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SUMMARY 1 

The assessment of toxic chemicals using animals has limited applicability to humans. 2 

Moreover, from the perspective of animal protection, effective alternatives are also 3 

desired. Previously, we developed a method that combines developmental toxicity 4 

testing based on undifferentiated human embryonic stem (ES) cells (KhES-3) and gene 5 

networks. We showed that ≥ 95% accurate predictions could be achieved for 6 

neurotoxins, genotoxic carcinogens, and non-genotoxic carcinogens. Here, we expanded 7 

this method to predict broad toxicities and predicted the toxicity of 24 chemicals in six 8 

categories (neurotoxins, cardiotoxins, hepatotoxins, nephrotoxins [glomerular 9 

nephrotoxins/tubular nephrotoxins], and non-genotoxic carcinogens) and achieved high 10 

prediction accuracy (AUC = 0.90–1.00) in all categories. Moreover, to develop a testing 11 

system with fewer ethical issues, we screened for an induced pluripotent stem (iPS) cell 12 

line on the basis of cytotoxic sensitivity and used this line to predict toxicity in the six 13 

categories based on the gene networks of iPS cells using transfer learning from the ES 14 

cell gene networks. We successfully predicted toxicities in four toxin categories 15 

(neurotoxins, hepatotoxins, glomerular nephrotoxins, and non-genotoxic carcinogens) at 16 

high accuracy (AUC = 0.82–0.99). These results demonstrate that the prediction of 17 

chemical toxicity is possible even with iPS cells by transfer learning once a gene 18 

expression database has been developed from an ES cell line. This method holds 19 

promise for tailor-made safety evaluations using individual iPS cells. 20 
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 1 

INTRODUCTION 2 

To date, chemical toxicity studies have been primarily conducted by in vitro testing in 3 

cultured human cancer cell lines or in animals such as mouse, rat, and rabbit. However, 4 

because these methods differ from testing in "normal" human cells, their applications 5 

are limited1. In addition, the use of animals has become a major issue from the 6 

standpoint of animal welfare; in 2019, the U.S. Environmental Protection Agency 7 

announced that research studies using mammals as well as funding for mammal studies 8 

would be cut by 30% by 2025 and abolished by 20352. 9 

The embryonic stem cell test (EST) reported by Scholz et al. was the first to 10 

examine embryotoxicity in vitro using mouse fibroblasts, embryonic stem (ES) cells, 11 

and cardiomyocytes differentiated from ES cells; such developmental toxicity testing 12 

was previously performed only in animals3,4. Later, this method was approved as a 13 

scientifically valid alternative by the European Centre for the Validation of Alternative 14 

Methods (ECVAM) (https://tsar.jrc.ec.europa.eu/test-method/tm1999-01). However, the 15 

EST uses mouse cells, and species-specific differences must be clarified in order to use 16 

this approach to evaluate toxicity in human. Subsequently, another research group 17 

reported that in an EST based on a human cell system (hEST), changes in the 18 

expression of homologous neurodevelopmental genes were similar to those observed in 19 

the mouse system5. 20 
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In 2012, the U.S. Defense Advanced Research Projects Agency (DARPA) and 1 

the NIH invested a huge sum on a national project to promote the development of 2 

biomimetic systems, leading to rapid progress in the field6. These systems, which mimic 3 

the (adult) human body and are constructed by filling tissues created in individual 4 

compartments with culture fluid and connecting them together, are expected to be used 5 

in human toxicity testing systems as an alternative to animals. Currently, however, very 6 

little progress has been made in adapting these systems for application in developmental 7 

toxicity testing, and no evaluation method has been established for determining how 8 

accurately these systems mimic the function of the normal human body7. Realizing the 9 

practical application of these systems as high-throughput toxicity screening tools is 10 

likely to take several years. 11 

For many years, the prediction of chemical toxicity has been carried out using 12 

a method based on the physicochemical parameters of the chemicals, referred to as the 13 

quantitative structure–activity relationship (QSAR)8. However, there is a limit to the 14 

predictive ability of QSAR. One reason is that the mechanism that actually induces 15 

toxic responses resides within the cell, so information about the chemical alone cannot 16 

predict such responses. In this regard, it should be possible to detect toxicity more 17 

accurately by obtaining information about the variation in gene expressions in cells, the 18 

so-called 'hardware' that mediates responses to chemicals. In addition, as stem cells 19 

differentiate, only the genes essential for that lineage is expressed and conserved 20 
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through DNA methylation9, whereas in pluripotent stem cells, a very large number of 1 

genes are expressed, including transporters and transcription factors; consequently, 2 

pluripotent cells are superior to differentiated cells as a tool for comprehensively 3 

detecting toxic chemicals. In light of these considerations, we developed hEST-GN 4 

(human embryonic stem cell test with gene networks), a prediction method that uses 5 

information on feature gene networks based on massive gene expression datasets 6 

obtained by exposing human ES cells to toxic chemicals as input data for machine 7 

learning. Using this method, we achieved highly accurate predictions of developmental 8 

toxicity categories10. 9 

In this study, we expanded the hEST-GN and found that the prediction of 24 10 

toxic chemicals in broad toxicity categories, including adult toxicity, can be achieved 11 

with high accuracy. Furthermore, by selecting induced pluripotent stem (iPS) cells, 12 

which can be used as an alternative to ES cells in toxicity testing, and using a gene 13 

expression database created from ES cells, we were able to develop a method that can 14 

predict chemical toxicity using iPS cell data via transfer learning; this approach 15 

ameliorates the ethical issues related to ES cells. If this method could be further 16 

improved, it is likely that it could contribute to the development of tailor-made, 17 

individualized toxicity assessment/prevention using individual iPS cells, which would 18 

have enormous clinical value. 19 

  20 
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RESULTS 1 

Development of an hEST-GN library for 24 chemicals and prediction using iPS 2 

A schematic of the chemical assay is shown in Fig. 1a. The human ES cell line KhES-3 3 

was exposed to a total of 24 chemicals in six toxicity categories [neurotoxins, 4 

hepatotoxins, cardiotoxins, two types of nephrotoxins (glomerular nephrotoxins and 5 

tubular nephrotoxins), and non-genotoxic carcinogens] at six concentrations, including 6 

vehicle (solvent) alone. The chemicals were carefully assigned to the toxicity categories 7 

by referring to previous reports (Table 1). Gene expression data were obtained by 8 

