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Abstract

Flux balance analysis (FBA) for microbial communities often assumes a global objective function that
all species cooperatively maximize in addition to maximizing their own growth. Combining community
FBA with dynamic FBA to understand the time course and steady states of communities typically entails
discretizing time and solving a community FBA model at each time point, a time-intensive process. We
propose a dynamic community FBA model where species compete for metabolites to grow off of without
needing to cooperate to maximize a community-level objective. An efficient method for computing
steady state community compositions is provided, as well as methods for determining the stability of a
steady state community to perturbations in biomass and invasion by species outside the community. The
model and methods are applied to a model of four E. Coli. mutants with elements of competition (for
shared metabolites) and cooperation (via mutants being auxotrophic for metabolites exported by other
mutants).

1 Introduction

The interest in modeling microbial communities continues to grow as their impact on human health [6, 18,
19, 31] and the environment [11, 12, 25, 32] becomes more evident. The relationships between species in
a community can show2 both aspects of cooperation, or dependence on the metabolites produced by other
species, and competition for metabolites available in the environment. These interactions can lead to very
different steady state compositions of the microbial community, and understanding the dynamics that lead
to these steady states have important implications for potentially controlling the community composition by
introducing new species, or specific metabolites, or selectively eliminating certain species via antibiotics or
immune action.

The simplest model for interaction between different species is the Lotka-Voltera model. This is a reduced-
form model that summarises the interactions between species by an interaction matrix, and therefore is not
able to represent interactions that are mediated by the exchange of metabolites [24]. Flux balance analy-
sis (FBA) [27] and its many variants leverage genome-scale chemical reaction networks [33] to understand the
interactions between microbial species at the level of metabolic interactions. FBA models typically assume
that all species in the community cooperatively maximize a global community-wide objective function. In
this work, we propose a non-cooperative model where each species attempts to maximize its own grow rate,
albeit taking into consideration the second-order effects of the metabolites it secretes into the environment.

Our main contributions are as follows.

(a) We propose a game-theory based model for predicting the composition of a microbial community. In
this model, the various species are players in a non-cooperative game where the goal of the players is to
maximize their own utility, which we define as the growth rate. However, unlike most game theoretic
models, the “actions”, i.e. the reaction rates, feasible for a particular species depend on the actions
taken by other species. We show that a generalized Nash equilibrium for this game can be efficiently
computed by iteratively solving a sequence of quadratic programs. We establish a convergence guar-
antee for this method, and show that it scales to the problem sizes encountered using genome-scale
metabolic models.
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(b) We consider the dynamic setting where biomasses of the species evolve according to the instantaneous
growth rate given by the generalized Nash equilibrium of the game corresponding to the current
biomass composition. Computing the steady state of these dynamics by solving the ordinary differential
equations involves discretizing time and solving a Nash equilibrium problem at each time point – a
very time-intensive procedure. We show how to efficiently compute steady-state compositions of these
dynamics by solving a single generalized Nash equilibrium problem. We also show how to test the
robustness of a steady state to perturbations in the biomasses of each species, as well as to invasion
by a new microbial species not currently in the community.

(c) We discuss results of numerical experiments predicting the composition of a community of four E.
Coli. mutants, with each mutant auxotrophic for a metabolite exported by one of the other mutants.
We find that the steady state computed by a previously proposed community flux balance model that
enforces cooperation is, in fact, unstable with respect to perturbations in the biomasses. We show that
our approach implies that there are several qualitatively different steady states consistent with a given
level of metabolite supply. This aligns well with studies showing that microbial communities can have
a wide range of steady state behaviors even when the environmental conditions are the same [13, 28].
See Section 3 for more details.

The rest of this paper is organized as follows. In Section 1.1 we review related literature and provide back-
ground for our analysis. In Section 2 we introduce our model for predicting the composition of microbial
communities, characterize properties of stable steady states, and show how to use these properties to effi-
ciently compute the stable steady states. Section 3 applies the model to a small example community, and
section 4 concludes with a discussion on how the model can be improved.

1.1 Related literature

Our work draws and builds on the following four different streams of literature.

