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 14 

Abstract 15 

Although the genetic correlation between complex traits have been estimated for more than a 16 

century, only recently we have started to map and understand the precise localization of the 17 

genomic region(s) that underpin these correlations. Reproductive traits are often genetically 18 

correlated, and yet we don’t fully understand the complexities, synergism, or trade-offs 19 

between male and female fertility. In this study, we used reproductive traits in two cattle 20 

populations to develop a novel framework termed correlation scan. This framework was used 21 

to identify regions associated with the genetic correlations between male and female fertility 22 

traits across the bovine genome. The traits used were age at first corpus luteum (AGECL) and 23 

serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or cows, IGF1c). 24 

The methodology developed herein used correlations of 500-SNP (single nucleotide 25 

polymorphism) effects in a 100-SNPs sliding window in each chromosome to identify 26 

regions in the genome that either drive (i.e., SNP effects on the same direction) or antagonize 27 

(i.e., SNP effects in the opposite direction) the genetic correlations between traits. We used a 28 

permutation test to confirm which regions of the genome harboured significant correlations. 29 

Hence, this framework can also identify neutral genomic regions with no effect on the 30 

pairwise trait studied. About 40% of the total genomic regions were identified as driving and 31 
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antagonizing genetic correlations between male and female fertility traits in the two 32 

population. These regions confirmed the polygenic nature of the traits being studied and 33 

pointed to genes of interest. Quantitative trait loci (QTL) and functional enrichment analysis 34 

revealed that many significant windows co-located with known QTLs related to milk 35 

production and fertility traits, especially puberty. In general, the enriched reproductive QTLs 36 

driving the genetic correlations between male and female fertility are the same for both cattle 37 

populations, while the antagonizing regions were population specific. Moreover, most of the 38 

antagonizing regions were mapped to the chromosome X. These results suggest regions of the 39 

chromosome X for further investigation into the trade-offs between male and female fertility. 40 

Although the methodology was applied to cattle phenotypes, using high-density SNP 41 

genotypes, the general framework developed can be applied to any species or traits, and it can 42 

easily accommodate genome sequence data. 43 

Keywords: Genomic correlation, drivers, antagonizing, RHOGDI, pathway analysis, QTLs 44 

 45 

Author summary  46 

In animal breeding, it is often common to estimate genetic correlations between economically 47 

important traits. These estimated correlations represent the average of the shared genetic 48 

similarities between traits across the genome. Despite this knowledge, we are yet to uncover 49 

the regions in the genome that explain the genetic correlations estimated. Targeting 50 

reproductive traits in cattle, we developed a new framework and used it to identify multiple 51 

regions across the genome that affect genetic correlations between male and female fertility 52 

traits. While some regions have no effect on these trait correlations, other loci drive or 53 

antagonize these relationships. We further subjected the identified regions to functional 54 

analysis and annotation for biological insights. Although the methodology was applied to 55 

cattle phenotypes, using high-density SNP genotypes, the general framework can be applied 56 
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to any species or traits. For example, the method could be used to identify genomic regions 57 

that explain the interplay between various mental illness phenotypes in humans. 58 

 59 

Introduction 60 

In animal genetics, insight into the nature of the genetic relationships between quantitative 61 

traits are important because they improve our understanding of complex traits and diseases 62 

(1, 2). These relationships termed genetic correlations manifest when there is shared genetic 63 

influence between traits (i.e., pleiotropy) (3, 4) or when there is non-random association 64 

between loci (i.e., linkage disequilibrium) (5, 6). Estimated genetic correlations provide 65 

information on how genome-wide genetic effects align between two complex traits (7). 66 

Understanding the interplay between the genomic variants and their effects on quantitative 67 

traits can yield insights to improve the prediction of genetic merit and the understanding of 68 

complex traits’ biology (8-10). Estimated genetic correlations have informed animal and crop 69 

breeding for many decades. For example, scrotal circumference is used as an indicator trait in 70 

beef cattle breeding because it is genetically correlated with female fertility traits (11). 71 

Nevertheless, we still have a limited information of the regions across genome regulating the 72 

intersexual correlations between male and female fertility traits. Investigating these regions 73 

and leveraging on the resulting biological information could inspire new approaches in 74 

livestock breeding (12, 13).  75 

Over the past 100 years, different methods have been employed to estimate the genetic 76 

correlation between traits (14-17). Traditionally, these correlations are estimated from 77 

pedigree data. However, genome-wide single nucleotide polymorphisms (SNPs) are often 78 

used in recent times (18). It is possible to estimate across-sex correlation between traits and 79 

this research niche continues to attract interest among quantitative geneticists (19-21). The 80 

resulting estimates from both within and across-sex analyses range from -1 to +1, indicating 81 
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the strength and magnitude of the correlation between traits (22). Despite more than a century 82 

of research on estimating this parameter, it is only very recently that studies attempt to 83 

identify the region(s) in the genome that underpin genetic correlations between traits (23-25).  84 

In theory, we propose that various genomic regions will contribute to the overall genetic 85 

correlation between complex traits. Further, some regions will be driving the genetic 86 

correlation while others might antagonize it. For instance, if the genetic correlation between 87 

two traits is 0.70, some regions will yield a significant and positive correlation, say 0.90, 88 

while other regions may antagonize the overall estimate, and in that region the correlation 89 

could be -0.50. Also, some genomic regions may be neutral, say 0.02 and not significant for 90 

the correlation between the studied traits. Identifying driver and antagonizing regions are of 91 

particular interest if they are for two important traits which are unfavourably correlated, for 92 

example milk yield and fertility in dairy cattle.  Identification of such regions could lead to 93 

more targeted genomic selection and rapid genetic gains for both traits. Current genomic 94 

tools have created a great opportunity to advance our knowledge of genetic correlations 95 

between complex traits, by investigating the regions in the genome that drive or antagonize 96 

these correlations.  97 

Here, we introduce a framework termed “correlation scan”, which uses a sliding window 98 

methodology to uncover the genomic regions driving and antagonizing genetic correlations in 99 

beef cattle. We applied the method to male and female fertility traits and showcase how the 100 

outcomes of this methodology can be interpreted in downstream analyses to gain further 101 

insight about the studied traits and their relationships. Reproductive traits are often 102 

genetically correlated, and yet we don’t fully understand the complexities, synergism, or 103 

trade-offs between male and female fertility. To demonstrate the method, we used two pairs 104 

of reproductive traits with strong genetic correlations in two independent cattle populations 105 

from our previous study (26). These traits are age at first corpus luteum (AGECL, i.e., female 106 
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puberty) and serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or 107 

cows, IGF1c). These pairs of traits serve as example of a positive and a negative correlation 108 

between phenotypes measured in males and females, during pubertal development. The 109 

populations used in the study are formed by either Brahman (BB) cattle or Tropical 110 