RNA-seq at two time points, 24 and 48 h, after exposure. At each time point, a principal 9 

component analysis (PCA) was performed using transcription factor genes, and a total 10 

of 20 genes from the top five PCs were extracted as feature genes. Using these genes, 11 

gene network libraries were created for each of the 24 chemicals using the Graphical 12 

Gaussian Model (GGM)11. Similarly, the screened iPS cells were subjected to RT-qPCR 13 

to obtain gene expression data for the same 20 genes and create gene network libraries. 14 

Next, using ES cell library labels, a chemical toxicity prediction system trained by both 15 

libraries from ES and iPS cells was developed via transfer learning12 using support 16 

vector machines (SVMs)13.  17 

 18 

Gene expression response database of ES cells for 24 chemicals 19 
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To obtain the largest amount of data about the expression of genes that were perturbed 1 

by the 24 chemicals, ES cells need to be exposed to chemicals at the maximum 2 

concentration that does not cause an excessive degree of cell death. To this end, we first 3 

performed ATP assays and then plotted regression curves to calculate inhibitory 4 

concentrations (ICs) by carrying out serial dilutions of stock solutions containing the 5 

maximum soluble concentrations of the 24 chemicals. ICs in the range of 0.1% to 50%, 6 

at which cell death begins to be observed, were set as the maximum exposure 7 

concentration (Table S1, Fig. S1). The estimated IC50 and 95% confidence interval 8 

(CI) for each chemical are shown in Fig. 1b (Table S2). Serial dilutions were carried 9 

out, with the maximum exposure concentration set as 1/1 to obtain 1/2, 1/4, 1/8, and 10 

1/16 dilutions, and a six-step exposure including vehicle alone was performed and 11 

repeated twice, yielding a total of 6 × 2 = 12 samples for each chemical. We collected 12 

RNA 24 and 48 h after exposure to the 24 chemicals, performed transcriptome analysis, 13 

and generated gene expression datasets for a total of 12 × 24 × 2 = 576 samples. 14 

To examine the characteristics of the 24 chemicals at the level of differentially 15 

expressed genes (DEGs), we selected transcription factor–related genes (GO: 0006351) 16 

from the 576 datasets (4,032 genes). After log-normalization, batch effect elimination, 17 

and repeat merging, we generated DEG sets for which differences between each 18 

exposure data and vehicle values were significant (FDR < 0.01 and log2|FC| > 1) and 19 

presented them in a heatmap (Fig. 1c, Fig. S2, S3). According to this analysis, the 20 
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number of DEGs was higher at 48 h than at 24 h for all concentrations, and over time, 1 

more genes were up- or down-regulated due to exposure to the chemicals. At both 24 2 

and 48 h, valproic acid, a strong neurodevelopmental toxicant, elicited gene expression 3 

patterns that were clearly distinct from those of the other chemicals. Similarly, 4 

lithocholic acid, a mammalian bile acid and well-known carcinogen, yielded distinct 5 

expression patterns. 6 

 7 

Construction of gene networks of the 24 chemicals by the Graphical Gaussian 8 

Model (GGM) 9 

To obtain feature genes used in the prediction, we performed PCA on the basis of the 10 

exposure data of each transcription factor gene, expressed as a log-fold–change (LFC) 11 

in expression relative to vehicle after log-normalization and batch effect elimination. 12 

There were 3,200 genes for the 24-h samples and 3,255 genes for the 48-h samples. For 13 

both exposure times, it was difficult to clearly separate the chemicals by the toxicity 14 

categories using two-dimensional PCA (Fig. 1d). Accordingly, we selected two genes 15 

with maximum positive and negative loading values, which were considered to 16 

contribute the most to the first to fifth PCs; at each time point, 20 genes were selected as 17 

feature genes (Table S3). Among the 20 selected genes in each group, only ACTR314, 18 

which has been implicated in cell shape and motility, was common. 19 
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Using the 20 selected genes, we estimated sparse gene networks based on 1 

GGMs using an L1 graphical lasso for each chemical at each time point (i.e., 24 and 48 h) 2 

(Fig. 2a, Fig. S4, Fig. S5). The figures illustrate the estimated 190 partial correlation 3 

coefficients incorporated into the gene networks; edges with positive partial correlation 4 

values between two genes are shown in green, and edges with negative values are shown 5 

in red; the thickness, distance, and arrangement of the edges correspond to the degree of 6 

correlation between the two genes. Because these genes were obtained from the top five 7 

PCs that maximize the dispersion of the 24 chemicals using PCA, the estimated GGMs 8 

that describe the networks of all 20 genes differed considerably among chemicals, and it 9 

was difficult to classify the chemicals simply based on the network patterns as a whole. 10 

Therefore, for actual predictions, we decomposed the networks into their constituent 11 

edges rather than using them as a whole and used those with higher discriminative 12 

potential for training data as features. In other words, the partial correlation coefficients 13 

of the edges that are characteristic of the respective toxicity categories contributed to the 14 

SVM discrimination. 15 

 16 

Prediction of six toxicity categories using KhES-3 cells and the GGM network 17 

Using the 190 partial correlation coefficients in the GGM as input data, we predicted the 18 

toxicities of the 24 toxic chemicals in six categories using SVMs with 19 

leave-one-out-cross-validation (LOOCV). For the predictions, we followed the 20 
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procedures described in a previous report on hEST-GN10 using four kernels (linear, 1 

polynomial, RBF, and maximum entropy) and increased the number of top features 2 

ranked by a t-test from 1 to 190. We also performed the prediction with the raw LFC 3 

values of the 3,200 (24 h) and 3,255 (48 h) transcription factor genes at each of the five 4 

concentrations relative to the vehicle-only expression. To compare the predictive 5 

accuracy, the same number of input data used for the GGM (i.e., up to 190 genes) was 6 

used as features. Predictions with the raw LFC values did not achieve a significantly 7 

higher prediction performance than the mean predictions using 10 uniform random 8 

numbers. On the other hand, in the prediction based on the GGM, the AUC values were ≥ 9 

