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Abstract: Gut dysbiosis with disrupted enterohepatic bile acid metabolism is commonly associated 10 

with non-alcoholic fatty liver disease (NAFLD) and recapitulated in a NAFLD-phenotype elicited 11 

by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. TCDD induces hepatic fat accumulation 12 

and increases levels of secondary bile acids including taurolithocholic acid and deoxycholic acid, 13 

microbial modified bile acids involved in host bile acid regulation signaling pathways. To investi-14 

gate the effects of TCDD on the gut microbiota, cecum contents of male C57BL/6 mice orally 15 

gavaged with sesame oil vehicle or 0.3, 3, or 30 µg/kg TCDD were examined using shotgun 16 

metagenomic sequencing. Taxonomic analysis identified dose-dependent increases in Lactobacillus 17 

species (i.e., Lactobacillus reuteri). Increased species were also associated with dose-dependent in-18 

creases in bile salt hydrolase sequences, responsible for deconjugation reactions in secondary bile 19 

acid metabolism. Increased L. reuteri levels were further associated with mevalonate-dependent 20 

isopentenyl diphosphate (IPP) biosynthesis and menaquinone biosynthesis genes. Analysis of gut 21 

microbiomes from cirrhosis patients identified increased abundance of these pathways as identi-22 

fied in the mouse cecum metagenomic analysis. These results extend the association of lactobacilli 23 

with the AhR/intestinal axis in NAFLD progression and highlight the similarities between 24 

TCDD-elicited phenotypes in mice to human NAFLD. 25 

Keywords: 2,3,7,8-tetrachlorodibenzo-p-dioxin; dioxin; aryl hydrocarbon receptor; non-alcoholic 26 

fatty liver disease; gut microbiome; fibrosis; gut dysbiosis; secondary bile acids 27 

 28 

1. Introduction 29 

Non-alcoholic fatty liver disease (NAFLD) is estimated to affect ~25% of the global 30 

population and is defined as a spectrum of progressive pathologies that include steatosis, 31 

immune cell infiltration/inflammation, fibrosis, and cirrhosis. It is associated with in-32 

creased risk for hepatocellular carcinoma, and is the 2nd leading cause of liver transplants 33 

in the United States[1]. Other pathologies including obesity, type 2 diabetes (T2D), and 34 

coronary heart disease demonstrate high co-occurrence with NAFLD, e.g., ~40-70% in 35 

T2D patients and ~90% in obese patients[2]. A multi-hit hypothesis for NAFLD proposes 36 

several contributing factors to development and progression including disruptions in the 37 

immune system, adipose tissue metabolism, and the gut microbiome[3]. Emerging evi-38 

dence also suggests environmental contaminants may play an underappreciated role in 39 

gut dysbiosis and NAFLD development[4–11]. Specifically, 40 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental organochloride 41 

pollutant, induces steatosis and the progression to steatohepatitis with fibrosis in mice 42 

resembling human NAFLD development[9,12–14]. TCDD-induced dyslipidemia also 43 
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exhibits other similar NAFLD characteristics such as decreased VLDL secretion, free fatty 44 

acid accumulation, inhibition of β-oxidation, and disrupted cholesterol and bile acid 45 

metabolism[9,15–18]. 46 

 The effects of TCDD and other related polychlorinated dibenzo-p-dioxins (PCDDs), 47 

dibenzofurans (PCDFs) and biphenyl (PCBs) as well as polyaromatic hydrocarbons 48 

(PAHs), are mediated through activation of the aryl hydrocarbon receptor (AhR), a basic 49 

helix-loop-helix/Per-Arnt-Sim transcription factor typically associated with xenobiotic 50 

metabolism[19]. In addition, the AhR plays an essential role in gut homeostasis through 51 

regulation of the immune system and bile acid metabolism[9,15,20,21], with endogenous 52 

and xenobiotic AhR ligands affecting the gut microbiome congruent with NAFLD-like 53 

pathology[8–10]. Moreover, gut dysbiosis is commonly reported in NAFLD, making the 54 

gut microbiome an attractive target for non-invasive diagnostic tools and potential target 55 

for intervention[22,23].  56 

Although the AhR exhibits promiscuous binding activity for a wide variety of 57 

structurally diverse xenobiotics, natural products, and endogenous metabolites, its en-58 

dogenous role remains unknown[24]. Upon ligand binding, the cytosolic AhR disassoci-59 

ates from chaperone proteins and translocates to the nucleus where it dimerizes with the 60 

AhR nuclear transporter (ARNT). The AhR/ARNT heterodimer complex then binds to 61 

dioxin response elements located throughout the genome, affecting gene expression[25]. 62 

Endobiotic ligands for the AhR include host-derived metabolites such as tryptophan 63 

catabolites (e.g., L-kynurenine), microbial-produced indole derivatives (e.g., 64 

indole-3-aldehyde produced by Lactobacillus reuteri), and compounds derived from fruits 65 

and cruciferous vegetables (e.g., 6-formylindolo[3,2-b]carbazole [FICZ])[24]. Microbial 66 

produced indoles activate AhR in the intestine, affecting barrier function and homeosta-67 

sis by regulating the intestinal immune system through CD4+ T-cell differentiation, and 68 

the induction of interleukin (IL)-22 and IL-10 cytokine production[25]. AhR-dependent 69 

IL-22 induction subsequently increases antimicrobial peptides expression in intestinal 70 

epithelial cells, inhibiting pathogen infection and inflammation[25–27].  71 

Knockout models and/or treatment with endogenous and xenobiotic AhR ligands 72 

results in shifts in the gut microbiome with diverse effects depending on the model and 73 

ligand[8,11,27–29]. Shifts in Firmicutes/Bacteroidetes ratio can differ between AhR lig-74 

ands, e.g., 2,3,7,8-tetrachloro dibenzofuran decreased the ratio [8] whereas TCDD in-75 

creased it[11]. However, responses in various AhR models are in agreement regarding 76 

increased secondary bile acids [8,9] and effects on segmented filamentous bacteria 77 

