
1

1 The genetic diversity of Ethiopian barley genotypes in 

2 relation to their geographical origin

3 Surafel Shibru Teklemariam1; Kefyalew Negisho Bayissa2; Andrea Matros3, Klaus 

4 Pillen4; Frank Ordon3; Gwendolin Wehner3*

5

6 1 Ethiopian Institute of Agricultural Research (EIAR), Melkassa Agricultural Research 

7 Center, Melkassa, Ethiopia;

8 2 Ethiopian Institute of Agricultural Research (EIAR), National Agricultural Biotechnology 

9 Research Center, Holetta, Ethiopia;

10 3 Julius Kühn Institute (JKI), Federal Research Centre on Cultivated Plants, Institute for 

11 Resistance Research and Stress Tolerance, Quedlinburg, Germany

12 4 Martin Luther University, Institute of Agricultural and Nutritional Sciences, Halle 

13 (Saale), Germany;

14

15

16 *Corresponding author: gwendolin.wehner@julius-kuehn.de 

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.10.468099doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468099
http://creativecommons.org/licenses/by/4.0/


2

18 Abstract

19 Ethiopia is recognized as a center of diversity for barley, and its landraces are known for 

20 the distinct genetic features compared to other barley collections. The genetic diversity of 

21 Ethiopian barley likely results from the highly diverse topography, altitude, climate 

22 conditions, soil types, and farming systems. To get detailed information on the genetic 

23 diversity a panel of 260 accessions, comprising 239 landraces and 21 barley breeding 

24 lines, obtained from the Ethiopian biodiversity institute (EBI) and the national barley 

25 improvement program, respectively were studied for their genetic diversity using the 50k 

26 iSelect single nucleotide polymorphism (SNP) array. A total of 983 highly informative SNP 

27 markers were used for structure and diversity analysis. Three genetically distinct clusters 

28 were obtained from the structure analysis comprising 80, 71, and 109 accessions, 

29 respectively. Analysis of molecular variance (AMOVA) revealed the presence of higher 

30 genetic variation (89%) within the clusters than between the clusters (11%), with 

31 moderate genetic differentiation (PhiPT=0.11) and adequate gene flow (Nm=2.02). The 

32 Mantel test revealed that the genetic distance between accessions is poorly associated 

33 with their geographical distance. Despite the observed weak correlation between 

34 geographic distance and genetic differentiation, for some regions like Gonder, Jimma, 

35 Gamo-Gofa, Shewa, and Welo, more than 50% of the landraces derived from these 

36 regions are assigned to one of the three clusters. 

37
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40

41 Introduction

42 Barley (Hordeum vulgare L.) ranks fifth in the acreage and production of cereals after tef, 

43 maize, wheat, and sorghum in Ethiopia. It accounts for 5.63% of the total cereal 

44 production (811,782.08 hectares (ha)) with a productivity of 2.18 ton/ha in 2018/19 [1]. It 

45 is a widely adapted crop, cultivated from drought prone lowlands of 1,500 meters above 

46 sea level to highlands of Ethiopia with an altitude of 3,400 meters above sea level with 

47 adequate moisture [2]. Most of the barley acreage is located in the altituted range of 2,400 

48 to 3,400 meter above sea level in the northern and central part of the country [3]. In 

49 Ethiopia, barley is an important cereal crop grown by smallholder farmers for subsistence 

50 with limited capacity for modern agricultural practices, and in areas where soil fertility, 

51 drainage conditions, and topography are not suitable to produce other crops [4]. It is 

52 cultivated in two seasons; ‘meher’, which is the major rainy season (June to October) in 

53 which diverse genotypes are grown, and ‘belg’ with less amount of rain (late February to 

54 early July) in which most early maturing varieties are grown [5]. The total amount of barley 

55 production in ‘meher’ is by far exceeding the one in ‘belg’, which covered 84.5% of the 

56 total area of production and 93.0% of the total yearly barley harvest in 2013/14 [6]. 