0.90 for chemicals in all toxicity categories, and because the prediction accuracy or AUC 10 

values were significantly high (p < 0.05), we concluded that prediction with high 11 

performance is possible. Predictions were performed separately at 24 and 48 h, but 12 

depending on the chemical, the time point at which a higher prediction accuracy could be 13 

obtained differed; thus, neither time point was considered particularly superior in terms 14 

of yielding a better prediction. Overall, these results demonstrated that hEST-GN based 15 

on ES cell gene networks allows for the prediction of not only developmental toxicity but 16 

also broad toxicity categories including adult toxicity. 17 

In addition, to compare with predictions based on the QSAR theory, we 18 

generated 5,666 molecular descriptors including 3D descriptors (Table S4) and 19 

performed predictions using top 1 to 190 feature genes according to the aforementioned 20 
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method. None of the six categories, except for tubular nephrotoxin (accuracy of 91.7%), 1 

gave a significantly high prediction result. The results of all predictions are presented 2 

together in a table and as ROC curves (Table 2, Fig. 2b, Fig. S6). These results suggest 3 

that chemical toxicity predictions that use the partial correlation coefficients of the GGM 4 

as features can achieve significantly higher accuracy than predictions based on gene 5 

expression values or QSAR. In the GGM-based prediction, the prediction accuracy for 6 

each of the 24 chemicals was examined from the SVM results. This analysis revealed that 7 

with respect to 16 chemicals (acetonylacetone, acrylamide, amitriptyline HCl, 8 

atorvastatin, bucillamine, chlorpheniramine, chlorpromazine, digoxin, doxorubicin, 9 

gentamicin, itraconazole, lithocholic acid, methapyrilene HCl, sunitinib, thioacetamide, 10 

and valproic acid), the prediction accuracy was 100% for all six categories at 24 and 48 h. 11 

On the other hand, for axitinib, cisplatin, and cyclosporin A, the prediction accuracy was 12 

66.6%, suggesting that the prediction of these chemicals is difficult (Table S5). 13 

 14 

Pathway analysis of KhES-3 genes following exposure to 24 chemicals 15 

To determine the effects of exposure to chemicals on biological pathways, we performed 16 

a Hallmark pathway analysis by Gene Set Enrichment Analysis (GSEA) using all genes. 17 

When performing this analysis, we divided the samples into high-dose (1/1 and 1/2 doses) 18 

and low-dose (1/8 and 1/16 doses). For hepatotoxins, cardiotoxins, and globular 19 

nephrotoxins, differences were observed in the types of pathways that were induced or 20 
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suppressed in comparison with other toxic chemicals in the high-dose samples at 24 h 1 

(Fig. 2c, Fig. S7). In addition, the responses of ES cell genes to the toxic chemicals were 2 

diverse and dependent on the type of chemical to which they were exposed and not 3 

limited to specific pathways such as apoptosis. This observation suggests that it is 4 

possible to predict toxicity categories on the basis of perturbed pathways that can be 5 

detected by transcription factors. On the other hand, differences in concentrations or 6 

among categories that may have been present at 48 h were not as pronounced as those at 7 

24 h. However, analyses using available pathways based on human knowledge 8 

accumulated in the past provide limited information. Instead, the computational 9 

extraction of feature genes from the PCA of all genes without bias and predictions based 10 

on their GGM networks are likely to be more effective. 11 

 12 

Selection of iPS cells as an alternative to human ES cells   13 

The results of the present and previous studies suggest that hEST-GN can predict not only 14 

developmental toxicity but also broad toxicity categories with high performance. 15 

However, there are still hurdles to overcome, including ethical issues, before this system 16 

can be generally and widely accepted as a toxicity test. Accordingly, to make iPS cells a 17 

possible alternative to hEST-GN, we performed pre-screening by comparing ATP assays 18 

with ES cells exposed to 20 toxic chemicals across a wide range of categories. As 19 

candidates, we used the top 20 cell lines selected from among Japanese male cell lines15 20 
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derived from healthy individuals, which had been examined and ranked in terms of their 1 

differentiation potential into the three germ layers. For exposure concentration, we 2 

adopted the IC50 that was determined using the KhES-3 cell line and examined the 3 

toxicity response of human iPS cells. Among the candidate cell lines, we selected the top 4 

three cell lines with well-correlated growth rates at IC50 (HPS4138, HPS4234, and 5 

HPS4046) and confirmed the correlation coefficients of the growth rates at IC50 with 6 

KhES-3 using 20 of the 24 toxic chemicals investigated in this study. HPS4138 had the 7 

highest value of 0.94; accordingly, this cell line was used for the predictions as an 8 

alternative to ES cells (Table S6). 9 

 10 

Prediction of chemicals in six toxicity categories using HPS4138 iPS cells 11 

For HPS4138, which was selected by screening, we performed ATP assays with the 24 12 

chemicals (Fig. S8, Table S7, Table S8). As in the case of ES cells, the cells were 13 

exposed to vehicle alone or five concentrations obtained by serial dilutions of stock 14 

solutions containing the maximum exposure concentration (i.e., the maximum value 15 

between IC0.1 and IC50 that did not cause an excessive degree of cell death); this 16 

experiment was repeated twice. Gene expression data for 20 genes selected from KhES-3 17 

cells at 24 and 48 h were obtained by qRT-PCR, and GGMs were created for each of the 18 

24 chemicals based on LFC values relative to the vehicle. Partial correlation coefficients 19 

were used for the prediction, as in the case of ES cells. In the prediction, data were created 20 
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by integrating iPS cell data with ES cell data as well as by transductive transfer learning, 1 

in which toxicity category labels in the ES cell data were used for the learning to allow for 2 

category prediction using iPS cells. Assessment was performed by LOOCV, similarly to 3 

the predictions made using ES cells only. Chemicals in all categories except cardiotoxins 4 

and tubular nephrotoxins yielded AUC values from 0.82 to 0.99, and the accuracy or 5 

AUC was significantly higher than for results obtained with uniform random numbers. 6 

