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22 Abstract

23 The integration of microarray technologies and machine learning methods has become 

24 popular in predicting pathological condition of diseases and discovering risk genes. 

25 The traditional microarray analysis considers pathways as simple gene sets, treating 

26 all genes in the pathway identically while ignoring the pathway network's structure 

27 information. This study, however, proposed an entropy-based directed random walk 

28 (e-DRW) method to infer pathway activity. This study aims (1) To enhance the gene-

29 weighting method in Directed Random Walk (DRW) by incorporating t-test statistic 

30 scores and correlation coefficient values, (2) To implement entropy as a parameter 

31 variable for random walking in a biological network, and (3) To apply Entropy 

32 Weight Method (EWM) in DRW pathway activity inference. To test the objectives, 

33 the gene expression dataset was used as input datasets while the pathway dataset was 

34 used as reference datasets to build a directed graph. An equation was proposed to 

35 assess the connectivity of nodes in the directed graph via probability values calculated 

36 from the Shannon entropy formula. A direct proof of calculation based on the 

37 proposed mathematical formula was presented using e-DRW with gene expression 

38 data. Based on the results, there was an improvement in terms of sensitivity of 

39 prediction and accuracy of cancer classification between e-DRW and conventional 

40 DRW. The within-dataset experiments indicated that our novel method demonstrated 

41 robust and superior performance in terms of accuracy and number of predicted risk-

42 active pathways compared to the other DRW methods. In conclusion, the results 

43 revealed that e-DRW not only improved prediction performance, but also effectively 

44 extracted topologically important pathways and genes that are specifically related to 

45 the corresponding cancer types.

46
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47 Introduction

48 The accurate prediction of prognosis and metastatic potential of cancer is a 

49 major challenge in clinical cancer research. Through the evolution of high-throughput 

50 technologies, deoxyribonucleic acid (DNA) microarray analysis can classify tumour 

51 samples overriding the traditional diagnostic methods. This technology allows the 

52 extraction of a huge amount of molecular information which aids in the discovery of 

53 tumour-specific biomarkers. However, the reproducibility of individual gene 

54 biomarkers has been challenging as the identified gene markers in one dataset failed 

55 to predict the same disease phenotype obtained in other datasets [1]. This discrepancy 

56 is usually due to the cellular heterogeneity within tissues, the inherent genetic 

57 heterogeneity across patients, and the measurement error in microarray platforms [2]. 

58 Besides that, microarray analysis of gene expression data generally produces plenty of 

59 genes from patients with the same diseases, hence, leading to a high dimension small 

60 sample size problem. All of these factors often decrease the prediction performance 

61 and reproducibility of individual gene biomarkers in independent cohorts of patients.

62 To address unreliable or inconsistent prediction of gene biomarkers in 

63 datasets, biological pathway data was introduced to identify robust pathway 

64 biomarkers in functional categories [3-6]. As gene products are known to function 

65 coordinately in functional modules, the mutual interest between pathway data and 

66 gene expression data can extract function-related genes to produce consistent and 

67 reproducible biomarkers [7]. Such biomarkers at the functional level can reduce the 

68 impact of noise in microarray data by al-lowing a more accurate biological 

69 interpretation of the disease-canonical pathway correlations [2]. Generally, network-

70 based microarray analysis can be classified into protein-protein interaction-based 

71 (PPI) and pathway-based methods. Both approaches consist of three main steps 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.05.467449doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.05.467449
http://creativecommons.org/licenses/by/4.0/


4

72 namely (i) search and sort potential subnetworks or pathways by their discriminative 

73 score, (ii) select feature subnetworks or pathways, and (iii) construct a classifier based 

74 on the activity of the selected subnetworks or pathways [1]. Both approaches can be 

75 distinguished based on the interpretation of the pathway activity.

76 Multiple studies which incorporated PPI-based methods proposed to identify 

77 more robust biomarkers at functional category levels rather than individual genes. For 

78 instance, paper [8] proposed a method for determining subnetwork markers based on 

79 mutual information or t-scores that measure the relationship between the marker's 

80 activity and class label. Meanwhile, paper [5] applied dynamic programming to 

81 determine the top discriminative linear paths and inferred the activity of the 

82 subnetwork by gauging normalised log-likelihood ratios (LLRs) of its member genes. 