Composite (TC) cattle, as described in our previous study (26). 111 

 112 

Results 113 

The total number of windows generated and analysed 114 

Using the framework developed in our study (see Materials and Methods), genomic windows 115 

with their corresponding correlation estimates (r) for each pairwise trait in two beef cattle 116 

populations were identified. The total number of windows generated for all pairwise traits in 117 

BB was 5,558 and the number in TC was 6,876. For all windows, the chromosome 118 

coordinates and the corresponding r estimates in each of the two populations are presented in 119 

S1 Table. The r estimates for all windows were plotted against their genomic position (i.e., 120 

midpoint between the start and end position of each window) (Figure 1). Results are 121 

presented separately per cattle population and for each pair of traits investigated. 122 

 123 
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Figure 1. Genome plot of the regions driving and antagonizing trait correlations in Brahman 125 

(BB) and Tropical Composite (TC) for the pairwise traits (BB-AGECL vs IGF1b; A, TC-126 

AGECL vs IGF1b; B, BB-IGF1c vs IGF1b; C, TC- IGF1c vs IGF1b; D).  AGECL, age at 127 

first corpus; IGF1, serum levels of insulin growth hormone (measured in bulls, IGF1b, or 128 

cows, IGF1c). The correlation estimates were plotted on the y-axis and the genomic position 129 

(i.e., midpoint between the start and end position of each window) of each chromosome on 130 

the x-axis, according to the ARS_UCD1.2 bovine reference genome.  131 
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Driver, antagonizing and neutral genomic windows affecting genetic correlations 132 

between fertility traits: permutation test 133 

In order to identify drivers, antagonizing and neutral regions across the bovine genome, we 134 

performed permutation test by randomly reshuffling the Single Nucleotide Polymorphisms 135 

(SNPs) effects in each chromosome in 1,000 iterations for each trait. Then, we applied our 136 

framework on the randomized SNP effects and observed the r estimate across each iteration 137 

for each window. In most cases, the maximum and the minimum r estimates for each window 138 

at each iteration (i.e., rand 1 to rand 1,000) range between ±0.20. Therefore, we considered 139 

neutral windows with no significant effect on the trait correlation as windows with -0.20≤ r 140 

≤0.20 estimates. The genomic plots of the r estimates resulting from the permutation test 141 

(rand 500 only) in each population are presented in S1 Figure. S2 Table shows the numbers 142 

of windows, their chromosome coordinates, and r estimates as well as the maximum and 143 

minimum r estimates across the 1,000 iterations for each pair of traits in each of the two 144 

populations.  145 

As a result of the permutation test, we considered significant windows with r estimates >0.2 146 

and r estimates <-0.2. These thresholds were used to define the significant windows or 147 

regions (i.e., driver and antagonizing) from non-significant (i.e., neutral) windows or regions. 148 

Depending on the overall genetic correlation between traits, driver and antagonizing windows 149 

can be deduced: in driver windows, the r estimate has the same direction, positive or 150 

negative, as the overall genetic correlation; in antagonizing windows it is the opposite.  151 

The number of significant driver windows for the correlation between AGECL and IGF1b 152 

was 1,636 in BB and 1,914 in TC cattle. The number of significant windows for the 153 

antagonizing was 547 in BB and 898 in TC cattle, for AGECL vs IGF1b. For the correlation 154 

between IGF1c and IGF1b, the number of significant driver windows was 1,931 in BB and 155 
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2,549 in TC cattle. The antagonizing windows was 402 in BB and 587 in TC cattle (IGF1c vs 156 

IGF1b). The numbers of neutral windows were as follows: 3,375 in BB, and 4,064 in TC for 157 

AGECL vs IGF1b; and 3,225 in BB, and 3,740 in TC for IGF1c vs IGF1b. See Table 1 for 158 

details on numbers of windows in the two beef cattle populations. In addition, the lists of 159 

windows with their chromosomal coordinates for all driver, antagonizing, and neutral regions 160 

are presented in S3 Table.  161 

Table 1: The number of windows generated for the driver, antagonizing and neutral 162 

windows for each pairwise trait in Brahman and Tropical Composite population. 163 

Pairwise Trait Number of windows (percentage to the total number of 

window) 

Total number 

of windows 

Driver (%) Antagonizing (%) Neutral (%)  

Brahman 

AGECL vs IGF1b 1,636 (29.40%) 547 (9.84%) 3,375 (60.72%) 5,558 

IGF1c vs IGF1b 1,931 (34.74%) 402 (7.23%) 3,225 (58.03%) 5,558 

Tropical Composite 

AGECL vs IGF1b 1914 (27.84%) 898 (13.06%) 4064 (59.10%) 6,876 

IGF1c vs IGF1b 2549 (37.73%) 587 (8.54%) 3740 (54.39%) 6,876 

AGECL, age at first corpus; IGF1c, serum levels of insulin growth hormone measured in 164 

cow; IGF1b, serum levels of insulin growth hormone measured in bulls 165 

 166 

For the correlation between AGECL and IGF1b (overall genome-wide correlation of -0.65 167 

(BB) and -0.55 (TC), see Table 2), the largest r estimate for the driver windows was -0.96 168 

(bovine chromosome (BTA)14: 23.04 - 25.29Mb) in BB and -0.91 (BTAX: 39.76 - 42.86Mb) 169 

in TC. For the antagonizing windows, the largest r estimate was 0.87 (BTAX: 40.87 - 170 