Thus, although this approach was not perfect, the results of the prediction using HPS4138 7 

were very accurate for most toxicity categories (Table 3). The summary of toxicity 8 

category predictions for the 24 chemicals using HPS4138 are shown in Fig. 3. Prediction 9 

was difficult for butylated HA, but satisfactory for the other chemicals (Table S9). These 10 

results demonstrate that if a gene expression database for toxicity responses could be 11 

created with ES cells, chemical toxicity prediction using iPS cells would also be possible 12 

by means of transductive transfer learning. Our findings also raise the possibility of 13 

achieving practical applications of toxicity testing using standardized or individualized 14 

iPS cells in the future. A description of transductive transfer learning is available on our 15 

web site at https://hipst-gn.stemcellinformatics.org. 16 

 17 

  18 
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DISCUSSION 1 

Here we presented a proof-of-concept study that enables a toxicity hazard assessment 2 

using human iPS cells and transfer learning based on the transcription factor gene 3 

network libraries made from the gene expression data of human ES cells exposed to 24 4 

chemicals for 6 categories. 5 

In this paper, we clarified that i) human ES cells are sufficient to detect not only 6 

developmental toxicities during embryogenesis but also broad toxicity categories such as 7 

adult toxins (neurotoxin, cardiotoxin, hepatotoxin, and glomerular and tubular 8 

nephrotoxins) and non-genotoxic carcinogens; ii) the chemical toxicity prediction using 9 

transcription factor gene networks of human ES cells shows an AUC = 0.90–1.00, which 10 

is significantly more accurate than predictions based on the QSAR theory or from raw 11 

gene expression data; iii) there exist differences in the biological pathways affected by 12 

the toxicity categories, suggesting the mechanisms that underlie the transcription factor 13 

networks that control the pathways may be used to predict toxicity categories; and iv) the 14 

gene network data from properly screened human iPS cells can successfully, although not 15 

perfectly, predict the toxicity categories at significant accuracies once the toxicities are 16 

learned by transfer learning using the models based on human ES cell data only. 17 

Various alternative methods using pseudo-human systems, such as 18 

differentiated human cell lines (HepG2, MCF-7, HeLa, etc.), have been reported16 since 19 

animal protection has become a higher priority in research. However, these lines are often 20 
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derived from cancer or immortalized cells and thus have limited use17. On the other hand, 1 

primary cells, which are assumed to resemble natural states in the human body, show 2 

batch-to-batch variability17 and are difficult to collect at sufficient amounts. Furthermore, 3 

it is difficult to extrapolate toxicity tests on some cell types to other target cell types due 4 

to differences in cytotoxicity tolerance18. Performing a multi-target toxicity prediction 5 

system based on stem cells, as we propose here, provides a more valid prediction of 6 

toxicity to a larger range of cell types. 7 

 Toxicological assessment using the transcriptome is frequently used by the U.S. 8 

EPA, Tox21 project and in Europe. Particularly, New Approach Methodologies (NAMs), 9 

which are any technology, methodology, approach or combination thereof that can be 10 

used to provide information on chemical hazards and risk assessments that avoids the use 11 

of intact animals19, are often directional concepts using transcriptomics with other omics 12 

or traditional toxicology methods. Our study indicated that transcription factor gene 13 

networks exist in a master layer of biological pathways to activate molecular initiation 14 

events (MIEs), in which the initial chemical trigger starts an adverse outcome pathway 15 

(AOP) via DNA-binding, receptor activation, or a disturbance of cellular / organelle 16 

systems20, thus revealing toxicity reactions. Recent studies have endorsed the idea that 17 

transcription factors of signal receptors might play a role in interfacing outside signals, 18 

such as aryl hydrocarbon or androgen, to activate toxicological AOPs in HepaRGTM 19 

cells21. In our system, we used 20 transcription factor genes from 5 PCs due to limited 20 
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resources and cost, but it should be possible to customize the set of genes and PCs to 1 

reflect more accurately the specific AOPs in the endpoint organ. To pursue a full 2 

coverage of endpoint organs and AOPs, RNA-seq analysis and a library of all 4,033 3 

transcription factor genes for the test chemicals at low cost are needed. 4 

 Previous systems using QSAR theory depend on the information of chemicals 5 

only and are thus inapplicable to mixtures such as food, Chinese or herbal medicines, and 6 

other compounds to assess toxicity as a whole. Our hEST / hiPST-GN system detects the 7 

cellular toxic events of these mixtures, providing the prediction of holistic cellular 8 

reactions, making it a resource for industries that mix independent chemical ingredients, 9 

including cosmetic, air-conditioner, and automotive companies who need to assess the 10 

toxicity of mixtures in their final or intermediate products, media, emissions, detergents, 11 

etc. In fact, more than 100 members from a wide variety of 12 

industry-government-academia fields are involved in our non-profit consortium 13 

(scChemRISC). By developing products from candidate substances that are predicted to 14 

have little toxicity, our system will contribute to industry not only for efficiency but also 15 

for human health. 16 

 Recently, toxicity reaction differences due to ethnicity, or genome haplotypes, 17 

have been widely reported due to the globalization of foods and products among 18 

countries. For example, catechin, which is contained in green tea and is widely consumed 19 

in Asian countries, is reported to induce severe liver injury in the United States22. The 20 
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CiRA Foundation (Kyoto, Japan) has announced myiPS cells, a project in which 1 

individuals can have their own iPS cells generated and banked. Our hiPST-GN system 2 

could allow a tailor-made chemical toxicity assessment for these cells to detect individual 3 

differences in toxic tolerance for different substances. Ideally, it also has the potential to 4 

reduce medical accidents if myiPS cells could be used to diagnosis whether a medication 5 

is toxic before receiving the treatment17,23. In general, by performing a battery of toxicity 6 

assessments using multiple iPS cell lines from individuals with various haplotypes, our 7 

system may contribute to reducing toxicity accidents often caused by a small number of 8 

test samples of limited genomic variances. 9 

 In conclusion, the largest advantage of our hEST / hiPST-GN is the ability to 10 

perform toxicity hazard assessments for multiple endpoints with high accuracy in a short 11 

amount of time and a low cost. We believe that our system will greatly benefit research 12 

that will be affected by the lost funding for mammal studies designated to happen in 2035 13 

by the U.S. EPA. 14 

   15 
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FIGURE LEGENDS 1 

Figure 1: Construction of a gene expression database for 24 chemicals 2 

(a) Schema of the chemical assay. hESC, human ES cells; hiPSC, human iPS cells. (b) 3 

IC50 for 24 chemicals. (c) Transcription factor genes differentially expressed following 4 

exposure to 24 chemicals at 1/2 dose. (d) PCA of 24 chemicals in six toxicity categories at 5 

two time points. 6 

 7 

Figure 2: Prediction of six toxicity categories using KhES-3 cells 8 

(a) Gene network representation of GGMs from KhES-3 cells. (b) ROC curves for the 9 

prediction of chemicals in two toxicity categories (c) Pathway analysis for hepatotoxins 10 

at 24 h and high-dose (1/1, 1/2 doses) samples. 11 

 12 

Figure 3: Summary of toxicity category prediction for 24 chemicals using HPS4138 13 

cells 14 

Blue dots indicate predicted SVM values of iPS cell data, and filled and open markers 15 

indicate true and false predictions, respectively. Black dots and bars indicate the means ± 16 