57 Ethiopia is recognized as a center of diversity for barley, as it is cultivated in a wide range 

58 of agro-ecology zones for centuries, and its landraces have exhibited distinct genetic 

59 diversity from the rest of the world’s barley collections [7-9]. The presence of diversified 

60 and distinct genetic features have been explained by geographical isolation of the country 

61 from other barley growing regions for long periods together with the occurrence of diverse 

62 soil types, climate conditions, elevation, and landscape, which affect the type of farming 
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63 system practices [10, 11]. One study indicated that Ethiopian barley population structure 

64 depends on the farming system, elevation, and barley row types [12]. Additionally, social 

65 factors like a preference of genotypes suited for different use also contributed significantly 

66 to the diversification [13]. Therefore, it was suggested that the diversity in Ethiopian barley 

67 landraces came due to a combination of long period accumulation of distant mutations, 

68 gene recombination, hybridization, natural selection, and human preference in a highly 

69 diversified agro-ecological environment [14]. 

70 The genetic resources of Ethiopian landraces are still rich and well maintained, as a report 

71 indicated that 95% of the Ethiopian smallholder farmers use landraces as the major seed 

72 source [15, 16]. Although barley is an inbreeding species with less than 5% of outcrossing, 

73 an increased rate of outcrossing was reported in Ethiopia, which is probably related to 

74 abiotic stress or variable environmental conditions [17]. Barley landraces at hand of 

75 farmers are genetically highly variable [18, 19], as farmers mainly focus to maintain 

76 morphologically uniform seeds than genetically uniform seeds, thus, sampling from 

77 smaller plots of farmers’ land may result in a collection of highly genetically diversified 

78 seeds [3].

79 Traditionally, farmers classified barley landraces based on  kernel type as hulled, hull-

80 less, and partially hulled barley [3]. Additionally, participatory research on durum wheat 

81 landraces revealed that farmers also considered yield, quality related to end-use 

82 products, and tolerance to different abiotic and biotic stresses like drought and diseases 

83 for the classification and selection of landraces [20]. Ethiopian barley landraces are 

84 particularly diverse in morphological appearance [21, 22] and bio-chemical composition, 
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85 e.g. different hordein polypeptide patterns [23, 24] as well as anthocyanin coloration on 

86 seed coats, leaf sheath and stems [25].

87 The genetic structure of a population is influenced by variation in geographical collection 

88 distance, presence of geographical barriers like wetlands, mountains and gorges, as well 

89 as by the compatibility of genotypes to cross to each other. Besides this, the genetic 

90 structure is also due to the presence of barriers on the human local population over a long 

91 period of time [26].

92 Application of molecular tools improved the efficiency and precision of analysis of genetic 

93 relatedness in different crop species, as they helped to decipher whether the 

94 morphological, chemical, traditional and geographical classifications are in consistence 

95 to molecular structural analysis [27]. Different kinds of markers, i.e. AFLPs (amplified 

96 fragment length polymorphism), SSRs (simple sequence repeat), and SNPs (single 

97 nucleotide polymorphism) were used for genetic analysis of different cultivars, breeding 

98 lines and related species of barley [28-33]. Currently, SNP markers are commonly used 

99 to study genetic variation, as they are more abundant than other markers [34, 35]. The 

100 development of a 50k iSelect SNP array by [36] further enhanced the genetic exploration 

101 with accurate physical positions of the markers and detailed gene annotation.

102 The presence of genetic divergence between populations can be studied using Nei’s 

103 genetic distance [37]. Genetic abundance or richness within a population can be explored 

104 using the Shannon index [38, 39], whereas the variability within a population can be 

105 studied using heterozygosity indices [40]. The fixation index (FST) is widely used to 

106 investigate the genetic distance between populations [41, 42]. Using FST the gene flow 

107 between genetically distinct populations can be studied, while the gene flow between 
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108 genotypes from different geographic locations can be studied using the Mantel test [43]. 

109 The neighbor-joining tree method is used to graphically demonstrate the distance 

110 between different genotypes based on their genetic background [44].

