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Abstract

Value-based decision-making is of central interest in cognitive neuroscience and psychology, as well
as in the context of neuropsychiatric disorders characterised by decision-making impairments. Studies
examining (neuro-)computational mechanisms underlying choice behaviour typically focus on participants’
decisions. However, there is increasing evidence that option valuation might also be reflected in motor
response vigour and eye movements, implicit measures of subjective utility.

To examine motor response vigour and visual fixation correlates of option valuation in intertemporal
choice, we set up a task where the participants selected an option by pressing a grip force transducer,
simultaneously tracking fixation shifts between options. As outlined in our preregistration (https://
osf.io/k6jct), we used hierarchical Bayesian parameter estimation to model the choices assuming
hyperbolic discounting, compared variants of the softmax and drift diffusion model, and assessed the
relationship between response vigour and the estimated model parameters.

The behavioural data were best explained by a drift diffusion model specifying a non-linear scaling
of the drift rate by the subjective value differences. Replicating previous findings (Green et al., 1997;
Wagner et al., 2020a), we found a magnitude effect for temporal discounting, such that higher rewards
were discounted less. This magnitude effect was further reflected in response vigour, such that stronger
forces were exerted in the high vs. the low magnitude condition. Bayesian hierarchical linear regression
further revealed higher grip forces, faster response times and a lower number of fixation shifts for trials
with higher subjective value differences.

Our data suggest that subjective utility or implicit valuation is reflected in response vigour dur-
ing intertemporal choice. Taking into account response vigour might thus provide deeper insight into
decision-making, reward valuation and maladaptive changes in these processe, e.g. in the context of
neuropsychiatric disorders.
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Response vigour during intertemporal choice

1. Introduction

Motivation entails the willingness to perform effortful actions in order to obtain rewards. In-
dividuals normally adapt the level of effort expended to the expected utility of a reward. An
adequate adjustment of effort to expected utility is crucial to ensure reward receipt, whilst avoiding
unnecessary energy expenditure. Whether a reward is worth a given effort depends on its expected
(subjective) utilty. The expected utility of a reward does not equal its utility in an absolute sense,
but is contingent upon both intraindividual and external factors. For instance, rewards that
are temporally more distant are typically devaluated, resulting in a preference for smaller, but
sooner rewards, over larger, but later rewards, a process known as temporal discounting (Odum,
2011; Peters & Büchel, 2009). Likewise, rewards associated with costs of physical effort are also
devaluated, a process referred to as effort discounting (Klein-Flügge, Kennerley, Saraiva, Penny, &
Bestmann, 2015; Prévost, Pessiglione, Météreau, Cléry-Melin, & Dreher, 2010).

The degree of discounting delayed rewards has been linked to a range of harmful behaviours
and psychiatric conditions, including impulsivity, substance abuse and addiction (for a review, see
Moreira & Barbosa, 2019). For instance, individuals suffering from substance use disorders appear
to be biased towards choosing immediate compared to delayed, but larger, rewards (Karakula et
al., 2016; Yi, Mitchell, & Bickel, 2010).

Key brain circuits involved in value-based decision-making include the medial prefrontal
cortex and striatum. Here, brain activity correlates with subjective value in a variety of tasks,
such as valuation of goods and intertemporal choice (Chib, Rangel, Shimojo, & O’Doherty, 2009;
Kable & Glimcher, 2007; Levy & Glimcher, 2011). The devaluation of rewards by both cognitive
and physical effort appears to be associated with BOLD activation in mostly overlapping neural
structures (Chong et al., 2017).

It is well established that midbrain dopaminergic neurons play a central role in decision
making and reward processing (Rogers, 2011; Schultz, 2010). Direct evidence for the involvement
of dopamine in effort-based decision making comes from studies in patients with Parkinson’s
disease (PD) and from pharmacological studies manipulating dopamine transmission. In patients
with PD, effort-based decision-making appears to be disrupted – they have been found to exert
less force for rewards compared to healthy controls, and to exert less force when being off
compared to on their dopaminergic medication (Chong et al., 2015; Le Bouc et al., 2016). In turn,
pharmacological enhancement of dopamine transmission via levodopa in healthy participants
increased the force levels exerted to obtain high vs. low rewards. Following debriefing, none
of the participants reported to excert higher forces to obtain high rewards (Michely et al., 2020),
suggesting that the behaviour reflects an implicit motivational process (Michely et al., 2020).

Pessiglione and colleagues (2007) found that participants exert more force to obtain higher
rewards even in cases where the rewards have only been presented subliminally. Also, across
different social contexts (collaborative and competitive), force production was strongly related
to subjective utility, and increased with absolute monetary value (Le Bouc & Pessiglione, 2013).
Further, subjective utility in value-based decision making is reflected in eye movement vigour
(Shadmehr, Reppert, Summerside, Yoon, & Ahmed, 2019). For instance, as participants approach
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Response vigour during intertemporal choice

their decision, eye movement vigour (i.e. peak velocity of a saccade as a function of amplitude)
becomes greater for the preferred reward option, and the difference in eye movement vigour is
closely linked to the difference in assigned subjective values of the options (Reppert, Lempert,
Glimcher, & Shadmehr, 2015).

While value-based decision making is a complex process requiring information integration,
value computation and comparison, in most experimental settings, the process of evaluating a
reward’s utility is often inferred from the participants’ choices only. However, from the above
findings it appears that measures of response vigour may provide additional insights into moti-
vation and value-based decision making rather than measures of choice behaviour alone. In the
present study, we therefore investigated if measures of response vigour, specifically gaze shifting
and handgrip force applied during choice selection, may serve as implicit measure of outcome
utility and decision conflict during intertemporal choice. In contrast to the incentive force task
used by Pessiglione and colleagues (2007; 2013), where the force applied was directly related to the
payout and visually fed back to the participants, we captured implicit motivational processes by
keeping the amount of force produced hidden from the participants and unrelated to the payout.
Besides being instrumental in obtaining a reward, the allocation of effort may also be a correlate of
the underlying evaluation process. We further included an experimental manipulation known to
substantially affect reward valuation during temporal discounting, the magnitude effect (Ballard et
al., 2017; Green et al., 1997). This effect describes the reduction in discount rates (i.e. the increase
in subjective utility) that occurs during intertemporal choice for increasing reward amounts, and
we explored whether this effect is also reflected in the handgrip response.

