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Abstract

Loops in proteins play essential roles in protein functions and interactions. The structural

characterization of loops is challenging because of their conformational flexibility and relatively

poor conservation in multiple sequence alignments. Many experimental and computational

approaches have been carried out during the last few decades for loop modeling. Although the

latest AlphaFold2 achieved remarkable performance in protein structure predictions, the

accuracy of loop regions for many proteins still needs to be improved for downstream

applications such as protein function prediction and structure based drug design. In this paper,

we proposed two novel deep learning architectures for loop modeling: one uses a combined

convolutional neural network (CNN)-recursive neural network (RNN) structure (DeepMUSICS)

and the other is based on refinement of histograms using a 2D CNN architecture (DeepHisto). In

each of the methods, two types of models, conformation sampling model and energy scoring

model, were trained and applied in the loop folding process. Both methods achieved promising

results and worth further investigations. Since multiple sequence alignments (MSA) were not

used in our architecture, the energy scoring models have less bias from MSA. We believe the

methods may serve as good complements for refining AlphaFold2 predicted structures.
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Introduction

Loops are protein fragments with an irregular structure connecting two secondary structural

elements (usually α-helices and β-strands) and are important players in many biological

processes. Their conformational plasticity plays a critical role in molecular recognition, allosteric

control, binding of small molecules, and signaling [1-6]. As part of the overall protein scaffold,

in some cases, loops adopt a relatively stable conformation in the folded state of the protein.

Based on this static perspective, some efforts have been made to classify loop structures [7].

Conformational changes in loop regions, on the other hand, are frequently observed in various

biological systems. For example, extracellular loops of G-Protein-Coupled Receptors (GPCRs)

are critical for ligand recognition and binding [8]. Besides, the flexibility of loops is essential to

drive enzyme function or regulation [9]. The concept of the energy landscape is used to better

comprehend the dynamic nature of loops by providing a proper description of their

conformational space [10]. Although a single loop can exist in numerous configurations, they are

not all equally likely to be adopted. The likelihood of each feasible state is proportional to its

associated free energy. However, due to its flexibility and irregularity, predicting the ground

state for the loop has always been a challenge in the biological field.

Flexible loops are difficult to investigate and characterize structurally. As the most extensively

used experimental approach for determining high-resolution protein structures, X-ray

crystallography only offers static snapshots in certain experimental conditions[11]. Other

experimental approaches, like X-ray solution scattering[12] or nuclear magnetic resonance

(NMR)[13], can provide highly useful structural and kinetic information about these flexible

regions, but only to a limited extent. Because obtaining a good atomistic description of the loop's

various conformations from experimental observations is extremely challenging, computational

methods are an important alternative to the research.

Generally speaking, the process of loop modeling can be divided into three major stages: (1)

conformational sampling, (2) energy scoring, and (3) post-processing or refinement. Over the

last few decades, a variety of approaches to protein loop modeling have been proposed. Overall,

there are three main classes: knowledge-based, ab initio, and hybrid approaches. Knowledge-
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based methods, also known as template-based, use structural repositories to extract observed

loop conformations for a particular sequence and geometric information about the anchoring

positions [14-17]. These approaches are computationally efficient in general since they do not

depend on expensive simulations. However, they are constrained by the availability of acceptable

loop conformations from known protein structures and only produce a limited number of

solutions. Ab initio techniques, on the other hand, can sample a more significant proportion of

the conformational space, for instance, by an exhaustive sampling of the loop's torsional angles

[18-19]. However, their computational costs are relatively high, and the methods are limited to

short loops. For the hybrid approaches, many of them use small fragments from structural

databases within an ab initio sampling technique [20-24] to achieve more balanced performance.

Most recently, deep learning methods using neural networks have dramatically impacted the

computational biology field, including protein structure predictions [25-27]. AlphaFold2 was

developed and achieved remarkable performance in CASP14[28], which is recognized to have

solved the protein structure prediction problem at a similar level with experiments. Later

RoseTTAFold was also developed, incorporating related ideas, and approach similar accuracy

with AlphaFold2[29]. Even AlphaFold2 predicted the structures of many challenging protein

targets near experimental resolution, but it was still weak for regions that have few intra-chain

contacts, such as loops. Fig. 1 shows an example that AlphaFold2 performs prediction for the

heavy chain on a Fab fragment (pdb id: 1mh5, chain: B). The overall prediction (red) had an

excellent agreement with the native structure (blue), but the H3 loop region (yellow) had a space

need to be improved. And the confidence score (plddt) of AlphaFold2 was also reduced at the H3

loop region compared with other parts. A recent DeepH3 based on deep learning was proposed,

but it still reports limitations on long H3 loops with more than 12 residues [30].