83 Pathway activity scores in pathway-based methods can be calculated based on the t-

84 test statistic score for member genes. Paper [3] employed the mean or median 

85 expression value of the member genes to infer the pathway activity. While paper [9] 

86 and paper [10] used the first principal component of the expression profile of member 

87 genes to evaluate the activity of a given pathway. Conversely, paper [4] proposed 

88 pathway activity inference using only a subset of genes in the pathway, called the 

89 condition responsive genes (CORGs), in which the combined expression levels can 

90 accurately discriminate the phenotypes of interest. Whereas, paper [2] proposed a 

91 directed random walk (DRW) to mine the topological importance of genes in a 

92 pathway network.

93 In cancer classification, prior methods that produced significant progress 

94 based on the activity of pathways or subnetworks consider pathways as simple gene 

95 sets that were treated identically and ignored the structure information of the pathway 

96 network [2]. Besides that, the activities of the pathway or subnetworks not only 
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97 ignored the interactions between the two closest correlated neighbour genes but also 

98 failed to reflect on the amount of embodied information based on the expression 

99 values of the member genes at different conditions. 

100 To combat the aforementioned issue, this study proposed the entropy-based 

101 Directed Random Walk (e-DRW) method to quantify pathway activity using both 

102 gene interactions and information indicators based on the probability theory. Apart 

103 from mining the topological information of disease genes in a biological network, this 

104 method can also reveal the amount of information a gene variable holds in different 

105 conditions and infer pathway activity using both gene interactions and entropy 

106 probability values. The merged directed pathway network utilises e-DRW to evaluate 

107 the topological importance of each gene. Moreover, the expression value of the 

108 member genes are inferred based on the t-test statistics scores and correlation 

109 coefficient values, whereas, the entropy weight method (EWM) calculates the activity 

110 score of each pathway. 

111 The e-DRW method was implemented on the lung cancer dataset (GSE10072) 

112 in this study, where the reproducibility of the pathway activities was enhanced and 

113 higher ac-curacy was produced. Within-dataset experiments also demonstrated that 

114 the e-DRW method was more reliable and robust in predicting clinical outcomes and 

115 guiding therapeutic selection. Section 2 of this study presents the datasets and data 

116 preprocessing methods used in this experiment. Section 3 presents the research 

117 methodology for the proposed approach. The results and detailed discussion of cancer 

118 prediction and cancer classification are provided in sections 4 and 5, respectively. 

119 Section 6 concludes the study.

120

121

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.05.467449doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.05.467449
http://creativecommons.org/licenses/by/4.0/


6

122 Materials and Methods

123 The gene expression data is referred to as the input dataset, while the pathway 

124 data obtained from public databases are referred to as the reference datasets. This 

125 section also briefly describes data preprocessing.

126 Gene Expression Data

127 The GSE10072 for Lung Adenocarcinoma was the gene expression dataset 

128 utilised in this analysis [11]. It was downloaded from the National Centre for 

129 Biotechnology In-formation (NCBI) Gene Expression Omnibus (GEO) database 

130 based on GEO platform GPL96 [12]. It contained a total of 107 samples (Samples 

131 number: GSM254625 to GSM254731), where 58 samples represent cancer samples 

132 and 49 samples represent normal samples.

133 Data Preprocessing

134 The raw gene expression data consisted of 22,283 genes in rows and 107 

135 samples in columns. The two phases involved in data preprocessing were (i) data 

136 cleaning and imputation, and (ii) normalisation of gene expression data. In the first 

137 phase, the unwanted and empty values of attributes were removed. Then, rows with 

138 incomplete values of at-tributes were imputed with mean values to resolve 

139 inconsistencies in data. A total of 1,209 missing values were determined in the 

140 GSE10072 lung cancer dataset. The completed dataset following the application of 

141 mean imputation was used for inference. However, the rearrangement of data was run 

142 through before proceeding to the next phase. The normalisation step in the second 

143 phase typically included thresholds or flooring to remove poorly detected probes and 

144 log2 transformation to normalise the distribution of probes across the intensity range 

145 of the experiment. Whereas, Gene Pattern was used for dataset preprocessing to 
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146 remove platform noise and genes that have little variation [13]. Following 

147 preprocessing, the cleaned dataset contained 12986 genes.