Models of value-based decision making, including temporal discounting, typically implement
action selection using the softmax function (Sutton & Barto, 2018). We extend this approach by
jointly modelling the choices and response times (RTs) with the drift diffusion model (Ratcliff
& McKoon, 2008, DDM), a form of sequential sampling model for two-alternative forced choice
tasks. The drift diffusion model assumes that choices are driven by a noisy accumulation process,
which terminates as soon as the level of accumulated evidence has reached one of two response
boundaries. The model’s strength lies in the incorporation of both choices and RTs in the model
estimation. It has proven to be a useful model in explaining choice behaviour and RTs during
value-based decision making in our and other’s prior work (Fontanesi, Gluth, Spektor, & Rieskamp,
2019; Krajbich, Armel, & Rangel, 2010; Peters & D’Esposito, 2020; Shahar et al., 2019; Wagner et al.,
2020a).

We analysed the relationship between the subjective value differences as derived from the
estimated drift diffusion model parameters and the force applied and fixation shifts during
response selection. Further, we assessed the relationship between decision conflict and response
vigour. As outlined in the preregistration of our study (https://osf.io/k6jct), we tested the
following hypotheses:

(i) Delay influences reward evaluation: Participants show a preference for smaller, but sooner
rewards over larger, but later rewards (temporal discounting).
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Response vigour during intertemporal choice

(ii) Subjective utility modulates response times and grip force: Faster response times and
stronger effort (handgrip force) for choices with high utility (subjective value).

(iii) Decision conflict is reflected in the measures of response vigour: Longer deliberation
(response time), less vigour (grip force) and more frequent fixation shifts between the
options during high-conflict decisions (choice options with similar subjective value).

(iv) Higher rewards are discounted less and elicit more effort: Lower discount rates, faster
response times, and greater vigour (grip force) for larger rewards (magnitude effect).

2. Methods

2.1. Sample

Based on the effect sizes of previous studies reporting a magnitude effect for temporal discounting
and handgrip force, respectively (Ballard et al., 2017; Green et al., 1997; Pessiglione et al., 2007), a
power analysis yielded a sample size of N = 20 (effect size Cohen’s dz = 1.1698 and dz = -0.7481,
respectively, α error probability = .05, power = .95, one-tailed paired t-test). We doubled the sample
size and tested 42 participants in total. As two participants had to be excluded due to technical
issues, the final sample consisted of N = 40 participants (30 women, 34 right-handed, 39 with
German Abitur, 1 with German Mittlere Reife or GCSE), aged 18 to 39 (M = 23.95, SD = 4.90).

The participants were recruited through university bulletins, mailing lists and by word-of-
mouth recommendation. Eligibility criteria included normal or corrected-to-normal vision and
German as first language (or profound German language skills). Participants with strongly
impaired vision, strabismus and psychiatric disorders were excluded. The study was approved by
the local institutional review board and all participants provided informed written consent.

2.2. Task

The study was implemented as one-group, repeated-measures within-subject design, including
two conditions. The participants performed 192 trials of an intertemporal choice task, whereby
they had to choose between smaller-but-sooner (SS) and larger-but-later (LL) rewards. On one half
of the trials, the SS reward was lower (10e, low condition), and on the other half the SS reward
was higher (20e, high condition). The SS reward was always available immediately, while the
LL reward consisted of combinations of sixteen percentages of the SS reward value [1.03 1.05
1.10 1.15 1.20 1.25 1.35 1.45 1.50 1.70 1.90 2.20 2.50 2.90 3.30 3.80] and six delay periods [1 7 13
31 58 12]. The order of the trials and the assignment of the options to the left and right side
of the screen were presented in randomised order. An option was preselected through visual
fixation. For this purpose, we used an eyetracking system (SensoMotoric Instruments, Model:
RED 500, sampling rate: 500 Hz) to track the gaze patterns and to give real-time feedback to
the participant, highlighting the currently fixated reward option. For highlighting the fixated
option, the corresponding screen areas were defined as follows: Left area <= 1

10 screen pixels of
x-coordinate x 4, middle area >= 1

10 screen pixels of x-coordinate x 4 and <= 1
10 screen pixels of
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x-coordinate x 6, right area >= 1
10 screen pixels of x-coordinate x 6. The responses were logged

using a hand dynamometer measuring grip force (BIOPAC Systems, Inc., Model: TSD121C,
isometric range: 0 - 100 kgf). The measured variables included the participants’ choices, response
times, fixation shift patterns and handgrip force applied during response selection, as well as their
maximum handgrip force.

2.3. Data collection

The measurements took place at the Psychology Department of the University of Cologne. The
participants were financially reimbursed for participation and additionally received the payout
from one randomly selected trial (restricted to maximum 40 e). During testing, the participants
were seated in a dimly lit, electrically and acoustically shielded room, with their head placed in a
chinrest. Prior to the experiment, they were instructed to press the handgrip with maximal force
three times in succession with their dominant hand. The procedure was disguised as calibration
procedure. The participants were further instructed that, as long as the threshold for logging a
response is reached, the level of force exerted is irrelevant to the task structure.

2.4. Data analyses

2.4.1 Preprocessing

All logfiles were checked for stereotypic response patterns (exclusively SS or LL choices), none
were found. We excluded trials with response times below 200 ms or above 10 s, and trials
with maximum grip force values falling below the threshold for logging a response (technical
issue with faulty signal on parallel port). In total, 139 trials (1.81% of trials) from 26 participants
were excluded. The gripforce data were further baseline-corrected to zero, normalised to each
participant’s maximal voluntary contraction (MVC, greatest force exerted over three contractions),
and smoothed with a moving average of 50 samples.