In this study, we designed and trained deep learning models for torsion sampling and energy

scoring of loop modeling based on the 3D coordinate information as input. We used sequential

chain-growth to perform simulated annealing folding given initial structure conformations. The

test within training loops results in an average RMS of 1.39Å for loops with 16 residues.
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On the other hand, because a change at a residue affects the inter-residue distances between all

preceding and subsequent residues, using 3D coordinate information are highly interdependent.

Figure 1: Snapshot of the predicted structure of 1mh5B (residue 1-117) by AlphaFold2 (red)

aligned with the native structure (blue). The H3 loop region is colored green for native structure

and yellow for modeled structure. The chart shows residue-wise RMSD (red) and predicted lddt

(plddt from AlphaFold2, blue) as a function of residue index. The H3 loop region is labeled by

an orange bar.

The fragment needs to be predicted residue by residue without whole structure adjustment,

leading to frustrate learning. Using 2D projections of 3D protein structure data, such as residue-

residue contact map or distance map, is another way to represent the protein structure system.

The advantage of such 2D projections includes translational and rotational invariance. Besides,

the invariant information such as bone length and bone angle information which we relied on the

machine learning model to learn from 3D structure, could also be implicitly included in the 2D

projections. Plenty of previous work has been done to predict contact map from a multiple

sequence alignment (MSA) and got decent structure prediction based on the predicted map, such

as DeepMetaPSICOV[31], RaptorX-Distance[32], trRosetta[33], and AlphaFold[34] developed
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by DeepMind which significantly improved the accuracy of “free modeling” (no templates

available) targets in CASP13[35]. Under the assumption that better contact information would

lead to a better structure prediction, we propose a method to refine the atom-atom distance

matrix from a decoy structure and do the structure refinement based on the refined distance map.

Our distogram-guided refinement procedure improved 61.69% out of 154 fragments in our

distogram refinement test dataset.

Materials and Methods

1. Loop modeling

Cut-regrow sequential chain-growth
We use a sequential chain-growth method to generate the structure of the target loop when its

starting and ending positions are decided. The detail of the procedure is shown in Fig. 2. With

the starting N atom, the CA atom can be grown with given ω torsion. ω torsion is sampled based

on its distribution in the database. Typically, except for proline(P), ω torsion should be around

180 degrees, while ω torsion of P could also be around zero. Therefore, we sample ω with

Gaussian distribution around 180 degrees for all 20 amino acid types, but the special amino acid

proline has some probability of being sampled around zero. Then C and CB atoms are grown

with φ torsion sampled from trained neural network model and given torsion for CB. Similarly,

the next N and O atoms are grown with ψ torsion sampled from the trained model and given

torsion for O. When the growth comes to the CA atom within two residues of the N atom

following the ending position, the analytical closure will be carried out to close the loop. It is not

guaranteed that each growth can generate a closed loop, and we only keep those successful

growths. For the bond lengths, bond angles, and torsion angles of CB and O, we use the value

from DISGRO[21]. Those values are kept fixed except for analytical closure that we give small

fluctuations to increase the success rate of growth.

The Monte Carlo cut-regrow scheme with simulated annealing is used to refine the whole

fragment of the target loop. We randomly choose the cutting length and starting position to do
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regrowth many times following the sequential chain-growth process above. Then one regrowing

structure with the lowest E is selected with the energy E as defined:

� = ���_�� + 0.03 ∗ (100 − ���_��)
This E considers the importance of both rms and GDT in characterizing the structure, and the

coefficient balances their weights. To accept or reject this regrowth, we use the Metropolis-

Hastings probability regulated by simulated temperature:

prob =
0 (∆E > 0)
�−∆�/� (∆E < 0)

Where ∆E = Ef - Ei, is the difference between the E after and before regrowth, and temperature T

is decaying during the refinement process when a certain cycle of iterations is met as

Tf = Ti × decay_coeff
The parameters initial temperature T0 and decay_coeff need to be tuned to fulfill a fast and

efficient refinement process.

Figure 2 The flow of sequential chain-growth

Torsion model and Energy function model
Torsion sampling model
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We designed a set of torsion prediction models (18 models in total) categorized by the length of

growth (2 residues to 10 residues) and type of torsion angles (phi and psi). Take a length 10

fragment as an example, and the initial and final residues in this fragment were i and i+9. The

input was two 3D gridded boxes, the center of one box (large box) located at the center point

between two N atoms of the residues i-1 and i+10, and the center of the other box (small box)

located at CAi-1 for phi angle and Ni for psi angle. All the backbone atoms (C, CA, N, O) beyond

the target fragment but within the box were included, which were labeled as one of 4 types. We

also added a pseudo- CB atom to GLY. The CB atom at residue i had bond length for CAi- CBi

bond as 1.521 Å, bond angle Ni-Ci-CAi as 110.4°, and dihedral angle Ni-Ci-CAi-CBi as 122.55°.

