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Increased fragmentation caused by habitat loss presents a major
threat to the persistence of animal populations. Whereas the neg-
ative effects of habitat loss on biodiversity are well-known, the ef-
fects of fragmentation per se on population dynamics and ecosys-
tem stability remain less understood. How fragmentation affects pop-
ulations is strongly determined by the rate at which individuals can
move between separated habitat patches within the fragmented land-
scape. Here, we use a computational, spatially explicit predator-prey
model to investigate how the interplay between fragmentation per se
and optimal foraging behavior influences predator-prey interactions
and, ultimately, ecosystem stability. We study cases where prey oc-
cupies isolated habitat patches and let predators disperse between
patches following a Lévy random walk. Our results show that both
the Lévy exponent and the degree of fragmentation strongly deter-
mine coexistence probabilities. Brownian and ballistic predators go
extinct in highly fragmented landscapes and only scale-free preda-
tors can coexist with prey. Furthermore, our results reveal that pre-
dation causes irreversible loss of prey habitat in highly fragmented
landscapes due to the overexploitation of smaller patches. Moreover,
our results show that predator movement can reduce, but not pre-
vent nor minimize, the amount of irreversibly lost habitat. Our results
suggest that incorporating optimal foraging theory into population-
and landscape ecology models is crucial to assess the impact of
fragmentation on biodiversity and ecosystem stability.
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Loss of habitat presents a major threat to global biodi-1

versity (1) and typically leads to fragmented landscapes2

that contain smaller and more isolated inhabitable patches in3

which local extinctions are more likely to occur (2, 3). While4

ecologists agree that habitat destruction, and the subsequent5

increases in habitat fragmentation, negatively affects biodi-6

versity (4), the effects of fragmentation per se on population7

densities and species’ persistence are much less understood8

(5, 6). As it is known that fragmentation per se induces9

changes in demographic rates and drifts in population genetics10

(7), it is critical to assess its effects on population dynamics11

and ecosystem stability.12

Fragmentation per se (hereafter; fragmentation) describes13

changes in the spatial habitat configuration without significant14

habitat loss (8). Theoretical and experimental studies indi-15

cated that fragmentation results in larger species’ extinction16

probabilities, as small patches that can only sustain small17

populations are more sensitive to demographic fluctuations18

(8). In contrast, fragmentation may favor species’ persistence19

by increasing immigration rates, patch connectivity and in-20

creased habitat diversity available within a smaller area (for21

a review, see Ref. 9). However, whether, and how, frag- 22

mentation impacts species’ persistence strongly depends on 23

the spatial configuration of the landscape (10, 11) and the 24

dispersal behavior (i.e., movement between fragments) of in- 25

dividual organisms (12, 13). Despite the interplay between 26

landscape structure and individual movement is key to under- 27

stand population dynamics, research on each of these fields has 28

progressed mostly independent from one another (14, 15). As 29

a result, a general framework to investigate how fragmentation, 30

movement behavior, and demographic rates jointly determine 31

species’ persistence is lacking. 32

On the one hand, studies on individual movement are 33

often grounded in optimal foraging theory (16). These studies 34

investigate foraging behavior on short time scales and most 35

often neglect demographic events and evolutionary processes 36

(but see Ref. 17). Instead, they examine how individual 37

movement behavior defines search times and study correlations 38

between foraging efficiency and resource density (18). Often, 39

movement is modeled using scale-free random searches, known 40

as Lévy walks, in which dispersal lengths are sampled from 41

power laws with varying exponent (19). This particular choice 42

of random walk is based on observations that reported scale- 43

free characteristics in the movement of different species (20–23). 44

In general, Lévy walks optimize foraging in sparse resource 45

landscapes (24–27), including fragmented landscapes (28, 29). 46
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On the other hand, studies on population dynamics con-47