2.4.2 Computational modelling of behaviour

Temporal discounting model
Ensuing from previous research on the effects of immediacy vs. delay on choice behaviour, we
assume temporal discounting to be hyperbolic (Green, Myerson, & Macaux, 2005; Mazur, 1987).
We quantified the discount rates using a model-based approach of hyperbolic discounting. To
capture the choice behaviour in both conditions within a single model, we fitted a single subject-
specific discount rate parameter k (estimated in logarithmic space), modelling the discount rate in
the low condition, plus a subject-specific parameter s, modelling the change in the discount rate
from the low compared to the high condition.

SV(LL)t =
At

1 + ek+It∗sk ∗ IRIt
(1)
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Here, SV is the subjective (discounted) value of the delayed reward and A is the amount of the
LL reward on trial t. K is the (subject-specific) discount rate for the low condition (in logarithmic
space), s is a (subject-specific) shift in log(k) from the low to high condition, I is a condition
indicator variable (zero for low trials, one for high trials), and IRI is the inter-reward-interval.

Softmax choice rule
The softmax choice rule models the probability of choosing the LL reward on trial t as

P(LL)t =
eβ∗SV(LLt)

eβ∗SV(LLt) + eβ∗SV(SSt)
(2)

SV is the subjective value of the LL option, and β is an inverse temperature parameter, describing
the stochasticity of the choices (for β = 0 the choices are random, while as β increases, the choices
become increasingly dependent on the values of the options).

Drift diffusion model
We further modelled the participants’ choices using the drift diffusion model (DDM), whereby the
softmax choice rule is replaced by the drift diffusion choice rule. For the boundary definitions
of the DDM, we applied stimulus coding, with the lower boundary defined as choosing the SS
reward, and the upper boundary defined as choosing the LL reward. For this purpose, choices
towards the lower boundary were multiplied by -1. When using absolute RT cut-offs, single
fast trials force model parameters to adapt these trials und hence lead to a poor model fit at the
single-subject level (Peters & D’Esposito, 2020). We therefore excluded each participant’s slowest
and fastest 2.5% trials from the analysis. The response time on trial t is distributed following the
Wiener first passage time (WFPT):

RTt ∼ w f pt(α, τ, z, υ) (3)

The parameter α reflects the boundary separation (modelling a speed-accuracy trade-off), τ is the
non-decision time (modelling processing time unrelated to the decision process), υ is the drift rate
(modelling the rate of evidence accumulation), and z is the starting-point bias (modelling a bias
towards one of the boundaries). Using the JAGS Wiener module (Wabersich & Vandekerckhove,
2014), z may range between 0 and 1, whereby z = .5 indicates no bias in either direction, z < .05
indicates a bias towards the lower boundary (SS option), and z > .05 indicates a bias towards the
upper boundary (LL option).

First, we fitted a null model (DDM0) without value modulation. This model comprises four
parameters (α, τ, z, and υ), which are constant across trials for each participant. To connect the
drift diffusion model with the valuation model (see equation 1), we implemented two further
models comprising a function which links the trial-by-trial variability in the drift rate υ to the
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value differences. First, we realised a linear model (DDMlin), following Pedersen, Frank, and Biele
(2017):

υt = υcoe f f ∗ (SV(LLt)− SV(SSt)) (4)

The parameter υcoe f f maps the value differences onto the drift rate υ and transforms these
differences to the proper scale of the DDM (Pedersen et al., 2017). As a last step, we implemented
a sigmoid model (DDMsig), entailing a non-linear transformation of the scaled value differences
with an S-shaped function as proposed by Fontanesi, Gluth, Spektor, and Rieskamp (2019), where
S is a sigmoid function centred at zero with slope m and asymptote ± υmax:

υt = S(υcoe f f ∗ (SV(LLt)− SV(SSt))) (5)

S(m) =
2 ∗ υmax

1 + e−m − υmax (6)

Ensuing from this model, we also realised a shift model (DDMshift), including the parameters sα,
sτ , sz, sυ, sυcoe f f , and sυmax to model changes in the parameter distributions from the low to high
condition:

RTt ∼ w f pt(α + It ∗ sα, τ + It ∗ sτ , z + It ∗ sz, υ + It ∗ sυ) (7)

υt = S(υcoe f f + It ∗ sυcoe f f ∗ (SV(LLt)− SV(SSt))) (8)

S(m) =
2 ∗ (υmax + It ∗ sυmax )

1 + e−m − (υmax + It ∗ sυmax ) (9)

Since the drift rate depends on the absolute magnitudes of the values, which, in turn differ between
the low and high condition, condition effects are somewhat difficult to interpret. Extending the
modelling as set out in the preregistration plan, we therefore further compared the drift diffusion
models using absolute vs. normalised values (normalised by the maximum value of the LL reward
per magnitude condition).

Decision conflict
To assess the hypothesised relationship between decision conflict and response vigour, we consid-
ered two different operationalisations of decision conflict, based on
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(i) the softmax choice rule and choice probability of the chosen reward, whereby conflict is
defined from 1 (low conflict) to 5 (high conflict), with a probability of .05 of choosing the LL
reward as maximum conflict, and

(ii) the trial-wise drift rate, as derived from the DDM.

Further, extending our planned analyses, we assessed the relationship between response vigour
and the subjective value differences based on the estimated parameters of the best-fitting drift
DDM.

2.4.3 Measures of response vigour

Handgrip force
To examine the relationship between the characteristics of the handgrip response and the choice
behaviour and estimated model parameters (subjective value differences, choice probabilities
and decision conflict), we modelled the handgrip response on individual trials with a Gaussian
function of the form

f (x) = ae−( x−b
c )2

+ d (10)

using MATLAB’s fit function, where the coefficient a is the amplitude (height of peak), b the
centroid (centre of peak), c the width (width of peak) and d is a constant (to model offsets from
zero). The handgrip data were fitted trial-wise per participant. To test for a magnitude effect in the
gripforce response, we used frequentist significance tests (one-tailed for amplitude and centroid, see
hypothesis iv [section 1], significance threshold set at .05, not corrected for multiple comparisons).