S.E.M. of SVM values for random data. In the tables, the label columns contain prior 17 

knowledge regarding whether the chemical shows toxicity (P: positive) or not (N: 18 

negative). The SVM column contains the SVM values of the iPS cell data. The expected 19 

accuracy (Exp.Acc.) columns contain the prediction accuracy using random data. The 20 
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graphs below the tables show the probability distribution of the prediction accuracy using 1 

random data. Black lines indicate the probability density estimated using the t distribution 2 

(degrees of freedom = 9). Black shaded areas represent the upper 5%. Blue dashed lines 3 

indicate the prediction accuracy using iPS cell data. 4 

  5 
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EXPERIMENTAL PROCEDURES 1 

Cell culture experiments 2 

The KhES-3 cell line was established at and provided by Kyoto University24. The 3 

protocol of this study was reviewed by the Ethics Committee of CiRA in accordance 4 

with the "Guidelines for Derivation and Utilization of Human Embryonic Stem Cells" 5 

by the Ministry of Education, Culture, Sports, Science and Technology, Japan. The iPS 6 

cell lines were established from healthy Japanese donors at CiRA, Kyoto University, 7 

and were approved for use by the Ethics Committee of Kyoto University. 8 

Since it has been reported that the toxicity of antioxidants such as catechin is suppressed 9 

in the presence of albumin25, maintenance culture was carried out for all cell lines 10 

including human ES cells using albumin-free Essential 8 Medium (Thermo Fisher 11 

Scientific) in six-well feeder-free culture dishes coated with 5 μg/mL vitronectin 12 

(VTN-N; Thermo Fisher Scientific). When seeding the cells, 10 μM CultureSure® 13 

Y-27632 (FUJIFILM WAKO) was added, and medium exchange on day 1 and thereafter 14 

was performed without Y-27632. 15 

 16 

Selection of toxic chemicals 17 

Twenty-four chemicals were selected and mainly included neurotoxins, hepatotoxins, 18 

cardiotoxins, nephrotoxins, and non-genotoxic carcinogens (Table 1). The presence or 19 

absence of toxicity was determined mainly on the basis of information regarding 20 
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toxicity and assorted disorders and diseases available at PubChem 1 

(https://pubchem.ncbi.nlm.nih.gov/). With respect to neurotoxicity, among the 2 

chemicals previously reported in the literature, those having only developmental 3 

toxicity were classified as 'negative,' as the present study targeted adult toxicity. In 4 

addition, when determining the presence or absence of hepatotoxicity, chemicals with 5 

DILI rank ≥ 3 were considered hepatotoxic chemicals; with regard to others, those with 6 

reliable reports of liver diseases were considered hepatotoxic. As for cardiotoxicity, 7 

chemicals that have been reported to be associated with heart disease were considered 8 

cardiotoxic. With regard to the kidney, due to its diverse and complex structure, the area 9 

of damage was divided into two sites, namely, the glomeruli and renal tubules. 10 

Chlorpheniramine and cyclopamine were the chemicals judged to be completely 11 

‘negative’ and belonged to none of the toxicity categories examined in the present study. 12 

On the other hand, 19 chemicals had multiple overlapping toxicities, whereas 13 

acetonylacetone, bucillamine, and butylated HA had only one toxicity26-70. 14 

 15 

Chemical exposures and determination of IC logistic model equations 16 

DMSO or water was used as solvent (vehicle) for the 24 chemicals based on known 17 

information (https://pubchem.ncbi.nlm.nih.gov/). For each of the 24 toxic chemicals, a 18 

stock solution was prepared with the highest soluble concentration. First, in order to 19 

perform the ATP assay to determine the exposure doses for testing, we performed 10 20 
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serial three-fold dilutions of the stock solution; the prepared exposure solution was 1 

added to the cells (i.e., exposure) so that the concentration in the medium was 0.1% of 2 

the exposure solution. The cells were cultured on 96-well black/clear flat bottom 3 

TC-treated plates (Falcon), 8,000 cells were seeded, and the medium was exchanged on 4 

day 1. The cells were exposed to chemicals on day 2. No medium exchange was 5 

performed after exposure, and the ATP assay was performed 48 h after exposure. For 6 

100 μL of culture medium, 100 μL of CellTiter-Glo® Luminescent Cell Viability Assay 7 

(Promega Corporation) was added, and emitted light was measured with a 2104 8 

EnVision Multilabel Plate Reader (PerkinElmer). From four luminescence 9 

measurements for 10 concentrations and a blank as described above, regression analysis 10 

was performed by fitting the three-parameter log-logistic model with the R-4.0.5 drc 11 

package, and IC0.1 and IC50 values were obtained (Tables S1 and S2). IC50 values 12 

were plotted using the ggplot2 package (Fig. 1b). 13 

 14 

RNA-seq analysis 15 

On day 2 after seeding, the cells were exposed to the chemicals. For each of the 24 16 

chemicals, the exposure dose was set between IC0.1 and IC50 depending on the degree 17 

of cell death. Using this value as the maximum exposure dose, five serial two-fold 18 

dilutions (1/1, 1/2, 1/4, 1/8, 1/16) were performed, and a total of six doses including a 19 

solvent-only control (vehicle) were used. After exposure, no medium exchange was 20 
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performed, and samples were obtained at two time points (24 h and 48 h) with two 1 

repeats, i.e., a total of 24 x 6 x 2 x 2=576 samples. After RNA purification using an 2 

RNeasy Mini Kit (QIAGEN), sequence libraries were prepared for each sample using 3 

TruSeq Stranded mRNA Library Prep/TruSeq RNA Single Indexes Set A & Set B 4 

(Illumina, Inc.). For sequencing, high-throughput sequencing was performed using 5 