sider longer time scales and often assume simplified individual48

movement (30–33). Few studies have integrated optimal for-49

aging behavior in population-based models (14, 34) and, to50

the best of our knowledge, only Ref. 35 study population dy-51

namics for a system of optimal foragers for different amounts52

of available habitat fragments. However, they only control for53

habitat availability and therefore do not consider the effects of54

complex spatial structures (i.e., fragmentation) that natural55

landscapes posses. Here, we investigate these effects using56

techniques from landscape ecology that allow us to generate57

lattices with precise levels of fragmentation (36, 37).58

To study the interplay between optimal forager movement,59

fragmentation, and demographic rates, we develop a stochastic,60

spatially explicit predator-prey model in such fragmented61

landscapes. Fragmentation restricts prey individuals to inhabit62

spatially separated fragments, whereas predators are assumed63

to display natural (optimized) foraging behavior and disperse64

following a Lévy walk. By varying habitat fragmentation and65

predator movement, we quantitatively examine the effects of66

dispersal on ecosystem stability in fragmented landscapes.67

Stochastic predator-prey model in fragmented land-68

scapes69

We develop a stochastic predator-prey model in a two-70

dimensional landscape with fragmented prey habitat. The71

landscape is represented by a periodic square lattice of which72

a fraction ρ ∈ [0, 1] of the sites provide prey habitat. To in-73

vestigate how predator movement and the spatial distribution74

of prey habitat jointly determine predator-prey population75

dynamics, we fix the fraction of prey habitat ρ and vary the76

statistical properties of patch size. The statistical properties of77

the patch size are determined by the spatial correlations in the78

distribution of prey habitat. In our model, these are controlled79

by the Hurst exponent H ∈ (0, 1). In general, the limit H → 180

defines low habitat fragmentation, whereas H → 0 defines81

highly fragmented landscapes (Fig. 1; see see SI Textfor more82

details).83

We assume that individual prey are sessile, can only occupy84

habitat patches, and cannot survive in the matrix. Each time85

step, they reproduce with probability σ and can potentially86

die up encountering a predator. We assume predators are, in87

contrast, highly motile and perform Lévy walks in which the88

dispersal length, `, follows a discrete power-law distribution89

p(`) ∝ `−α with exponent 1 ≤ α ≤ 3. For α ≥ 3, predator90

movement converges to Brownian motion whereas the limit91

α → 1 recovers ballistic motion. In contrast to Lévy flights92

(which were discussed in Ref. 35), in which relocations are93

instantaneous, Lévy walks instead define displacement with94

fixed velocity. Hence, in our model, individual predators move95

a fixed distance every time step (the unit lattice spacing) and,96

evidently, the duration of each relocation event is proportional97

to the length of the displacement (19). Predator relocations98

can be interrupted by predator death, or by an encounter with99

prey or other predators. When a relocation is interrupted by100

an encounter, a new direction and dispersal length are sampled101

and the predator resumes its movement in the next time step.102

For predator-prey encounters, we consider that when preda-103

tors cross a site occupied by prey, the probability that they in-104

teract Λ̂ decays with the current dispersal length, i.e. Λ̂ = `−1.105

This assumption models intermittent search behavior, which106
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Fig. 1. (A) Fragmented landscapes of prey habitat used in our model implementation
with L = 512 and ρ = 0.2. The degree of fragmentation increases with the Hurst
exponent, H. Black and white regions depict prey habitat and matrix, respectively.
(B) Normalized maximum patch size xmax for different H versus habitat density ρ
(see SI Text). (C) Percolation probability p as a function of ρ (see SI Text). Dotted
vertical line indicates the habitat density ρ = 0.2 below the percolation threshold
(p ≈ 0) used in our experiments.

combines phases of non-reactive long, straight displacements 107

with reactive phases featuring shorter displacements and more 108

frequent turns (38). In each predator-prey encounter event, 109

prey is consumed and, with predator reproduction probability 110

λ, replaced by a new predator. If the event does not result in 111

reproduction, the prey is simply replaced by the focal predator. 112

SI Text contains more details. 113

Results 114

We simulate the predator-prey model on a square lattice of 115

lateral length L = 512, with prey habitat density ρ = 0.2 and 116

different levels of fragmentation 0 < H < 1. We choose ρ 117

considering that fragmentation impacts landscape properties 118

more strongly when habitat is not abundant (e.g., Refs. 1, 39, 119

40, and see SI Text for more details) and that Lévy foraging 120

maximizes prey intake solely if the density of prey habitat is 121

low (e.g., Ref. 24). We define spatially averaged predator and 122

prey densities N and M and initialize our simulations with 123

M0 = N0 = ρ. Predators were distributed randomly on the 124

matrix and prey individuals fully occupied the habitat patches. 125

Results do not depend on the specific initial condition chosen 126

for the simulations. Measurements are taken when the system 127

has converged to a quasi-stationary stable state after T = 104
128

Monte Carlo time steps (Fig. ??). 129

We want to investigate the impact of fragmentation in 130

fragile ecosystems. That is, systems that are already close to a 131

extinction threshold when habitat patches are large (H → 1). 132

Hence, we parameterize demographic rates such that they bring 133

the predator-prey dynamics close to an extinction transition 134

(Ref. 35 and see SI Text) and consider fragmentation, defined 135

by the Hurst exponent H, and predator dispersal, defined 136

by the Lévy exponent α, as the only free model parameters. 137

We then study the impact of habitat structure and predator 138

dispersal on population dynamics, ecosystem stability and 139

patterns of irreversible habitat loss. 140

Population densities and species’ richness. We measure pop- 141

ulation sizes in the quasi-stationary stable state for different 142
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Fig. 2. Effect of the Lévy exponent α on population densities for different Hurst
exponents H. Other rate parameters are µ = 1/L, σ = 0.1 and λ̂ = 0.1 (see
SI Text). (A) Predator density N . Dashed vertical line shows optimal Lévy exponent
α∗H→1 ≈ 1.2 forH → 1 and indicates predator extinction if predators cannot rapidly
adapt to significant increases in fragmentation (see text). (inset) Relative predator
densities Nrel = NH/NH→1 displays decreases in N when predators forage with
the same α in landscapes with higher fragmentation. Note that for some ranges of α
there exists a preferred intermediate spatial correlation H (see text). (B) Prey density
M . Prey density declines as predators are less dispersive for higher α.