Gaze shifting
Using the eye tracking data, we assessed the relationship between the frequency of gaze shifts
between the choice options and the associated decision conflict (see section 2.4.2). We defined
fixation shifts as the number of switches between the left and right option (skipping middle
fixations, see also section 2.2).

2.4.4 Relationship between value difference, conflict and response vigour

To assess the relationship between conflict and response vigour, we regressed response vigour
(single-trial Gaussian grip force model parameters and number of fixation shifts) onto the response
conflict measures. We fitted a hierarchical Bayesian linear regression of the form

yt = α + β1 ∗ at + β2 ∗ bt + β3 ∗ ct + β4 ∗ dt (11)

where y is the conflict on trial t, operationalised either (1) based on the choice probabilites from the
softmax model (see section 2.4.2), (2) as the trial-wise drift rate, based on the estimated parameters
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of the best fitting drift diffusion model, or (3) as the value difference between the (discounted) LL
and SS reward on trial t, based on the estimated subject-specific k parameters of the DDM (see
Equation 1).

Since we observed no relationship between response vigour and conflict, neither for choice
probability (softmax model) nor trial-wise drift rate (DDM), we extended our analyses plan and
also regressed response vigour on the (absolute) subjective value differences. We reasoned that
this might be attributable to the fact that both predictors are insensitive to increasingly higher
value differences: in the softmax model, these are mapped to a conflict of 0, whereas in the DDM
these are mapped to a maximum drift rate of vmax. The estimated grip force parameters a, b,
and c, and the number of fixation shifts were within-subjects z-standardised before entering the
regression. The parameter d corresponds to the absolute number of fixation shifts between the
options. Since we exluded each participant’s slowest and fastest 2.5% of trials within the scope of
the drift diffusion model (see section 2.4.2), the respective trials were likewise removed from the
gripforce and gaze data.

We report Bayes factors (BFs) for directional effects (Kass & Raftery, 1995) for the β - hyper-
parameters, via kernel density estimation in MATLAB (The MathWorks, Inc., version R2019a).
The Bayes factors are defined as the ratio of the integral of the posterior distribution from - ∞ to
0 versus the integral from 0 to ∞. We consider BFs between 1 and 3 as anecdotal evidence, BFs
between 3 and 10 as moderate evidence, BFs between 10 and 30 as strong evidence, BFs between
30 and 100 as very strong evidence, and BFs above 100 as extreme evidence for the H1. The inverse
of these values reflect the corresponding evidence for the H0 (Beard, Dienes, Muirhead, & West,
2016; Lee & Wagenmakers, 2013). We further report the posterior highest density intervals (HDI)
along with the regions of practical equivalence (ROPE, limits for β = ±0.05 as for standardised
variables) (Kruschke, 2018) for the posterior distributions of the regression coefficients.

2.4.5 Parameter estimation and model comparison

The parameter distributions of the softmax, drift diffusion and regression models were estimated
through Markov chain Monte Carlo (MCMC) simulation as implemented in JAGS (Plummer, 2003,
version 4.3.0), using MATLAB (The MathWorks, Inc., version R2019a) and the MATJAGS inferface
for JAGS (Steyvers, 2018, version 1.3.2). We implemented a hierarchical Bayesian framework, in
which the parameters for each subject are drawn from group-level gaussian distributions. We ran
two chains with a burn-in period of 50,000 samples and thinning of two. We determined chain
convergence of the chains such that R̂ ≤ 1.01 (Gelman, Rubin, et al., 1992). For comparing the
variants of the drift diffusion models, we ranked them according to the deviance information
criterion (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002, DIC).

2.4.6 Posterior predictive response time distributions

To ensure that the best-fitting model reflects and reproduces the observed data, we simulated
10,000 datasets based on the posterior distributions of the respective hierarchical model. For
each individual participant, the model-predicted RT distributions were smoothed with a kernel
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smoothing function using density estimation (using MATLAB’s ksdensity function) and overlaid
onto the observed RT distributions.

3. Results

3.1. Model-free analyses

The participants made significantly more LL selections in the high (M = 63.00, SD = 19.28) as
compared to the low (M = 53.30, SD = 21.09) magnitude condition (t(39) = -10.12, p < .001, one-
tailed), reflecting the predicted magnitude effect. However, such a magnitude effect was not
present in the response time patterns. The mean RTs were not significantly different between
the low (M = 3.03, SD = 0.69) and high (M = 3.03, SD = 0.67) condition (t(39) = -0.01, p = .498,
one-tailed).

3.2. Softmax choice rule

Table 1: Group-level mean estimates and 95% HDIs
of log(k), slog(k) and β using the softmax choice rule.

SMabs SMnorm

log(k) -4.44 (-5.07 to -3.79) -4.44 (-5.04 to -3.82)
slog(k) -0.80 (-0.90 to -0.70) -0.74 (-0.86 to -0.64)

β 0.43 (0.05 to 0.72) 27.23 (14.80 to 38.54)

Note. HDI: highest density interval

We modelled the choices using the soft-
max choice rule, using both the absolute
and normalised reward values. As hy-
pothesised, we found a magnitude effect
for temporal discounting, indicated by
the negative shift parameter slog(k), which
models the change in log(k) from the
low to the high condition (see Table 1).
We observed a close correspondence of
the parameter estimates from the softmax
model based on absolute vs. normalised values, except for β (see Figure 1), which scales with the
value differences (see Equation 2).

