer.  

These component differences were caused by disagreements in the anatomical labels 

between the two segmentation protocols that are known to be most pronounced at the 

CA1/subiculum boundary and within the anterior portion of the hippocampal formation 

(Yushkevich et al., 2015a). In addition, both protocols differed in the region of the 

hippocampal formation that was labelled and the number of subfield segmentations. While 
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FreeSurfer labels 12 regions (CA1, CA2/3, CA4, subiculum, presubiculum, parasubiculum, 

molecular layer of the subiculum and CA fields, granule cell layer of the dentate gyrus, 

fimbria, hippocampus-amygdala transition area, hippocampal tail, and fissure) (Iglesias et 

al., 2015), ASHS segments ten regions (CA1, CA2, CA3, DG, subiculum, entorhinal cortex, 

Brodmann area 35, Brodmann area 36, collateral sulcus and miscellaneous regions) 

(Yushkevich et al., 2015b). As many of these subfields were too small to extract meaningful 

lower resolution microstructural information, we focused on the analysis of the four main 

subfields of the hippocampal formation that were labelled by both protocols (CA1, CA2/3, 

DG and subiculum). 

It should also be noted that the final ASHS segmentation outputs were in high resolution 

T2-weighted space while those for FreeSurfer were in T1-weighted space (Figure 1) 

suggesting differences in the use of multi-spectral information between the pipelines. A 

recent study found significant variations in FreeSurfer volume estimations of hippocampal 

subfields depending on the input images (T1 and/or T2) (Seiger et al., 2021). It is therefore 

likely that differences in the use of standard T1 and high-resolution T2-based information may 

have contributed to the discrepancies observed between the two protocols. Importantly 

though for our primary research question, despite these significant differences between the 

ASHS and FreeSurfer labels, there were no interaction effects between the type of protocol 

and any of the three risk factors, suggesting that a comparable risk pattern was observed 

across both protocols.  

With regards to risk factors, we observed that central obesity as measured with the WHR 

was associated with reductions in the myelin/neurite packing and the size/complexity but not 

the metabolic component (Figure 5). These findings are consistent with accumulating 

evidence that obesity is associated with adverse effects on the hippocampus and memory 

functions (Anan et al., 2010; Dekkers et al., 2019; Khan, et al., 2015; Mueller et al., 2012; 

Spencer et al., 2017; Stranahan, 2015; Willette and Kapogiannis, 2015). For instance, a 

recent analysis of data from 12,000 participants (45-76 years of age) of the UK Biobank 

study, reported that total body fat was related to smaller subcortical gray matter volumes 
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including the hippocampus in men (Dekkers et al., 2019). This study also reported obesity-

related differences in whole brain white matter microstructure measured with fractional 

anisotropy and mean diffusivity. Similarly, previous analyses of CARDS data found WHR to 

be positively correlated with hippocampal atrophy [as estimated with the free water signal 

(ISOSF)] and negatively with fornix apparent myelin MPF and kf  (Metzler-Baddeley et al., 

2019a). In this study, WHR was a close estimate of abdominal visceral but not 

subcutaneous fat fractions while Body Mass Index (BMI) estimated subcutaneous but not 

visceral fat (Metzler-Baddeley et al., 2019a). As BMI had no effects on brain microstructure, 

these findings suggested that the correlations between WHR and hippocampal and fornix 

microstructure were driven by excessive visceral rather than body fat per se, consistent with 

accumulating evidence for visceral fat-related adverse effects on the hippocampus, brain 

white matter, and mortality (Anan et al., 2010; Koster et al., 2015; Koster and Schaap, 2015; 

Koster et al., 2010; Lampe et al., 2019). Comparable to Dekkers et al. (2019), men were 

more centrally obese and had higher visceral fat fractions and higher hippocampal ISOSF 

(Metzler-Baddeley et al., 2019a).  