degrees of habitat fragmentation and foraging strategies. Since143

prey reproduction rate is fixed in our simulations, equilibrium144

population sizes are determined by predator-prey encounter145

rates and predator reproduction rates. The long-time prey146

population size decreases monotonically as predators move147

from ballistic to Brownian foraging (Fig. 2). Predator density,148

however, is maximal for an intermediate value of the Lévy149

exponent and its optimal value depends on the degree of frag-150

mentation. For each degree of fragmentation H we distinguish151

three different regimes in population dynamics that result in152

different outcomes for the predator-prey interaction (Fig. ??).153

First, due to our choice for the predator-prey interaction154

probability Λ̂ = `−1, ballistic predators (α → 1) rarely con-155

sume prey and thus go extinct. Upon predator extinction, prey156

proliferate until they reach their maximum population size.157

Notice, however, that this population size does not correspond158

with the prey habitat density ρ in fragmented landscapes be-159

cause small habitat patches become irreversibly uninhabited160

(see below).161

Second, in the Brownian limit, α→ 3, predation is intense162

and prey are overexploited regardless of the level of landscape163

fragmentation. This results in prey extinction followed by164

predator extinction due to lack of prey. Note that predator165

extinctions are asymptotic due to our choice of the preda-166

tor death rate and we still observe few individuals in our167

simulations when they are stopped (see SI Text).168

Third, for intermediate values of the Lévy exponent, our169

model predicts stable species coexistence at different popula-170

tion sizes that are jointly determined by predator movement,171

α, and habitat fragmentation, H. For landscapes that display 172

little fragmentation (H → 1), habitat patches are large and 173

predator relocations intersect with prey often. As a result, pre- 174

dation still occurs during the non-reactive phases – represented 175

by long displacements – and predators maximize population 176

densities with near ballistic foraging for α ≈ 1.2. In contrast, 177

for highly fragmented landscapes (H = 0.01), the model trade- 178

off between displacement length and prey detection probability 179

becomes more important because predator-prey encounters are 180

more rare. It is thus more critical that predators adopt strate- 181

gies that increase predation rates while ensuring sufficient 182

encounters with prey. Balance is attained when short displace- 183

ments are frequently interspersed with long-range relocations, 184

leading to maximum predator population sizes for α ≈ 1.6. 185

Our results furthermore show that the range of foraging 186

strategies, i.e. choice of α, that ensures predator survival 187

becomes more narrow as habitat fragmentation increases (inset 188

Fig. 2A). This result suggests a stronger selective pressure 189

on the foraging strategy in highly fragmented landscapes, 190

or fragmentation causes predator species to face potential 191

extinction if they are unable to (rapidly) adapt. Moreover, our 192

results further indicate that foraging strategies that maximize 193

predator population sizes in slightly fragmented landscapes 194

(α∗H→1) lead to predator extinction as fragmentation increases 195

(Fig. 2A), suggesting a large impact of fragmentation on the 196

foraging strategy. 197

Interestingly, in this intermediate α regime, our model 198

suggests that habitat fragmentation does not necessarily nega- 199

tively affect population densities. Predator populations with 200
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Fig. 3. Effect of the Hurst exponent H on population densities for different Lévy
exponents α. Note that, for α → 1, we have N → 0 as prey encounter rates
fall since Λ̂ → 0. Additionally, for approx. α ≥ 3, we have M → 0 due to
overconsumption. As a result, these values for α are not shown. (A) Predator density
N . For sufficiently high dispersal rates, we observe maximized predator densities
for intermediate fragmentation. (B) Prey density M . Note that for sufficiently high
dispersal rates (low α) prey densities are highest in highly fragmented landscapes
with H → 0 (see text).
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Fig. 4. Influence of the Lévy exponent α on the probability of patch depletion, Pd,
as a function of patch size x for intermediate degree of fragmentation with H = 0.5.
Dotted vertical lines indicate minimum patch sizes at x = 1 (single site). Dashed
vertical line indicates maximum patch size for this particular level of fragmentation and
patches with x > xmax do not exist, hence Pd(x > xmax) = 0. All other parameters
are as in Fig. 2. Solid lines are a guide to the eye. Red curve displays Pd for the
optimal response to maximize species richness (α = 1.2, see inset Fig. 6). Note that
less diffusive foraging strategies (small α) result in less depletion as ρeff remains high.