43.88Mb) in BB and 0.61 (BTAX: 66.62 - 69.622Mb) in TC.  171 
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For the correlation between IGF1c and IGF1b (overall genome-wide correlation of 0.86 (BB) 172 

and 0.93 (TC), see Table 2), the largest estimate for the driver windows was 0.97 (BTA14: 173 

22.68 - 24.96Mb) in BB and 0.87 (BTA5: 46.13- 47.89Mb) in TC, while the estimate for the 174 

antagonizing was -0.62 (BTA1: 49.01 - 51.67Mb) in BB and -0.90 (BTAX: 65.64 - 68.39Mb) 175 

in TC. All r estimates are plotted in Figure 1.   176 

 177 

Genes and Quantitative Trait Loci (QTL) within driver and antagonizing regions across 178 

the two populations 179 

Defining driver and antagonizing regions separately for each pair of traits, allowed us to 180 

identify the genes and QTLs within these regions for each of the two beef cattle populations. 181 

The percentage of the overlapping genes (Figure 2a) and QTLs (Figure 2b) across both 182 

populations was studied. The percentages of genes shared across the significant regions in BB 183 

and TC were calculated as a function of the total number of genes in BB or TC, respectively, 184 

and so they differ (Figure 2a and 2b).  185 

The percentage of overlapping genes for each pair of traits in the two populations were as 186 

follows: for AGECL vs IGF1b driver regions, about 48% of the total number of genes 187 

annotated were shared between the two population, whereas, for the antagonizing regions, 188 

22% of the gene annotated in BB were present in the TC population, and 26% of the genes 189 

annotated in TC were present in BB; for IGF1c vs IGF1b, the two populations shared about 190 

58% of total number of genes annotated for the driver regions and about 17% were shared for 191 

the antagonizing regions. 192 

The percentage of overlapping QTLs for each pair of traits in BB and TC population were as 193 

follows: for AGECL vs IGF1b driver regions, 52% of the QTLs annotated in BB were 194 

present in TC and 35% of the QTLs annotated in TC were present in BB, whereas, for the 195 
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antagonizing regions, 20% of the QTLs annotated in BB were present in TC and 18% of the 196 

QTLs annotated in TC were present in BB; for IGF1c vs IGF1b, 56% of the genes annotated 197 

in BB were present in TC, and 52% of the genes annotated in TC were present in BB, 198 

whereas, for the antagonizing regions, 29% of the genes annotated in BB were present in TC 199 

and 33% of the genes annotated in TC were present in BB population. 200 
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 202 

Figure 2a. Genes annotated in the significant (i.e., driver and antagonizing) genomic regions 203 

identified as explaining the genetic correlations between male and female fertility traits in 204 

Brahman (BB) and Tropical Composite (TC) population. The overlaps between the two 205 

studied populations are in the diagonal of each plot for each pair of traits within the driver 206 

(above) and antagonizing (below) regions. The darker the colour within the squares, the 207 

higher the percentage of shared genes or QTLs. AGECL, age at first corpus; IGF1, serum 208 

levels of insulin growth hormone (measured in bulls, IGF1b, or cows, IGF1c).209 

Antagonizing 

Drivers 

AGECL vs IGF1b IGF1c vs IGF1b 

AGECL vs IGF1b IGF1c vs IGF1b 
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 210 

Figure 2a. QTLs annotated in the significant (i.e., driver and antagonizing) genomic regions 211 

identified as explaining the genetic correlations between male and female fertility traits in 212 

Brahman (BB) and Tropical Composite (TC) population. The overlaps between the two 213 

studied populations are in the diagonal of each plot for each pair of traits within the driver 214 

(above) and antagonizing (below) regions. The darker the colour within the squares, the 215 

higher the percentage of shared genes or QTLs. AGECL, age at first corpus luteum; IGF1, 216 

serum levels of insulin growth hormone (measured in bulls, IGF1b, or cows, IGF1c).217 

218 
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Functional classification of QTLs within genomic regions that explain the genetic 219 

correlations between male and female fertility 220 

To infer biological function and mine the existing literature, we examined the types of QTL 221 

(milk, reproduction, production, meat and carcass, health and exterior) present in the 222 

significant genomic regions identified above using GALLO (27). The most frequent QTLs 223 

across all pairwise traits in the two populations for the driver and antagonizing regions were 224 

QTLs related to milk production, accounting for about 30-51% in most cases. This was 225 

followed by reproductive QTLs accounting for about 13-48% and production QTLs 226 

comprising 6-24%. Other QTL types (Exterior, health and meat and carcass) accounted for a 227 

relatively small proportion of QTLs in the significant regions (Figure 3a and 3b). In addition, 228 

we report the top 10 results for QTLs related to reproductive traits as these are relevant to our 229 

studied traits (Figure 3a and 3b). Among these reproductive QTLs, traits related to puberty 230 

(i.e., age at puberty, scrotal circumference) were prevalent in both populations. 231 
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AGECL-IGF1b-Driver 232 

 233 

 234 

AGECL-IGF1b-Antagonizing 235 

 236 

237 

Figure 3a. Percentage of QTL type (pie chart) and trait related to reproduction QTLs 238 

(barplots) for the QTL annotation results obtained for (A) AGECL vs IGF1b - driver, (B) 239 

AGECL vs IGF1b- antagonizing in Brahman (BB) and Tropical Composite (TC) population.   240 

AGECL, age at first corpus luteum, IGF1c, IGF1, serum levels of insulin growth hormone 241 

(measured in bulls, IGF1b, or cows, IGF1c)242 
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IGF1c vs IGF1b-Driver 243 

 244 

 245 

 246 

IGF1c vs IGF1b-Antagonizing 247 

 248 

249 

Figure 3b. Percentage of QTL type (pie chart) and trait related to reproduction QTLs 250 

(barplots) for the QTL annotation obtained for (A) IGF1c vs IGF1b- driver, (B) IGF1c vs 251 

IGF1b- antagonizing in Brahman (BB) and Tropical Composite (TC) population. AGECL, 252 

age at first corpus luteum, IGF1, serum levels of insulin growth hormone (measured in bulls, 253 

IGF1b, or cows, IGF1c)254 
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QTL enrichment analysis  255 