Figure 1: Posterior distributions of the group-level parameter means from the softmax models
based on absolute (SMabs) and normalised (SMnorm) values. log(k): discounting parameter, s: shift
in log(k), β: temperature parameter. Horizontal solid lines indicate the 85% and 95% highest
density interval.
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Response vigour during intertemporal choice

3.3. Drift diffusion modelling

3.3.1 Model comparison

We compared the fit of different variants of the DDM, including models with a linear (DDMlin) and
non-linear scaling (DDMsig, and DDMsig-shift) of the drift rate by the subjective value differences,
and a model including parameters to model changes in the parameter distributions from the low
to high condition (DDMsig-shift). As a baseline comparison, we formulated a model comprising
no value modulation (constant drift rate, DDM0). Further, we assessed the fit of all models using
absolute vs. normalised values (see section 2.4.2). The models implementing a non-linear scaling
of the drift rate provided a superior fit to the data compared to models with a linear scaling.
This was true for models operating on absolute and normalised values. Also, both the linear and
non-linear models provided a superior fit compared to the DDM0, see Table 2 and 3.

Table 2: Model comparison of the variants of the drift diffusion models of temporal discounting
using absolute values.

Value scaling Value function DIC Rank

DDM0 - - 26830 4
DDMlin Linear Hyperbolic 24769 3
DDMsig Sigmoid Hyperbolic + shift 22213 2
DDMsig-shift Sigmoid Hyperbolic + shift 22179 1

Note. DIC = deviance information criterion; 0: no value scaling of the drift rate; lin: linear value scaling of the
drift rate; sig: sigmoid value scaling of the drift rate. The DDMsig-shift includes additional shift parameters
for α, τ, z, υ, υcoe f f , and υmax to models changes from the low to high condition.

Table 3: Model comparison of the variants of the drift diffusion models of temporal discounting
using normalised values.

Value scaling Value function DIC Rank

DDM0 - - 26830 4
DDMlin Linear Hyperbolic 24286 3
DDMsig Sigmoid Hyperbolic + shift 22210 2
DDMsig-shift Sigmoid Hyperbolic + shift 22170 1

Note. DIC = deviance information criterion; 0: no value scaling of the drift rate; lin: linear value scaling of the
drift rate; sig: sigmoid value scaling of the drift rate. The DDMsig-shift includes additional shift parameters
for α, τ, z, υ, υcoe f f , and υmax to models changes from the low to high condition.

3.3.2 Posterior predictive response time distributions

To verify that the best-fitting model can reproduce the observed RT distributions, we examined the
posterior predictive RT distributions per participant (see section 2.4.6). The posterior predictive RT
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distributions of the DDMsig-shift (using normalised values), along with the observed response time
distributions, are depicted in Figure 2 (see Figure ?? for the posterior predictive response time
distributions of the DDMsig-shift using absolute values). The comparison showed that the model
captures the characteristics of the response time distributions well.

Figure 2: Posterior predictive response time distributions of the DDMsig-shift (using normalised
values) for each participant, overlaid on the histograms of the observed RT distributions.

3.3.3 Analysis of model parameters

In general, the estimated non-decision times τ were longer than in typical laboratory experimental
setups (> 1000 ms), comparable to the estimated non-decision times from a recent study using a
VR environment, where the particpants logged their responses using VR-compatible controllers,
as opposed to simple response keys (Bruder, Scharer, & Peters, 2021). This is likely due to the
task’s requirement of preselecting an option through visual fixation before finally selecting it using
the hand dynamometer. Further, we observed a positive association between the value differences
and trial-wise drift rates, as indicated by the consistently positive drift rate coefficient parameter
vcoe f f (see Table 4 and 5).

Magnitude effects on model parameters
For all models with value modulation of the drift rate, we observed an effect of reward magnitude
on slog(k) (see Table 4), reflecting reduced discounting in the high compared to the low magnitude
condition. This was also true for the models operating on normalised values (see Table 5). The
starting point parameter z was close to .5, indicating no strong bias towards either decision bound-
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ary, (SS rewards), with a rather small shift towards the upper boundary in the high magnitude
condition. The effects of reward magnitude on the other parameters were negligible.

Effects of value normalisation
Comparing the models based on absolute vs. normalised values, we observed a good correspon-
dence of all model parameters, with the exception of vcoe f f and vcoe f fshi f t

, which of course scale
directly with value differences.

Table 4: Parameter group means and 95% HDIs of the posterior distributions of the drift diffusion
models using absolute values.

DDM0 DDMlin DDMsig DDMsig-shift

α 2.72 (2.59 to 2.86) 2.90 (2.76 to 3.04) 3.27 (3.09 to 3.43) 3.23 (3.05 to 3.41)
sα - - - 0.09 (-0.01 to 0.19)
τ 1.30 (1.22 to 1.39) 1.30 (1.23 to 1.39) 1.23 (1.15 to 1.31) 1.23 (1.15 to 1.31)
sτ - - - 0.01 (-0.01 to 0.04)
z 0.53 (0.52 to 0.55) 0.53 (0.51 to 0.56) 0.51 (0.49 to 0.52) 0.50 (0.49 to 0.52)
sz - - - 0.02 (0.00 to 0.03)
υ 0.18 (0.04 to 0.31) - - -
υcoe f f - 0.05 (0.04 to 0.05) 0.77 (0.61 to 0.94) 0.78 (0.62 to 0.95)
sυcoe f f - - - -0.08 (-0.17 to 0.01)
υmax - - 1.07 (0.98 to 1.16) 1.10 (1.01 to 1.19)
sυmax - - - -0.04 (-0.11 to 0.03)
log(k) - -4.42 (-5.08 to -3.78) -4.45 (-5.07 to -3.83) -4.47 (-5.07 to -3.85)
slog(k) - -0.52 (-0.71 to -0.34) -0.82 (-0.93 to -0.71) -0.77 (-0.89 to -0.65)

Note. HDI: highest density interval; 0: no value scaling of the drift rate; lin: linear value scaling of the drift
rate; sig: sigmoid value scaling of the drift rate; s: shift parameter for the changes in parameter value from
the low to high magnitude condition.
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Table 5: Parameter group means and 95% HDIs of the posterior distributions of the drift diffusion
models using normalised values.