[8,11,28]. AhR knockout models, and treatment with TCDD or other endogenous com-78 

pounds also demonstrate strong correlations between AhR activation and enrichment of 79 

Lactobacillus species, i.e., L. reuteri [27–31]. Tryptophan catabolism to AhR ligands by 80 

Lactobacillus species is a proposed mechanism for gut microbial regulation of AhR sig-81 

naling that modulates intestinal and gut microbiome homeostasis[27].   82 

 Bile acids also affect the gut microbiome by exerting antimicrobial activity[32]. 83 

Conversely, the gut microbiota play critical roles in host bile acid homeostasis through 84 

microbial metabolism that qualitatively and quantitatively impact bile acid composition 85 

with consequences for bile acid activated signaling pathways in the host. The gut 86 

microbiome performs the first step of bile acid deconjugation with subsequent oxidation, 87 

reduction or dehydroxylation reactions to produce diverse secondary bile acid molecular 88 

species[33]. Select secondary bile acids ,e.g., glycodeoxycholic acid [GDCA], demonstrate 89 

higher inhibition of bacterial growth compared to other primary and secondary bile ac-90 

ids[34]. In regards to the host, some secondary bile acids ,e.g., lithocholic acid [LCA] and 91 

deoxycholic acid [DCA]), exhibit high affinity for the farnesoid x receptor (FXR) and G 92 

protein-coupled bile acid receptor (TGR5, a.k.a., GPBAR1), which regulate glucose, lipid, 93 

and bile acid homeostasis[35–37]. In human NAFLD, secondary bile acid metabolism is 94 

disrupted with bile acid analogs that target FXR and TGR5 signaling pathways under 95 

development for the treatment of liver disease [23,32,38]. 96 
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Previous work has demonstrated serum levels of LCA and DCA increased follow97 

TCDD treatment suggesting enrichment for microbial bile acid metabolism[9]. To fu98 

explore dose-dependent disruptions in gut microbiome and microbial metabolism 99 

vant to the progression of NAFLD-like pathologies, shotgun metagenomic analysis100 

used to examine the dose dependent taxonomic and metabolic disruptions elicite101 

TCDD. 102 

2. Results 103 

2.1. TCDD-elicited toxicity enriched for Lactobacillus species 104 

Taxonomic analysis identified significant dose-dependent population shifts am105 

caecum microbiota in response to TCDD. While no significance was observed betw106 

treatment groups at the phylum level, a decreasing trend was observed for Bacteroid107 

concurrent with increasing trends in Firmicutes abundance (Figure 1a). 108 

 109 

 110 

Figure 1. TCDD enriched Lactobacillus species in the cecum microbiota. Taxa abundance were111 

sessed in metagenomic cecum samples from male C57BL/6 mice following oral gavage with se112 

oil vehicle or 0.3, 3 or 30 µg/kg TCDD every 4 days for 28 days (n=3). Significant shifts in relat113 

abundances of taxa are presented at the (A) phylum, (B) genus, (C) and species levels. Signific114 

is denoted with an asterisk (*; adjusted p-value < 0.1). 115 
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At the genus level, Turicibacter was enriched by TCDD while the genus Lactobacillu116 

trended towards enrichment (Figure 1b). Interestingly, at the species level, 10 out of 117 

enriched species were from the Lactobacillus genus (e.g., L. reuteri and Lactobacillus sp118 

ASF360) as well as Turicibacter sanguinis. Conversely, the most abundant Lactobacillu119 

species in vehicle treated mice, Lactobacillus murinus, trended towards a dose-depend120 

decrease (Figure 1c). 121 

2.2 Bile salt hydrolase (bsh) levels correlated with significantly enriched species 122 

Many Lactobacillus species deconjugate primary conjugated bile acids mediate123 

bile salt hydrolases (BSH), imparting bile acid tolerance[39]. To further investigate124 

effect of TCDD on bile acid metabolism, bsh sequences were annotated and quant125 

within metagenomic samples. Annotations to bsh were increased by TCDD and as126 

ated with enriched species including L. reuteri and T. sanguinis (Figure 1c, Figure 2a,127 

Table S1). 128 

 129 

Figure 2. TCDD enriched Lactobacillus species possessing bile salt hydrolase (bsh). The presen130 

bsh gene sequences were assessed in metagenomic caecum samples from male C57BL/6 mice f131 

lowing oral gavage with sesame oil vehicle or 0.3, 3, or 30 µg/kg TCDD every 4 days for 28 da132 

using 3 independent cohorts (n=3). (A) The presence (green boxes) or absence of bsh sequences133 

tected in any of the metagenomic samples (n=3) are denoted within the respective treatment134
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groups. Significant increases (*) or decreases (@) in normalized bsh abundances (adj. p < 0.1) ar135 

denoted. Also denoted is significantly increased species (#) determined by taxonomic analysis136 

corresponded with respective RefSeq species bsh annotations. Significance was determined by137 

Maaslin2 R package. (B) Volcano plot displaying log2(fold-changes) in relative abundance of s138 

cies between vehicle and 30 µg/kg TCDD treatment groups versus -log(adjusted p-values [adj139 

Red dots denotes bsh sequences detected in 30 µg/kg TCDD treatment group. Significance wa140 

termined by the DeSeq2 R package comparing only vehicle and 30 µg/kg TCDD groups. Red 141 

dashed lines are reference to -log(0.05) value for y-axis and -1 and 1 for x-axis. 142 