We performed a chromosome-wide QTL enrichment analysis to further test the significance 256 

of the QTLs identified for all the driver and antagonizing regions in each cattle population, 257 

for each trait pair using GALLO (27). Enriched QTLs for the studied traits span across most 258 

QTL types, indicating the presence of complex genetic mechanisms. The results of the 259 

chromosome-wide QTLs enrichment (FDR-corrected p-value≤0.05) for the driver and 260 

antagonizing regions for all pairwise traits in each population are presented in S4 Table. 261 

For the driver regions, the number of QTLs enriched over a wide range of chromosomes for 262 

AGECL vs IGF1b were 233 and 144 in BB and TC beef cattle population, respectively. The 263 

number was 227 (BB) and 220 (TC) for IGF1c vs IGF1b. For AGECL vs IGF1b, the most 264 

enriched chromosome (no of enriched QTLs in parenthesis) was BTA5 (36) and BTA14 (18) 265 

in BB and TC, respectively. IGF1c vs IGF1b also followed similar pattern with the result 266 

above, with BTA5(41) being the most enriched chromosome in BB and BTA14 (51) as the 267 

most in TC. 268 

For the antagonizing regions, the number of QTLs enriched across the bovine chromosomes 269 

for AGECL vs IGF1b were 127 and 178 in BB and TC beef cattle population, respectively. 270 

The number was 179 (BB) and 195 (TC) for IGF1c vs IGF1b. For AGECL vs IGF1b, the 271 

most enriched chromosome was BTA17 (14) and BTA26 (21) in BB and TC, respectively. 272 

For IGF1c vs IGF1b, however, BTA14 (23) was the most enriched chromosome for these 273 

regions in BB, whereas, in TC, BTA14 (23) was the most enriched.  274 

 To identify the common results and shared biology between the driver and the antagonizing 275 

regions, we also investigated the overlaps of the QTL types associated with the studied trait 276 

(i.e., reproduction) in the two populations. The relationship between the top 10 enriched 277 

reproductive QTLs in BB and TC are presented in Figure 4a and 4b. Irrespective of the trait 278 
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pair, for the driver regions, the reproductive QTLs in BB in most cases overlap with those 279 

identified in TC. However, for the antagonizing regions, not all reproductive QTLs in BB 280 

were found in TC beef cattle population.  281 

 282 

 283 

Figure 4. Chord plot showing the relationship between the top 10 enriched reproductive QTLs 284 

between Brahman (BB) and Tropical Composite (TC) for the driver (top) and the antagonizing 285 

(bottom) regions of the studied traits. AGECL, age at first corpus luteum, IGF1c, serum levels 286 

of insulin growth hormone measured in cow; IGF1b. LUTACT, Luteal activity; SCRCIR, 287 

Scrotal circumference; INHIB, Inhibin level; PUBAGE, Age at puberty; SPREC, Sexual 288 
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precocity; NRR, Non-return rate; CALEASE, Calving ease; INSINT, Interval from first to 289 

last insemination; SB, Still birth; CALEST, Interval to first estrus after calving; GLENGTH, 290 
Gestation length, NSP, Percentage normal sperm. 291 

 292 

Functional enrichment analysis 293 

Leveraging our methodology’s directionality of gene effects with Ingenuity Pathway 294 

Analysis (IPA; http://www.ingenuity.com), we identified the enriched canonical metabolic 295 

pathways enriched at Benjamini–Hochberg corrected p-values (BH-P-value) of p<0.01. The 296 

graphical presentation of the canonical metabolic pathways predicted by IPA to be enriched 297 

and the proportion of driver and antagonizing genes in each pathway for all pairwise traits 298 

investigated in each population are illustrated in S2A-H Figure. Although IPA provided 299 

information about whether the predicted pathways were being activated or inhibited based on 300 

our data, we remain cautious when interpreting our results since the r estimates are not the 301 

same as gene expression values, and IPA was originally designed to mine gene expression 302 

data. 303 

The number of pathways enriched for AGECL vs IGF1b was 49 in BB and 68 in TC. For 304 

IGF1c vs IGF1b, the number of enriched pathways was 156 and 87 in BB and TC, 305 

respectively. For AGECL vs IGF1b in BB, the top 5 enriched canonical metabolic pathways 306 

were cardiac hypertrophy signaling (Enhanced), toll-like Receptor signaling, IL-6 Signaling, 307 

hepatic fibrosis signaling pathway and STAT3 Pathway. In TC population, the top 5 enriched 308 

canonical metabolic pathways were breast cancer regulation by stathmin1, signaling by Rho 309 

family GTPases, opioid signaling pathway, endocannabinoid developing neuron pathway, 310 

and CREB signaling in neurons.  311 

For IGF1c vs IGF1b in BB, the top 5 enriched canonical metabolic pathways were cardiac 312 

hypertrophy signaling, CREB signaling in neurons, thrombin signaling, estrogen receptor 313 

signaling, opioid signaling pathway and AMPK signaling. In TC, the top 5 enriched pathways 314 
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were CREB signaling in neurons, cardiac hypertrophy signaling (enhanced), opioid signaling 315 

pathway, gαs signaling and breast cancer regulation by stathmin1. The enriched canonical 316 

metabolic pathways and all the genes involved in each pathway are available in S5 Table. 317 

 318 

Discussion 319 

Complex phenotypes, including fertility, consist of multiple genetically correlated rather than 320 

independent traits (6). The interplay between traits involve many genomic regions, usually in 321 

a large and polygenic regulatory network (28-31). Genomic signals that regulate (i.e., drive or 322 

antagonize) complex traits are widely spread across the genome, including near many genes 323 

without significant effect on the phenotype or disease (29). In the present post-genomic era, 324 

unravelling the genomic regions that regulate complex traits and the metabolic pathways 325 

associated with these phenotypes has become an important aspect of genetic studies in 326 

humans and animals (32). In this study, we developed a novel framework termed correlation 327 

scan to reveal the significant regions that either drives or antagonize the genetic correlations 328 

between traits, across the genome. In addition, this method can also reveal genomic regions 329 

with no effect on the studied traits (neutral windows).  The framework developed uses best 330 

linear unbiased prediction (BLUP) solution of SNP effects to estimate the local correlations 331 

between studied traits. Local correlations are based on sliding windows of 500-SNPs. We 332 

applied these sliding windows approach to reproductive traits measured in two populations 333 

and subject the outcomes, significant windows, to further analyses using GALLO (27) and 334 