1.1.1 Flux balance analysis (FBA)

FBA is an approach for studying metabolic networks, i.e. the collection of all metabolites found in an
organism as well as the genes that encode enzymes that catalyze metabolic reactions. FBA uses genome-
scale metabolic models and tools from optimization to compute the steady-state consumption and production
of metabolites in an organism in order to predict the growth rate of the organism [27, 29]. A major benefit
of FBA is that it only requires the stoichiometric constants of the metabolites in each reaction, rather than
kinetic rate constants needed for a traditional dynamical systems approach to metabolic modeling that, in
practice, are difficult to experimentally estimate [8]. The FBA approach has been gaining popularity in the
last decade because high-quality metabolic network reconstructions for a number of different organisms have
become available [20, 21, 26].

FBA imposes mass balance constraints that ensure the amount of each metabolite excreted and absorbed
across all species are equal, as well as lower and upper bounds on the rate of each reaction. Reaction rates are
calculated, subject to these constraints, so as to maximize an objective function. In single species models,
this objective function is typically the rate of some “biomass” reaction that represents the consumption
of metabolites needed for members of the species to reproduce. Multi-species FBA models are bi-level
optimization problems wherein a community-level objective function is optimized in the outer problem, and
each species maximizes its biomass reaction in the sub-problems [4, 35]. The model discussed in this paper is
a departure from this last point – in our model each species maximizes its own biomass without any regard
for any community level objective function.

1.1.2 Microbial communities as a game

We model the steady-state composition of a community of microbial species as the equilibrium outcome of
the competition between the various bacterial species for nutrients (i.e. metabolites). While not an FBA-
based approach, Dubinkina et. al. [7] and Goyal, Dubinkina, and Maslov [14] predict the composition of
the microbiome by proposing that the equilibrium composition is a stable matching between species and
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nutrients. Harcombe et. al. [15] consider competition between microbial species on a lattice, where space is
the limiting resource and each species is described by an FBA model.

Combining FBA with game-theoretic/multi-agent system models has potential to be a useful approach to
modeling the interaction between multiple bacterial species. Chan et. al. [4] and Zomorrodi and Maranas [35]
study the steady-state composition of a microbial community via a bi-level FBA optimization model where
each species maximize its own growth rate while simultaneously cooperating with the other species to max-
imize the overall community growth rate. Chan et. al. [4] assume that, at steady-state, each species has
the same biomass-weighted reaction flux and that the different species cooperate to maximize their common
biomass reaction rate. With these assumptions the bi-level problem reduces to solving a sequence of linear
programs. However, the model by Zomorrodi and Maranas [35] results in a large bi-level non-convex problem.
Zomorrodi and Segre [36] used FBA to compute the payoff matrix for a producer-consumer game amongst
n bacterial species. While Nash equilibria for this game are efficiently computed for moderate-size payoff
matrices via an integer linear programming formulation, the size of the payoff matrix grows exponentially
in the number of bacterial species as well as the number of metabolites considered. The model also focuses
on the presence or absence of reactions producing metabolites of interest, rather that studying the values of
fluxes for each reaction in the entire set of reactions.

We model the interaction between the species as a non-cooperative game in which each species attempts
to maximize its growth rate while being constrained by FBA constraints that can depend on the fluxes of
other species. We assume that the reaction rates are given by generalized Nash equilibria (GNE). This
approach has the advantage of not imposing a community-level objective function on the individual species,
allowing us to study the more realistic case where the microbial community can operate sub-optimally at
the community level [30]. We also discuss the stability of the associated GNEs.

1.1.3 Dynamic FBA

Typically, the quantity of interest when analyzing a microbial ecosystem is the relative proportion of each
species. However, FBA, by itself, does not provide this information since FBA focuses on fluxes of the
biomass reactions and not the biomasses. Dynamic FBA (DFBA) [22] models the dynamics of the biomasses
by a Lotka-Volterra model with the growth rates given by the rates of the biomass reactions as calculated
by FBA at that point in time. DFBA has been extended to model cooperative community dynamics [34],
and a number of efficient implementations have been developed [2, 17]. We consider the dynamics of general
communities by assuming that the instantaneous growth rates of all species is given by the Nash equilib-
rium at each point in time. We show that we can directly compute steady-state community compositions,
bypassing the need to simulate the solution for the Lotka-Volterra differential equation.

Our method is motivated by SteadyCom [4]. However, our model departs from SteadyCom in several
important ways: we do not assume that at steady-state the species are collaborating to maximize the
common growth rate, and instead assume that each species focuses just on maximizing its own steady-state
biomass reaction rate. We also consider the stability of steady-states to perturbations in the biomasses as
well as to invasion by other species.