Conversely, L. murinus associated bsh annotations exhibited a dose-dependent decr143 

consistent with decreasing trends in taxonomic abundance. Although not reaching144 

nificance, many bsh sequences were also associated with unclassified Lachnospira145 

species including Lachnospiraceae bacterium A4, a community member reaching 5146 

relative abundance in the cecum metagenomic samples (Figure 2a). In contrast, Lac147 

cillus gasseri was enriched but no bsh sequences were identified (Figure 2b). To sum148 

rize, the top enriched species were also associated with increased abundances in bsh149 

els in the cecum.  150 

 151 

2.3 TCDD enriched for mevalonate-dependent isoprenoid biosynthesis  152 

To investigate other metabolic pathways imparting competitive advantage153 

TCDD-elicited gut environmental stresses, functional gene annotations associated wi154 

reuteri, the highest enriched species, were assessed. Among enriched uniref90 ann155 

tions in the cecum metagenomic dataset was the aromatic amino acid aminotransfe156 

(UniRef90_A0A2S1ENB9) also classified to L. reuteri (Table S2). Aromatic amino 157 

aminotransferase produces a tryptophan metabolite, indole-3-aldehyde, a known 158 

ligand reported to induce IL-22 in vivo[27]. Among 39 enzyme commission (EC) ann159 

tions that were enriched and associated with L. reuteri were several annotated to160 

isoprenoid biosynthesis pathway (Figure 3, Figure S1, and Table S3).  161 

162 

Figure 3. TCDD enriched genes from the mevalonate-dependent isoprenoid biosynthesis path163 

(a) Relative abundance of genes involved in isoprenoid biosynthesis and grouped by enzyme 164 
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commission (EC) numbers for the mevalonate dependent and 2-C-methyl-D-erythritol 4-phosp165 

(MEP) pathways in cecum samples from male C57BL6 mice following oral gavage with sesam166 

vehicle or 0.3, 3, or 30 µg/kg TCDD every 4 days for 28 days (n=3). Individual box plots are als167 

numbered with the EC number matching the enzymatic step in pathway schematic. Adjusted 168 

p-values (adj. p) were determined by the Maaslin2 R package. Abbreviations.: 169 

3-hydroxyl-3-methyl-clutaryl-CoA (HMG-CoA), (R)-5-Phosphomevalonate (mevalonate-5P), 170 

(R)-5-Diphosphomevalonate (mevalonate-5PP), 2-C-Methyl-D-erythritol 4-phosphate (MEP), 171 

4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol (CDP-ME), 4-(Cytidine 172 

5'-diphospho)-2-C-methyl-D-erythritol (DEP-ME-2P), 2-C-Methyl-D-erythritol 173 

2,4-cyclodiphosphate (MEcPP), 1-Hydroxy-2-methyl-2-butenyl 4-diphosphate (HMBPP). 174 

Bacteria biosynthesize the isoprenoid, isopentenyl diphosphate (IPP), either through175 

mevalonate-dependent pathway, which is also found in mammals, or 176 

methylerythritol phosphate (MEP)-pathway. Both L. reuteri and Lactobacillus john177 

were the major contributors to mevalonate-dependent IPP biosynthesis pathway178 

richment with almost all genes in the pathway increased by TCDD (Figure 3 and Fi179 

S1). Gene enrichment in the alternative MEP-pathway were unchanged by TCDD. F180 

murinus, only two EC annotations (EC 2.7.1181 

4-Diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase, and EC 5.3182 

isopentenyl-diphosphate Delta-isomerase) were identified in the MEP pathway 183 

found in L. reuteri (Figure S2).  184 

HUMAnN 3.0 analysis of a published metagenomics dataset of fecal samples 185 

human cirrhotic patients (https://www.ebi.ac.uk/ena/data/view/PRJEB6337) [40] reve186 

strikingly similar results to our caecum samples from TCDD treated mice. Specific187 

increased gene abundance associated with the mevalonate-dependent pathways was188 

evident in patients with compensated and decompensated liver disease (Figure 4).  189 

190 

Figure 4. Mevalonate-dependent isoprenoid biosynthesis genes are enriched in a published 191 

metagenomics dataset of fecal samples from cirrhosis patients. Humann3 analysis of fecal gut192 

microbiomes in healthy (H, red, n=52), compensated (C, green, n=48), or decompensated (D, b193 

n=44) cirrhosis for mevalonate-dependent and methyl-D-erythritol 4-phosphate (MEP) pathw194 
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 7
 

Individual boxplots are numbered with the EC number matching the enzymatic step in pathw195 

schematic. Significance is denoted with a red asterisk (*, adjusted p-values < 0.05) compared to196 

healthy group. Abbreviations.: 3-hydroxyl-3-methyl-clutaryl-CoA (HMG-CoA), 197 

(R)-5-Phosphomevalonate (mevalonate-5P), (R)-5-Diphosphomevalonate (mevalonate-5PP), 198 

2-C-Methyl-D-erythritol 4-phosphate (MEP), 4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythrit199 

(CDP-ME), 4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol (DEP-ME-2P), 200 

2-C-Methyl-D-erythritol 2,4-cyclodiphosphate (MEcPP), 1-Hydroxy-2-methyl-2-butenyl 201 

4-diphosphate (HMBPP). 202 

Compensated cirrhosis is defined as no decrease in liver function while decompensa203 

cirrhosis exhibit decreased liver function. Among decompensated patients with cirrh204 

the mevalonate dependent IPP pathway was increased in 7 out of 8 EC numbers requ205 

for de novo IPP biosynthesis (Figure 4). Taxa annotated to genes in the pathway exhib206 

a wide variety in genera for each EC number in human samples compared to murine207 

cecum samples from this study (Figure S3). Taxonomy classified to a majority of the 208 

mevalonate-dependent genes were from the Lactobacillaceae family including Enter209 

coccus, Lactobacillus, Streptococcus genera (Figure S3 and Table S5). Lactobacillus a210 