IPA (http://www.ingenuity.com) to gain further insight about the biology of studied traits and 335 

their relationships. Although the methodology was applied to beef cattle traits, using high-336 

density SNP chip genotypes, the general framework can be applied to any species, any traits, 337 

and it can easily accommodate sequence level data. 338 
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Our results agreed with the established notion that multiple loci regulate reproductive traits 339 

(33-35). Also, the mode of action of these loci and the magnitude of their effect varies across 340 

the genome. While some regions had no effect on the genetic correlations under 341 

investigation, other loci drive or antagonize the relationships between male and female 342 

fertility. The identification of driver and antagonizing loci creates opportunities to further 343 

understand the molecular mechanisms affecting quantitative traits. For example, correlations 344 

estimated from SNP effects have allowed researchers to construct gene networks (36). 345 

Thereby, these types of approaches contribute to linking genotype with phenotype. 346 

The two beef cattle populations investigated in this study are distinct in terms of their genetic 347 

composition. Brahman (BB) cattle are typically of Bos indicus origin whereas TC beef cattle 348 

emanated from the crossing between Bos indicus and Bos taurus breed (37). Despite these 349 

differences, we found that a considerable number of annotated genes and QTLs driving trait 350 

correlation overlaps across breeds, although with variations in the size of SNP effects. This 351 

corroborates the findings of Bolormaa et al. (38), where a substantial number of QTLs were 352 

found segregating in Bos indicus and composite cattle using the same dataset. In this present 353 

study, the top genomic signal driving trait correlation across all pairwise traits in BB were 354 

located on BTA14. The significant region contains a widely known and well-characterized 355 

QTL, including the PLAG1 gene, reported to be associated with growth and reproductive 356 

traits in our populations and other studies (39-44). In TC however, the top signal differs 357 

across traits and mostly spread across two or three chromosomes, although with considerable 358 

number of overlaps with BB. This could be partly due to the variations in the architecture of 359 

composite breed (45). The genome of composite breeds usually contains new haplotypes 360 

emerging from generations of crossbreeding. Moreover, the contribution of the founder 361 

populations on chromosomes and specific genomic regions are usually unevenly distributed, 362 

which most likely shapes the genome of composite breeds (45). In short, differences between 363 
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BB and TC are likely to impact the results of our analyses. Breed differences are expected, 364 

and so when two breeds share a similar result, it enhances our confidence in calling 365 

significant windows for the interplay between male and female fertility traits. 366 

Most genomic regions antagonizing the genetic correlations between male and female 367 

fertility traits were located on chromosome X.  Gene expression on chromosome X differs 368 

across-sex, resulting in genomic sexual conflict (46-48). Genes in these antagonizing regions 369 

include PO1FB, ZNF711, APOOL, HDX, DACH2, FAM133A, among others. These genes are 370 

associated with different disorders including infertility, reproductive deficiencies, primary 371 

ovarian failure (49-51). When some of these genes are over-expressed, it can dysregulate the 372 

cristae morphology of the mammalian mitochondria (52). Understanding how these 373 

antagonizing genes interact to influence (in)fertility could help improve the reproductive 374 

potentials of beef cattle. 375 

In animal production, more research is carried out on milk production-related traits, thereby 376 

creating large proportion of records for these traits in the cattle QTL database. These volumes 377 

of records can create a bias in the QTLs representativeness (27). The QTL enrichment 378 

analysis allows testing the significance of the QTL representative using chromosome-wide 379 

approach to detect specific genomic region with many QTLs for a specific trait. For example, 380 

taking the driver regions for AGECL vs IGF1b in BB, the top enriched QTLs was found in 381 

BTA5, harbouring 36 QTLs. These QTLs comprised 8 different QTLs for reproduction 382 

(inhibin level, scrotal circumference, interval of first estrus after calving, gestation length, 383 

insemination per conception, conception rate, daughter pregnancy rate, and pregnancy rate). 384 

These 8-traits listed here have been found to be correlated with puberty (studied traits) in 385 

cattle. For instance, inhibin is regarded as a biomarker for sexual development because it 386 

regulates spermatogenesis in both beef and dairy bulls (53, 54).  Moderate genetic correlation 387 

was found between inhibin and AGECL (55) and between inhibin and IGF1b (56) in BB. 388 
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Scrotal circumference has also been found to be a moderate predictor of AGECL and IGF1b 389 

in BB (21, 26). Thus, BTA5 may be a candidate region for fertility in BB beef cattle 390 

population. Other enriched QTLs out of the 36 mentioned above include 8 different 391 

production traits (average daily gain, metabolic body weight, length of productive life, body 392 

weight, rump width, body depth, residual feed intake, and net merit). These traits are related 393 

to feed efficiency in cattle. Improving feed efficiency of beef cattle is a major concern for 394 

beef producers. A recent study from Canal et al. (57) found that heifers that efficiently utilize 395 

feed attain puberty early than less feed efficient ones. Moreover, heifers that attain puberty at 396 

a relatively younger age have the potential to conceive early in life and be more productive 397 

throughout their lifetime (58). In addition, IGF1 is an effective selection tools to improve 398 

feed efficiency and other production related traits, allowing breeders to preselect animals that 399 

can utilize feed efficiently (59, 60). Other enriched QTLs for BTA5 in BB are related to 400 

exterior (7), milk (6), milk and carcass (5) and health (3) traits. Of note, the objective of most 401 

beef cattle breeding programs is to change the genetic merit of their cattle for many traits of 402 

interest (61). The recurrent association of the BTA5 with multiple traits could suggest 403 

complex genetic mechanisms such as pleiotropy, epistasis, hitchhiking effects, linkage 404 

disequilibrium etc., regulating this chromosomal region (62, 63). Therefore, breeders could 405 

target BTA5 to select multiple traits without any antagonistic effect on other traits listed 406 

herein. 407 

Another interesting result from this study is the shared biology between the two breeds 408 

relative to the traits under study. Despite breed differences, the enriched reproductive QTLs 409 

driving the genetic correlations between male and female fertility are the same for the two 410 

cattle populations (Figure 4). Most of the enriched QTLs are related to reproductive traits 411 

measured early life.  A possible explanation could be that the reproductive phenotypes shared 412 

common fundamental biology in the two populations. For the antagonizing regions, however, 413 
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most of the reproductive QTLs were breed specific depending on the trait pairwise. Perhaps, 414 

this could be partly explained by the diverse genetic composition of the two breeds. 415 