1.1.4 Generalized Nash equilibria

We model the interaction between the species as a non-cooperative game where the actions for each player
(i.e. species) can depend on the action of the other players. This feature is needed to model the fact that
species in a community exchange metabolites, and the available actions, i.e. reaction rates, can be limited by
the supply of metabolites that are secreted by or shared with other species. Nash equilibria for such games
are called generalized Nash equilibria, and the associated games are called generalized Nash equilibrium
problems (GNEP). We consider GNEPs where the objective and the constraints are described by linear
functions. A large number of approaches to solving this type of problem have been developed, including
methods based on solving the concatenated KKT conditions for all players [5], formulating the GNEP as the
minimization of a Nikaido-Isoda function [16], and penalty methods that solve a sequence of simpler Nash
equilibrium problems [9]. We use a method that iteratively solves, in parallel, a quadratically regularized
version of the best response problem of each player with the other players’ strategies fixed [10]. This approach
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Figure 1: Schematic of microbial interactions, with grey squares representing reactions consuming and
producing metabolites, represented by circles. Orange circles denote metabolites in the shared compartment,
whereas black circles represent metabolites within a species. Arrows represent metabolites taking place
in a reaction, with an arrow from (towards) a metabolite representing consumption (production) of that
metabolite by the reaction. Green arrows represent exchange reactions that move metabolites between the
shared compartment and a species, whereas black arrows represent reactions within a species. Note that
the same type of metabolite is tracked as multiple different metabolites i.e. metabolite 2 in the shared
compartment is the same type of metabolite as metabolite 6 in species 1 and metabolite 8 in species 2.

is guaranteed to converge to a GNE, and we find in our numerical experiments that the method scales well
as the number of species increases.

2 Model

We start by formulating a GNEP involving just reaction fluxes without considering biomasses. Adding in
the biomasses for each species is straightforward, and does not change the details of the model or how to
compute GNE.

2.1 Chemical reactions

Let [K] = {1, 2, ...,K} denote the set of K microbial species present in a compartment or community. In
Figure 1 we have K = 2 species in the compartment. Let [Ik] = {1, . . . , Ik} index the set of metabolites
in species k. Let [Ic] = {1, . . . , Ic} index the set of metabolites found in the common space shared by the
microbes1. In Figure 1, I1 = 4, I2 = 3 and Ic = 3.

There are two sets of reactions associated with each species k. The first set of reactions [Jk] = {1, . . . , Jk}
change the concentration of metabolites within an individual cell of species k. The second set of reactions
[Jex
k ] = {1, . . . , Jex

k } of reactions are exchange reactions, i.e. these ingest or excrete metabolites from the cell
to the shared compartment. In Figure 1, black lines schematically denote the internal set of reactions [Jk]
and the green lines indicate the exchange reactions [Jex

k ].

Let ck(t) ∈ RIk+ denote the metabolite concentration in species k at time t. Then

ċk = Rkvk +Rex
k v

ex
k , (1)

where vk ∈ RJk (resp. vexk ∈ RJex
k ) denote the rates of the internal (resp. exchange) reactions, and the

stochiometric matrices Rk ∈ RIk×Jk and Rex
k ∈ RIk×Jex

k detail the impact of the reactions on the metabolite
concentration. The (i, j)-th element Rk(i, j) of Rk denotes the change in the concentration of metabolite

1Note that the same metabolite may be indexed differently in two different species and the compartment.
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i when reaction j proceeds at a unit rate: Rk(i, j) > 0 if the metabolite i is produced by reaction j and
Rk(i, j) < 0 if metabolite i is consumed by reaction j. The stochiometric matrices Rex

k for the exchange
reactions are special in the sense that every row has exactly one term equal to ±1, where Rex,k(i, j) = +1
(resp. Rex,k(i, j) = −1) indicates that the reaction j is ingests (resp. excretes) metabolite i from the
compartment, i.e. increases (resp. decreases) the concentration of the metabolite. At steady-state, each
species must ensure that ċk = 0 i.e.

Rkvk +Rex
k v

ex
k = 0 (2)

The fluxes within the species are further restricted by upper and lower bounds uk and `k, respectively, that
define maximum and minimum allowable fluxes, determined by the chemistry of the reactions

`k ≤ vk ≤ uk. (3)

Assumption 1 (Bounded fluxes). The bounds (3) and the flux balance constraints (2) imply that the set of
feasible values of (vk,v

ex
k ) are bounded for all k ∈ [K].