111 Several studies on the genetic distance of Ethiopian landraces using different molecular 

112 markers were conducted. Distinctive genetic features of Ethiopian landraces compared 

113 to other barley collections were reported, although a minimum genetic distance between 

114 different Ethiopian landraces was detected using RFPLs (restriction fragment length 

115 polymorphism) markers [45]. Another study revealed the presence of different levels of 

116 the allelic richness and genetic diversity  in relation to altitude using seven SSR markers 

117 [19]. [46] also revealed a poor population structure for landraces collected from different 

118 regions of the country using 15 SSR markers. Genetic diversity studies of Ethiopian barley 

119 genotypes in relation to different world barley collections were also conducted using SSR 

120 [47], and AFLP markers [48] and the findings suggested Ethiopia as a second center of 

121 barley domestication.

122 Therefore, the aims of this study were, (i) to investigate the genetic diversity of Ethiopian 

123 barley landraces, and (ii) to analyses the role of the geographic origin, and defined agro-

124 ecological zones in the formation of genetic structure using a highly informative 50k 

125 iSelect SNP array [36]. The outputs of the study will support the strategic collection and 

126 exploitation of existing barley genetic resources, to improve the livelihood of the 

127 subsistence farmers through strategic utilization of genetic resources available on the 

128 hand of smallholder farmers. 

129
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130 Material and methods

131 Plant material

132 A panel of 260 Ethiopian barley accessions was analyzed in this study (S1 Table). The 

133 239 landrace accessions were obtained from the Ethiopian Biodiversity Institute. These 

134 were collected from diverse agro-ecological zones and represent different geographical 

135 regions of Ethiopia. The geographical locations in which the landraces were collected are 

136 shown in Fig 1, which is based on the GPS data of the collection area using the ArcGIS 

137 online web program (https://www.arcgis.com) [49]. Additionally, 21 barley breeding lines 

138 were obtained from the national barley improvement program of the Holetta Agricultural 

139 Research Center (HARC). 

140

141 Fig. 1 Ethiopian barley landrace accessions grouped by their geographical 

142 collection areas. Ethiopian boundary and geo-positions are indicated. Filled circles 

143 represent the 239 Ethiopian landraces collected at sometimes overlapping positions. 

144 Geographical positions are also detailed in S1 Table. The map was constructed using the 

145 online ArcGIS software suite vs. 10.8.1.

146

147 Genotyping 

148 Three seeds from each of the 260 accessions were grown in the greenhouse at day (16h)/ 

149 night (8h) temperatures of 20-22°C/17-19°C as described by [50] in multipot trays filled 

150 with Einheitserde ED73 soil containing 14% N, 16% P2O5 and 18% K2O in kg/m3 (H. 

151 Nitsch & Sohn GmbH & Co. KG, Germany). When plants had grown to the two to three 
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152 leaf stage, leaf samples with an approximate size of 300 mg were taken from a single 

153 plant for genotyping. The genomic DNA was extracted using a modified CTAB 

154 (cetyltrimethylammonium bromide) method [51] and genotyped using the barley Illumina 

155 50k iSelect SNP array [36] at TraitGenetics GmbH, Gatersleben, Germany.

156 An initial set of 40,387 markers was successfully extracted from genotyping. 10,644 SNP 

157 markers were obtained, after removing all monomorphic markers and imputation using 

158 Beagle [52] followed by final filtering using thresholds of 5% missing values, 3% minor 

159 allele frequency, and 12.5% heterozygous SNPs. A total of 983 highly informative 

160 markers were kept, using the software PLINK 1.9 (http://www.cog-

161 genomics.org/plink/1.9/) [53], which uses the markers physical distances as well as pair 

162 wise linkage disequilibrium (LD) between adjacent markers to prune-in SNPs in strong 

163 LD, with unbiased representation along the genome.

164

165 Population Structure 

166 The 983 highly informative SNP markers were used for population structure and genetic 

167 diversity analysis. The population structure was calculated using the Structure software 

168 v.2.3.4 [54]. Computation of Bayesian statistical models was conducted by the Markov 

169 Chain Monte Carlo (MCMC) method based on 50,000 iterations following discard of 

170 50,000 “burn-in” iterations. The web-based Structure Harvester software v0.6.94 

171 (http://taylor0.biology.ucla.edu/structureHarvester/) [55] was used to identify the best 

172 probable number of subpopulation (k-value) according to [56]. From the best k-value, out 

173 of 10 replications the replication with the highest likelihood (mean LnP(K)) value was used 

174 as an inferred population cluster. The estimated membership coefficient of each 
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175 accession was used to assign it to different clusters estimated by STRUCTURE based 

176 on the highest inferred cluster values. Principal coordinate analysis (PCoA) was applied 

177 to plot the population structure using the DARwin 5.0 software [57] based on the SNP 

178 matrix data. 