α < 2 display maximal densities for intermediate values of201

H (Fig. 3), although it should be noted that densities do202

not significantly decrease when fragmentation effects are less203

pronounced. Prey populations can benefit from high levels of204

fragmentation when predators are dispersive, approximately205

for α ≤ 2 (Fig. 3B). This benefit results from highly diffusive206

predators displaying low prey interaction rates and, as such,207

prey can avoid predation by taking advantage of fragmentation208

and spreading thinly. However, it is critical to note that for209

this to occur prey needs to initially inhabit these fragments.210

Moreover, they become more prone to demographic fluctua-211

tions (e.g., localized extinction) that can occur, for example,212

when predators adapt to landscape structure.213

Next, we determine ecosystem health using a weighted214

species richness R that captures how numerous predator and215

prey are relative to each other as well as the total population216

size within the environment (see SI Text). We define the217

species richness as218

R =
(
D1 − 1

)
(N +M) , [1]219

220

where 1 ≤ D1 ≤ S the entropy-based diversity index with221

S = 2 being the total number of species in the system (see,222

e.g., Ref. 41). Species richness predominantly follows predator223

density (Fig. ??). However, due to the effect of prey den-224

sity, the predator foraging strategy α that maximizes species225

richness is consistently more ballistic than those maximizing226

predator density α∗R < α∗N (inset Fig. 6, Fig. ??). This results227

from lower predator-prey interaction rates Λ̂ when α decreases228

which consequently increases prey population numbers.229

Fragmentation induces irreversible habitat loss. As men-230

tioned above, predators may induce irreversible prey habitat231

loss in fragmented landscapes. Due to demographic fluctua-232

tions, prey goes extinct in patches that are not recolonized233

because they are assumed to be sessile. As a result, following234

predator extinction, prey population density does not converge235

to habitat density ρ (Fig. 2A). To investigate this further, we236

consider the patch depletion probability, Pd, as a function237

of patch size and predator foraging strategy (see SI Text).238

Our results indicate that small patches have a higher deple- 239

tion probability regardless of the predator foraging strategy 240

α (Fig. 4), because they host smaller prey populations and 241

are subjected to stronger demographic fluctuations. The effect 242

of α on the depletion probability is stronger for intermediate 243

patch sizes as higher values of α lead to more local preda- 244

tion and, as a consequence, higher patch depletion probability 245

(Fig. 4). Importantly, significant patch depletion occurs even 246

when predators adopt foraging strategies that maximize species 247

richness (Fig. ??, Fig. ??). 248

To further evaluate the impact of patch depletion probabil- 249

ity Pd on habitat loss, we define the effective habitat density 250

ρeff as the fraction of initial habitat ρ that remains available 251

to prey in the quasi-stationary stable state (Fig. 5). Ballistic 252

foragers result in low levels of habitat loss, because predators 253

rapidly go extinct and only a few small patches are depleted 254

(Fig. 4). When α increases and short predator displacements 255

become more frequent, the depletion probability is higher for 256

a broader range of patch sizes (compare, for example, curves 257

for α = 1.1 and α = 1.5 in Fig. 4). As a result, effective 258

habitat density is a monotonically decreasing function of the 259

Lévy exponent and Brownian foragers minimize the effective 260

habitat density regardless of the level of fragmentation (Fig. 5). 261

However, how much habitat is lost in already fragmented land- 262

scapes will depend on the level of fragmentation. For example, 263

Brownian foragers in slightly fragmented landscapes (H → 1) 264

eliminate approximately 40% of the initial habitat. In highly 265

fragmented habitats, this percentage is approximately 90% 266

and most of the prey-predator dynamics occurs in the few, 267
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Fig. 5. Influence of Lévy exponent α and Hurst exponent H on the effective habitat
density ρeff in the quasi-stationary stable state. All other parameters are as in Fig. 2.
Solid lines are a guide to the eye. (A) ρeff as a function of α for differentH, and (B) as
a function of the H for different α.
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Fig. 6. Effect of optimal predator response α∗ to a particular level of fragmentation
defined by the Hurst exponentH. Optimal responses are either considered to optimize
predator population N or species richnessR, denoted by their respective subscripts.
All other parameters are as in Fig. 2. Solid lines are a guide to the eye. (A) Effective
habitat density ρeff. (inset) Optimal response α∗. (B) Predator and prey densities N
and M .

(relatively) large patches that remain available for prey.268

Finally, we measure how habitat fragmentation affects ef-269

fective habitat loss for different foraging strategies, α. As270

expected, ballistic predators minimize effective habitat loss271

because they minimize predation rates (Fig. 5). In contrast,272

Brownian predators maximize effective habitat loss because273

they overexploit prey patches locally. Intermediate values of274

α maximize the difference between effective habitat loss at275

low and high fragmentation (Fig. 5B). For foraging strategies276

that maximize species richness and predator densities (Fig. 6),277

increased fragmentation may result in an effective habitat278

loss of 40%. Importantly effective habitat loss is a nonlinear279

function of the fragmentation level with much faster decay280

when landscapes transition from slightly to highly fragmented281

(Fig. 6A). Population sizes, however, decay much slower in282

response to increased fragmentation (Fig. 6B), illustrating the283

importance of foraging strategies in maintaining the stability of284

ecological communities in response to increased fragmentation285

and habitat loss.286

Discussion287

Our stochastic predator-prey model reveals that the interplay288

between foraging behavior and fragmentation strongly influ-289

ences species persistence and ecosystem stability. Predator and290

prey populations and the resulting species richness are maxi-291

mal for a specific foraging strategy α that strongly depends292

on the spatial correlation of habitat H. Increased fragmen-293

tation reduces the range of possible α-values that result in294

stable species coexistence (Fig. 2), which suggests a stronger295

evolutionary pressure on foraging strategies in highly frag- 296

mented environments. Moreover, as fragmentation increases, 297

prey habitat consists of more and smaller patches. Due to 298

stronger demographic fluctuations, extinctions within smaller 299

patches are more likely, causing irreversible habitat loss. Our 300

results suggest that optimal predator responses can reduce, 301

but not prevent nor minimize, the amount of lost habitat, and 302

that this reduction is more pronounced when habitat is highly 303

fragmented. 304

In our model, effective habitat loss mainly results from 305

small patches becoming irreversibly depleted and only large 306

patches remaining inhabitable (Fig. 4). As a result, the spa- 307

tial correlation in the landscape increases and effective frag- 308

mentation decreases (increased H). Assuming predators can 309

rapidly respond to such a change in fragmentation, possible 310

predator adaptations to this new habitat configuration should 311

consist of an increase in their dispersal rates (lower α, inset 312

Fig. 6). Because habitat loss is less severe for lower values of α 313

(Fig. 5), such a response can inhibit further habitat destruction. 314

Hence, our results agree with previous work that indicated 315

that predator dispersal can stabilize irreversible habitat loss 316

and population declines (35, 42–45). 317

Our model predicts that higher dispersal rates, represented 318

by lower values of α, tend to increase ecosystem stability by 319

allowing predators to exploit several prey patches. We neglect, 320

however, all types of dispersal costs that could increase preda- 321

tor death rates when they travel between prey patches (46). 322

Including such costs might be especially relevant when study- 323

ing the impact of fragmentation on species with low dispersal 324

abilities, such as small mammals (47) and amphibians (48) (but 325

see Ref. 49). Additionally, we also make simplifying assump- 326

tions about the landscape. More specifically, we considered a 327

binary lattice and globally fixed demographic rates. Instead, 328

including matrix and edge effects on both predator dispersal 329

and prey reproduction – e.g., by studying a non-binary, hetero- 330

geneous habitat matrix (50), movement responses to habitat 331

edges (51), etc. – might reveal potential (de)stabilizing effects 332

that we did not encounter. Furthermore, we did not consider 333

interventions that increase landscape connectivity, e.g., design- 334

ing corridors to connect spatially separated fragments allowing 335

prey populations to repopulate previously exhausted patches 336

(52). Future extensions of our model should incorporate these 337

ingredients and investigate their effects on ecosystem stability. 338

We also did not discuss possible responses of prey popu- 339

lation to predation and habitat loss. In our model, prey is 340

sessile and can only diffuse by means of reproducing onto 341

adjacent sites. Therefore, their only response to counter lo- 342

cal extinction events is to increase their reproduction rate σ. 343

Hence, environments that contain static prey that cannot 344

cross hard boundaries are subjected to an evolutionary pres- 345

sure that might favor prey species with higher reproduction 346

rates (53, 54). 347

We would like to note that other features also affect predator 348

foraging efficiency, such as interactions with conspecifics (55, 349

56), spatial memory (57, 58), and long range perception (59, 350

60). Whereas we have neglected such features in our model, 351

they can change the optimal foraging strategy in landscapes 352

with varying degrees of fragmentation and hence affect the 353

impact of fragmentation on ecosystem stability. 354

Finally, higher-order interactions are known to stabilize 355

population dynamics of multi-species systems (61–63) and 356
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extinctions in one trophic level may destabilize species’ coex-357