The CB atom beyond the target fragment but within the boxes were included as labeled as one of

20 types corresponding to 20 types of amino acid. The phi model also included the atoms Ni and

CAi in the target fragment, and this CAi was labeled as the 25th type to indicate the head of the

grown fragment. The psi model used Ci-1 as the indicator of the head, which was labeled as the

25th type. The atom Ni+10 was labeled as the 26th type to indicate the tail of the grown fragment.

The edge size of the small box was 16 Å for all models, and the size of large boxes were 18.0 Å,

18.0 Å, 20.0 Å, 24.0 Å, 28.0 Å, 32.0 Å, 34.0 Å, 38.0 Å and 40.0 Å for fragment length 2 to 10.

With box size as BS, the input dimension was (Nb, BS, BS, BS, 26). The box was gridded with

each voxel of size (1 Å × 1 Å × 1 Å) for the small box and (2 Å × 2 Å × 2 Å) for the large box.

We smoothed the input data using three-dimensional truncated Gaussian functions. Each heavy

atom was represented by a Gaussian function, whose density was spread over the voxel the atom

occupies and the 26 adjacent voxels. Each model took two boxes as input and output the

predicted phi or psi for the first residue of the fragment.

The model consisted of two sets of sequential residual neural network (ResNet) blocks. Each set

contains four ResNet blocks. Each block includes two layers of three-dimensional convolutional

neural networks (CNN) with a kernel size of 3. The input boxes were fed into two sets separately

and concatenated together after global average pooling. The vector was fed to a dense layer with

400 nodes, followed by the output layer outputs the predicted angle into 360 bins with the

SoftMax as the activation function. We use the rectified linear unit (ReLU) as the activation

function for all layers except the output layer. We use the categorical cross-entropy as the loss

function and Adam for optimization. The learning rate is 0.0002, and the batch size is 100.
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We choose 2187 protein structures with the sequence's identity lower than 30% from PDB[36].

All the structures are determined by X-ray crystallography with a resolution better than 2.0 Å and

do not have any DNA/RNA/UNK molecules. We use 80% of this dataset to train the torsion

angle prediction model, 10% for validation, and 10% for testing.

The trained torsion models result in good efficiency in sampling the loops. We will use those

models for all the simulations we did in this paper.

Energy scoring model

The input was the 3D conformation of the growth fragment captured by a series of 3D gridded

boxes with an edge length of 18 Å centered at the CA atom of each residue. For each residue, the

box was rotated to make its CA-C bond lying along the '-x' axis and its CA-N bond lying on the

x-y plane. Each atom type is represented by a different channel (analogous to RGB color

channels in images). Twenty-four channels are used, corresponding to atoms C, CA, N, O, OXT,

and 20 types of CB atoms. All the boxes were fed into four ResNet blocks, and each block

consists of two CNN layers with a kernel size of 3. The output vectors were fed into a

bidirectional long short-term memory (LSTM) network, followed by global average pooling, two

dense layers with node numbers as 128 and 32, and then an output layer with a linear activation

function to predict the RMSD score. We use ReLU as the activation function for all layers except

the output layer. The learning rate is 0.00005, and the batch size is 50.

Monte Carlo beam search
When generating near-native structures and structures based on the target distogram mentioned

below, we use the Monte Carlo beam search algorithm and sequential chain-growth, as

illustrated in Fig. 3.

For the algorithm, we need a parameter ξ to evaluate each level and two parameters to control the

sampling: number of samples Ns and number to keep Nk. Typical for chain-growth, we can

choose evenly distributed torsion angles between 0 and 360 degrees in level 1 and choose the

best Nk nodes that minimize ξ. In level 2, we use the Nk nodes to continue Ns growth for each,

leading to total Ns*Nk samples. Then we choose the best Nk nodes out of Ns*Nk samples that

minimize ξ and move on to level 3. It is noticed that some nodes from level 1 may be eliminated
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like the first node in Fig. 3, and some may generate multiple sub-nodes. Besides, to sample more

efficiently, it is best to sample near the best torsion angle minimizing ξ within a range η. Here,

the three parameters Nk, Ns, and η control the quality of sampling. To get more diverse sampling

and a higher chance to find the global minimum of ξ, larger Nk, Ns, and η are better choices

while it may be costly in computation. So, the parameters need to be tuned to have good

performance in practice.

Figure 3 Monte Carlo beam search method. In this figure Ns = 3 and Nk = 4.

Training of energy model
In this work, we use two kinds of data to train our energy function model, which are named

FOLD_N and FOLD_M.

FOLD_N

FOLD_N represents native structure-oriented folding data. To generate this kind of data, we use

the RMS_CA and GDT_HA with respect to the native structure to calculate E during the cut-

regrow sequential chain-growth process. And for each iteration of cut-regrow, if the new

fragment is accepted, we record the 3D structure as one input data for our energy function model.

Data of different cutting lengths will be mixed to train one model, which is more efficient than

training different models for different cutting lengths. The initial structures are generated using
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DISGRO. Since this is native structure-oriented, most of the input data will lead to "good

outputs", which means low E states.