Understanding the genomic architectures driving these early-in-life male and female fertility 416 

traits and their known genomic antagonisms could foster effective selection for both traits in 417 

tropical breeds (64, 65). 418 

The major challenge faced by researchers when analysing an overwhelmingly large amount 419 

of genomic data is how to extract meaningful mechanistic insights into the underlying 420 

biology characterizing the given trait under study. To increase the explanatory power of 421 

genomic studies, pathway analysis has become first choice, providing researcher with the 422 

ability to infer meanings to high-throughput genomic data (66). Leveraging the directionality 423 

of gene effects from our method with IPA knowledge base, several biological pathways 424 

known to be involved in reproduction (i.e., studied trait) were significantly enriched for all 425 

pairwise traits investigated across the two breeds. These pathways include estrogen receptor 426 

signaling, p38 MAPK signaling, GnRH signaling, sperm motility, cAMP-mediated signaling, 427 

AMPK signaling, and androgen signaling. Although IPA provided information about the 428 

activation or inhibition state for the enriched canonical metabolic pathways with the use of 429 

the r estimates in place of the gene expression values, we are not sure if these pathways were 430 

being activated or inhibited since we don’t have information about the expression values of 431 

the genes in these pathways. For example, Rho GDP Dissociation Inhibitor (RHOGDI) 432 

pathway was the only significant signaling pathway found to be inhibited across breeds in all 433 

pairwise traits investigated using IPA comparison analysis. The RHOGDIs (RHOGDIα, 434 

RHOGDIβ and RHOGDIγ) are well-characterized as a negative regulator of Rho GTPases 435 

(67). These Rho GTPases play pivotal roles within the cell, including cell migration, 436 

membrane trafficking, invasion, gene transcription, polarity, adhesion, cell survival and 437 

death; a process significantly involved in cancer initiation and metastasis (68, 69). Once 438 
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RHOGDI is inhibited, it induces constitutive activation of Rho GTPases, resulting in several 439 

malignant phenotype including tumour growth, angiogenesis, and invasive phenotypes (69, 440 

70). For instance, knocking out one of the three RHODGI genes resulted in a renal defect that 441 

progressively leads to death in adult mice, although embryonic development was not affected 442 

(71). Togawa et al. (72) also found that male mice lacking RHOGDI1 were infertile with 443 

impaired spermatogenesis. The authors also reported problems of implantation in female 444 

mice due to this knockout.  The knockout of two of the three RHOGDIs often results in a 445 

more severe phenotypes with additional immunological defects than when one of the 446 

RHOGDIs is disrupted (73). Numerous studies have also reported that the RHOGDIs protein 447 

are involved in sperm movement, sperm capacitation and acrosome reaction, a process that is 448 

critical to occur for the sperm to interact and penetrate the egg for fertilization to take place 449 

(74-76). Perhaps, this could be the major reason why signaling by Rho family GTPases were 450 

enriched in our metabolic pathway analysis. Notably, low reproduction performance is one of 451 

the major challenges facing beef producers in Northern Australia (77, 78). Reproductive 452 

wastage is usually common, which is often a result of pregnancy failure and calf mortality 453 

(79, 80). Given the role of the RHODGI pathway in reproduction, future studies could use 454 

gene expression data to investigate the genes involved in these pathways as a candidate 455 

region for infertility in cattle since we only use the r estimates in this study. 456 

Materials and Methods 457 

Traits, genotypes and estimated genetic correlations 458 

The traits used to demonstrate this methodology are a subset of traits from our previous study 459 

(26), where bivariate genetic correlations were estimated between 7 male and 6 female early-460 

in-life reproductive phenotypes in two independent tropical beef cattle populations (BB and 461 

TC). The two female traits selected for this study are age at detection of the first corpus 462 
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luteum (AGECL, days) and cows’ blood concentration of insulin growth-factor 1, measured 463 

at 18 months of age (IGF1c). Only one male trait was selected: the blood concentration of 464 

insulin growth-factor 1, measured at 6 months of age (IGF1b). These traits are important in 465 

beef cattle fertility, especially during pubertal development. The estimated genomic 466 

correlations between the traits listed above in each population have been reported in our 467 

previous study (26). These estimates and their corresponding standard error (S.E), number of 468 

SNPs and number of animals in each population are provided in Table 2. These traits were 469 

selected because they had significant estimates of genomic correlation (i.e., traits with 470 

standard error (S.E) less than half of the size of the correlation) and different strength or 471 

direction of genetic relationships (i.e., negatively, and positively correlated traits). In brief, 472 

across-sex genetic correlations were estimated in a bivariate analysis using the linear mixed 473 

model approach. Firstly, the 770,000 genotypes were mapped to the new assembly of the 474 

bovine reference genome (ARS_UCD1.2, GenBank assembly accession GCA_002263795.2; 475 

(81)). After quality control filtering (i.e., excluding all SNPs with a minor allele frequency 476 

less than 5%), 554,712 and 686,626 SNPs remained for BB and TC datasets, respectively. 477 

Finally, bivariate genetic correlations were estimated using GIBBS2F90 (82), resulting to the 478 

estimates in Table 2.  479 

Table 2: Genomic correlations estimates and their corresponding standard error (s.e), 480 

number of animals and number of SNPs estimates 481 

Pairwise traits No of animals Number of SNP Genetic correlation (s.e) 

Brahman 

AGECL vs IGF1b AGECL- 980 

IGF1b- 964 

554K -0.65 (0.13) 