The exchange reactions result in a change in concentration of the metabolites in the compartment. Let
Rc
kv

ex
k for Rc

k ∈ RIc×Jex
k denote the metabolite outflow from the compartment as a result of the exchange

reactions associated with species k. Note thatRc
k 6= Rex

k since the metabolites might be indexed differently in
species k and the compartment. We assume that there is an inflow f c of metabolites into the compartment.
Thus, we require that ∑

k∈[K]

Rc
kv

ex
k ≤ f c. (4)

By allowing an inequality above, we are implicitly assuming that any unused metabolite diffuses away. The
constraints (2)-(3) are species specific constraints, whereas (4) is a constraint across species.

2.2 Game formulation

Let (v,vex) = {(vk,vexk ) : k ∈ [K]} denote the reaction rates for all the species. Then the set of feasible rate
profiles for all species is given by the set

χ = {(v,vex) : (vk,v
ex
k ) satisfies (2) and (3) for all k ∈ [K],vex satisfies (4)} (5)

For (v,vex) ∈ χ, the payoff for species k is given by

Uk(v,vex) = g>k vk, (6)

where gk denotes a combination of reactions that lead to biomass growth. Let

χ−k((v`,v
ex
` )` 6=k) =

{
(vk,v

ex
k ) : ((vk,v

ex
k ), (v`,v

ex
` )` 6=k) ∈ χ

}
(7)

denote the set of feasible reaction rates for species k given the rates of all other species ` 6= k.

We call a reaction rate profile (ν,νex) a generalized Nash equilibrium (GNE) if, for all k ∈ [K],

(νk,ν
ex
k ) = argmax

(vk,vex
k )∈χ−k((ν`,νex

` )` 6=k)

Uk((vk,v
ex
k ), (ν`,ν

ex
` )` 6=k) = g>k vk,

i.e. (νk,ν
ex
k ) is the best response if the reaction rate profile of all the other species is given by (ν`,ν

ex
` )` 6=k.

We propose that the reaction rates for a microbial community is given by a GNE. And, therefore, we are
faced with the computational task of efficiently computing a GNE.

Define the operator T (v,vex) = [Tk(v,vex)]k∈[K], where

Tk (v,vex) = argmax
(y,yex)∈χ−k((v`,vex,`)` 6=k)

{
g>k y +

1

2
||y − vk||22 +

1

2
||yex

k − vexk ||22
}
.
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Note that the optimization problem implicit in the definition of T has a strongly convex quadratic objective
function and linear constraints. Optimization problems of this form can be solved very efficiently [1].

Proposition 12.5 in [10] establishes that (v,vex) is a GNE if, and only if, (v,vex) is a fixed point of the
operator T . Proposition 12.17 in [10] applied to the problem defined here shows that T is non-expansive
and, therefore, a fixed point of T can be computing using an averaging scheme of the form

(v,vex)← (v,vexk ) + τj (T (v,vexk )− (v,vexk ))

for a step length τj ↘ 0 such that
∑∞
j=0 τj = +∞.

In practice, using such an averaging scheme to find a GNE is slow because the regularization term and the
step length τj limit the change in (v, vex) at each iteration to be small. To counteract this, we define a new
operator T α(v,vex) = [Tαk (v,vex)]k∈[K] where

Tαk (v,vex) = argmax
(y,yex)∈χ−k((v`,vex,`)` 6=k)

{
g>k y +

α

2
||y − vk||22 +

α

2
||yex

k − vexk ||22
}
.

We compute a GNE by performing the averaging scheme with T α(v,vex) where α = αj in iteration j, and
it is a non-decreasing function of j that saturates at 1. By setting αj small for j small, we allow the reaction
rates to take large steps, and hence, speed up the convergence to a fixed point. By ensuring that αj saturates
at 1, we are guaranteed that the iterates converge to a fixed point of T . Empirically, we found that we got
very good performance by setting αj = 10−3 + (1− 10−3)σ( j50 − 6), where σ denotes the sigmoid function.