HiSeq4000 (Illumina, Inc.). We used bowtie-2.2.5 with the option 6 

"--very-sensitive-local" to map the obtained Illumina reads to Ensemble GRCh38r100 7 

human cDNA and ncRNA sequences, added up the reads for each gene using MAPQ ≥ 8 

1 transcript, and obtained average counts of 28,652,809 and 28,291,682 reads for each 9 

sample at 24 h and 48 h, respectively. From these, we selected only transcription 10 

factor-related genes included in the Gene Ontology GO:0006351 using BioMart (4,032 11 

genes). These genes were filtered using the statistical analysis language R-4.0.5 package 12 

edgeR71 (https://www.r-project.org/) with the filterByExpr function min.count = 30, 13 

min.total.count = 0, and then normalized to log2 counts per million (logCPM) using the 14 

voom function. Furthermore, the removeBatchEffect function was used to eliminate 15 

batch effects.  16 

 17 

Differentially expressed gene analysis and principal component analysis 18 

At 24 h and 48 h, for a total of 122 groups including 120 conditions (five concentrations 19 

each for 24 chemicals) and two solvent conditions (DMSO or water), we used a linear 20 
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model fitting with the lmFit function of the limma package72 in R and moderated 1 

t-statistics with eBayes to analyze DEGs with respect to gene expression levels in terms 2 

of the LFC between 24 chemicals and their corresponding solvent73, and created a 3 

heatmap of genes with an LFC > 1 and FDR (false discovery rate) < 0.01 using the 4 

pheatmap package in R (Fig. 1c, Fig. S2). In addition, using the LFC values obtained 5 

for 120 conditions, PCA was performed for each of the two time points (24 h, 48 h) 6 

using the prcomp function in R (Fig. 1d, Fig. S3). 7 

 8 

Gene network construction by Graphical Gaussian Model (GGM) 9 

Based on results obtained in the aforementioned PCA, a total of 20 genes (two genes 10 

each with the top positive and negative loading values in the first to fifth PCs) were 11 

used to construct gene networks. To estimate the GGM for each of the 24 chemicals, we 12 

used the aforementioned LFC values to calculate the sparse partial correlation 13 

coefficient network with L1 graphical lasso using EBICglasso in the R package qgraph 14 

(https://cran.r-project.org/web/packages/qgraph/qgraph.pdf)74. For model fitting, regular 15 

BIC with gamma = 0 was used, and regularization of sparsity was tried 1000 different 16 

ways with nlambda = 1000 for estimation. In the estimation, in order to avoid the 17 

problem of covariance matrices failing to be positive definite, calculations were 18 

performed with checkPD=FALSE (Fig. 2a, Fig. S4, Fig. S5). 19 

 20 
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Prediction by support vector machine (SVM) 1 

The SVM program and protocol used in the present study were adopted according to the 2 

report of Takahashi et al.75 Four kernel functions were used: linear, polynomial, RBF, 3 

and maximum entropy, and parameter types and combinations were calculated 4 

according to the above report75. In the calculation, 190 values of partial correlation 5 

coefficients among 20 genes in the GGM for each of the 24 chemicals described above 6 

were used as input data, and using LOOCV, the genes were ranked using the 7 

two-sample t-test (two-sided) in each iteration, and the maximum accuracy and the 8 

maximum AUC to achieve the maximum accuracy were recorded, varying the number 9 

of values from 1 to 190. To statistically evaluate the maximum accuracy and AUC, 24 x 10 

190 uniform random numbers were generated 10 times, and the maximum accuracy 11 

with the maximum AUC were recorded in a similar fashion. One-sample t-test 12 

(one-sided) was performed with the average values and standard deviations of 13 

maximum GGM accuracies and AUCs obtained from these 10 attempts. For 14 

comparison, LFC data for the transcription factor genes at five concentrations before 15 

calculating the GGM (24 x 5 x 3,200 or 3,255 values in total) were used as input data, 16 

and the maximum accuracy and the corresponding AUC value were recorded in a 17 

similar manner. In addition, to compare with predictions based on QSAR, 5,666 18 

molecular descriptors were created using alvaDesc (Affinity Science) 19 

(https://www.alvascience.com/alvadesc/). We obtained information from PubChem DB 20 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.05.466718doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.05.466718


(https://pubchem.ncbi.nlm.nih.gov/) 3D Conformer data regarding 20 of the 24 1 

chemicals; for the four other chemicals for which information could not be obtained 2 

from PubChem DB (cisplatin, cyclosporin A, digoxin, and gentamicin), the SMILES 3 

format was converted into 3D molecular descriptors using CORINA Classic 4 

(https://www.mn-am.com/online_demos/corina_demo) and entered into alvaDesc. 5 

 6 

Gene set enrichment analysis 7 

We created LFC data for all genes by performing the same preprocess as for the 8 

transcription factor genes (21,650 and 22,298 genes for 24 h and 48 h, respectively) and 9 

divided them into high-dose (1/1/, 1/2) and low-dose (1/8, 1/16) groups to perform 10 

GSEA for each group using the R package fgsea76. As for the gene sets used, among the 11 

MSigDB Collections provided by GSEA (https://www.gsea-msigdb.org/gsea/index.jsp), 12 

we used 50 hallmark gene sets. The heatmap was generated with FDR-adjusted p values 13 

obtained using the fgsea package. 14 

 15 

Selection of HPS4138 iPS cells 16 

The measurement of the differentiation potential to the three germ layers was performed 17 

according to a previous report15, where we examined the expression ratio of two marker 18 

genes for each layer (PAX6, SOX2, BRA, NCAM, SOX17, and FOXA2) by means of 19 

fluorescence activated cell sorting. Among the ranked Japanese male cell lines derived 20 
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from healthy individuals, we used the top 20 cell lines according to their total ratios15. 1 

These cell lines were kept in maintenance culture with StemFit AK02N medium 2 

(Ajinomoto) and then cultured for two passages in maintenance culture using Essential 3 

8 Medium (Thermo Fisher Scientific) as in the case of KhES-3. Among the 20 cell 4 

lines, one underwent cell death, and the remaining 19 were subjected to pre-screening 5 

using 20 chemicals with a wide range of toxicities (valproic acid, cyclopamine, 6 

acrylamide, acetonylacetone, chlorpromazine, chlorpheniramine, atorvastatin, 7 

amiodarone, verapamil HCl, dimethoate, arsenic trioxide, quinidine, axitinib, 8 

doxorubicin, gentamicin, ibuprofen, lithocholic acid, thioacetamide, butylated HA, and 9 

methapyrilene HCl) by comparing the ATP assay results with those for ES cells. The 10 

details of the ATP assay are described above. For exposure concentrations, the IC50 11 

determined with KhES-3 was used, and the growth rate of human iPS cells was 12 

examined. Among the candidate cell lines, the top three cell lines (HPS4138, HPS4234, 13 

and HPS4046) whose growth rates at IC50 correlated well with that of KhES-3 were 14 