Streptococcus species including L. reuteri and Streptococcus anginosus, a known patho211 

in liver abscesses[41], were among species classified to the pathway (Table S4 and Ta212 

S5). 213 

2.4 Vitamin K2 (menaquinone) and peptidoglycan biosynthesis pathways in mouse 214 

NAFLD-phenotypes and gut microbiomes of cirrhosis patients 215 

In polyprenol diphosphate biosynthesis, IPP is recursively added to ger216 

diphosphate (GPP) or farnesyl diphosphate (FPP) for polyprenol biosynthesis use217 

vitamin K2 (a.k.a., menaquinone) and peptidoglycan biosynthesis [42,43]. TCDD enri218 

for heptaprenyl diphosphate synthase (EC 2.5.1.30) with major contributions fro219 

reuteri and L. johnsonii (Figure 5). 220 

221 

Figure 5. Relative abundance of polyprenol transferase EC annotations identified in the m222 

cecum metagenomic dataset. Stacked bar plots represent mean relative abundance of groupe223 

numbers (n=3) and represent identified species that contributed to mean total abundance for224 

treatment group. The number of isopentenyl diphosphate (IPP) and farnesyl diphosphate 225 

molecules used for respective polyprenol biosynthesis are also denoted. Adjusted p-values 226 

determined by the Maaslin2 R package. Abbreviations: isopentenyl diphosphate (IPP), ge227 

diphosphate (GPP), polyprenyl diphosphate (polyprenyl-PP). 228 
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 8
 

Because bacterial cell wall restructuring has been reported in response to bile a229 

and different levels of isoprenoid biosynthesis pathways were identified, peptidogl230 

biosynthesis was also assessed[44]. Most genes encoding enzymes required for p231 

doglycan biosynthesis were present in the metagenomic dataset (Figure 6a) with232 

changes observed following TCDD treatment. 233 

234 

Figure 6. Peptidoglycan biosynthesis was unchanged by TCDD. (A) Relative abundance of pe235 

doglycan biosynthesis EC numbers identified in the metagenomic dataset. (B) Relative abund236 

of only Lactobacillus species classified to peptidoglycan biosynthesis EC numbers. Individual237 

boxplots are numbered with the EC number matching the enzymatic step in pathway schema238 

Adjusted p-values (adj.p) were determined by MAASLIN2. Abbreviations: 239 

UDP-N-acetyl-alpha-D-glucosamine (UDP-GlcNac), UDP-N-acetylmuramate (UDP-MurNAc)240 

UDP-N-acetyl-alpha-D-muramoyl-L-alanine (UDP-MurNAc-ALA), 241 

UDP-N-acetyl-alpha-D-muramoyl-L-alanyl-D-glutamate(UDP-MurNAc-Ala-D-Glu), 242 

UDP-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-meso-2,6-diaminopimelate 243 

(UDP-MurNAc-Ala-D-Glu-m-DAP), D-Alanyl-D-alanine (D-Ala-D-Ala), 244 

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl-D-alanine 245 

(UDP MurNAc Ala D Glu m DAP D Ala D Ala)246
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Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-247 

alanyl-D-alanine 248 

(Und-PP-MurNAc-Ala-D-Glu-m-DAP-D-Ala-D-Ala),Undecaprenyl-diphospho-N-acetylmuramoyl249 

-(N-acetylglucosamine)-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine 250 

(Und-PP-MurNAc-GlcNAc-Ala-D-Glu-m-DAP-D-Ala-D-Ala) 251 

However, serine-type D-Ala-D-Ala carboxypeptidase (Figure 6a, EC 3.4.16.4, step 14), 252 

responsible for peptidoglycan polymer crosslinking , trended upwards. Additionally, 253 

most peptidoglycan biosynthesis EC numbers had annotations to L. reuteri (Figure 6b). 254 

Overall, TCDD did not alter peptidoglycan synthesis related gene levels. 255 

 De novo menaquinone biosynthesis requires chorismate and the addition of a 256 

polyprenol diphosphate (i.e., geranyl-geranyl diphosphate) (Figure 7a). Two alternative  257 
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258 

Figure 7. TCDD-elicited effects on menaquinone biosynthesis. (A) Relative abundance of men259 

quinone biosynthesis EC annotations identified in the metagenomic dataset. Individual stacke260 

plots are labeled with the EC number matching the enzymatic step in pathway schematic. Stac261 

bar plots of annotated EC numbers involved in menaquinone biosynthesis. Values are mean r262 

tive abundance (n=3) classified to respective species and in cecum samples from male C57BL/6263 

following oral gavage with sesame oil vehicle or 0.3, 3, or 30 µg/kg TCDD every 4 days for 28 264 

(B) Menaquinone biosynthesis EC numbers classified to Lactobacillus species in the cecum 265 

metagenomic datasets. Adjusted p-values (adj. p) were determined by Maaslin2 R package. 266 

pathways exist for menaquinone biosynthesis, the o-succinylbenzoate or futalo267 

route[45]. Only a few EC number annotations were detected for the futalosine path268 

(EC 4.2.1.151 and EC 2.5.1.120), while all EC numbers were identified for the com269 

o succinylbenzoate menaquinone pathway (Figure 7a) In the mouse cecum dataset270
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cies contributing to o-succinylbenzoate menaquinone biosynthesis pathway inclu271 

Escherichia coli, several Bacteroides (e.g., Bacteroides vulgatus and Bacteroides caecim272 

and Lactobacillus species (e.g., L. reuteri) (Figure 7b and Table S6). No one species273 

annotated to the entire set of enzymes needed for de novo biosynthesis from chorism274 

however B. vulgatus was annotated for 6 out of 9 genes in the pathway (Table275 

O-Succinylbenzoate synthase (Figure 6a, EC 4.2.1.113, step 4) was increased by 30 µ276 