2.3 Population dynamics and steady states

We now describe a model for computing the evolution of the biomass of each species over time. These
dynamics are similar to those in [4], but with the biomass fluxes calculated using the Nash equilibrium
approach described in Section 2.2 i.e. we assume that at each point in time the vector of reaction rates
is a GNE with respect to a biomass-weighted FBA game, but that the biomasses are not necessarily in
equilibrium.

Let xk denote the biomass of species k and let x = [x1, . . . , xK ] denote the vector of quantities of all species.
We define an x-weighted game as follows. The set of “players” is given by [K(x)] = {k ∈ [K] : xk > 0}, i.e.
only species with positive quantity can play the game. The feasible set of rates {(vk,vexk ) : k ∈ [K(x)]} is
now given by

χ(x) =
{

(vk,v
ex
k ) : (vk,v

ex
k ) satisfies (2) and (3) for all k ∈ [K(x)],

∑
k∈[K(x)]

xkR
c
kv

ex
k ≤ f c

}
, (8)

i.e. the conservation equation for the compartment is now given by
∑
k∈[K(x)] xkR

c
kv

ex
k ≤ f c. We are

assuming that the external supply f c remains constant and each cell of species k sets the same rates (vk,v
ex
k ),

and therefore, the total outflow from the compartment is given by
∑
k∈[K(x)] xkR

c
kv

ex. Thus, it follows that

(ν,νex) is a GNE for the x-weighted game if, and only if, for all k ∈ [K(x)]

(νk,ν
ex
k ) ∈ argmax

(vk,vex
k )

g>k vk,

s.t. Rkvk +Rex
k v

ex
k = 0,

xkR
c
kv

ex
k +

∑
` 6=k,`∈[K(x)]

x`R
c
`ν

ex
` ≤ f c

`k ≤ vk ≤ uk.

(9)

Note that a species k is not a player if xk = 0, and therefore, reaction rates (vk,v
ex
k ) are not defined for all

k with xk = 0.

We assume that the quantity of each species of bacteria evolves according to a Lotka-Volterra system of
equations, with the growth rate of each species at each point in time being equal to its biomass reaction rate
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at that point in time. Then the dynamics for the quantity xk(t) of bacterial species k are given by

dxk
dt

= (g>k νk − δk)xk(t), (10)

where δk denotes the death rate for species k and g>k νk denotes the growth rate for species k corresponding
to a Nash equilibrium (ν,νex) of the x(t)-weighted Nash game. We are interested in efficiently computing
steady states limt→∞ x(t) and analyzing their stability. Before moving on to how to do these tasks, we
formalize the idea of a steady state. Suppose x̄ = limt→∞ x(t) exists. Then the dynamics in (10) imply that
either x̄k = 0 or g>k νk(x̄) = δk for all k.

Definition 2.1. (x,ν,νex) is a steady state GNE if (ν,νex) is a GNE for the x-weighted game, and
g>k νk = δk for all k ∈ K[x].

Lemma 2.1. A vector of quantities x is a steady state for the dynamics described by (10) if, and only if,
there exist vectors (ν,νex) such that (x,ν,νex) is a steady state GNE as defined in Definition 2.1.

Proof. Suppose x is a steady state for the dynamics in (10). Then, for each k, either xk = 0, or xk > 0 and
the growth rate of the species is equal to the death rate δk. By definition, the growth rate for a species k is
given by g>k νk for some GNE equilibrium (ν,νex) for an x-weighted game. Thus, it follows (x,ν,νex) is a
steady state GNE.

Suppose (x,ν,νex) is a steady state GNE. Then we have that (ν,νex) is a GNE for the x-weighted game,
and g>k νk = δk for xk > 0. Thus, it follows that x is a steady state for the dynamics in (10).

2.4 Stability of steady states

Suppose (x,ν,νex) is a steady-state Nash equilibrium. We want to understand the stability of this steady
state. Suppose the steady state x is perturbed to x + p(0), where p(0) ≈ 0. We are interested in under-
standing the dynamics p(t) for t ≥ 0. In particular, we’re interested in whether or not the dynamics are
able to dampen any such perturbation to keep the community composition stable. Since the dynamics (10)
are defined by Nash equilibria, we are effectively interested in understanding the comparative statics of the
Nash equilibria [3].