179

180 Genetic Diversity

181 The 983 highly informative SNP markers were used for genetic diversity analysis. AMOVA 

182 was performed based on the number of genetically distinct clusters obtained from the 

183 structure analysis. Information about genetic variation within and between clusters and 

184 gene flow (Nm) based on PhiPT (analogue of fixation index (FST)) were obtained from the 

185 analysis using the GenAlEX 6.5 software plugin for Excel [58]. The neighbor-joining tree, 

186 which is constructed based on the genetic distance of accessions [44], was created using 

187 the DARwin 5.0 software [57] to graphically demonstrate the presence of genetic distance 

188 between the subpopulations. 

189 The genetic variance within and between clusters and gene flow (Nm) was calculated 

190 using the following formulas: 

191 𝑃ℎ𝑖𝑃𝑇 =  
𝐴𝑃

(𝑊𝑃 +  𝐴𝑃)

192 Where PhiPT is the genetic differentiation within and between clusters; AP is the 

193 estimated variance among clusters, and WP is the estimated variance within clusters.

194 𝑁𝑚 =
[( 1

𝑃ℎ𝑖𝑃𝑇) ― 1]

4
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195 Where Nm is gene flow, and PhiPT is the genetic differentiation within and between 

196 clusters.

197 Genetic diversity indices i.e. Shannon's information index (I), expected heterozygosity 

198 (He), unbiased expected heterozygosity (uHe), and percentage of polymorphic loci (PPL) 

199 were also calculated using frequency based analysis in the GenAlEX software [58]. 

200 Additionally, the Mantel test, which is used to estimate the gene flow by correlating the 

201 genetic distance with the spatial distance, i.e. GPS data in our case, was performed to 

202 get information on the genetic divergence across the geographical distance using the 

203 GenAlEX software [58].

204

205 Results

206 SNP analyses

207 From 43,461 scorable SNPs markers of the 50k iSelect SNP array [36]; 40,387 (92.9%) 

208 SNPs markers were successfully extracted in this experiment. However, 19,028 (47.1%) 

209 markers were immediately removed as monomorphic markers. From the remaining 

210 21,355 markers, 10,767 SNPs markers (26.7% of the extracted set of markers) were 

211 removed by filtering for 3% minor allele frequency. Out of the 10,644 SNP markers, which 

212 were obtained after filtering, the highest number of markers was located on chromosome 

213 2H (1857), and the least markers on chromosome 4H (1174). Similarly, for the 983 highly 

214 informative markers the highest number of markers was obtained for chromosome 2H 

215 (185), and the least for chromosome 4H (89) (Fig 2). The distribution of the markers 

216 revealed that most markers in the centromeric region were pruned-out, and the majority 
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217 of the highly informative markers is located in the telomeric regions of all seven 

218 chromosomes (S1 Fig). 

219

220 Fig. 2 Distribution of filtered (10,644) and highly informative (983) SNPs across the 

221 barley chromosomes.

222

223 Population structure analysis

224 Analysis of the population structure based on 983 SNP markers identified the best 

225 probable number of the subpopulation based on k-value at K=3, which therefore has been 

226 selected as an optimal number of inferred genetically defined clusters (Fig 3 a and b). 

227 According to the three genetically distinct clusters, cluster 1 consists of 80 accessions 

228 (30.8%), cluster 2 consists of 71 accessions (27.3%) and cluster 3 consists of 109 

229 accessions (41.9%) out of the total of 260 accessions (Table 1). The average membership 

230 coefficient of the geographically defined populations indicated that Welo and Shewa 

231 population can be explained by cluster 1 and 2, respectively; whereas Gonder, Gamo-

232 Gofa, and Jimma population were explained by cluster 3 (Table 2). When each member 

233 of a geographically defined population was re-assigned based on their highest probability 

234 value of the inferred clusters, 56% and 66% of Welo and Shewa accessions were 