FOLD_M

The problem of only using FOLD_N data is obvious. It will primarily cover the near-native

space but not the folding space using models. To solve this, we introduced FOLD_M that is

similar to manual reinforcement. For FOLD_M, we use the model trained based on only

FOLD_N data to do cut-regrow sequential chain-growth, calculate E using the model's prediction,

and get the input data similarly as in the FOLD_N part. So, the true folding space using the

model will be included to enhance the model. Technically, this iteration can be repeated many

times to improve the model, while we only do it once in this work considering computation cost.

Asymmetric loss function

In actual practical trials, the model tends to be underestimated easily when we use the MSE loss

function. That means, for many states with high real E scores, the model will predict it with low

E scores. To deal with this, a Lin-Lin asymmetric loss function is introduced as follows

L(y, y�) =
2(y − y�) (y� < y)
0.5(y − y�) (y� > y)

where y� is the predicted value, and y is the true value. By this definition, when the prediction is

lower than the truth, the loss will be exaggerated while reduced vice versa.

2. Fragments of protein structure refinement guided by distogram
Instead of using a 3D structure as an input, we also design a method using an atom-atom

pairwise distance matrix as an input to refine a fragment. We train a sampling model and two

energy function models to refine the backbone structure of six-residues fragment pieces of

protein structures described below.

Data preparation
To refine a length six fragment from a 3D protein structure, we first calculate the distance of the

backbone atoms of this fragment with all the backbone atoms in the 3D structure and pick the

nearest 100 residues spatially. We only consider the backbone atoms C, CA, N, O, and CB,

where a pseudo- CB atom is added to GLY or any residue missing CB. We calculate the distance
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matrix of these 500 atoms with the 30 atoms in the target fragment and then convert this distance

matrix to one hot (500, 30, 81). We divide 0-10 Å into 50 bins, 10-25 Å into 30 bins, and all the

distances larger than 25 Å as one bin. We include the atom type for C, CA, N, O, and 20 types of

CB information for each atom pair and convert it to one hot (500, 30, 48). We also calculate the

absolute residue index distance for each atom pair (i, j) and calculate a residue distance score

Rdscore (500, 30, 1), which is defined as:

������� =− �− �−�

In this setup, we have input dimensions as (500, 30, 130), and the sampling model will output a

distance histogram (distogram) in dimension (500, 30, 81). We will use this predicted distogram

to generate a refined fragment.

We choose 2187 protein structures with the sequence's identity lower than 30% from PDB [36].

All the structures are determined by X-ray crystallography with a resolution better than 2.0 Å and

do not have any DNA/RNA/UNK molecules. We then split each protein chain into six-residues

pieces and get 81231 fragments in total. We use the torsion sampling model and the Monte Carlo

cut-regrow scheme to generate 25 sampled structures for each fragment. Another 20 near-native

structures are generated using Monte Carlo beam search with real RMS as ξ, and only those with

RMSD larger than 0.6 Å are kept. We randomly pick 80% protein chains (1749 protein chains,

129993 sampled fragments) as training data, 10% (218 protein chains, 15817 sampled fragments)

as validation data, and the rest 10% (220 protein chains, 16620 sampled fragments) as test data.

Sampling model
Figure 10(a) shows that the sampling model (MS) is 12 layers convolutional neural network. The

input has dimensions (Nb, 500, 30, 130), where Nb is the batch size, and 130 is the channel

number. In the first layer, we apply a 11 filter, which will create a linear projection of the

features, decreasing the feature number to 64. In all the convolution or transpose layers of this

model, we set stride as one and proper padding size to make the output dimension (H, W)

consistent with the input. The result will be fed into two convolution layers with filter size 22

and channel number increasing from 64 to 128 and 256. The result will be fed into three

convolution layers with filter size 3  3, channel numbers 256, 128, and 64. Six transpose

convolution layers are followed with the symmetric setting with the convolution layers, as shown
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in Figure 10 (a). The output finally will be fed into a 33 convolution layer with channel number

81, which will generate a refined distogram of the fragment with dimension (Nb, 500, 30, 81).

The neural network is constructed using the Keras library [37]. We use the rectified linear unit

(ReLU) as the activation function for all layers except the output layer, where we use the

SoftMax activation function. We use the categorical cross-entropy as the loss function and Adam

for optimization. The learning rate is 0.002, and the batch size is 20.

Our model is trained to generate a better distogram �� from a distance matrix x of a low-quality

structure:

�� = �(�)

To test the performance, we first calculate the predicted distance matrix ������(����) with

dimension (500, 30, 1) from the output distogram �� with dimension (500, 30, 81). Then we

calculate the dRMSD of ������(����) with the distance matrix of the native structure �����(���).

All the distances larger than 25 Å will be converted to 25 Å before comparison.