148

149 Directed Pathway Network

150 The directed pathway network was constructed based on the pathway 

151 information obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG) 

152 Databases [14]. Firstly, each KEGG pathway was converted into a directed graph 

153 using the NetPathMiner software package [15]. A total of 328 human pathways were 

154 merged into a directed pathway graph, covering 6,667 nodes and 116,773 directed 

155 edges. Each node in the graph represented a gene, while each directed edge 

156 represented how genes interacted and controlled each other. The direction of the edge 

157 was determined by the type of interaction between two genes found in the KEGG 

158 pathway database. For instance, if gene A activates (inhibits) gene B, then A points to 

159 B, because one gene influences other genes [16]. This concept is similar to the web 

160 page ranking algorithm whereby a web page is important if other pages point to it. 

161 Thus, the direction of all edges on the directed pathway graph is reversed to model the 

162 conception.

163

164 Methodology

165 This section describes the approaches in constructing the e-DRW. The 

166 conventional DRW method proposed by paper [2] was assessed in this study. Paper 

167 [2] used a t-test statistics score as the gene-weighting method to run the algorithm. 

168 This study proposed the combination of correlation and t-test values as the gene-

169 weighting method to run e-DRW. Besides that, DRW employed initial probability as a 

170 parameter variable to calculate the distribution values for each gene. Entropy was 
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171 proposed as the weight parameter to reflect the degree of randomness underlying the 

172 probability distribution of the directed graph. The application of EWM improved the 

173 pathway activity inference method to enhance the sensitivity of cancer prediction and 

174 the accuracy of cancer classification. Figure 1 illustrates the workflow of e-DRW to 

175 infer pathway activity.

176

177 Figure 1. Workflow of e-DRW.
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178 Gene-weighting Based on Correlation and T-test

179 This analysis employed a combination of point biserial correlation coefficient 

180 and t-test statistic scores as a gene-weighting method. The weighted expressions of 

181 the member genes reflected three factors: (1) degree of differential expression of 

182 genes between the normal and cancer group; (2) the correlation between a gene 

183 expression and class label (normal, cancer); and (3) the average expression values 

184 between two closest-correlated neighbour genes. Based on these considerations, a new 

185 robust gene-weighting method was proposed in this study.

186 The normalised expression values of gene, gi, in sample k was defined as:

187 𝑍(𝑔𝑖) = 𝑡𝑖 |𝑝𝑖| (1)

188 where ti is the t-score of gene gi calculated using a two-tailed t-test between two 

189 phenotypes, while ρi is the absolute point biserial correlation coefficient between gene 

190 gi and class label. Z(gi) represents the weighted normalised expression of gene gi in 

191 sample k reflecting the differential expression degree of gene gi and its correlation 

192 with the phenotype. Larger expression values (Z(gi)) can be related to higher 

193 differential expression and a larger correlation with the phenotype.  By employing the 

194 averaging method between two nearest neighbour genes proposed by [17], the 

195 calculated expression values of gene gi were transformed by averaging the gene pair 

196 of gi and gj between two nearest neighbour genes in a directed pathway network as 

197 follows:

198 𝑍(𝑣𝑖) = 𝑍(𝑔𝑖) +  𝑍(𝑔𝑗)
2 (2)

199 where Z(gi) represents the normalised expression values of gene gi, Z(gj) represents 

200 the normalised expression values of gene gj, and Z(vi) represents the average 

201 normalised expression of gene vi between two nearest neighbour gene pairs of gi and 
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202 gj. The e-DRW was applied for experimentation following the gene-weighting 

203 transformation.

204 e-DRW

205 The e-DRW is an improved DRW method that utilises Shannon entropy as an 

206 information indicator to calculate the distribution of each node in the directed graph. 