TCDD with L. reuteri being the major contributor to relative abundance (Figure 7, ste277 

Lactobacillus species annotated to menaquinone biosynthesis included L. reuter278 

murinus, and L. johnsonii. Among annotated menaquinone biosynthesis EC number279 

reuteri was among the identified Lactobacillus species that had the highest rel280 

abundance and most menaquinone EC annotations (Figure 7b). L. reuteri also had a281 

tations in samples for EC numbers involved in the final steps of the shikimate path282 

responsible for chorismate biosynthesis (Table S7).  283 

In cirrhosis samples, several EC numbers representing the initial menaquinon284 

osynthesis steps were also increased in compensated and decompensated patients 285 

ure 8, steps 1,3,4-5) including o-succinylbenzoate synthase (Figure 8, EC 4.2.1.113, ste286 

 287 

Figure 8. Menaquinone biosynthesis genes are increased in cirrhotic patients. Humann3 analy288 

fecal metagenomic dataset of patients with healthy (H, red, n=52), compensated (C, green, n=4289 

decompensated (D, blue,n=44) liver cirrhosis diagnosis for EC numbers in menaquinone biosy290 

thesis. Individual box plots are labeled with the EC number matching the enzymatic step in p291 

way schematic. Significance is denoted with a red asterisk (*; adjusted p-values < 0.05) with th292 

healthy group as reference. 293 

However, L. reuteri was not among species classified to this EC number. Species class294 

to all EC numbers comprising the complete pathway included E. coli, and Klebsiella295 

cies such as K. pneumoniae and Citrobacter species. L. reuteri was not annotated to296 

menaquinone biosynthesis genes in healthy or compensated patients, but severa297 

numbers in the decompensated group (EC 6.2.1.26, 4.1.3.6, and 2.1.1.163) which ar298 

volved in later stages of menaquinone biosynthesis (Table S8). 299 
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3. Discussion 300 

Previous studies have reported that TCDD elicited NAFLD-like pathologies, 301 

dysregulated bile acid metabolism and gut microbiome dysbiosis [9,11,15,29,31]. This 302 

study further elucidated the shifts in the gut microbiota associated with TCDD treatment 303 

using shotgun metagenomic sequencing. We show TCDD dose-dependently shifted the 304 

gut microbiota composition by enriching for Lactobacillus species, consistent with he-305 

patic disruption of host and microbial bile acid metabolism. In addition, TCDD enriched 306 

for genes involved in mevalonate dependent isoprenoid precursor biosynthesis and 307 

menaquinone biosynthesis, crucial for microbial cell growth and survival. 308 

Over-representation of these microbial associated pathways were also identified in hu-309 

man cirrhosis stool metagenomics datasets. 310 

TCDD-elicited gut dysbiosis is in agreement with observed effects in published in 311 

vivo studies following treatment with endogenous (i.e., FICZ) and exogenous (i.e., TCDD 312 

and TCDF) AhR agonists[8,9,11,29–31]. More specifically, we observed an increased 313 

Firmicutes/Bacteroides ratio with dose-dependent increases in Lactobacillus spe-314 

cies[29,31]. Lactobacillus species are often associated with NAFLD, with increased 315 

abundances in patients with diabetes and liver fibrosis[46]. Probiotic Lactobacillus spe-316 

cies including L. reuteri supplementation is also reported to alleviate NAFLD pathologies 317 

by reducing steatosis[47], fibrosis[48], insulin resistance[49] and serum cholesterol lev-318 

els[50]. However, Lactobacillus species supplementation may also exacerbate fibro-319 

sis[51]. In humans and mice, L. reuteri supplementation can modulate the gut microbiota 320 

and alter bile acid metabolism.  L. reuteri enrichment also approached comparable levels 321 

compared to samples from humans and mice administered probiotic supplementa-322 

tion[52,53]. We observed a species-specific increase of L. reuteri with a concurrent de-323 

crease in L. murinus suggesting shifts in Lactobacillus composition at the species and/or 324 

strain levels. Further, decreased abundance of L. murinus has been reported in human 325 

NAFLD[54]. Other taxa enriched following treatment included Turicibacter sanguinis, an 326 

anaerobic gram-positive bacillus commonly found in animals, including humans[55]. 327 

Interestingly, T. sanguinis has been shown to deconjugate bile acids and metabolize ser-328 

otonin affecting lipid and steroid metabolism[55,56]. Quantitative trait locus analysis 329 

correlated T. sanguinis abundance with cholic acid levels and expression of the intestinal 330 

bile acid transporter Slc10a2[55]. Both cholic acid levels and Slc10a2 expression are 331 

dose-dependently increased by TCDD[9]. Consequently, the dose-dependent taxonomic 332 

shift in Lactobacillus and Turicibacter species known to deconjugate conjugated bile ac-333 

ids is consistent with increased levels of secondary bile acids following TCDD treatment.  334 

Some host relevant intestinal health and homeostatic effects can be attributed to 335 

Lactobacillus species mediated by bile salt hydrolases (BSHs) which are responsible for 336 

deconjugation reactions, the gateway step for conversion of conjugated primary bile acid 337 

to secondary bile acids [57]. A majority of Lactobacillus species possess BSHs, often con-338 

taining multiple different gene copies within their genome, some with different bile acid 339 

substrate preferences[34,39]. However, the presence of bsh sequences does not simply 340 

infer bile acid tolerance as growth inhibition and reduced fitness is also possible de-341 

pending on the conjugated or deconjugated bile acids present and/or BSH specifici-342 

ty.[34,39,58] For example, L. gasseri bsh knockout mutants exhibit increased fitness com-343 

pared to wild type strains[39]. Interestingly, L. gasseri bsh sequences were not identified 344 

despite increased L. gasseri abundance following TCDD treatment. Our bsh analysis also 345 

found TCDD enriched Lactobacillus-associated sequences that may impart bile acid tol-346 

erance. For example, the bsh sequence enriched by TCDD annotated to L. johnsonii 347 