235 clustered in genetically distinct cluster 1 and 2, respectively. Similarly, 88%, 86%, and 

236 71% of Gonder, Gamo-Gofa, and Jimma accessions were grouped in the genetically 

237 distinct cluster 3, respectively (Table 1). Furthermore, 75% of the Ambo-Welega 

238 population was also assigned to cluster 3, but the low number of accessions has to be 
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239 taken into account. Principal coordinate analysis (PCoA) indicated that PCoA1 and 

240 PCoA2 explained 5.87% and 4.88% of the variation, respectively. Despite these values 

241 being rather low, the high genetic variation within the set of accessions is reflected by the 

242 inferred three clusters (Fig 3c).

243

244 Table 1 Distribution of the Ethiopian barley accessions grouped by their geographical 

245 origin and based on the three genetically distinct clusters.

Percentage of accessions in genetically distinct clusters
Cluster 1 Cluster 2 Cluster 3

Geographically 
defined 
subpopulations

Total 
accessions

Number % Number % Number %
Gonder 8 1 12.5 0 0.0 7 87.5

Arsi-Bale 19 4 21.1 4 21.1 11 57.9

Shewa 38 6 15.8 25 65.8 7 18.4

Ambo-Welega 4 0 0.0 1 25.0 3 75.0

Gojam 28 6 21.4 14 50.0 8 28.6

Welo 59 33 55.9 13 22.0 13 22.0

Gamo-Gofa 28 2 7.1 2 7.1 24 85.7

Jimma 7 1 14.3 1 14.3 5 71.4

Hararghe 48 20 41.7 5 10.4 23 47.9

HARC 21 7 33.3 6 28.6 8 38.1

Total 260 80 30.8 71 27.3 109 41.9

246

247

248

249

250

251
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252 Table 2 Average membership coefficient of Ethiopian geographically defined 

253 subpopulations based on the three genetically distinct clusters.

Average membership coefficient of the subpopulations 
in the three genetically distinct clusters

Geographically 
defined 
subpopulations

Total 
accessions

K1 K2 K3
Gonder 8 0.182 0.210 0.609

Arsi-Bale 19 0.202 0.355 0.444

Shewa 38 0.254 0.564 0.181

Ambo-Welega 4 0.221 0.421 0.359

Gojam 28 0.208 0.475 0.316

Welo 59 0.516 0.272 0.212

Gamo-Gofa 28 0.133 0.261 0.606

Jimma 7 0.145 0.256 0.600

Hararghe 48 0.437 0.161 0.402

HARC 21 0.334 0.376 0.290

Total 260 0.326 0.329 0.344

254

255 Fig. 3 Population structure analysis for the 260 Ethiopian barley accessions. a) bar 

256 plot for estimated population structure of 260 Ethiopian barley accessions based on 

257 inferred three clusters (red = cluster 1, green = cluster 2, and blue = cluster 3); b) Structure 

258 harvester Delta K (ΔK) = 3; c) results of principal coordinate (PCoA) analysis, accessions 

259 were assigned based on their highest probability of inferred clusters; and d) weighted 

260 neighbor-joining tree for the structured subpopulations (red = cluster 1, green = cluster 2, 

261 and blue = cluster 3).

262

263

264
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265 Analysis of molecular variance (AMOVA)

266 AMOVA analysis was conducted based on the three genetically distinct clusters obtained 

267 through the analysis of population structure. The results revealed that variation within a 

268 cluster was accounting for higher variation (89%) than the variation among clusters 

269 (11%). The genetic differentiation was moderate (PhiPT = 0.11) with statistical 

270 significance at p < 0.001. Gene flow (effective migrant (Nm)) for the overall genetically 

271 distinct clusters was 2.02, which is characterized as a moderate rate of gene flow (Table 

272 3).