����� =
1

� ∙ �
�

�

�

�

���� − ���
2

��

Energy model
As shown in Figure 10 (b, c), we have trained two models to predict the root mean square

distance (RMSD) of a protein structure fragment compared with native structure by giving

distance matrix, atom types, and residues separation. The input of energy models is the same as

the sampling model, and the output is the predicted RMSD.

The baseline model (ME_resNet) contains three convolutional residual network (resNet)[38]

blocks, which consists of three 2D convolution layers followed by a batch normalization layer.

The size of filters in each residual block is kept the same but increases between blocks, which are

11, 22, and 33. The channel number is 256 for all convolution layers. We use global average

pooling to convert the 2D layers to 1D vectors and then feed the vector to a dense layer with 400

nodes. We use ReLU as the activation function for all layers except the output layer, where we

use the linear activation function to output the predicted RMSD. The learning rate is 0.002, and

the batch size is 20.
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The other energy model (ME_resNet_SD) is trained by using a dilated convolutional residual

network with stochastic depth [39] shown in Figure 10 (c). The “survival” probabilities of the six

blocks are set as 0.92, 0.83, 0.75, 0.67, 0.58, and 0.50. Each dilated residual block contains a 2D

CNN layer with batch normalization, then follows a 22 average pooling layer to reduce the

dimension of the matrix from (Nb, 500, 30, 128) to (Nb, 250, 15, 128). The size-reduced matrix

will be fed into a 33 2D dilated CNN layer with batch normalization. And then, a 2D transpose

CNN layer will be used to resume the matrix size back to (Nb, 500, 30, 128). The dilated rates for

each block are 1, 2, 4, 1, 2, 4, respectively. We use global average pooling to convert the 2D

layers to 1D vectors and then feed the vector to a dense layer with 400 nodes. We use ReLU as

the activation function for all layers except the output layer, where we use the linear activation

function to output the predicted RMSD. The learning rate is 0.002, and the batch size is 20.

Refinement pipeline
Figure 11 shows the pipeline that we use the sampling model (MS) and energy model (ME) to

refine a low-quality input fragment. The input is the 3D protein structure and the target fragment

residue numbers. The refinement will be repeated N iterations, and each iteration is shown as in a

simulation unit (SU). In each SU, the distance matrix and input feature will be calculated and fed

into MS to get the refined distogram. Based on this refined distogram, we generate ten sampled

3D structures of the fragment using the Monte Carlo beam search with distance to target

distogram as ξ. Then we will use ME to pick the one with the lowest predicted RMSD and output

the structure. We repeat the SU 100 times or terminate the process once no structure is generated

based on the predicted distogram. We randomly pick 154 fragment conformations (from 99 pdb

structures). We make two experiments: one with MS_EP34 (ME model, epoch 34) to generate

refined distogram, and ME_resNet_EP21 (ME_resNet model, epoch 21) to control output quality

for each step; the other one with MS_EP34 for sampling and ME_resNet_SD_EP13

(ME_resNet_SD model, epoch 13) for quality control.
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Results and Discussion

Loop modeling using chain-growth
MSE loss function VS asymmetric loss function

Fig. 4 shows the scatter plots of predicted E score against real E score of test data set for models

of 10 L16 (length 16) loops using either MSE or asymmetric loss function. It shows that both

models give good linear fitting with R coefficients 0.902 and 0.913. However, the slope for the

model using the MSE loss function is 0.515, which means most real E scores are underestimated

in prediction. For the model using asymmetric loss function, the slope is 0.999, that is very close

to one. There are a few data points that are overestimated on the large real E score side. But since

the number of these data points is small and overestimation is not as misleading as

underestimation in refine regrowth, this overestimation can be ignored.

Figure 4 Comparison of results between MSE(a) and asymmetric loss function(b), the linear

regression results are labeled on top.

Model of 42 L10 (length 10) loops with FOLD_N data

As stated in the methods section, a model of 42 L10 loops was trained based on the model's good

performance of 10 L10 loops. Only FOLD_N data was used here, and an asymmetric loss
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function was used. The cutting length was chosen from length 3 to 6. The training was finished

up to 100 epochs, and Fig. 5 shows the training and validation loss against epochs. It is shown

that the training loss keeps decreasing, and validation loss decreases with fluctuations. It is found

that epoch 96 gives the lowest validation loss with 0.102. We plot the predicted E against the real

E score in Fig. 6, and it shows good linear fitting between them for both the training set and test

set. Then 10 loops were selected to do a cut-regrow folding test up to 1000 iterations. The initial

structures were not chosen with the ones used in training. We set the initial temperature to 1 and

the decay coefficient to 0.9. As seen in Fig. 6, the real RMS of all the 10 fragments drop very

fast in the first 200 iterations and still get small refinement until the end. The average RMS of 10

fragments at the end of refinement is 0.673Å, which is a very low number for length 10 loops