istence and cause extinctions higher up the trophic network358

(64, 65). Extending our framework to describe multi-species359

systems with more complex trophic interactions is needed to360

understand how foraging behavior and fragmentation jointly361

determine ecosystem stability.362

In summary, our work displays the intricate interplay be-363

tween foraging behavior and habitat fragmentation, and high-364

lights the role of dispersal on population persistence and ecosys-365

tem stability in fragmented landscapes. It furthermore shows366

how increased levels of fragmentation lead to higher irreversible367

habitat loss and how optimal foraging responses can reduce,368

but not prevent nor minimize, the amount of lost habitat. Due369

to their profound ecological consequences, our results suggest370

that future models should include optimal foraging arguments371

when discussing potential effects of landscape fragmentation372

on ecosystem stability.373
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Supporting Information Text1

Neutral landscape models for modeling fragmented re-2

source landscapes3

Fragmented prey habitat in our model is generated using4

neutral landscape models (1). More specifically, we generate5

lattices with periodic boundary conditions from an underly-6

ing fractional Brownian motion (fBm) characterized by the7

Hurst exponent H ∈ (0, 1) that controls the spatial corre-8

lation between adjacent sites (2). We generate lattices of9

two-dimensional fBm using spectral synthesis (see, e.g., 2–4).10

As these methods rely on Fourier transforms, they result in11

periodic lattices with lateral lengths 2k, with k some positive12

integer. For H → 0, adjacent sites are negatively correlated,13

resulting in landscapes with several small fragments. In con-14

trast, H → 1 indicates high correlations between adjacent sites15

and thus results in landscapes with few, large habitat patches16

(see Fig. 1). Because we are interested in landscapes with a17

specific habitat density ρ, we transform the fBm lattice into a18

binary lattice. As the fBm lattice contains 2k× 2k data points19

with random values, we select the ρL2 sites with the highest20

numerical values to belong to the inhabitable fragments while21

the remaining sites belong to the uninhabitable matrix (2).22

These type of landscape models have been used to study land-23

scape connectivity and its effects on animal dispersal (e.g.,24

Refs. 5–8).25

Fragmentation effects are weaker when habitat density is26

high (Fig. S1). This is further exemplified by noting that27

increased fragmentation decreases average patch sizes, because28

smaller patches become more frequent asH decreases and large29

patches become (near) nonexistent. (Fig. S2). We measure30

landscape connectivity in terms of the (percolation) probability31

p that a habitat patch connects to either side of the lattice.32

Because we study systems with periodic boundary conditions,33

p gives the probability of there being a single spanning cluster.34

For large ρ we find that p → 1 regardless of the value of H35

(Fig. 1). This means that the largest patches contain most of36

the available habitat, which effectively reduces our predator-37

prey model to one without prey habitat restrictions (i.e., a38

homogeneous landscape, as in, e.g., Refs. 9, 10).39

ρ = 0.1 ρ = 0.2

ρ = 0.5 ρ = 0.9

Fig. S1. Fragmented landscapes of different prey habitat densities ρ for a fixed spatial
correlation H = 0.1. The effect of fragmentation reduces as ρ increases (Fig. 1).
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Fig. S2. Influence of Hurst exponent H on the patch size distribution for ρ = 0.2.
P (X ≥ x) is the complementary cumulative distribution function of the stochastic
variable X (i.e., the patch size) being equal or larger than x. Results are obtained
for 512 × 512 landscapes. The vertical dashed (dotted) line indicates maximum
(minimum) possible patch size.

Because we are interested in the effects of optimal foraging 40

behavior, we study landscapes with habitat density ρ = 0.2 for 41

which percolation theory predicts disconnected patch struc- 42

tures for all values of H (see, e.g., Ref. 5) and predator 43

dispersal becomes a critical driver of population dynamics. 44

Moreover, as Lévy foragers maximize foraging efficiency only 45

when resource (prey, thus habitat) densities are low (11), only 46

in landscapes with ρ (relatively) small would one expect for- 47

agers to diffuse anomalously. 48

Stochastic lattice Lotka-Volterra model 49

Stochastic rules. We study a stochastic lattice Lotka-Volterra 50

model (SLLVM) wherein prey habitat is restricted as a conse- 51

quence of fragmentation, as we assume they cannot inhabit 52

any site belonging to the (hostile) matrix. Prey is assumed to 53

be sessile, whereas predators are allowed to disperse freely and 54

can thus move between prey habitat patches. Each lattice site 55

can be in one of four possible states: empty (∅), occupied by a 56

predator (X), occupied by a prey (Y ), or occupied by a prey 57

and a predator (XY ). Multiple occupation by two individuals 58

of the same species (i.e., XX or Y Y ) is forbidden. The state 59

transitions that fully define the stochastic dynamics of the 60

model are: 61

X∅ D̃−→ ∅X predator movement, [SE1a] 62

X
µ̃−→ ∅ predator death, [SE1b] 63

XY
Λ̃−→ ∅(XY ) predator-prey null interaction [SE1c] 64

XY
λ̃−→ XX predator reproduction, [SE1d] 65

XY
λ̃′−→ ∅X prey consumption, [SE1e] 66

Y ∅ σ̃−→ Y Y prey reproduction, [SE1f] 67
68

where D̃, µ̃, Λ̃, λ̃, λ̃′, σ̃, the predator dispersal (diffusion) rate, 69

predator death rate, predator-prey interaction rate, predator 70

reproduction rate, predation rate and the prey reproduction 71

rate, respectively. Note that predator death represents a single- 72

site reaction, whereas all other processes describe nearest- 73

neighbor two-site reactions. 74
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Parameter Symbol Value (range)