Central obesity, notably excessive visceral fat, are associated with multiple metabolic 

alterations affecting blood cholesterol, glucose, and insulin levels, that can lead to cardio- 

and cerebrovascular disease and Type 2 diabetes (Dommermuth and Ewing, 2018; Whitmer 

et al., 2007). Central obesity at midlife may also be accompanied with systemic, low-grade 

inflammation (Cox et al., 2015; Guillemot-Legris and Muccioli, 2017). Diet-induced obesity in 

animal studies has been shown to trigger inflammation in the hippocampus, which in turn 

impaired synaptic functioning and spatial memory (Hao et al., 2016). In humans, individuals 

with a genetic polymorphism associated with pro-inflammatory state and AD risk had smaller 

CA1-2, CA3-DG and subiculum than healthy controls (Raz et al., 2015). All of these obesity-

related metabolic changes in lipid, glucose and immune responses are thought to contribute 

to the risk of developing dementia in older age (Businaro et al., 2018; Profenno et al., 2010; 

Ricci et al., 2017).  
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Furthermore, it is also increasingly recognized that obesity may interact with genetic risk 

factors, notably APOE ε4 (Jones and Rebeck, 2018; Mole et al., 2020; Zade et al., 2013). 

Indeed, here we observed interaction effects between APOE and WHR on the 

size/complexity of the hippocampal formation. While all obese individuals showed reduced 

size/complexity, this effect was only significant for APOE ε4 non-carriers (p < 0.001) but not 

for APOE ε4 carriers (p = 0.1) (Figure 6). As can be seen in Figure 6, APOE ε4 carriers did 

not show a significant obesity effect because size/complexity was attenuated in normal-

weighted APOE ε4 carriers. Thus central obesity appeared to be related to atrophy in the 

hippocampal formation regardless of an individual’s APOE or FH status (as no effects of FH 

were present). However, APOE ε4 carriage alone appeared to be associated with adverse 

effects on the hippocampus that may have masked any metabolic and vascular benefits of a 

healthy WHR. Or expressed differently, keeping a healthy weight may not be sufficient to 

compensate for APOE ε4-driven hippocampal atrophy. These risk effects were present for 

data collapsed across all hippocampal subfields. There was no evidence for any subfield 

specific vulnerability to the impact of obesity and APOE. However, it should be noted that we 

observed trends for CA1, CA2/3 and DG but not the subiculum. Future larger studies are 

required to clarify whether these regions are particularly susceptible to obesity and APOE ε4 

related tissue changes. 

A previous analysis of data from the Framingham Offspring cohort also highlighted 

complex synergistic effects between APOE and obesity (Zade et al., 2013). They found 

several APOE-related modifications of correlations between individual differences in WHR 

on one hand and brain structure and cognition on the other. For instance, APOE ε4 carriers 

showed stronger negative relationships between WHR and executive and memory functions 

as well as larger correlations between WHR and white matter hyperintensities. Interestingly, 

they also reported a stronger correlation between WHR and frontal brain volume for APOE 

ε4 non-carriers similar to our observations here.  

In addition, it is likely that obesity effects will be modulated by other polygenic risk factors 

than APOE ε4 (Woo and Reifman, 2018). While the CARDS sample was too small to 
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quantify AD and/or obesity-related polygenic risk hazards (Escott-Price et al., 2014; Escott-

Price et al., 2015), we included family history of dementia as a variable that captures 

environmental and genetic risk factors beyond APOE ε4. In the present analysis of 

hippocampal gray matter microstructure we did not find any effect of FH, but previously we 

observed widespread interaction effects between APOE, FH, and WHR on white matter 

microstructure, that were most pronounced in the right parahippocampal cingulum (Mole et 

al., 2020).  More specifically, APOE ε4 carriers with a positive FH, showed obesity-related 

reductions in apparent myelin MPF while no effects were observed for individuals without a 

FH. These risk-effects on apparent myelin were moderated by hypertension and 

inflammation-related blood markers (Mole et al., 2020). 

The precise nature of these complex synergistic effects between obesity and APOE ε4 

remain elusive and require further investigation. A recent animal study (Jones et al., 2021) 

points to inflammation and neuronal plasticity mechanisms underpinning interaction effects 

between obesity and APOE genotype. In this study, a high-fat diet increased gliosis and 

immediate-early gene expression only in APOE ε3 but not APOE ε4 knock-in mice. This 

suggested early dysregulation of adaptive inflammatory mechanisms in APOE ε4 mice that 

may make the brain more vulnerable to insults and damage in the long run. In addition, 

APOE ε4 is also known to lead to changes in glucose, insulin, and lipid metabolism and 

altered beta-amyloid production (Jones and Rebeck, 2018; Jones et al., 2019). Together, 

these findings suggest that APOE ε4 and obesity lead to metabolic alterations, including 

inflammatory processes, and may adversely interact with other and with other genetic 

factors on brain structure and function. We propose that interaction effects between APOE 

ε4 and obesity on the hippocampal formation may increase that region’s vulnerability to 

subsequent neurodegeneration.  