207 The amount of information or uncertainty of a sequence in genomic data is calculated 

208 using Shannon entropy [18]. Entropy was implemented as a weight parameter in this 

209 approach to estimate the variability in expression for a single gene. Node entropy [19] 

210 was defined as:

211 𝐻(𝑣𝑖) = ― ∑𝑑𝑖
𝑗=1 𝑃(𝑣𝑖) log2 𝑃(𝑣𝑖) (3)

212 where P(vi) represents the probability of the gene. While vi was calculated using 

213 equation (4):

214 𝑃(𝑣𝑖) =  
𝑍(𝑣𝑖)

∑𝑑𝑖
𝑗=1 𝑍(𝑣𝑖) (4)

215 where Z(vi) represents the average normalised expression of gene vi. In e-DRW, a 

216 random walker begins from a single node and transits from its current node either to 

217 another randomly selected neighbour (forward) node based on the edge weights or 

218 returns to the previous node with probability r. According to [2] r was set to 0.7. 

219 Hence, e-DRW was defined as:

220 Hvt+1 = (1 – r) ET Hvt + r Hv0 (5)

221 where Hvt represents the transition probability of ith node transmitted from the i-1 

222 node. Hv0 is the initial entropy probability vector, ET is an entropy edge-weighted 

223 adjacency matrix developed from the directed graph (with edges), and Hvt+1 denotes 

224 the final entropy probability vector.

225 Direct Proof of e-DRW
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226 A direct proof of the e-DRW method was determined by calculating the 

227 distribution value of the biological pathway, through Leukocyte Transendothelial 

228 Migration as demonstrated in a previous study (Sean et al., 2017). The directed 

229 biological pathway consists of vertex V = {EPAC →  Rap1 →  ITGAL →  Pyk2 → 

230 Vav → RhoA}. Assume a simplified representation of vertex V = {1 → 2 → 3 → 4 

231 → 5 → 6}. Table 1 denotes the weight of nodes after data preprocessing.

232 Table 1. Weight of each node in biological pathway.

Nodes Title 2
1 2.338914
2 8.47301
3 6.1441
4 3.102989
5 11.388365
6 5.149393

233

234 The entropy values for each node were estimated before the vector of e-DRW was 

235 calculated. Table 2 lists the node entropy based on the probability of gene weight.

236 Table 2. Calculations of node entropy.

Nodes Weight Average Gene 
Weight, Z(vi)

Probability of 
Gene Weight, 

𝑷(𝒗𝒊)

Node entropy, 
𝑯(𝒗𝒊)

1 2.338914 5.405962 0.142272 0.400211
2 8.47301 7.308555 0.192344 0.457433
3 6.1441 4.623545 0.121681 0.369789
4 3.102989 7.243320 0.190627 0.455789
5 11.38365 8.266522 0.217556 0.478732
6 5.149393 5.149393 0.135520 0.390758

Total 37.997297 1 2.552712
237

238 According to Table 2, the average gene weight of the last node (node 6) 

239 remained the same as there was no adjacent node connected to node 6 along the 

240 pathway. The calculated node entropy was applied in equation (5) to obtain the vector 
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241 of e-DRW. In the calculation of e-DRW, r (restart probability) was set to 0.7, ET 

242 (adjacency matrix) was set to 1, and the initial entropy probability vector was set to 0 

243 as indicated below:

244 H(v1) = (1-0.7) (1) (0.400211) + (0.7) (0)

245 = 0.120063

246 H(v2) = (1-0.7) (1) (0.120063) + (0.7) (0.457433)

247 = 0.356222

248 H(v3) = (1-0.7) (1) (0.356222) + (0.7) (0.369789)

249 = 0.365719

250 H(v4) = (1-0.7) (1) (0.365719) + (0.7) (0.455789)

251 = 0.428768

252 H(v5) = (1-0.7) (1) (0.428768) + (0.7) (0.478732)

253 = 0.463743

254 H(v6) = (1-0.7) (1) (0.463743) + (0.7) (0.390758)

255 = 0.412654

256 Based on the calculations, the increasing entropy probability vector for 

257 random walking proved the feasibility of e-DRW in controlling the randomness of 

258 genes according to the biological rules exhibited in Shannon’s entropy of information 

259 theory. The increases in entropy of gene vi from node 1 to node 6 indicated that it can 

260 be used to identify genes, signalling pathways, and novel gene modules within the 

261 signalling pathways [20].