273

274 Table 3 Analysis of molecular variance (AMOVA) for the Ethiopian barley accessions 

275 for the three genetically distinct clusters; PhiPT and Nm values for the total population 

Source Degree of 
Freedom

Sum of 
square

Mean 
square

Estimated 
variance

Percentage 
of variation

PhiPT Nm

Among 
Populations

2 6,576.5 3,288.2 35.3 11% 0.11** 2.02

Within 
Populations

257 73,143.0 284.6 284.6 89%

Total 259 79719.5 319.9 100%

276 ** p-value < 0.001

277

278 Genetic diversity

279 The study of the genetic diversity indices of the three genetically distinct clusters indicate, 

280 that cluster 3 is more diverse than the other two clusters with values of I=0.47, He=0.31, 

281 uHe=0.31, PPL=99.1%, followed by cluster 2 (I=0.43, He=0.28, uHe=0.28, PPL=95.9%) 
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282 while cluster 1 is the least divers one (I =0.39, He=0.26, uHe=0.26, PPL=88.2%) (Table 

283 4).

284

285 Table 4 Genetic diversity indices for the genetically distinct clusters.

Genetically distinct clusters N I He uHe PPL
1 80 0.39 0.26 0.26 88.2%

2 71 0.43 0.28 0.28 95.9%

3 109 0.47 0.31 0.31 99.1%

286 “N” for number of observations, “I” for Shannon’s information index, “He” for expected heterozygosity, “uHe” 

287 for unbiased heterozygosity, and “PPL” for percentage of polymorphic loci 

288

289 Generally, pairwise gene flow between the three genetically defined clusters is higher 

290 than one, which indicates the presence of adequate gene flow between these. Similarly, 

291 based on the results of pairwise PhiPT value, there is a moderate genetic differentiation 

292 between the subpopulations. The results indicate that the variation between genetically 

293 distinct cluster 1 and 2 is relatively larger (0.13) than between the other populations, 

294 whereas the gene flow between cluster 1 and 3 is higher (2.28) than between the other 

295 clusters (S3 Table). 

296 The Mantel test, which is used to demonstrate the presence of spatial population structure 

297 indicated that the accessions were poorly structured, based on the GPS data of sampling 

298 with an R-squared value of 0.019 (Fig 4).

299

300 Fig. 4 Mantel test for the 239 landraces based on the relationship between the 

301 genetic distance and the geographic distance based on GPS data.
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302

303 Discussion

304 From 43,461 scorable SNPs markers of the 50k iSelect SNP array [36]; the final number 

305 of SNPs markers (10,644) in our study was quite small compared to previous reports of 

306 39,733 SNPs [59]; 33,818 SNPs [60] and 37,242 SNPs [61]. This may be explained by 

307 the under-representation of Ethiopian genotypes during the development of the 50k SNP 

308 array [36].

309 The distribution across the barley genome of the SNPs markers obtained after filtering 

310 was compared with the one of the 50k SNP array [36]. The genome regions containing 

311 the first and the second highest number of SNP markers were on chromosome 5H (8123) 

312 and chromosome 2H (7227) for the 50k SNP array development, whereas in our study 

313 the first and second highest representation were recorded on chromosome 2H (1857) 

314 and chromosome 5H (1837). The two genome regions with the least number of SNP 

315 markers were chromosome 1H (4828) and chromosome 6H (5441) for the 50k SNP array, 

316 while in this study chromosome 4H (1174) and chromosome 1H (1317) were least 

317 represented. Therefore, we considered the distribution of SNP markers along the seven 

318 barley chromosomes as similar with the 50k SNP array. A total of 983 highly informative 

319 markers, located in the telomeric regions of all seven chromosomes (S1 Fig), were kept 

320 for the population structure analyses.

321 According to the average membership coefficient, the predefined Welo and Shewa 

322 subpopulations were classified as genetically distinct in cluster 1 and 2, respectively 

323 (Table 1). By the ratio of accessions assigned in each cluster, accessions from Gonder, 

324 Gamo-Gofa and Jimma, predefined as subpopulations, appeared to be represented by 
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325 cluster 3 (Table 2). Similarly, the average membership coefficient of the Gonder, Gamo-

326 Gofa, and Jimma (Table 1) populations clearly suggested that they are members of 

327 cluster 3. [62] reported that landraces obtained from Shewa, Gonder, and Gojam have 

328 had minimum admixture, whereas landraces obtained from Arsi-Bale, Harerghe, and 

329 Welo were showing the highest ratio of admixture. Accordingly, in our study, landraces 

330 from Gonder, and Shewa were grouped in cluster 1 and 3 respectively; and Arsi-Bale and 