System lateral length L 512
Monte Carlo time steps T 104

Hurst exponent (spatial correlation) H (0, 1)
Prey habitat amount ρ 0.2
Predator death probability µ 1/L
Predator-prey interaction probability Λ̂ 1/`
Predator reproduction probability λ̂ 0.1
Prey reproduction probability σ 0.1
Predator Lévy exponent α [1, 3]
Predator displacement length ` p(`) ∝ `−α

Table S1. Overview of model parameterization

The above set of stochastic state transitions describes the75

time evolution of a predator-prey system with demographic76

fluctuations. We define the spatially averaged predator and77

prey densities N and M as the number of predators and prey78

per unit area, i.e., N = n/L2 and M = m/L2 where n and79

m are the number of predators and prey in the lattice with80

L2 sites, respectively. The system has three possible station-81

ary states: predator and prey extinction, predator extinction82

followed by prey proliferation, and stable predator-prey coexis-83

tence. First, the zero-abundance fixed point (N,M) = (0, 0) is84

reached when both predator and prey have gone extinct. This85

fixed point results from overconsumption of prey by preda-86

tors, which leads to prey and subsequently predator extinction.87

Second, the prey-proliferation fixed point (N,M) = (0, ρM )88

results from systems wherein only predators have gone extinct.89

This is an effect of underconsumption of prey that leads to90

predator extinction, followed by prey proliferating on the avail-91

able habitat due to the absence of predation. Note, however,92

that following predator extinction prey densities might not93

reach the initial habitat density due to overpredation, thus94

local extinction, in the smallest prey patches (i.e., ρM < ρ,95

see also Fig. 2). The final stable coexistence fixed points96

with N,M > 0 are those where predators neither over- nor97

underconsume (Fig. S4).98

Although our SLLVM is similar to existing models, e.g.,99

(9, 12), it differs in two main ingredients. First, it allows for100

a null predator-prey interaction in which prey consumption101

is not followed by predator reproduction. This additional102

model ingredient is included in our model because initial em-103

pirical simulation results reported that truncation effects (see104

Numerical implementation) resulted in non-Lévy predator dis-105

persal. As such, the null-interaction ensures that predator106

dispersal displays similar (scale-free) characteristics as optimal107

forager movement in sparse resource landscapes. Second, as108

we consider predators that perform Lévy walks, we introduce a109

previously unexplored explicit spatio-temporal coupling. More110

specifically, whereas displacement in Ref. 12 was instanta-111

neous due to predators following Lévy flights, predators in112

our model can at most displace a single lattice unit per step.113

Here, a step refers to the event that a single lattice site that114

contains a predator is randomly chosen (see our Numerical115

implementation for more details). As a result, the duration of116

each relocation event is proportional to the length of the (sam-117

pled) displacement. For more details regarding the differences118

between Lévy walks and Lévy flights, we refer the interested119

reader to detailed descriptions on this topic, such as Ref. 13.120

Numerical implementation 121

Monte Carlo simulations of the restricted SLLVM. We consider 122

a Monte Carlo approach for simulating the stochastic dynamics 123

defined by the state transitions of Eq. (SE1). A single Monte 124

Carlo time step corresponds to selecting all occupied lattice 125

sites once on average. We randomly select occupied sites and 126

update their state according to the following rules: 127

• (predator death) If the selected site contains a predator, 128

it dies with probability µ; 129

• If the predator survived; 130

– (predator dispersal) if the adjacent site is empty, move 131

there and continue the current relocation (see below); 132

– (relocation truncation) if the adjacent site contains a 133

predator, truncate the current relocation and do not 134

move; 135

– if the adjacent site contains prey, either 136

∗ (double occupancy) move there, but do not interact 137

with the prey with probability Λ; 138

∗ (predator reproduction) truncate the current relo- 139

cation, and reproduce by adding a predator that 140

replaces the prey with probability λ; 141

∗ (prey consumption) truncate the current relocation, 142

and consume prey with probability λ′ = 1− Λ− λ. 143

Upon prey consumption (i.e., no reproduction) the 144

selected site is emptied and the prey is replaced with 145

a predator; 146

• (prey reproduction) If the selected site contains a prey 147

individual, choose a habitable adjacent site randomly (if 148

any) and, if the chosen site is empty, place a prey there 149

with probability σ. 150

Here, µ, Λ, λ and σ are the probabilities for predator death, 151

predator-prey interaction, predator reproduction and prey 152

reproduction respectively. Note that we have λ+ λ′ + Λ = 1, 153

thus prey consumption without predator reproduction occurs 154

with probability λ′. Because the predator-prey interaction 155

probability Λ depends on the length of predator displacement 156

(see below), it shall be convenient to introduce the following 157

relations: 158

λ = Λ̂λ̂, λ′ = Λ̂(1− λ̂), Λ = 1− Λ̂, [SE2] 159
160

where Λ̂, λ̂ ∈ [0, 1] the conditional probabilities of the corre- 161

sponding state transitions of our model. More specifically, λ̂ is 162

the conditional predator reproduction probability given that 163

it interacts with prey. Predator-prey interaction occurs with 164