DDM0 DDMlin DDMsig DDMsig-shift

α 2.72 (2.59 to 2.86) 2.95 (2.81 to 3.09) 3.27 (3.10 to 3.45) 3.24 (3.05 to 3.41)
sα - - - 0.07 (-0.03 to 0.18)
τ 1.30 (1.22 to 1.39) 1.30 (1.22 to 1.38) 1.23 (1.15 to 1.31) 1.23 (1.15 to 1.31)
sτ - - - 0.02 (-0.01 to 0.04)
z 0.53 (0.52 to 0.55) 0.53 (0.51 to 0.56) 0.51 (0.50 to 0.52) 0.50 (0.49 to 0.52)
sz - - - 0.02 (0.00 to 0.03)
υ 0.18 (0.04 to 0.31) - - -
υcoe f f - 3.00 (2.68 to 3.32) 39.44 (31.68 to 47.92) 38.11 (30.11 to 46.90)
sυcoe f f - - - 2.58 (-0.24 to 4.40)
υmax - - 1.07 (0.99 to 1.16) 1.05 (0.96 to 1.14)
sυmax - - - 0.04 (-0.02 to 0.10)
log(k) - -4.19 (-4.78 to -3.60) -4.48 (-5.13 to -3.87) -4.49 (-5.14 to -3.88)
slog(k) - -0.75 (-0.90 to -0.60) -0.79 (-0.92 to -0.68) -0.76 (-0.89 to -0.64)

Note. HDI: highest density interval; 0: no value scaling of the drift rate; lin: linear value scaling of the drift
rate; sig: sigmoid value scaling of the drift rate; s: shift parameter for the changes in parameter value from
the low to high magnitude condition.

3.4. Response vigour

The grip force responses were modelled with a Gaussian function (see Figure 3, 1 term plus
constant, mean (range) goodness-of-fit across all trials and participants: R-squared = 0.98 (0.29 -
1.00), adjusted R-squared = 0.98 (0.29 - 1.00), root-mean-square error = 0.004 (0.0002 - 0.16). The
parameter means (amplitude, centroid and width) per condition (low, high) are listed in Table 6, for
mean values per participant and condition see Figure ??.

Since the data were non-normal (as assessed with Lilliefors test tests yielding p < .001 for all
tests), we performed Wilcoxon signed-rank tests to check for parameter differences between the
low and high condition. In line with our preregistered hypothesis, the amplitude was significantly
higher for the high compared to the low condition (z = 1.90, p =.029, one-tailed). In contrast to
our preregistered hypothesis, the centroid, and also the width, did not differ between conditions (z
= 0.73, p = .768, one-tailed, and z = 1.75, p = .081, two-tailed). Within-subject differences of the
parameters between the two conditions are depicted in Figure ??.
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Table 6: Parameters of the gaussian-modelled grip
force responses (means and standard deviations).

Low condition High condition

Amplitude 0.2142 (0.1414) 0.2179 (0.1448)
Centroid 6294.04 (3071.99) 6302.33 (3046.76)
Width 265.66 (98.03) 267.49 (98.36)

Note. Amplitude has been normalised to MVC (maximal
voluntary contraction).

Figure 3: Modelled grip response of three trials (14, 152 and 180) from one participant.

3.4.1 Decision conflict and response vigour

Conflict based on choice probability (softmax model)
Our first operationalisation of response conflict was based on the softmax choice probabilities.
Because condition effects are more straightforward to interpret in the normalised model (see
section 3.2), the following analyses are based on this model. The mean values for amplitude,
centroid and number of gaze shifts for trials of a given response conflict (binned from 1 to 5) are
depicted participant-wise in Figure 4 and listed in Table 7. The Bayesian regression is based on a
continuous conflict measure (probabilities > .5 are ‘flipped’ to provide a common scaling from low
to high conflict, whereby .5 represents the maximum conflict). The posterior distributions of the
group-level parameter means for the regression coefficients are depicted in Figure 5 (medians: α =
0.12 [intercept] β1 = -0.01 [amplitude], β2 = 0.02 [centroid], β3 = -0.004 [width], β4 = 0.001 [N gaze
shifts]).
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Table 7: Mean amplitude, centroid and number of gaze shifts per
conflict bin.

1 2 3 4 5

Amplitude 0.2188 0.2128 0.2102 0.2135 0.2137
Centroid 5885.39 6536.03 6412.59 6557.73 6632.03
Gaze shifts 2.79 3.52 3.05 3.17 3.42

Note. Conflict is defined from 1 (low conflict) to 5 (high conflict), with a
probability of .5 of choosing the LL reward as maximum conflict. Amplitude
has been normalised to MVC (maximal voluntary contraction).

Figure 4: Mean amplitude and centroid of the Gaussian-modelled grip force response and mean
number of gaze shifts (from SS to LL, and vice versa) for trials of a given (binned) response conflict
for each participant. Thick lines depict the mean values across participants. Conflict is defined
from 1 (low conflict) to 5 (high conflict), with a probability of .5 of choosing the LL reward as
maximum conflict.
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Figure 5: Hierarchical Bayesian regression results. Regression of the parameters of the Gaussian-
modelled grip force response onto the trial-wise response conflict based on the choice probabilities
(softmax model). Posterior distributions of the group-level parameter means. α: intercept, β1:
coefficient for amplitude, β2: coefficient for centroid, β3: coefficient for width, β4: coefficient for
fixation shift. Horizontal solid lines indicate the 85% and 95% highest density interval. Vertical
solid lines indicate x = 0, and vertical dashed lines indicate the lower and upper bounds of the
region of practical equivalence (ROPE).

The Bayes factors for the regression coefficients for amplitude, centroid, and width of the grip
response, and for the numbers of fixation shifts provide only anecdotal evidence for values greater
than zero vs. smaller than zero (BF for β1: 0.95, BF for β2: 1.25, BF for β3: 0.97, BF for β4: 1.09).
Since the 95% HDIs of all the posterior distributions fall neither completely inside nor outside the
ROPE, we remain undecided for all three β regression coefficients.