IGF1c vs IGF1b IGF1c- 995 

IGF1b- 964 

554K  0.86 (0.11) 

Tropical Composite 
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AGECL vs IGF1b AGECL-996 

IGF1b- 998 

686K -0.55 (0.14) 

IGF1b vs IGF1b IGF1c- 1015 

IGF1b- 998 

686K 0.93 (0.11) 

AGECL, age at first corpus; IGF1c, serum levels of insulin growth hormone measured in 482 
cow; IGF1b, serum levels of insulin growth hormone measured in bulls; SNP, Single 483 
Nucleotide Polymorphisms; s.e, standard error 484 

 485 

Overview of methods 486 

For each trait considered in the two beef cattle populations, we estimated the genomic 487 

breeding values (gEBVs) of individuals and then back-solved these gEBVs to obtain SNP 488 

effects for all chromosomes using GCTA (83). Using a chromosome-wide approach, we 489 

divided SNPs on the same chromosome into small sliding windows of 500 SNPs each and 490 

then estimated the correlation (r) between traits as being the correlation between the 500-491 

SNP effects estimated for trait A and the 500-SNP effects estimated for trait B. We then 492 

moved 100 SNPs further from the start of the previous window to select the next 500-SNP 493 

window, which partially overlapped with previous window, hence producing sliding windows 494 

that were 100 SNPs distant from the previous window. This was repeated for each trait pair, 495 

and for each chromosome, in a chromosome-by-chromosome approach. The resulting r 496 

estimates for all the chromosomes combined were denoted as W1….Wn. The graphical 497 

illustration of this framework is presented in Figure 4. Moreover, the coordinates of the 498 

windows (W1…Wn) were mapped to the ARS_UCD1.2 bovine reference genome. The 499 

signals across the genome were visualized with the r estimates of each window on the y-axis 500 

and genomic position (i.e the midpoint of the start and end position of each window) of each 501 

chromosome on the x-axis. The mapping to the bovine reference genome and plotting of the 502 

windows signals’ graphs were done using SNP & Variation Suite v8.x Golden Helix (84).  503 
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Depending on the overall genetic correlation observed between the traits considered, the 504 

driver and antagonizing windows can be deduced. In this study, AGECL and IGF1b were 505 

negatively correlated. Hence, the driver windows were windows with significant and negative 506 

r estimates, while the antagonizings were windows with significant positive r estimates. For 507 

the positively correlated relationship between IGF1c and IGF1b, the driver windows were 508 

windows with significant and positive r estimates and the antagonizings were windows with 509 

significant and negative r estimates. The significance of each window was established with a 510 

permutation test, described in the next section. 511 
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 512 

Figure 4. The graphical illustration of the sliding window framework. The framework 513 

involves 2 steps. Step 1 start from the estimation of genomic breeding values to the 514 

obtainment of SNP effects for each pairwise trait. Step 2 start from the estimation of 500-515 
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SNP effects in a chromosome-wide approach to obtainment of the correlation estimate in a 516 

100-sliding window.  517 

Permutation test 518 

To ensure the r estimates are not just noise but real signals, we performed permutation test by 519 

randomly reshuffling the SNP effects in each chromosome in 1,000 iterations for each trait. 520 

Subsequently, we estimated correlations for 100-sliding windows of 500-SNP effects as 521 

described above. Finally, we observed the maximum and minimum r estimates for all the 522 

windows (W1…….Wn) across the 1,000 iterations to reveal windows that were significant on 523 

the pairwise traits under investigation. Afterwards, we mapped the resulting r estimates for 524 

each window to the ARS_UCD1.2 bovine reference genome and plot the r estimates on the 525 

y-axis against the genomic position of each chromosome on the x-axis as described above. 526 

Consequently, significant windows were selected for the drivers and antagonizings genomic 527 

regions for each pairwise. Windows that were not significant were tagged “neutral windows” 528 

i.e., windows with no effect on the pairwise trait. Apart from using these windows to estimate 529 

genomic correlations and investigate the proportion of variance captured by these regions, 530 

they were excluded from other subsequent analyses. Finally, the r estimates of the significant 531 

windows for the driver and antagonizing regions were ranked from top to bottom in 532 

percentage (%) and the rank values were used solely for the purpose of subsequent 533 

downstream analyses. The ranking was done separately for the driver and antagonizing 534 

windows for each pairwise trait investigated in each population. 535 

Gene and Quantitative Traits Loci (QTL) annotation  536 

The significant windows along with their corresponding chromosome coordinates, r 537 

estimates and rank values for the driver and antagonizing regions that passed the specified 538 

threshold criteria following the permutation test in BB and TC were selected. The selected 539 
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windows were used for gene and QTL annotation using R package GALLO: Genomic 540 

Annotation in Livestock for positional candidate Loci (https://CRAN.R-541 

project.org/package=GALLO) (27). The .gtf annotation file corresponding to the bovine gene 542 

annotation from ARS-UCD1.2 assembly and the .gff file with the QTL information from 543 

cattle QTL Database (https://www.animalgenome.org/cgi-bin/QTLdb/index; (85, 86)), were 544 

used for gene and QTL annotation, respectively (27). The two files use the same bovine 545 

reference genome (ARS-UCD1.2) to map the gene and QTLs. A remarkable advantage of 546 

GALLO is that the software retains all the information present in the input file when 547 

producing the output file. As a result, genes within each window can retain their r estimates 548 

and the rank values specific for their window. 549 

The number and percentage of genes and QTLs annotated within a population (BB or TC) 550 

and the overlaps across populations (BB and TC) were investigated. Furthermore, we 551 

examined the QTLs representativeness and diversity to explain better the genomic content of 552 

the significant windows for the driver and antagonizing regions. Hence, the visualization of 553 

the percentage of cattle QTL types from cattle QTL database (i.e milk, reproduction, 554 

production, meat and carcass, health and exterior) were plotted using a pie chart by GALLO 555 

(27).  556 

QTLs enrichment analysis 557 

To further test the significance of the QTLs, a within population QTL enrichment analysis 558 

was conducted using a chromosome-based approach. The QTL enrichment analysis, using all 559 

the QTL information annotated within the significant windows for the driver and 560 

antagonizing regions, was performed using the qtl_enrich function from GALLO (87, 88). 561 