262 Application of Entropy Weight in Pathway Activity Inference

263 Paper [2] proposed a pathway activity inference method to infer reproducible 

264 pathway activities and robust disease classification. This study, on the other hand, 

265 applied EWM in Liu et al.’s proposed inference method to infer the activity score for 
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266 each pathway. Firstly, the pathway activities were inferred with a set of statistically 

267 significant genes (P < 0.05). The pathway activity, a(Pj), for training and testing 

268 datasets of pathway Pj containing nj statistically differential expressed genes {g1, g2, 

269 ..., gnj} was calculated as:

270 𝑎(𝑃𝑗) =
∑𝑛𝑗

𝑖=1 𝐻∞( 1 ― 𝑔𝑖
𝑠𝑢𝑚(1 ― 𝑔𝑖)) ∗ 𝑖𝑔𝑛(𝑃𝐶𝑇𝑠𝑐𝑜𝑟𝑒(𝑔𝑖)) ∗ 𝑍(𝑔𝑖)

∑𝑛𝑗
𝑖=1(𝐻∞( 1 ― 𝑔𝑖

𝑠𝑢𝑚(1 ― 𝑔𝑖)))²
(6)

271 where H ∞ (gi) is the entropy weight of gene gi, sign(PCTscore(gi)) is the sign 

272 function of the product of correlation coefficients between gene gi and class label, and 

273 t-test statistics of gene gi from a two-tailed t-test on expression values between two 

274 phenotypes, that returns -1 for negative numbers and +1 for positive numbers. 

275 Meanwhile, Z(gi) is the normalised expression value vector of gene gi across the 

276 samples in the dataset.

277 Classification Evaluation

278 Classification evaluation was implemented for a within-dataset experiment for the 

279 GSE10072 lung cancer dataset. Firstly, the dataset was randomly divided into 5 sets 

280 where four-fifths of the samples were used as the training set, while the remaining 

281 one-fifth was used as the test set (5-fold cross-validation). Next, to build the classifier, 

282 the t-test statistics of the pathway activities on the training dataset was calculated to 

283 rank the pathways based on their P-values in increasing order. The top 50 pathways 

284 were used as candidate features to build the Naïve Bayes model. We constructed the 

285 classifier with the pathway that was ranked first. Subsequently, pathways were added 

286 sequentially to train the Naïve Bayes model. The performance of the classifier was 

287 measured by evaluating its area under the receiver operating characteristics curve 

288 (AUC). The added pathway marker was maintained in the feature set if the AUC 

289 increased, but was removed if otherwise. This process was repeated for the top 50 
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290 pathway markers to optimise the classifier and to yield the best feature set. The 

291 performance of the optimised classifier was evaluated on the test set using pathway 

292 markers from the best feature set. Each training subset was used sequentially as a 

293 feature selection dataset to optimise the classifier. This process was repeated 50 times 

294 to ensure unbiased evaluation and to estimate the variation of the AUC. As the final 

295 step, the mean AUC across 50 classifiers was estimated to represent the overall 

296 performance of the classification method.

297

298 Results

299 This section presents the classification performance within-dataset experiment. We 

300 implemented two pathway-based classification methods, namely, the DRW [2] and 

301 Significant Directed Walk (SDW) [17] for comparison purposes. Both the DRW and 

302 SDW methodologies were employed in the experimental settings. The Naïve Bayes 

303 model was used to evaluate the performance of e-DRW, DRW, and SDW methods. 

304 Five-fold cross-validation was also conducted for the three methods, in addition to the 

305 estimation of the mean area under the receiver AUC over 50 experiments.

306 Classification Performance Within-dataset Experiment

307 The classification experiments demonstrated that the e-DRW pathway 

308 activities yielded reliable predictive accuracy. This method achieved an overall high 

309 accuracy across 50 experiments. The average AUC for the GSE10072 lung cancer 

310 dataset recorded was approximately 0.995327. Such a consistent performance of e-

311 DRW for within-dataset experiments postulated that the e-DRW pathway activities 

312 were more reliable and sensitive to different cohorts of patients and microarray 
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313 platforms in predicting clinical outcomes in practice. Figure 2 illustrates the 

314 classification performance of the e-DRW within-dataset experiment.