selected, and again, the growth rate at IC50 was confirmed by the ATP assay using 20 of 15 

the 24 toxic chemicals examined in the present study (Table S6) to select the cell line 16 

with the largest correlation coefficient, i.e., HPS4138. 17 

 18 

Gene expression data from HPS4138 by RT-qPCR 19 
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The five serial exposure concentrations of the 24 chemicals for iPS cells were 1 

determined by the ATP assay, as described above with respect to ES cells. For each of 2 

the 20 genes at 24 h and 48 h used for the construction of the GGM for ES cells, the 3 

primer sequence pair was designed using Primer 3 (version 0.4.0) based on the human 4 

cDNA sequence data obtained from Ensembl GRCh38r100, and the obtained primer 5 

sequence pair was synthesized (Hokkaido System Science). We confirmed whether the 6 

target PCR product could be obtained from the primer sequence pair according to the 7 

product size determined by electrophoresis. On day 2 after seeding, HPS4138 cells were 8 

exposed to the 24 chemicals. With regard to exposure concentrations, time points, and 9 

repeat experiments, we followed the experiments performed with ES cells. After 10 

purification using an RNeasy Mini Kit, RNA was transcribed to cDNA using a 11 

PrimeScriptTM RT Reagent Kit (Perfect Real Time) (TaKaRa), and the synthesized 12 

primers for qRT-PCR and KAPA SYBR Fast qPCR Kit (KAPA BIOSYSTEMS) were 13 

used to perform qRT-PCR with StepOnePlus (Applied Biosystems). ΔCT values of the 14 

resulting genes were obtained by subtracting from the CT values the value of the internal 15 

control (GAPDH gene). The average value of two repeated measurements at each 16 

concentration was determined. In addition, for solvents (DMSO and water), ΔCT values 17 

were obtained by subtracting the value of GAPDH gene, and the average of all values 18 

was determined. The difference, ΔΔCT, between the ΔCT value at each concentration 19 

and that of the solvent was determined and is referred to as LFC. Covariance matrices 20 
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among the 20 genes were calculated and used as input data in the construction of the 1 

GGM. 2 

 3 

Transductive transfer learning by SVM 4 

A total of 380 edges in the GGM of ES cells and the GGM of iPS cells were used to 5 

perform the prediction of chemicals in the six toxicity categories under conditions 6 

similar to the SVM protocol described above. For learning, labels of the 24 chemicals in 7 

ES cells were provided, whereas none of the labels of the 24 chemicals in iPS cells were 8 

provided (i.e., zero); prediction was performed via transductive transfer learning. As in 9 

the case of ES cells, prediction was also performed by replacing with uniform random 10 

numbers 10 times only the values of the 24 x 190 input data for iPS cells, and similar to 11 

ES cells, the one-sample t-test (one-sided) was used to assess the maximum accuracy 12 

and the corresponding AUC value. 13 

 14 

DATA AVAILABILITY 15 

The source code of analysis program and the data supporting the findings of this study 16 
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and are accessible through GEO series accession number GSE188203. 19 

 20 
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Chemical name * CAS RN M.W. NT HT CT GT TT NGC

Acetonylacetone 110-13-4 114.14 Nervous System
Diseases [26] NA NA NA NA NA

Acrylamide 79-06-1 71.08 Nervous System
Diseases [26] Liver Diseases [36] NA NA NA Group B2

https://www.epa.gov/iris

Amiodarone 1951-25-3 645.3 Cerebellar Diseases [27]

DILIrank: 8 (Most-DILI-
Concern)
LiverTox: Likelihood
score: A

Cardiotoxicity [41] Glomerulonephritis,
Membranous [54] NA NA

AmitriptylineHCl 549-18-8 313.9 Nervous System
Diseases [28]

DILIrank: 5 (Less-DILI-
Concern)
LiverTox: Likelihood

Arrhythmias, Cardiac
[42] NA NA NA

Atorvastatin 134523-00-5 558.6

Hemorrhagic Stroke:
[https://www.drugs.com/
sfx/atorvastatin-side-
effects.html]

DILIrank: 5 (Most-DILI-
Concern)
LiverTox: Likelihood
score: A

NA NA NA NA

Axitinib 319460-85-0 386.5 NA LiverTox: Likelihood score:
E*

Cardiotoxicity [41]
Heart disease [43]

Proteinuria:
[https://www.drugs.com/
sfx/axitinib-side-
effects.html]

NA NA

Bucillamine 65002-17-7 223.3 NA NA NA Nephrotic Syndrome [55] NA NA

ButylatedHA 25013-16-5 180.24 NA NA NA NA NA
Group 2B
Precancerous
Conditions [66]

Chlorpheniramine 132-22-9 274.79 NA

DILIrank: 0 (No-DILI-
Concern)
LiverTox: Likelihood score:
E

NA NA NA NA

Chlorpromazine 50-53-3 318.9 Parkinsonian Disorders
[29]

DILIrank: 2 (Less-DILI-
Concern)
LiverTox: Likelihood score:
A

Cardiomyopathies [44] NA NA NA

Cisplatin 14913-33-8 300

Peripheral Neuropathy:
[https://www.drugs.com/
sfx/cisplatin-side-
effects.html]

DILIrank: 3 (Less-DILI-
Concern)
LiverTox: Likelihood
score: C

NA NA Acute Renal Failure [59]

Group 2A
http://ntp.niehs.nih.gov/n
tp/roc/eleventh/profiles/s
053cycl.pdf

Cyclopamine 4449-51-8 411.6 NA NA NA NA NA NA

CyclosporinA 59865-13-3 1202.6 Abducens Nerve
Diseases [30]

DILIrank: 7 (Most-DILI-
Concern)
LiverTox: Likelihood
score: C

Heart Diseases [45] NA Acute Kidney Injury [60]

Group 1
http://ntp.niehs.nih.gov/n
tp/roc/eleventh/profiles/s
053cycl.pdf

Digoxin 20830-75-5 780.9 Cognition Disorders [31]

DILIrank: 0 (No-DILI-
Concern)
LiverTox: Likelihood score:
E

Heart arrest [46] NA NA

Group 2B
https://monographs.iarc.
who.int/list-of-
classifications

Doxorubicin 23214-92-8 543.5 Spinal Cord Diseases
[32]