Figure 5 The training and validation loss for a model of 42 L10 loops

Figure 6 The E score prediction(left) and simulated folding results(right) of the model of 42 L10

loops
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Model of 1000 L16 (length 16) loops

The model of 42 L10 loops shows good performance, but it works only within the loops selected

in the training set. To train a more generalized model, we need to include more loops for our

training data set. Therefore, the model of 1000 L16 loops was trained using both FOLD_N and

FOLD_M data. We split 1000 loops into three datasets. For the first dataset D1, 800 loops are

included with around 1600 FOLD_N data for each. For the second dataset D2, 100 loops are

included with around 9000 FOLD_N data for each. For the third dataset D3, 100 loops are

included with around 1600 FOLD_N data and 4500 FOLD_M data for each. FOLD_M data is

generated based on a pre-trained model using only FOLD_N data. The total number of data is

around 2.74M. The cutting length is from 6 to 10, asymmetric loss function was used, and the

training finished up to 33 epochs. The training and validation losses are shown in Fig. 7. Like the

model of L10 loops, both the training and validation losses are decreasing with some fluctuations

for validation loss. The minimum validation loss is found at epoch 32 with 1.7535.

Fig. 8 shows the predicted versus real E scores for the training set and test set and all three

datasets. All three datasets give a good linear correlation for training and test sets. D2 has a

better correlation than D1 because more FOLD_N data are used in training. The inclusion of

FOLD_M data significantly improves the prediction accuracy, as D3 gives the largest R

coefficient even though the total amount of data for D3 is less than D2. For the test set, the fitting

coefficient is slightly smaller than the training set.

To do the cut-regrow refinement, we picked ten loops from each dataset of D1, D2, D3 together

with another dataset, D4, where ten loops not included in the training are selected. The initial

temperature was set to 2 and the decay coefficient to 0.8. The real RMS against iterations are

shown in Fig. 9. For D1, D2, and D3, most loops can be refined to a smaller RMS. At the end of

refinement, the average RMS turns to be 3.21Å, 2.41Å, and 1.39Å for D1, D2, and D3. More

FOLD_N data and including FOLD_M data can both help to improve the refinement process.

With the use of FOLD_M data, the loops can be refined with an average RMS 1.39Å, which is a

small number for L16 loops. However, for D4 loops, the results are not as good, with average

RMS of 6.60 Å. This indicates the model is still not generalized very well. However, compared

with the average initial RMS of 9.08 Å, the average RMS still can be improved by 2.48 Å.
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Considering the relatively small quantity of training data for each loop we used, this is

acceptable. More loops and FOLD_M data should be introduced to the training set to solve this

overfitting problem.

Figure 7 The training and validation loss for the model of 1000 L16 loops

Figure 8 Linear fitting between predicted and real E scores for D1(a), D2(b), and D3(c) dataset.
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Figure 9 The simulated annealing folding curves up to 1000 iterations for selected loops from

D1(a), D2(b), D3(c), and D4(d) dataset

Refinement using distogram
Model accuracy

We trained the model MS 34 epochs, and Figure 12 shows the performance of epoch 34 of MS

using the test dataset. The left chart of Figure 12 is dRMSDpred as a function of dRMSDinput. The

Pearson correlation coefficient of dRMSDpred and dRMSDinput is 0.98, and the slope is 0.92,

which is smaller than 1. Our model produces the distance matrix closer to the native structure

compared to the input distance matrix. The right chart of Figure 12 is the distribution of

dRMSD, which is defined as dRMSDinput - dRMSDpred. 64% cases are getting improved with

dRMSD larger than 0, i.e., the accuracy of our MS model is 64%.
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The best epochs are EP21 and EP13 for ME_resNet and ME_resNet_SD model based on the

validation dataset. Figure 13 shows the performance of ME_resNet_EP21 and

ME_resNet_SD_EP13 using the test dataset. The top two figures show the 2D histogram of

predicted RMSD as a function of ground true RMSD. The Pearson correlation coefficients are

0.866 and 0.858, and the slopes are 0.775 and 0.780 for ME_resNet and ME_resNet_SD,

respectively. We notice that both models are trending to predict the RMSD smaller than the

ground true RMSD. The bottom chart of Figure 13 shows the difference of true RMSD and

predicted RMSD, i.e., RMSDtrue-RMSDpred, and the ME_resNet_SD is more prospective to

predict RMSD smaller than ground true RMSD. When using the energy model to refine the

structure, the absolute RMSD is less meaningful than the relative RMSD. The key point is by

given two structures whether the energy model could pick out the better one. We test our models

by randomly picking 305019 pairs of fragments from the test dataset, and each pair contains two

conformations of the same fragment. The accuracy is shown in Table 1. The models reach an

accuracy of 97% if the difference of ground true RMSD is larger than 2 Å, and the accuracy

drops to 94% for range [1.0 Å - 2.0 Å), 89%-90% for range [0.5 Å - 1.0 Å), and 70% for range

smaller than 0.5 Å. Since the protein structure is flexible, it is difficult to distinguish two

structures that are very close to each other.