315

316 Figure 2. Classification performance of within-dataset experiment.

317 On the other hand, we also compared classification performance (average 

318 AUC) for the GSE10072 lung cancer dataset. The average AUC recorded for DRW 

319 and SDW were approximately 0.996262 and 0.994953, respectively. Meanwhile, e-

320 DRW recorded an average AUC value of 0.995327 which fell well between the values 

321 of DRW and SDW methods. Figure 3 compares the classification accuracy within-

322 dataset experiments for the three methods.
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324 Figure 3. Comparison of classification accuracy.

325 Robustness of Risk-active Pathways

326 The detection of robust risk-active pathways is important in cancer studies. 

327 The proposed e-DRW method predicted a total of 23 pathways across 50 experiments. 

328 Whereas, the DRW and SDW methods predicted a total of 16 and 19 pathways, 

329 respectively, in the lung cancer pathways. Table 3 lists the predicted cancer-related 

330 pathways with their respective pathway ID that are involved in various biological 

331 processes across the three methods.

332 Table 3. Cancer-related pathway predicted by three methods.

Methods No. Pathway Name Pathway ID (hsa) Total 
Pathways

1 PPAR signalling pathway 03320
2 MAPK signalling pathway 04010
3 Ras signalling pathway 04014
4 Rap1 signalling pathway 04015
5 Calcium signalling pathway 04020

6 cGMP-PKG signalling 
pathway

04022

7 cAMP signalling pathway 04024

8 Cytokine-cytokine receptor 
interaction

04060

9 Chemokine signalling 
pathway

04062

10 HIF-1 signalling pathway 04066

11 Phosphatidylinositol 
signalling system

04070

12 Neuroactive ligand-receptor 
interaction

04080

13 Autophagy 04140
14 PI3K-Akt signalling pathway 04151

15 Adrenergic signalling in 
cardiomyocytes

04261

16 Vascular smooth muscle 
contraction

04270

17 Axon guidance 04360
18 Focal adhesion 04510
19 ECM-receptor interaction 04512

20 NOD-like receptor signalling 
pathway

04621

e-DRW

21 Regulation of actin 04810

23
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cytoskeleton

22 Thyroid hormone signalling 
pathway

04919

23 Adipocytokine signalling 
pathway

04920

1 PPAR signalling pathway 03320
2 MAPK signalling pathway 04010
3 Ras signalling pathway 04014
4 Rap1 signalling pathway 04015
5 Calcium signalling pathway 04020

6 cGMP-PKG signalling 
pathway

04022

7 cAMP signalling pathway 04024

8 Cytokine-cytokine receptor 
interaction

04060

9 Phosphatidylinositol 
signalling system

04070

10 Phospholipase D signalling 
pathway

04072

11 Neuroactive ligand-receptor 
interaction

04080

12 PI3K-Akt signalling pathway 04151

13 Adrenergic signalling in 
cardiomyocytes

04261

14 Vascular smooth muscle 
contraction

04270

15 Focal adhesion 04510
16 Adherens junction 04520
17 Tight junction 04530

18 Leukocyte transendothelial 
migration

04670

SDW

19 Aldosterone synthesis and 
secretion

04925

19

1 PPAR signalling pathway 03320
2 MAPK signalling pathway 04010
3 Ras signalling pathway 04014
4 Rap1 signalling pathway 04015
5 Calcium signalling pathway 04020

6 cGMP-PKG signalling 
pathway

04022

7 cAMP signalling pathway 04024

8 Cytokine-cytokine receptor 
interaction

04060

9 Neuroactive ligand-receptor 
interaction

04080

10 PI3K-Akt signalling pathway 04151
11 AMPK signalling pathway 04152

DRW

12 Vascular smooth muscle 
contraction

04270

16
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13 Apelin signalling pathway 04371
14 ECM-receptor interaction 04512
15 Adherens junction 04520

16 Human papillomavirus 
infection

05165

333

334 Among the three methods, e-DRW predicted the highest number of risk-active 

335 pathways that were highly related to the development of various cancers. For instance, 

336 the regulation of actin cytoskeleton (hsa04810) is involved in many cancers [2, 21-

337 23]. Besides, the MAPK signalling pathway (hsa04010) and calcium signalling 

338 pathway (hsa04020) were known cancer pathways reported in multiple studies [1-2]. 