(RefSeq ID: EGP12391) (Table S3) exhibited higher substrate specificity for glycine over 348 

taurine conjugated bile acids[59,60]. In a companion study using the dose response and 349 

treatment regimen, Fader et al reported TCDD increased serum DCA levels ~80-fold, with 350 

only a ~ 2-fold increase in serum GDCA levels[9]. In contrast, hepatic taurolithocholic 351 

acid (TLCA) levels were increased ~233-fold while serum lithocholic acid increased only 352 

4-fold following TCDD treatment. Moreover, glycine conjugated bile acids including 353 
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GDCA are more toxic towards Lactobacillus species than taurine conjugated bile ac-354 

ids[34,61,62]. Increased levels of BSH with a substrate preference for glycine conjugated 355 

bile acid may partially explain select Lactobacillus species enrichment. Further, both 356 

TLCA and DCA are potent FXR and GPBAR1 agonists that regulate lipid, glucose and 357 

bile acid metabolism[63,64]. Consequently, shifts in microbial secondary bile acids by 358 

Lactobacillus species may play a role in TCDD elicited gut dysbiosis impacting host reg-359 

ulation of energy homeostasis. 360 

Coincident with increased levels of bsh was the dose-dependent increase in genes 361 

from the mevalonate-dependent isoprenoid biosynthesis, the pathway also used in 362 

mammals for cholesterol biosynthesis. The MEP pathway is the predominant isoprenoid 363 

biosynthesis pathway among gut microbiota while the mevalonate-dependent pathway 364 

is only found in select bacteria including Lactobacillus and Streptococcus species[65]. The 365 

output from either pathway is farnesyl diphosphate (FPP) and geranyl diphosphate 366 

(GPP), substrates required for polyprenol biosynthesis used in menaquinone and cell 367 

wall biosynthesis. Menaquinones are utilized by bacteria for anaerobic/aerobic respira-368 

tion, providing antioxidant activity with menaquinone supplementation affecting the gut 369 

microbiome[66]. In the context of L. reuteri, we observed genes annotated to the shikimate 370 

pathway which is responsible for chorismate biosynthesis, a precursor for aromatic 371 

amino acids and the naphthoquinone head group of menaquinone, as well as genes in-372 

volved in de novo menaquinone biosynthesis. While the complete biosynthesis pathway 373 

was not present in L. reuteri, it is consistent with other metagenomic reports of incom-374 

plete menaquinone biosynthesis pathways in gut Lactobacillus species [45]. It has been 375 

proposed that Lactobacillus species may participate in later menaquinone biosynthesis 376 

steps through the uptake of intermediates such as o-succinylbenzoate from other bacteria 377 

or dietary sources[45]. In addition, the ability to utilize menaquinones for respiration is 378 

typically not associated with Lactobacillus species. However, some lactic acid bacteria 379 

including L. reuteri strains demonstrate the ability to respire when menaquinone and 380 

heme are supplemented[67,68].  381 

Metagenomic analysis also identified the mevalonate-dependent pathway enrich-382 

ment in fecal samples from patients with cirrhosis. The mevalonate-dependent pathway 383 

is reported to be increased in fibrosis patients with autoimmune pathologies[69]. 384 

Isoprenoid biosynthesis pathways are also elevated in the lung microbiome of cystic fi-385 

brosis patients, with the MEP pathway enriched rather than the mevalonate route[70]. 386 

The association between fibrosis and isoprenoid biosynthesis enrichment warrants fur-387 

ther investigation in the context of potential mechanisms contributing to bacterial fitness 388 

and/or fibrosis. Increased abundance of the mevalonate-dependent biosynthesis pathway 389 

could also be a biomarker of Lactobacillus and Streptococcus proliferation that is often 390 

associated with non-alcoholic steatohepatitis (NASH)/fibrosis[22,46]. We identified en-391 

richment of the mevalonate-dependent pathway in both mouse and human microbiomes 392 

whereas the complete pathway was primarily annotated to Streptococcus and Lactoba-393 

cillus species (Table S7). Other factors such simvastatin and proton pump inhibitors (PPI) 394 

that are commonly prescribed for NAFLD patients may also impact these microbial 395 

pathways. Simvastatin, which is primarily excreted in the feces[71], is reported to reduce 396 

bacterial growth by directly inhibiting bacterial HMG-CoA synthesis while PPIs inhibit 397 

Streptococcus species growth[72–74]. These microbiome-drug interactions highlight off 398 

target effects that should be considered when investigating novel NAFLD treatments 399 

such as new drug development and/or probiotic interventions. 400 

In addition to increased mevalonate-dependent isoprenoid biosynthesis genes in 401 

cirrhotic patients, menaquinone biosynthesis gene abundance was also increased. This 402 

suggests taxa with the ability to produce menaquinone may have a competitive ad-403 

vantage when intestinal environmental conditions shift during disease progression. In 404 

cirrhosis patients, E. coli and B. vulgatus were associated with genes providing a majority 405 

of the menaquinone biosynthesis capacity. These species are also increased in human 406 