probability Λ̂. For example, consider Λ̂ = 1, thus λ = λ̂ and 165

hence λ′ = 1 − λ̂ = 1 − λ, i.e., λ̂ is the probability of prey 166

consumption with predator reproduction and 1− λ̂ the proba- 167

bility of prey consumption without reproduction. In contrast, 168

when predators never interact with prey for Λ̂ = 0, there is no 169

reproduction nor consumption, as we find λ = λ′ = 0. 170

Sampling of Lévy walks on a lattice. Predators perform Lévy 171

walks on a lattice. Each straight line displacement has a 172

length ` sampled from a discrete power law distribution with 173

exponent α, i.e., p(`) ∝ `−α. To avoid integer overflows when 174

generating samples from this distribution when movement be- 175

comes ballistic (α→ 1), we truncated the power law such that 176

` ∈ [`min, `max] (14). We set the lower truncation at the unit 177

lattice spacing `min = 1 and choose the upper truncation as to 178

ensure that long flights result in low predator-prey interaction 179

probability, i.e., Λ̂ = 1/`, cf. intermittent random searches 180
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Fig. S3. Influence of prey reproduction probability σ on population densities in the
quasi-stationary stable state versus the predator reproduction probability λ̂. Predator
reproduction probability is given by λ = Λ̂λ̂ with predator-prey interaction probability
Λ̂ = 1/` and predator death probability µ = 1/L. To determine demographic rates
for which the landscape is most fragile, we compare ballistic predators (solid lines,
α→ 1, Λ→ 1) with predators that do nearest neighbor random walks (dashed lines,
α→∞, Λ = 0), cf. Ref. 12. Environments are generated with ρ = 0.2 and little to
no fragmentation with H → 1 (see Fig. 1). (A) Predator density N . Inset displays
more detail on predator densities for predators with α → ∞. (B) Prey density M .
Vertical dotted lines in (A) and (B) at λ ≈ 0.1 indicate the predator reproduction rate
for which the ecosystem is most fragile.

(see main text and, e.g., Ref. 15). More specifically, we choose181

`max such that the predator-prey interaction probability is, in182

practice, negligible when predators perform ballistic motion183

with α→ 1. As we take averages over a number of independent184

model realizations in the order 102–103, we choose `max such185

that Λ̂ < 10−3 when α→ 1. Because predator-prey interaction186

is a Bernoulli trial, with the average number of predator-prey187

encounters for a ballistic predator equal to ρL, `max ∼ 105
188

ensures that Λ̂ < 10−3. Note however, that it is very unlikely189

to observe such long predator displacements in our simulations.190

The reason is that the probability of a predator surviving long191

enough to complete such a long displacement is extremely192

small as the mortality rate µ = 1/L (see below). As a result,193

ballistic foragers, in practice, do not interact with prey for194

`max ∼ 105, as desired by having Λ̂ = 1/` (see also Fig. 2).195

Specifically, we choose `max = 200L = 102400, as L = 512, in196

all of our experiments.197

Next, we define the discrete random variable L that198

has a truncated power law distribution p(`) ∝ `−α for199

` ∈ [`min, `max]. To generate random samples that follow200

this distribution, we first define the discrete complementary201

cumulative distribution P (`) (the survival function) as the202

probability of the random variable L to be larger than some203

value ` (14, 16):204

P (`) = Pr(L > `) =
`max∑
y=`+1

p(y), [SE3] 205

where p(y) = y−α/
(
ζ(α, `min)− ζ(α, `max + 1)

)
, [SE4] 206

207

with ζ(α, l) =
∑∞

n=0(n + l)−α the Hurwitz-ζ function. To 208

sample predator displacement lengths, we draw a random 209

number r from a uniform distribution between 0 and 1 and 210

compute ` that satisfies P (`) = 1 − r. As P (`) cannot be 211

inverted in closed form, we execute a binary search within the 212

interval [`min, `max] to solve for ` (14, 16). Because we are 213

interested in discrete samples, we continue the binary search 214

until the value of ` is narrowed down to k ≤ ` < k+1, for some 215

integer k. Then, we discard the non-integer part of ` to be used 216

as the discrete sample. Binary search is implemented in many 217

standard libraries and can be implemented efficiently. Even 218

so, one profits from pre-computing the Hurwitz-ζ functions 219

for all values ` ∈ [`min, `max], as computation of these values 220

can be (relatively) computationally expensive. 221

Ecosystem fragility and choice of demographic rates. Since 222

the dynamics of population densities depend critically on the 223

demographic rates, we select specific values to represent Lévy 224

predators in fragile ecosystems as to maximize the impact of 225
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Fig. S4. Time evolution of population densities for several Lévy exponents and Hurst
exponents H and the number of Monte Carlo time steps T = 2 · 104. Insets show
short-term dynamics up to t = 2 · 103 Monte Carlo time steps. Note how quasi-
stationary stable states are attained for t ≈ 104, which is the number of Monte Carlo
time steps used in all other simulations. For α → 1 and α ≥ 3 we find predator
extinction and prey extinction (followed by predator extinction) respectively (not shown,
but see Fig. 2). All other parameters are as in Fig. 2.
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Fig. S5. Influence of Lévy exponent α and Hurst exponent H on the species rich-
ness R. Note that R mainly follows predator density (Fig. 2, Fig. 3), but effects
of prey density results in consistently more ballistic dispersal to maximizeR when
compared to predator density. All other parameters are as in Fig. 2.