339 Deregulated calcium and PI3K-Akt signalling pathways in many tumours are 

340 regarded as a sensitive therapeutic target in several types of cancers including 

341 melanoma, lung cancer, and prostate cancer [2, 24]. All the risk-active pathways listed 

342 in the table above could assist in cancer detection and in providing new insights for 

343 cancer treatment. Based on the number of cancer-related pathways detected, e-DRW 

344 was identified to be the most feasible method in detecting cancer modules for cancer 

345 classification using gene expression datasets.

346

347 Discussion

348 This study proposed an entropy-based pathway activity inference scheme for 

349 identifying reproducible pathway biomarkers for clinical cancer applications. 

350 Previous literature revealed that individual gene markers are less reliable compared to 

351 pathway markers, thus, are unable to effectively capture the biological interpretation 

352 of gene expression at functional categories [3-6]. Based on the comparative 

353 assessment, e-DRW pathway activities were more discriminative and consistent in 

354 identifying reproducible pathway biomarkers based on the application of entropy 
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355 weight. Moreover, EWM is also useful in calculating the amount of information or 

356 uncertainty of a biological sequence.

357 Entropy was implemented as a weight parameter in e-DRW to calculate the 

358 distribution values along a biological pathway. This weight parameter is important in 

359 revealing the biological insights for a gene and a pathway. With proven results 

360 following implementation, entropy also disclosed the essential biological information 

361 behind the concepts of information theory. Increasing entropy vector values proved to 

362 be related to cancer modules in signalling pathways [20]. Although different 

363 representations of weight variables can influence the calculation of vectors along the 

364 pathway, entropy values re-main important in the implementation of e-DRW for 

365 cancer classification.

366 Based on the classification performance, the AUCs of the e-DRW method 

367 were significantly higher and stable across the experiments. The reliable performance 

368 of the e-DRW pathway activities could be attributed to the strategy of weighting 

369 genes according to their topological importance and correlation values between the 

370 nearest-neighbour genes. The gene-weighting method based on t-test and correlation 

371 can greatly magnify the signals of essential genes whose expression levels may have a 

372 large impact on the pathway while weakening the differential signals of genes that 

373 only appear downstream or have a minor impact on the system. Therefore, the e-

374 DRW approach could alleviate the noise caused by sample heterogeneity or technical 

375 measurements, resulting in more reproducible pathway activities. 

376 Based on the comparison experiments, the average AUC of e-DRW was better 

377 in terms of cancer classification due to higher accuracy compared to DRW. 

378 Comparatively, e-DRW also recorded more risk-active pathways than that of the 7 
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379 pathways reported by DRW. Overall, e-DRW was more effective in gene prediction 

380 as it was sensitive compared to DRW.

381

382 Conclusions

383 In cancer studies, accurate prediction of cancer is crucial for the diagnosis and 

384 prognosis of clinical therapy. We proposed an e-DRW approach based on entropy 

385 (weight parameter) for cancer classification. The three enhancements based on paper 

386 [2]’s work and the proposed e-DRW were proven to be effective in inferring pathway 

387 activities and accurate cancer classification. The three proposed enhancements 

388 included (1) gene-weighting based on correlation and t-test, (2) entropy as parameter 

389 variable, and (3) application of entropy weight in pathway activity inference. Gene-

390 weighting method in e-DRW incorporated t-test statistics scores and correlation 

391 coefficient values to weigh each gene in a directed pathway network. This weighting 

392 strategy not only reflects the degree of the differential expression of genes between 

393 normal and cancer groups but also considers the correlation values between two 

394 nearest neighbour genes in a directed graph. Secondly, entropy was introduced as a 

395 weight variable to measure the vector along the biological pathway. This metric was 

396 useful in disclosing essential biological information behind the concepts of 

397 information theory. Next, EWM was utilised in conventional DRW along with the 

398 product of t-test and correlation values of each gene to calculate the activity score for 

399 each pathway. The EWM was based on the idea that superior weight indicator 

400 information was more constructive than that of the lower indicator information [25]. 

401 Finally, the five-fold cross-validation was employed to train the classifier and classify 

402 the significant pathways detected by e-DRW. In conclusion, the proposed approach 
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403 was more effective and feasible for cancer classification compared to other DRW 

404 methods.

405
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