NAFLD[75]. Similar to the results in mice exposed to TCDD, L. reuteri was associated 407 
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with several menaquinone biosynthesis genes and only detected in decompensated cir-408 

rhosis patients but lacked the complete pathway (Table S10). In cirrhosis patients, it is 409 

unclear whether L. reuteri is participating in menaquinone metabolism and/or benefiting 410 

from increased abundance of species, like E. coli that are capable of producing 411 

menaquinones.  412 

This study was designed to account for factors affecting gut microbiota analysis in-413 

cluding coprophagia and circadian rhythm (refs). Significant shifts in taxa were observed 414 

in Lactobacillus species. However, the small group size (n=3) following adjustment for 415 

multiple testing lacked sufficient power to confirm more subtle shifts such as the 2-fold 416 

enrichment of Lachnospiraceae A4, an abundant community member associated with bsh 417 

sequences. Samples were also collected within the same Zeitgeber period to account for 418 

possible variations in relative microbiota levels due to circadian rhythm/diurnal regula-419 

tion. In fact, L. reuteri is one gut microbiome member demonstrating changes in relative 420 

abundance in human samples due to circadian/diurnal regulation[76]. TCDD disrupted 421 

diurnal regulation of hepatic gene expression including bile acid biosynthesis genes 422 

which may contribute to L. reuteri enrichment[77].  423 

Although the consequences of TCDD-elicited immune system effects on the gut 424 

microbiome were not assessed in this study, it is most likely a factor impacting L. reuteri 425 

enrichment. TCDD causes macrophage and dendritic cell migration out of the lamina 426 

propria with increased accumulation in the liver, possibly exacerbating hepatic inflam-427 

mation and affecting intestinal immune responses[14]. The ability of L. reuteri to produce 428 

AhR ligands, upregulate IL-22, and associate with the mucosa and Peyer’s patches pro-429 

vides geographical proximity for immune/microbiome crosstalk mediated by the AhR 430 

[27,78,79]. Besides immune cell regulation, TCDD increased bone formation and de-431 

creased bone marrow adiposity[80]. Interestingly, L. reuteri supplementation also in-432 

creased bone density, but only when mice are induced towards an inflammatory 433 

state[81]. Overall, the dose-dependent increase in L. reuteri levels are consistent with in-434 

creased bile acid levels, disruption of circadian/diurnal regulation and increased bone 435 

density[9,77,80,81].   436 

In summary, Lactobacillus species were dose-dependently increased following AhR 437 

activation by TCDD, concurrent with the increase in bsh genes and increased primary and 438 

secondary bile acids. Specifically, L. reuteri, a keystone gut microbiome species is in-439 

volved in microbial metabolism of bile acids and AhR ligands. The large and uniform 440 

enrichment of L. reuteri in this study also suggests environmental pressures such as in-441 

creased levels of bile acids and antimicrobial peptides elicited by AhR activation may 442 

provide a complementary niche for L. reuteri that possess a gene repertoire not found in 443 

the closely related L. murinus. We also provide evidence on how L. reuteri metabolism 444 

could impact AhR, FXR and GPBAR1 signaling pathways, placing L. reuteri at the cross-445 

roads of bacterial/host interactions affecting glucose, bile acid, and immune regulation. 446 

Whether these microbial shifts in metabolism are adaptive and limit the intensity of ad-447 

verse consequences or exacerbates steatosis to steatohepatitis with fibrosis progression 448 

warrants further investigation. 449 

4. Materials and Methods 450 

4.1 Animal treatment 451 

Postnatal day 25 (PND25) male C57BL/6 mice weighing within 10% of each other 452 

were obtained from Charles River Laboratories (Kingston, NY) and housed and treated 453 

as previously described[9]. Briefly, mice were housed in Innovive Innocages (San Diego, 454 

CA) containing ALPHA-dri bedding (Shepherd Specialty Papers, Chicago, IL) in a 23°C 455 

environment with 30–40% humidity and a 12 hr/12 hr light/dark cycle. Aquavive water 456 

(Innovive) and Harlan Teklad 22/5 Rodent Diet 8940 (Madison, WI) were provided ad 457 

libitum. The rodent diet is a fixed formula complete diet with an energy density of 3.0 458 

kcal/g and a nutrient ingredient composition including 22% protein, 5.5% fat, and 40.6% 459 
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carbohydrate. Mice (PND29) were orally gavaged at the beginning of the light cycle 460 

(between Zeitgeber time 0-3) with 0.1 ml sesame oil vehicle (Sigma-Aldrich, St. Louis, 461 

MO) or 0.3, 3 and 30 μg/kg body weight TCDD (AccuStandard, New Haven, CT) every 4 462 

days for 7 total exposures (n=3 per treatment group). The study was conducted in three 463 

cohorts with mice housed separately among treatment groups for a total of 9 mice per 464 

treatment group. In each cohort, three mice were housed per treatment group and one 465 

mouse was randomly selected from each treatment group per cohort (n=3 per treatment 466 

group for the metagenomic analysis) to account for coprophagia and ensure reproduci-467 

bility. The first gavage was administered on day 0 of the study. On day 28, vehicle- and 468 

TCDD-treated mice (fasted for 6 hr with access to water) were weighed and euthanized 469 

between Zeitgeber time 0-3. Upon collection, cecums were immediately flash frozen in 470 

liquid nitrogen and stored at -80°C until analysis. All animal handling procedures were 471 

performed with the approval of the Michigan State University (MSU) Institutional Ani-472 

mal Care and Use Committee. 473 

 474 

4.2 Metagenomic sequencing 475 

Microbial DNA from cecum contents (~25 mg) was extracted using the FastDNA 476 

spin kit for soil (SKU 116560200, MP Biomedicals, Santa Ana, CA). Extracted DNA was 477 

submitted to Novogene (Sacramento, CA) for quality control, library preparation, and 478 

150-bp paired-end sequencing at a depth 136-157 million reads using an Illumina 479 