The effects of risk on the hippocampal formation were observed while accounting for age 

and sex and interaction effects between WHR and APOE were only present for the 

size/complexity component. In contrast, aging was associated with a non-linear inverted U-

shaped curve of the myelin/neurite packing component akin to the trajectory of white matter 
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microstructure across the lifespan in humans and rhesus monkeys (Bartzokis et al., 2010; 

Kubicki et al., 2019; Slater et al., 2019; Yeatman et al., 2014). Myelin/neurite packing 

increased between the 30s and 40s, when it peaked, remained relatively stable in the 50s 

and 60s and declined in the 70s (Figure 4A). Age effects were present in all four subfields of 

the hippocampal formation, i.e., CA1, CA2/3, DG, and subiculum. We propose that this 

observed age trajectory in the myelin/neurite packing component most likely reflects the 

maturation of white matter pathways within the hippocampal formation, such as the perforant 

path, mossy fiber, and Schaffer collateral pathways (Zeineh et al., 2017). Indeed, age-

related differences in the myelin basic protein (MBP) expression were found in the CA1, 

CA2/3 and DG regions of gerbils such that white matter fibers of the perforant pathway, the 

mossy fibers and Schaffer collaterals were reduced in older relative to younger gerbils (Ahn 

et al., 2017)  Our findings accord with a study (Douaud et al., 2014) that employed a data-

driven analysis of gray matter structural variation and identified a brain network comprising 

prefrontal, intraparietal, posterior cingulate, and medial temporal lobe regions whose lifespan 

pattern mirrored brain development and age-related degeneration. The hippocampus forms 

part of this network which matures during adolescence and young adulthood into midlife and 

shows heightened vulnerability to accelerated neurodegeneration in older age (Douaud et al. 

2014). As we did not observe any age-related differences in the size/complexity and 

metabolic principal components, we propose that hippocampal changes across midlife and 

early older age may be primarily driven by changes in white matter myelin and neurite 

packing rather than a loss of neurons and synapses. 

Finally, we tested for the effects of risk factors on cognitive performance and explored 

the relationship between cognitive performance and hippocampal subfield macro and 

microstructure. The dimensionality of the cognitive data was reduced to four components 

reflecting verbal and spatial episodic memory as well as spatial navigation first move 

latencies and path length. Macro- and microstructural measurements were average over 

protocol and hemisphere for each subfield. We did not observe any risk effects on cognition. 

This may suggest that risk-related macro- and microstructural tissue changes in the 
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hippocampal formation precede any cognitive impairment and/or were too subtle to induce 

any functional impairments in this sample of cognitively healthy adults.  

In contrast, age was associated with larger latencies in the spatial navigation task due to 

older people taking longer to plan and initiate their first move in the virtual water maze. In 

addition, females performed better in the verbal recall test than males. Finally, we observed 

significant contributions from CA1 volume and free water content (ISOF) and CA2/3 neurite 

density (ICSF) to the variance in visual recall component. That meant that individuals with 

larger volume and neurite density in the CA fields were performing better at visual recall, 

which required the mental reconstruction of a complex spatial figure arrangement. Thus, 

although risk factors had no apparent impact on cognition it may be possible that their 

predispose an individual for future episodic memory deficits. 

In summary, we provide novel evidence for dissociations between age and age-

independent risk effects on hippocampal subfield macro- and microstructure. Non-linear age 

effects in myelin/neurite packing were observed in all subfields of the hippocampal 

formation. Central obesity was associated with reductions in myelin/neurite packing and 

size/complexity across all subfields, with APOE genotype modifying the effects of obesity on 

size/complexity. Age and sex were significantly related to performance differences in spatial 

navigation and recall but no effects of risk factors on cognition were present. Individual 

differences in CA1 and CA2/3 macro- and microstructure predicted performance in visual 

recall. It remains to be determined if the observed risk-related hippocampal macro- and 

microstructural differences may precede any future cognitive decline.  
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