Briefly, the observed number of QTLs for each trait in each annotated chromosome were 562 

compared with the expected number using a hypergeometric test approach in a 1,000 iteration 563 
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rounds of random sampling from the entire cattle QTL database. With this approach, a p-564 

value for the QTL enrichment status of each annotated QTLs within the significant windows 565 

was estimated. These estimated p-values were corrected for multiple testing using a false 566 

discovery rate (FDR) of 5%. In addition, we used chord plots to reveal the relationships 567 

between the two breeds for the enriched reproductive QTLs based on the driver and 568 

antagonizing genomic regions. 569 

Functional enrichment analysis 570 

The annotated genes along with their corresponding r estimates and rank values for the 571 

significant driver and antagonizing windows for each pairwise trait in BB and TC populations 572 

were subjected to enrichment analysis using the commercial QIAGEN’s Ingenuity Pathway 573 

Analysis (IPA; v.8.8, http://www.ingenuity.com). The IPA allows identifying 574 

overrepresented biological mechanism, metabolic pathways, and diseases and biological 575 

functions that are highly relevant to the traits of interest using the directionality of the 576 

submitted gene list (89, 90).  The outcome of our methodology indicates that genes within 577 

each window come with their directionalities, in this case, r estimates. Thus, we leveraged on 578 

the directionality of each gene by allowing the driver genes to be upregulated and 579 

antagonizing genes to be downregulated.  580 

Summarily, a merged dataset containing gene identifiers that were significant for both the 581 

driver and antagonizing windows for each pairwise trait in each population and their 582 

corresponding r estimates and rank values were uploaded into IPA. The r estimates were 583 

used as the “Expr Log Ratio” and the rank values were used as p-values. The IPA software 584 

recognizes gene with positive signs (+) for “Expr Log Ratio” as upregulated genes and 585 

negative sign (-) as downregulated genes. We aim to allow the driver gene lists to have 586 

positive values for “Expr Log Ratio” and the antagonizing gene lists to be negative. Where 587 
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this is not achievable based on the original r estimates (i.e., AGECL vs IGF1b), we reversed 588 

the sign for the driver and antagonizing genes to meet this objective.  589 

Of note, IPA can only analyse a maximum of 8,000 gene list. In most cases, the merged gene 590 

list for each pairwise trait in each population is often >8,000. Hence, we used the rank values 591 

as the cut-off to select the top ~80% genes from the driver and antagonizing gene list for the 592 

pathway analyses. Using a proportion of the gene list to infer biological pathways might 593 

result in the loss of some important biological information relevant to the trait of interest. We 594 

analysed the driver and antagonizing gene list separately for each pairwise trait in each 595 

population to ensure no important information was lost because of the cut-offs. Further, we 596 

compare the result of the separate analyses with the merged gene list from the ~80% cut-off.  597 

The pathway analysis was conducted using the “Core Analysis” function implemented within 598 

IPA. In this analysis, associations were calculated using direct and indirect relationships 599 

among the gene lists. At first, the gene lists were mapped to human gene data. Genes without 600 

an associated gene symbol or gene annotation were subjected to an annotation by homology 601 

using BioMart application available in the Ensembl database 602 

(http://www.ensembl.org/biomart/martview/) (91, 92). With this approach, we only 603 

considered non-annotated genes with percentage of identity ≥80% with human homolog. The 604 

final datasets used for the IPA analyses are presented in S6 Table. Finally, the “Core 605 

Analysis” was used to identify canonical metabolic pathways enriched at Benjamini–606 

Hochberg corrected p-values (B-H-P-value) of p<0.01). 607 

Supporting information 608 

S1 Table. The number of windows, chromosome number, chromosome coordinates, and 609 

correlation estimates for each window for the two pairwise trait in Brahman and 610 

Tropical Composite population (XLSX). 611 
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S2 Table. The number of windows, chromosome number, chromosome coordinates, and 612 

correlation estimates as well as the maximum and minimum correlation estimate for 613 

each window for all trait pairwise in Brahman and Tropical Composite population 614 

following permutation test of 500-SNP effects in 100-SNP sliding windows at 1000 615 

iterations (XLSX). 616 

S3 Table. The number of windows, chromosome number, chromosome coordinates, 617 

correlation estimates and rank value for driver, antagonizing and the neutral regions 618 

that passed the threshold after permutation test in Brahman (BB) population for 619 

AGECL vs IGF1b (XLSX). 620 

S4 Table. The enriched QTLs of the driver and antagonizing regions for all trait 621 

pairwise in Brahman and Tropical Composite cattle. The enriched QTLs are rank 622 

based on the adj.pval (XLSX).         623 

S5 Table. The list of the significant enriched canonical metabolic pathways showing all 624 

the genes involved in each pathway for all trait pairwise in Brahman and Tropical 625 

Composite population. Significantly enriched canonical pathways were identified using 626 

Benjamini-Hochberg p-values <0.01. Z-score >2 denote the activation of the pathway.  627 

Z-score <-2 indicate the inhibition of the pathway (XLSX). 628 

S6 Table. The final dataset used for Ingenuity Pathway Analysis (IPA) for all trait 629 

pairwise in Brahman and Tropical Composite cattle (XLSX).    630 

S1 Figure. Genome plots of the correlation estimates from the permutation test at 500 631 

iterations in BB and TC for the two pairwise traits. The correlation estimates were 632 

plotted on the y-axis and the genomic position of each chromosome on the x-axis, 633 

according to the ARS_UCD1.2 bovine reference genome (DOC).  634 
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S2A-H Figure. Canonical pathways significantly enriched for all trait pairwise in 635 

Brahman and Tropical Composite population. Significantly enriched canonical 636 

pathways were identified using Benjamini-Hochberg p-values <0.01 (PDF).  637 

Data availability 638 

The data used in this are available from the Cooperative Research Centre for Beef Genetic 639 

Technologies (Beef CRC). Data are available from https://www.beefcrc.com with the 640 

permission of Meat and Livestock Australia and the University of Queensland (if interested 641 

please contact the corresponding author). 642 
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