Simulation result

We run two sets of refinement experiments, both with MS_EP34 to generate refined distogram,

but using different quality control energy models, one with ME_resNet_21and the other one with

ME_resNet_SD_13. Table 2 shows the performance of these two experiments. The accuracy is

defined whether the RMSD of the structures with top 1 or top 5 predicted RMSD is lower than

the input structure from the 100 steps simulation. ME_resNet has better performance than

ME_resNet_SD with top1 accuracy of 0.6194, i.e., 61.94% fragments get improved by using our

model. And the top 5 accuracy reaches 0.7161 for both ME_resNet and ME_resNet_SD model.

In the six-residues fragments, we define a well-structured fragment (SS) as at least four residues

of the native structure are helix or sheet assigned by DSSP[40]. If more than two residues of the

native structure are turn or coils, we define it as a non-structured fragment (nonSS). Our models

have a decent performance on the well-structured fragments with top 1 (top 5) accuracy as

0.7125 (0.80) for ME_resNet and 0.7250 (0.80) for ME_resNet_SD. For non-structured
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fragments, the top 1 (top 5) accuracy is only 0.5135 (0.6216) for ME_resNet and 0.4459 (0.6216)

for ME_resNet_SD, respectively. The ME_resNet has better top-1 accuracy on the non-

structured fragments than ME_resNet_SD. We also calculate the success rate in the simulation

experiments, which is defined as the average percentage of generated structures among the

number of attempts, i.e., 100 steps for each fragment. The success rate is 89.22% for ME_resNet

and 93.38% for ME_resNet_SD. The ME_resNet_SD has a better success rate, but lower

accuracy shows that the ME_resNet_SD model learns more "nature-wise" energy function,

which could pick a reasonable distogram to generate a structure. But the model is not well

trained yet, which requires either longer training or better hyperparameters.

Figure 14 shows the violin plot of  RMSD (RMSDtrue-RMSDpred) for initial structures,

successively refined structures (RMSD smaller than initial structure), and the failed structures

(RMSD larger than initial structure). For the initial structure, both models have a similar

distribution, and ME_resNet_SD has more population around 0 Å but a lower mean value of

 RMSD as -0.0321 Å compared to ME_resNet (-0.0070). For the successful cases, the

distribution is mainly located around 0 but with a high outlier for ME_resNet; the distribution of

ME_resNet_SD is bimodal with one peak located about 0 Å and the other peak around 1 Å. The

bimodal distribution of ME_resNet_SD on the successful cases shows that this model has

unstable performance on different pdb structures. For some structures, ME_resNet_SD could

predict RMSD close with the true RMSD, which corresponds to the peak at 0 Å in the violin plot;

but for some structures, the model trends to predict smaller RMSD than the true RMSD, which is

shown in the peak at 1 Å in the violin plot. For these structures, the model ME_resNet_SD could

give accuracy pairwise RMSD, i.e., between two conformations, the model could figure out the

one with lower RMSD. In the failed cases, both models tend to predict smaller RMSD.

Figure 15 shows one successful case (pdb ID: 1o6v, chain: A, fragment residue index: 330-336)

from the 154 simulation experiments. In the first few steps, the structure gets improved towards

the native structure, with RMSD decreasing dramatically for both models. Comparing to the

initial structure with RMSD at 2.36 Å, both models output an improved structure with RMSD at

0.37 Å (ME_resNet) and 0.79 Å (ME_resNet_SD) with the lowest predicted RMSDs at 0.0039 Å

(ME_resNet) and 0.47 Å (ME_resNet_SD). Among the 100 steps, the lowest RMSD is 0.26 Å

(ME_resNet) and 0.40 Å (ME_resNet_SD). The model ME_resNet performs better in this case,

especially after step 10, the model can generate fragments stable around 0.5 Å, but
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ME_resNet_SD has more fluctuation with the RMSD of the predicted structures from 0.40 Å to

2.00 Å. The main problem in this experiment is that both sampling and energy models are trained

using the structures sampled from torsion sampling models. The models cannot handle the

structures generated using the refined distogram, resulting in an unstable performance after the

first few simulation experiments. To solve this problem, we plan to generate more structures by

using our distogram algorithm and mixing these structures with the previous training data to

retrain the models.

Table 1: The accuracy of energy model ME_resNet_EP21 and ME_resNet_SD_EP13 to

compare pairwise conformations of fragments. The data are randomly picked from the test

dataset. The accuracy is defined as how many pairs that the sign of RMSDpair is the same as the

sign of RMSDtrue.