Conflict based on subjective value differences (DDM)
The second operationalisation of response conflict was based on the trial-wise drift rate calcu-
lated based on the estimated parameters of the highest-ranked DDM using normalised values
(DDMsig-shift). Since we found no evidence that any of the regression coefficients for response
vigour were greater than vs. smaller than zero (or vice versa), we refer the reader to section S1 of
the supplementary material.

Finally, we regressed the estimated grip force parameters amplitude, centroid and width, and
the number of fixation shifts onto the subjective value differences between the (discounted) LL
and SS rewards, based on the subject-specific k parameters of the highest-ranked model using
absolute values (DDMsig-shift). Recall that the analyses of the magnitude effect yielded an effect
of condition, i.e. higher grip force amplitudes in the high compared to the low condition (see
3.4). Because condition differences in reward magnitudes are eliminated in the DDM based on
normalised values (section S2), the regression on subjective value differences is based on the DDM
using absolute values.

The mean values for amplitude, centroid and number of gaze shifts for trials of a given
value difference bin are depicted participant-wise in Figure 6. The posterior distributions of the
group-level parameter means for the regression coefficients are depicted in Figure 7. The medians
of the group-level posterior distributions were as follows: α = 3.33 (intercept) β1 = 0.46 (amplitude),
β2 = -1.20 (centroid), β3 = 0.19 (width), β4 = -0.48 (N gaze shifts).
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Figure 6: Mean amplitude and centroid of the Gaussian-modelled grip force response and mean
number of gaze shifts (from SS to LL, and vice versa) for trials of a given value difference bin.
The (absolute) value differences were z-standardised and binned participant-wise into 3 groups
of equal size (based on quantile ranks of the values, 1: lower value differences, 3: higher value
differences). Thick lines depict the mean values across participants.

Figure 7: Hierarchical Bayesian regression results. Regression of the parameters of the Gaussian-
modelled grip force response onto the value differences (DDM). Posterior distributions of the
group-level parameter means. α: intercept, β1: coefficient for grip force amplitude, β2: coefficient
for grip force centroid, β3: coefficient for grip force width, β4: coefficient for fixation shift.
Horizontal solid lines indicate the 85% and 95% highest density interval. Vertical solid lines
indicate x = 0, and vertical dashed lines indicate the lower and upper bounds of the region of
practical equivalence (ROPE).

The Bayes factors provide very strong evidence that the coefficient for amplitude is greater than
zero vs. smaller than zero (BF for β1: 79.50), extreme evidence that the coefficient for centroid is
below zero vs. above zero (BF for β2: > -10308), moderate evidence that the regression coefficient
for grip force width is greater than zero vs. smaller than zero (BF for β3: 5.06), and very strong
evidence that the coefficient for number of fixation shifts is smaller vs. greater than zero (BF for
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β4: 69.61). For β3 we remain undecided, since the 95% HDI of the posterior distribution is neither
completely inside nor outside the ROPE. For β2 we reject the null value (95% HDI of posterior
distribution entirely outside ROPE). For β1 and β4 we also reject the null value, since the 95%
HDIs do not include zero and only 0.23% and 1.41% of the 95% HDI, respectively, overlap with
the ROPE. This indicates higher grip force amplitudes, faster response times and a lower number
of fixation shifts for trials with higher subjective value differences between the options.

4. Discussion

We explored whether value computation and response conflicts during intertemporal choice
are reflected in measures of response vigour. For this purpose, we measured the handgrip
force applied during choice, and the concurrent gaze shift patterns between the choice options.
Assuming hyperbolic discounting, we compared variants of the softmax and drift diffusion model
and assessed the relationship between the estimated model parameters and response vigour. The
intertemporal choice task comprised two conditions, a low and high magnitude condition (low vs.
high SS reward), which allowed us to directly assess the impact of overall smaller vs. larger reward
magnitudes on response vigour. To represent both conditions in a single model, we included
shift parameters to model the changes in parameter values from the low to the high magnitude
condition.

We compared models with a linear and non-linear (sigmoid) modulation of the drift rate by
the subjective value differences, and, since the drift rate parameter is dependent on the absolute
magnitude of the option’s values, models using absolute vs. normalised option values. We then
analysed the relationship between decision conflict and response vigour, in particular the trial-wise
amplitude, centroid and width of the Gaussian-modelled grip force response and the number
of fixation shifts between the options. Further, we investigated if the magnitude effect, which
describes reduced discounting for higher amounts (Ballard et al., 2017; Green et al., 1997), is also
reflected in the grip force strength.

The choice and response time (RT) data were best accounted for by a DDM including a non-
linear modulation of the drift rate by the subjective value differences. As in previous studies,
(Green et al., 1997; Wagner et al., 2020a), we found a magnitude effect for temporal discounting,
indicating that higher rewards were discounted less. This effect was also evident in response
vigour: Higher forces were applied in the high vs. the low magnitude condition. In addition, trials
with higher subjective value differences between the options were associated with higher grip
forces, faster response times and a lower number of fixation shifts.

Model comparison
The choice and RT data were best accounted for by a drift diffusion model specifying a non-linear
mapping between the subjective value differences and trial-wise drift rates. Following the DIC
criterion, the variants of the DDMs implementing a transformation of the scaled value differences
using a sigmoid function (Fontanesi et al., 2019) provided a superior fit to the data compared to
both the DDM using a linear modulation and the DDM involving no value modulation. We found
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a close correspondence between the observed response time distributions and the response time
distributions simulated using the estimated posterior parameter distributions, demonstrating that
the best-fitting model captured the characteristics of the response time distributions reasonably
well.