DILIrank: 3 (Less-DILI-
Concern)
LiverTox: Likelihood
score: B

Arrhythmias, Cardiac
[47] Albuminuria [56] NA

Group 2A
https://monographs.iarc.
who.int/agents-
classified-by-the-iarc/

Gentamicin 1403-66-3 477.6 Hearing Loss [33] LiverTox: Likelihood score:
E Heart Diseases [48] NA Kidney Tubular

Necrosis, Acute [61] NA

Ibuprofen 15687-27-1 206.28 Meningoencephalitis [34]

DILIrank: 3 (Less-DILI-
Concern)
LiverTox: Likelihood
score: A

Heart Septal Defects,
Ventricular [49] NA Kidney Tubular

Necrosis, Acute [62] NA

Itraconazole 84625-61-6 705.6 NA

DILIrank: 8 (Most-DILI-
Concern)
LiverTox: Likelihood
score: B

Heart Failure [50] NA Kidney Diseases [63] NA

LithocholicAcid 434-13-9 376.6 NA Liver Cirrhosis [37] NA NA NA
Precancerous
Conditions [67] [68]
Cystic fibrosis [69]

MethapyrileneHCl 135-23-9 297.8 NA Liver Neoplasms [38] NA NA NA Precancerous
Conditions [70]

Sunitinib 557795-19-4 398.5 NA

DILIrank: 8 (Most-DILI-
Concern)
LiverTox: Likelihood
score: B

Arrhythmias, Cardiac
[51] Proteinuria [57] NA NA

Thioacetamide 62-55-5 75.14 NA Hepatic Insufficiency [39]
Liver Cirrhosis [40] NA NA NA

Group 2B
http://ntp.niehs.nih.gov/n
tp/roc/eleventh/profiles/s
172thio.pdf

ValproicAcid 99-66-1 144.21 Central Nervous System
Diseases [35]

DILIrank: 8 (Most-DILI-
Concern)
LiverTox: Likelihood
score: A

Heart Septal Defects,
Atrial [52] NA Kidney Diseases [64] NA

VerapamilHCl 152-11-4 491.1 NA

DILIrank: 3 (Less-DILI-
Concern)
LiverTox: Likelihood
score: B

Ventricular Fibrillation
[53] Kidney Diseases [58] Kidney Tubular

Necrosis, Acute [65] NA

* Chemical names are given by referring to PubChem (2021.4.20 ver.).
Bold characters indicate positive toxicity.

NT, Neurotoxin; HT, Hepatotoxin; CT, Cardiotoxin; GT, Glomerular toxin (Renal toxin); TT, Tubular toxin (Renal toxin); NGC, Non-genotoxic carcinogen

Table 1. List of 24 chemicals
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NT (13) HT (15) CT (13) GT (6) TT (7) NGC (9)
Mean Accuracy (%) 85.8 83.7 83.3 87.5 87.0 87.0

 SD 8.13 6.92 6.81 6.21 6.65 5.38

Mean AUC 0.86 0.82 0.85 0.88 0.86 0.87

SD 0.09 0.11 0.09 0.07 0.11 0.06

Mean Accuracy (%) 85.8 83.7 83.3 87.5 87.0 87.0

 SD 8.13 6.92 6.81 6.21 6.65 5.38

Mean AUC 0.86 0.82 0.85 0.88 0.86 0.87

SD 0.09 0.11 0.09 0.07 0.11 0.06

Accuracy (%) 83.3 70.8 83.3 83.3 91.7 83.3

AUC 0.83 0.76 0.90 0.82 0.86 0.60

Accuracy (%) 75.0 75.0 79.2 79.2 75.0 66.7

AUC 0.73 0.73 0.83 0.83 0.74 0.76

Accuracy (%) 62.5 75.0 75.0 83.3 79.2 66.7

AUC 0.71 0.73 0.78 0.66 0.61 0.79

Accuracy (%) 83.3 91.7* 87.5 87.5 79.2 91.7
AUC 0.73 0.99* 0.91 0.83 0.76 0.97*

Accuracy (%) 87.5 83.3 91.7* 91.7 91.7 83.3

AUC 0.93 0.79 0.9 1.00* 1.00* 0.80

 p< 0.05
*p< 0.01

NT, Neurotoxin; HT, Hepatotoxin; CT, Cardiotoxin; GT, Glomerular toxin (Renal toxin); TT, Tubular toxin (Renal toxin); NGC, Non-genotoxic carcinogen

SD, Sample standard deviation; AUC, Area Under the ROC Curve; GGM, Graphical Gaussian Model

Table 2. Summary of prediction performance for KhES-3

GGM network
coefficient

24 h

48 h

24 h

48 h

RNA-seq
log fold
change

Molecular descriptors

Random

24 h

48 h
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NT (13) HT (15) CT (13) GT (6) TT (7) NGC (9)
Mean Accuracy (%) 81.6 82.5 80.8 89.5 85.0 81.2

 SD 3.49 3.82 4.89 2.95 4.49 5.65

Mean AUC 0.81 0.77 0.78 0.79 0.80 0.74

SD 0.06 0.08 0.07 0.08 0.10 0.11

Mean Accuracy (%) 81.6 82.0 80.4 88.7 86.2 81.2

 SD 5.27 4.82 5.21 2.03 4.43 4.04

Mean AUC 0.77 0.81 0.8 0.84 0.77 0.77

SD 0.09 0.05 0.07 0.10 0.13 0.08

Accuracy (%) 87.5* 87.5* 79.2 87.5 79.2 91.7*
AUC 0.90* 0.85* 0.81 0.84 0.71 0.82

Accuracy (%) 91.7* 83.3 79.2 95.8* 83.3 83.3

AUC 0.99* 0.85 0.75 0.94* 0.81 0.77

p< 0.05
*p< 0.01

NT, Neurotoxin; HT, Hepatotoxin; CT, Cardiotoxin; GT, Glomerular toxin (Renal toxin); TT, Tubular toxin (Renal toxin); NGC, Non-genotoxic carcinogen

SD, Sample standard deviation; AUC, Area Under the ROC Curve; GGM, Graphical Gaussian Model

Table 3. Prediction for HPS4138 cells

24 h

48 h

GGM network
coefficient

24 h

48 h

Random
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Fig. 1: Construction of a gene expression database for 24 chemicals
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Fig. 2: Prediction of six toxicity categories using KhES-3 cells
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Fig. 3: Summary of toxicity category prediction 
for 24 chemicals using HPS4138 cells
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Thioacetamide P 0.26 1.0

ValproicAcid P -0.57 1.0

VerapamilHCl P 0.01 1.0
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