NovaSeq 6000. Reads aligning to the C57BL/6 Mus musculus genome (NCBI genome as-480 

sembly: GRCm38.p6) were identified, flagged, and removed using bowtie2[82], 481 

SamTools[83] and bedtools[84]. For human metagenomic analysis, reads were filtered 482 

against the human genome (NCBI genome assembly: GRCh37/hg19) using the 483 

Kneaddata bioinformatics tool developed at the Huttenhower Lab 484 

(https://github.com/biobakery/kneaddata). 485 

 486 

4.3 Metagenomic taxonomic analysis 487 

Kaiju was used for taxonomic analysis of mouse cecum metagenomic dataset. The 488 

reference database used was the progenomes database downloaded from the kaiju web-489 

server (https://kaiju.binf.ku.dk/database/kaiju_db_progenomes_2020-05-25.tgz). Multi-490 

variate association between dose and taxonomy relative abundances used Maaslin2 491 

(https://github.com/biobakery/Maaslin2)[85] with the following default settings used: 492 

normalization (total sum scaling), analysis method (general linear model), and 493 

Benjamini-Hochberg multiple test correction. Adjusted p-values for Maaslin2 analysis 494 

used dose (sesame oil vehicle (0), 0.3, 3, or 30 μg/kg TCDD) as the fixed effect which was 495 

treated as continuous variable and the vehicle set for reference. For comparison of tax-496 

onomy between vehicle and 30 μg/kg TCDD treatment groups, DeSeq2 was used to de-497 

termine adjusted p-values using default settings[86]. 498 

 499 

4.4 Metagenomic functional analysis 500 

The HUMAnN 3.0 bioinformatic pipeline[87] was used with default settings to 501 

classify reads to UniRef90 protein identifications using UniProt’s UniRef90 protein data 502 

base (January, 2019). Reads aligned to UniRef90 identifications were mapped to enzyme 503 

commission (EC) number entries using the humann_regroup_table tool. Read abundance 504 

was normalized to gene copies per million reads (CPM) using the human_renorm_table 505 

tool. Multivariate association between dose and enzyme commission number relative 506 

abundance used Maaslin2 with same settings used for taxonomy analysis. 507 

Xander  (a gene-targeted assembler, 508 

https://github.com/rdpstaff/Xander_assembler) was used to annotate and quantify bile 509 

salt hydrolase sequences with the following settings: k-mer size=45, filter size=35, mini-510 

mum assembled contig bit score=50, and minimum assembled protein contigs=100 [88]. 511 

Reference DNA and protein bsh sequences used for Xander were downloaded from 512 
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FunGenes Gene Repository and are listed in supplementary material (Table S9 and Table 513 

S10)[89]. For RefSeq bsh sequences analysis, relative abundance was determined by 514 

normalizing to total abundance of rplB sequences also determined by Xander per sample. 515 

Significance was determined with Maaslin2 with same settings used for taxonomy anal-516 

ysis  517 

Human metagenomic data from the European Bioinformatics Institute European 518 

Nucleotide Archive under accession number PRJEB6337 519 

(https://www.ebi.ac.uk/ena/data/view/PRJEB6337) was analyzed using the same 520 

HUMAnN 3.0 pipeline as cecum metagenomic data. Fecal shotgun metagenomic samples 521 

from Chinese patients were defined as healthy (n=52) or cirrhotic with subclassifications 522 

of compensated (n=48) or decompensated (n=44) by the authors[40]. Cirrhosis was di-523 

agnosed by either biopsy, clinical evidence of decompensation or other metrics including 524 

radiological evidence of liver nodularity and intra-abdominal varices in a patient with 525 

chronic liver disease[40]. The subclassification was used as fixed effect for analysis with 526 

healthy as the reference category. Again, Maaslin2 was used with settings used for func-527 

tional analysis with diagnosis as a fixed effect with healthy diagnosis as reference to de-528 

termine adjusted p-values for compensated and decompensated patient designations.  529 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 530 

Stacked bar plots of annotated EC number mean relative abundance and classified species involved 531 

in isoprenoid biosynthesis in cecum of TCDD-exposed mice, Figure S2: Stacked bar plots of mean 532 

relative abundance of annotated EC numbers and classified to Lactobacillus species involved in 533 

isoprenoid biosynthesis in cecums of TCDD-exposed mice, Figure S3: Stacked bar plots of anno-534 

tated EC number mean relative abundance classified to respective species and involved in 535 

mevalonate dependent isoprenoid biosynthesis in cirrhotic patients, Table S1: Relative abundance 536 

of significantly changed bsh sequences in mouse cecums, Table S2: Significant Uniref90 annotations 537 

in murine cecum metagenomic dataset, Table S3: Enzyme commission numbers (EC) that were 538 

significant and annotated to at least L. reuteri in cecums of TCDD-exposed mice, Table S4: Enzyme 539 

commission numbers (EC) with species annotated to mevalonate-dependent IPP pathway for cir-540 

rhotic patients, Table S5: Total number of unique EC numbers determined to have greater than zero 541 

relative abundance in respective pathway (mevalonate and MEP isoprenoid biosynthesis, and 542 

menaquinone biosynthesis) in human cirrhosis patients, Table S6:Total number of unique EC 543 

numbers determined to have greater than zero relative abundance in respective pathway 544 

(mevalonate and MEP isoprenoid biosynthesis, and menaquinone biosynthesis) in TCDD-exposed 545 

mice, Table S7: Mean relative abundance denoted in counts per million (CPM) of EC annotations 546 

that were classified to L. reuteri and associating with chorismate biosynthesis., Table S8: EC num-547 

bers with relative abundance of species to menaquinone biosynthesis pathway for cirrhotic pa-548 

tients, Table S9: Nucleotide sequences used as reference in Xander bsh analysis, Table S10. Protein 549 

sequences used as reference in Xander bsh analysis. 550 
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