RMSDpair (Å) ME_resNet_EP21 ME_resNet_SD_EP13
[0, 0.5) 0.7029 0.6941
[0.5, 1.0) 0.8991 0.8885
[1.0, 2.0) 0.9405 0.937
> 2.0 0.9762 0.9725

Table 2: The accuracy of simulation experiments by using different energy models. The

accuracy is defined as that the RMSD of the structure with top1 or top5 predicted RMSD is

lower than the input structure. SS accuracy shows the accuracy of fragments with more than four

residues of the native structure are helix or sheet, and nonSS is the accuracy of fragments with

more than four residues of the native structure are random coil. The secondary structure is

assigned by DSSP.

Accuracy Top 1 Top 5 SStop1 SStop5 nonSStop1 nonSStop5

ME_resNet 0.6169 0.7142 0.7125 0.8000 0.5135 0.6216
ME_resNet_SD 0.5909 0.7143 0.7250 0.8000 0.4459 0.6216
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Figure 10: Architecture details. (a) Sampling model. (b) Energy model ME_resNet and the

residual block A shown in the right box. (c) Energy model ME_resNet_SD and the

corresponding residual block B are shown in the bottom box.
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Figure 11: Pipeline of refinement (right) and the simulation unit (SU) (left)

Figure 12: Performance of sampling model (MS) at epoch 34. Left chart: the 2D histogram of

dRMSDpred as a function of dRMSDinput. The population is indicated as the color, and the scale is

shown in the color bar. The linear regression result is shown as the blue line, with Pearson

correlation coefficient as 0.98, slope as 0.92, and intercept as 0.04. Right chart: the distribution

of dRMSD, which is defined as dRMSDinput - dRMSDpred. 64% cases are getting improved with

dRMSD larger than 0, i.e., the accuracy of our MS model is 64%.
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Figure 13: Performance of energy model. The top figures (left: ME_resNet_EP21, right:

ME_resNet_EP13) show the 2D histogram of predicted RMSD as a function of ground true

RMSD. The population is indicated as the color, and the scale is shown in the color bar. The

linear regression result is shown as the blue line, with Pearson correlation coefficient as 0.866

and 0.858, slope as 0.775 and 0.780, and intercept as 0.389 and 0.444 for ME_resNet_EP21 and

ME_resNet_EP13, respectively. The bottom Figure shows the difference of RMSD, i.e., RMSD

= RMSDtrue -RMSDpredict, the red line indicates 0.
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Figure 14: Violin plot of RMSD of initial and refined structures of the 160 simulation

experiments by using ME_resNet (left) and ME_resNet_SD (right) as the energy function. Blue

violins show the  RMSD distribution of initial structures, the red ones show the result of

successively refined structures (RMSD smaller than initial structure), and the green ones show

the result of the structures with RMSD larger than the initial structure. The horizontal black lines

show the mean value of the RMSD, which are -0.0070, 0.6137, 0.8897, -0.0321, 0.5595, and

0.8613 from left to right.
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Figure 15: One successful case (pdb ID: 1o6v, chain: A, fragment residues index: 330-336)

from the 154 simulation experiments by using ME_resNet (left) and ME_resNet_SD (right) as

energy function. The top row shows the snapshot of the initial/refined structures of the target

fragment (red) compared with the native structure (blue). From left to right are initial structure,

the structure (generated in step 31st of 100 steps by using MS + ME_resNet) with best-predicted

RMSD by ME_resNet; the structure (step 76th of 100 steps by using MS + ME_resNet) with best

true RMSD; the structure (generated in step 91st of 100 steps by using MS + ME_resNet_SD)

with best predicted RMSD by ME_resNet_SD, and the structure (step 72nd of 100 steps by using

MS + ME_resNet_SD) with best true RMSD. The bottom charts show the true RMSD (red) and

predicted RMSD (blue) of the structures in each step in the experiments MS+ME_resNet (left)

and MS+ME_resNet_SD (right).
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Conclusions
With well-designed deep learning architecture, our torsion sampling and energy scoring models

show good prediction accuracy. The torsion sampling model performs a good balance of

efficiency and diversity, while the energy scoring model gives a high linear correlation between

predicted and real energy scores. Asymmetric loss function was found to optimize the model

better than the MSE loss function. In the folding simulations with ten loops from the D3 dataset,

the resultant average RMS is 1.39Å, which is a state-of-art result for loops with 16 residues.

Although the performance cannot be generalized well to test loops out of the training set, this

methodology shows good potential to solve the loop modeling problem considering the small

quantity of training data we used. A more extensive training dataset and proper techniques to

help generalization should improve the models. Besides, the distogram-guided refinement

method gives good results of refining fragment to lower RMS scores. Our distogram-guided

refinement procedure improved 61.69% out of 154 fragments in our distogram refinement test

dataset. In the example we showed, the loop with an initial RMS of 2.36Å was refined to only

0.26Å. The current models in the distogram-guided refinement were trained for general

fragments, and performance is not standout for loop modeling. We will use a dataset contains

only loop structures to re-train the model for loop modeling.
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