fragmentation. More specifically, because we let predators fol-226

low Lévy walks, the probability of predator death µ should be227

such that displacement lengths are not exponentially truncated228

due to predator death. We therefore fix a low predator death229

rate, µ = 1/L, that allows them to make long system-length230

displacements within their lifetime. Next, we choose preda-231

tor and prey reproduction rates such that systems with little232

fragmentation (H → 1) are most fragile. Here, fragile systems233

are those wherein markedly different predator dispersal rates234

result in predator extinction either through overconsumption235

(nearest neighbor random walks for α → ∞) or through un-236

derconsumption (ballistic motion for α→ 1) (12). Our results237

indicate that, regardless of the prey reproduction probability σ,238

systems are most fragile for predator reproduction probability239

λ̂ = 0.1 (Fig. S3). Note that this specific parameter choice240

represents ecologically relevant scenarios in which predators241

are highly motile, long-lived, and reproduce slowly. Finally,242

we choose σ = 0.1 for the prey reproduction rate. An overview243

of the used parameters and their specific values is listed in244

Table S1. Typical population dynamics resulting from this245

parameterization are shown in Fig. S4.246

Species richness and ecosystem health247

While population densities are important to determine ecosys-248

tem stability, it can be worthwhile to additionally discuss249

ecosystem ‘health’. In ecology, diversity indices are often used250

to indicate ecosystem health, where primers such as biodiver-251

sity (e.g., the number of different species) are often of interest252

(17). In particular, species richness measures the number of 253

species relative to the total number of individuals. We consider 254

the effective species’ diversity, Hill number, or ‘true diversity’, 255

Dq , to capture ecosystem health (see e.g., Ref. 18 for an 256

overview). The effective species’ diversity is an entropy-based 257

measure and defined as 258

Dq =

(
S∑
s=1

pqs

)1/(1−q)

, [SE5] 259

260

where S is the total number of species, and ps the probability 261

of sampling species s when sampling randomly from the total 262

population of all individuals, i.e., the proportional abundance 263

of species s. Here, q defines the sensitivity of the true diversity 264

to species’ relative abundance, where q > 1 weighs the more 265

abundant species more heavily and q < 1 weighs rare species 266

more heavily. For q = 1, all species are equally weighed and 267

the true diversity can be defined by using the limit lim
q→1 Dq : 268

D1 = exp

(
−

S∑
s=1

ps ln ps

)
. [SE6] 269

270

However, the diversity index with q = 1 does not take into 271

account the total population size and is effectively biased 272

towards systems with equal number of species. For example, 273

consider a two species system – as the predator-prey system 274

studied here – with N predators andM prey individuals. Such 275

a system is as ‘diverse’ for N = M = 1 as for N ′ = M ′ = 100, 276

while we consider the second system more ‘healthy’, simply 277

because it contains more organisms. To correct for this bias, 278

we define the species richness as R as 279

R = ( D1 − 1) ·
S∑
s=1

Ns, [SE7] 280

281

where Ns is the spatial average of the population density of 282

species s per unit area (see Stochastic lattice Lotka-Volterra 283

model). We subtract 1 from the true diversity to bring its value 284

between 0 and 1. Briefly, R = 0 corresponds to systems where 285

there is only one species remaining, whereas R = 1 represents 286

situations in which both species persist with equal population 287

sizes. Note that other definitions of species richness exist and 288

that their definitions should depend strongly on the context 289

wherein it is applied (cf. Ref. 19). For our intended purposes, 290

i.e., a two species predator-prey model, the definitions in Eqs. 291

(SE6), (SE7) serve as a simple indicator of the biodiversity 292

– thus ecosystem health – in different model realizations. We 293

did not observe changes in maxima (i.e., optimal responses) 294

to different entropy-based measures of ecosystem health. 295

Patch depletion probability 296

We compute the patch depletion probability Pd as a function 297

of patch size x by checking if the separated patches (fragments) 298

on the lattice contain prey at the end of our simulations. If 299

they do not contain prey, we consider them depleted and com- 300

pute the depletion probability of patches of a specific size x 301

over a number of independent model realizations. Patch deple- 302

tion probabilities depend strongly on both predator dispersal 303

and habitat fragmentation. Here, we would like to emphasize 304

that, when landscapes display high levels of fragmentation, 305

patches of smaller sizes are more frequent. This, together 306
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Fig. S6. Influence of Hurst exponent H on the probability of patch depletion, Pd, as
a function of patch size x for Lévy exponents that maximize species richnessR (i.e.,
α = α∗R, as extracted from Fig. 6). Note the normalization by xmax as landscapes
with low H contain smaller patches (Fig. 1).

H
=

0.
01
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α = 3.0 α = 1.47

H
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Fig. S7. Typical example of typical effects of fragmentation and foraging strategy on
habitat loss and effective habitat. Black and white regions depict prey habitat and
matrix, respectively. Left most panels depict initial habitat at t = 0. Other panels
depict the system at the end of our simulations t = T = 104. (top) Habitat loss in a
highly fragmented environment. For Brownian predators (α = 3.0) nearly all habitat
is lost, while optimal predator foraging (α = 1.47) greatly reduces, but not prevents
nor minimizes, habitat loss. (bottom) Habitat loss in an environment with intermediate
fragmentation. Brownian predators deplete a large patch, while scale-free predators
(α = 2.0) preserve a large habitat amount. Note that the optimal predator foraging
strategy (α ≈ 1.2 for H = 0.50) does not result in considerable habitat loss (Fig. 5),
and is therefore not shown.

with increased patch depletion probabilities for small patches307

(Fig. 4), increases habitat loss in highly fragmented systems308

(Fig. 5, Fig. 6). More importantly, patch depletion probabili-309

ties are considerable even when predator’s foraging patterns310

maximize species richness R (Fig. S6, Fig. S7).311
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