Magnitude effect
Replicating previous findings (Ballard et al., 2017; Green et al., 1997; Wagner et al., 2020a), we
found a magnitude effect for temporal discounting, such that higher rewards were discounted
less. While the model-free analysis revealed more LL choices in the high compared to the low
magnitude condition, the magnitude effect was further reflected in the log(k)shi f t parameter, which
was consistently negative in all variants of the softmax and drift diffusion models. Importantly,
this magnitude effect was also reflected in response vigour: Looking at the amplitude parameter
of the Gaussian-modelled gripforce response, we found that stronger forces were excerted in the
high compared to the low magnitude condition. Contrary to our hypothesis, the RTs were not
significantly different between the two conditions. The effect of reward magnitude on the discount
rate (reduced discounting for higher rewards) appears to be a consistent effect (Ballard et al., 2017;
Green et al., 1997; Wagner et al., 2020a), and our data reveal that this effect is reflected in both
choice behaviour and motor response vigour (grip force) during response selection.

Decision conflict and response vigour
First, we carried out a model-based analysis of the trial-wise grip force time courses. A gaussian
model, decomposing grip force time courses into amplitude, centroid and width parameters for
each trial provided an excellent fit to the single-trial grip force trajectories (mean R-squared = .98).
We then analysed the relationship between decision conflict and the trial-wise response vigour
measures, operationalising decision conflict based on the choice probability as derived from the
softmax choice rule, and based on the trial-wise drift rate, as derived from the best-fitting DDM.
Contrary to our hypothesis, however, we found no relationship between decision conflict and
response vigour. However, regressing response vigour directly on the subjective value differences
(based on the estimated parameters of the best-fitting DDM, we found that the amplitude and
centroid of the grip response, as well as the number of fixation shifts were significantly related
to these. With increasing subjective value differences between options, grip force amplitude
increased, and RTs and the number of fixation shifts decreased.

The null effects for the conflict measure based on the softmax model likely arise because for
large value differences, the conflict predictor approaches zero. The second regression was based
on the drift diffusion model using a non-linear (sigmoid) scaling of the drift rate by the subjective
value differences, so we speculate that the null effects for conflict based on the drift rate arise
because the drift rate does not scale linearly with the value differences (as the value difference
exceeds an individual threshold, the corresponding drift rate is mapped to vmax). We therefore
assume that the effects we find when regressing response vigour directly on the subjective value
differences are driven by trials with large absolute value differences. Taken together, these results
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suggest that the observed associations between value differences and grip force parameters are
driven by absolute value differences, rather than decision conflict.

This suggests that valuation or implicit motivation could be reflected in these measures. In
contrast to Pessiglione and colleagues (2007), where the force produced was related to payout
(reward height magnitude was presented subliminally), we kept the force produced unrelated
to the payout. Therefore, even when the force produced is unrelated to the payout (and the
participants are unaware that force production is being measured), it is nonetheless related to
the subjective value difference between the options. Also, interestingly, although physical effort,
similar to delay, is considered a decision cost (Klein-Flügge et al., 2015; Prévost et al., 2010), the
participants nonetheless applied more force in trials with higher values differences. This leads us
to the conclusion that motivational processes are reflected in response vigour.

Dopamine and response vigour
Although dopamine neurotransmission was not measured in the present study, the observed
effects might be mediated by dopamine. For example, pharmalogical enhancement of dopamine
transmission increases the willingness of animals to accept delays and to expend effort to obtain
rewards (for a review, see Webber, Lopez-Gamundi, Stamatovich, de Wit, & Wardle, 2020). Two
studies with human subjects also reported higher force production in states with augmented
dopamine transmission (Chong et al., 2015; Le Bouc et al., 2016; Michely et al., 2020). Further, aug-
mented dopamine transmission increased response vigour (reduced reaction times) in a temporal
discounting and reinforcement learning task (Rihet, Possamaï, Micallef-Roll, Blin, & Hasbroucq,
2002; Westbrook et al., 2020; Wagner, Clos, Sommer, & Peters, 2020b).

Relevance
Several maladaptive behaviours and psychiatric conditions, including impulsivity, substance use
disorders and behavioural addictions, have been linked to increased discount rates (see, e.g.
Karakula et al., 2016; Steward et al., 2017; Wiehler & Peters, 2015; Yi et al., 2010). Our results
suggest that in addition to choices and response times, measures of response vigour may provide
information regarding valuation during intertemporal choice.

The integration of reward and effort involves dopaminergic computations (see, e.g. Michely
et al., 2020). Congruously, effort-based decision making appears to be disrupted in conditions
related to dopaminergic function, such as major depressive disorder and Parkinson’s disease
(Le Bouc et al., 2016; Yi et al., 2010), underlining the relevance of measuring response vigour
during value-based decision making.

Limitations
Finally, there are some limitations to our study. Since the usage of a force transducer functions as a
single key, some method of preselecting one of two options is necessary. Choice selection was thus
implemented such that an option was preselected by visual fixation and selected by subsequently
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pressing the force transducer. Hence, an option could only be chosen if it was concurrently fixated,
which may have restricted the gaze patterns.

Although, based on the literature, an involvement of dopamine in the effects examined here is
likely, dopamine neurotransmission was neither measured nor manipulated. Future studies would
benefit from examining this in greater detail.

Conclusions
In the present work, we investigated response vigour, specifically gaze shifting and grip force
applied during response selection as an implicit measures of subjective utility during intertemporal
choice. Comparing variants of the drift diffusion model, we found that the choices and response
times were best accounted for by a drift diffusion model that included a non-linear scaling of
the drift rate by the subjective value differences. A magnitude effect for temporal discounting
was apparent in both choice and response vigour, such that higher rewards were discounted less
and selected with higher grip force. Further, the peak forces (grip force amplitudes), response
times (grip force centroids) and the number of fixation shifts were related to the subjective value
differences between the options. Normalising the options’ values across conditions eliminated
these effects. We conclude that the effects were likely driven by large absolute value differences
between the options. The force applied was unrelated to the payout and the participants were not
informed that force production was measured. Nonetheless, it was related to the subjective value
differences between the options, suggesting that valuation or implicit motivation is reflected in
response vigour. Future studies might explore the extend to which neuropsychiatric disorders
associated with impairments in decision-making and effort are likewise associated with changes
in such implicit measures of motivation.
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