331 Harerghe were not defined by any cluster (Table 2).

332 Estimation of the population structure along the geographical and agro-ecological 

333 arrangement gives an important view on the pattern of population structure. In Ethiopia, 

334 studies conducted on different cereal crops highlighted the presence of higher genetic 

335 variation within geographical locations and altitude ranges for barley [46, 63, 64], durum 

336 wheat [65-67], and sorghum [68]. Similarly, the presence of minimum geographical 

337 structure was observed using the Mantel test in this study (Fig 4). This  may be due to the 

338 fact that accessions from distantly located regions, i.e. Gonder, Jimma and Gamo-Gofa 

339 are grouped in cluster 3. Further analysis of AMOVA based on the agro-ecological zones 

340 of the accessions as a predefined subpopulation provided only 3% variation between 

341 agro-ecologies (S2 Table), although the variation between genetically distinct clusters 

342 was 11% (Table 3). On the contrary, previous genetic diversity studies on Ethiopian barley 

343 landraces suggested that the landraces’ population structure is dependent on the 

344 altitudinal gradient; which is mainly used for the classification of Ethiopian agro-ecologies 

345 [12, 19], but of which a minimum of variation explained was found in the current study (S2 

346 Table). Although [62] reported the presence of weak association of structured populations 

347 of Ethiopian barley landraces with their geographical distance and climate conditions; in 
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348 our study geographic locations slightly contributed to the variation among the structured 

349 populations in contrast to the agro-ecological conditions.

350 An overall estimation of gene flow for the three genetically distinct clusters was 2.02, 

351 which is greater than 1, and thus indicates the presence of gene flow between the 

352 subpopulations [26, 69, 70]. The overall population genetic differentiation (PhiPT) value 

353 is (0.11) indicating the presence of moderate differentiation between the genetically 

354 clustered subpopulations [41]. Similarly, the pairwise PhiPT value between clusters 

355 ranges from 0.10 between cluster 1 and 3 to 0.13 between cluster 1 and 2 (S3 Table). 

356 The presence of gene flow between the different genetically distinct clusters hints to the 

357 exchange of adaptive traits among them [26, 71]. The presence of weak geographical or 

358 agro-ecological structure for Ethiopian barley landraces [46, 63, 64] may be explained by 

359 the exchange of important adaptive genetic traits between different genetically distinct 

360 clusters. The 21 breeding lines used in the study are proportional distributed in the three 

361 clusters (Table 1 and Table 2), which is also an indicator, that the national breeding 

362 program is introducing important adaptive traits from landraces in new varieties. In our 

363 study, an adequate gene flow between different clusters was observed (S3 Table). 

364 Similarly, gene flow > 1 (Nm=2.95), was reported by [63], using Ethiopian barley 

365 landraces collected from different regions. From these results, we concluded that the 

366 presence of an adequate amount of gene flow among different subpopulations contributes 

367 to a wider adaptation of Ethiopian landraces. 

368 From the three genetically distinct clusters, cluster 1 is explained by the Welo predefined 

369 subpopulation. [72] described that around the Welo location barley is an important crop, 

370 and farmers conserve the landraces for different reasons, such as for their suitability to 
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371 use it for short and long rainy seasons (maturity), yield potential, tolerance to water 

372 logging, frost and low soil fertility, social preference (taste and visual appearance), and 

373 storability. Furthermore, barley is also used as a main dish (to prepare injera, and bread) 

374 in this area, and a special dish and beverage (tihlo and korefe), which are exclusively 

375 prepared from barley, are commonly consumed in this area [72]. Thus, another 

376 assumption for the formation of this genetically clustered population may be related to the 

377 landraces quality to prepare staple food as well as special dishes and beverages.

378 Cluster 3 mainly contains landraces from Gamo-Gofa, and the production of barley in 

379 Gamo-Gofa is mainly on highlands with an altitude higher than 2,500 meter above sea 

380 level [73]. Such highland topographies are characterized by having low road access to 

381 connect with nearest commercial cities. As a result the diversity in such areas will be kept 

382 unchanged. Accordingly, studies suggested an increased market access in the 

383 community contributing to an increase in crop diversity [74, 75]. In our study, the presence 

384 of low market access likely contributed to the grouping of 86% of Gamo-Gofa accessions 

385 in cluster 3. Although farmers varieties selection criteria in Gamo-Gofa are similar to other 

386 locations, barley is not served as main dish in the region and usually used to prepare 

387 special dishes and beverage (local beer) during a festive holiday and special occasions 

388 [76]. We therefore assume that the farmers selection criteria for varieties may be based 

389 on the end use of the product, and consequently landraces in cluster 3 might be related 

390 with such quality traits.

391 Shewa is located in the central part of Ethiopia, with best road facilities, and high 

392 consumer demand. Farmers usually produce barley for home consumption and market; 

393 and [77] reported that farmers produce barley as it is adapted very well comparing to 
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394 other cereal crops to the low fertility soil in this region. Barley is used in this region to 

395 prepare local liquor and local beers, which have great demand for market. Additionally 

396 farmers produce suitable landraces to prepare the main dish (injera) [77]. A significant 

397 reduction in the number of farmer’s varieties comparing to the previous time was reported 

398 in Shewa [78] due to socio-economic and environment related reasons. Such genetic 

399 erosion may not just be a recent history in the region, but might also be present in the 

400 previous decades, which is ultimately narrowing the genetic bases of the landraces in this 

401 area. The result obtained from weighted neighbor-joining tree (Fig 3d) and the pairwise 

402 gene flow (Nm) and PhiPT (S3 Table) indicated that cluster 2 derived from slightly 

403 different predecessor families, in comparison to cluster 1 and 3 which are closer related. 

404 Therefore, the remaining landraces around Shewa with a narrow genetic base may be 

405 mostly related to cluster 2 (Fig 3d, Table 2).

406 Cluster 3 is a diverse cluster based on the results of genetic indices (Table 4). 86% of 

407 accessions from Gamo-Gofa are assigned to this cluster and [79] also described that 

408 landraces obtained from Gamo-Gofa region have higher diversity index compared to 

409 other regions. On the contrary, landraces from Gonder, which are also grouped in cluster 

410 3, have been described for having least diversity in that study.

411

412 Conclusions

413 Genetic structure and diversity of 260 Ethiopian barley landraces, comprising 239 

414 accessions from Ethiopian Biodiversity Institute, and 21 barley breeding lines of the 

415 national barley improvement program of the Holetta Agricultural Research Center, were 

416 investigated based on data obtained from the barley 50k iSelect SNP array. The presence 
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417 of higher rates of monomorphic markers with minor allele frequency less than three 

418 seems characteristic for Ethiopian barley accessions compared with other barley 

419 collections from the world. AMOVA revealed the existence of high genetic diversity within 

420 genetically distinct populations in comparison to the genetic diversity between genetically 

421 distinct populations. This may be due to the minimum geographical structure of landraces 

422 and the presence of higher gene flow between accessions originated from distant 

423 geographic locations. The use of barley for different food recipes and beverages may also 

424 play a role in the genetically clustered population structure as [13] described the use of 

425 different barley types for different purposes by the society of different regions. However, 

426 further analysis based on the nutritional quality of each landraces in specific geographical 

427 locations may be required. Our results will support the strategic collection and exploitation 

428 of the existing genetic resources of Ethiopian barley landraces, and will help improving 

429 farm management of subsistence farmers through the dedicated utilization of genetic 

430 resources in the near future.
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698 S1 Figure. Physical map distribution of SNP markers across the seven barley 

699 Chromosomes. A: Filtered 10,644 SNP markers; B: Highly informative 983 SNP 

700 markers.

701 S1 Table. Geographical location and agro-ecological zones of the Ethiopian barley 

702 landrace collection.

703 S2 Table. Molecular variance (AMOVA) for the Ethiopian barley accessions based 

704 on the 14 defined agro-ecological zones; genetic differentiation (PhiPT) and gene 

705 flow (Nm) values of the total population.

706 S3 Table. Pairwise correlation matrix for genetic differentiation (PhiPT) and gene 

707 flow (Nm) values between the three genetically distinct clusters, whereas shaded 

708 cells represent Nm values, unshaded ones represent PhiPT values.
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