We discuss our approach informally here before providing a more formal analysis. Let hk(x) = g>k νk(x) = δk
denote the growth rate at the steady state x, where we emphasize that the GNE ν is a function of x. Then

dpk
dt

= (xk + pk)(hk(x+ p)− δk),

≈ (xk + pk)

hk(x) +
∑
`∈[K]

∂hk(x)

∂x`
p` − δk


≈ xk

∑
`∈[K]

∂hk(x)

∂x`
p`,

where we assume that the perturbation is small enough that

hk(x+ p) ≈ hk(x) +
∑
`∈[K]

∂hk(x)

∂x`
p`,

and we can ignore quadratic terms in p, and use the fact that xk
(
hk(x)− δk

)
= 0 for all k. Thus, we have

that
dp

dt
= Mp,

where M ∈ RK×K with the (k, j) element Mkj = xk
∂hk(x)
∂xj

. If the real part of all the eigenvalues of M are

all less than 0, x is a stable steady state for (10). To define M , we need to evaluate ∂hk(x)
∂xj

for all k, j. We

need some notation in order to explain the construction.
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(i) Let

Uk(x) = {i : νki(x) = uki} (11)

Lk(x) = {i : νki(x) = lki} (12)

denote the indices for which the optimal solution νk(x) for the linear program (9) at biomasses x is
equal to the reaction upper or lower bound. Let

Fk(x) = {i : i 6∈ Uk(x) ∪ Lk(x)} (13)

be the sets of free non-exchange reactions at the optimal solution for (9) at biomasses x.

(ii) Let Rc
k[j] denote the j-th row of the matrix Rc

k. Let

E(x) =
{
j : xkR

c
k[j]νex

k (x) = fc[j]−
∑

` 6=k,`∈[K(x)]

x`R
c
`[j]ν

ex
` (x)

}
(14)

denote the set of community exchange constraints that are active in (9). Note that the set of active
exchange constraints is independent of species k ∈ K[x].

The following characterizes the values of ∂hk(x)
∂xj

needed to construct M .

Lemma 2.2. Suppose (x,ν,νex) denotes any steady state GNE. Suppose the dual linear program of (9) has
a unique solution for all k ∈ [K]. In particular, let λk be the dual optimal solution corresponding to the
metabolite exchange constraints. Then we have

∂hk(x)

∂xj
= (λk)>

− 1

xk

 ∑
` 6=k,`∈[K(x)]

xlR
c
`

∂νex
l (x)

∂xj
+ δjkbk(x) + (1− δjk)Rc

jν
ex
j (x)

 (15)

where the partial derivatives of the fluxes with respect to changes in the biomasses are determined by solving
the following system of equations over all k, j ∈ [K(x)].

RE
k

∂νex
k

∂xj
= − 1

xk

 ∑
` 6=k,`∈[K(x)]

x`R
E
`

∂νex
` (x)

∂xj
+ δjkbk(x;E) + (1− δjk)RE

j ν
ex
j (x))

 (16)

0 = RF
k

∂νk(Fk(x))

∂xj
+Rex

k

∂νex
k (x)

∂xj
(17)

Proof. Recall the “utility” hk(x) for species k is given by the optimal value of the LP (9) at a steady state
Nash equilibrium (ν(x),νex(x)) with the biomasses set to x. Let

bk(x) =
1

xk

f c − ∑
` 6=k,`∈[K(x)]

x`Rc,lν
ex
`


denote the right-hand side of the metabolite exchange constraints for the problem corresponding to species k.
Since the dual solution is assumed to be unique, we have for all bk sufficiently close to bk(x) that the optimal
values hk(bk) = hk(bk(x)) + (λk)>(bk − bk(x)). Therefore,

∂hk(x)

∂xj
= (λk)>

∂bk(x)

∂xj

= (λk)>
∂

∂xj

 1

xk

f c − ∑
` 6=k,`∈[K(x)]

x`R
c
`ν

ex
` (x)


= (λk)>

− 1

xk

 ∑
` 6=k,`∈[K(x)]

x`R
c
`

∂νex
l (x)

∂xj
+ δjkbk(x) + (1− δjk)Rc

jν
ex
j (x)
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with δjk = 1 if j = k, δjk = 0 otherwise. Thus, it follows that the optimal solution for bk will have
νk[Uk] = uk[Uk(x)], νk[Lk(x)] = `k[Lk(x)], and

RE
k ν

ex
k =

1

xk

f c(Ek(x))−
∑

` 6=k,`∈[K(x)]

x`R
E
` ν

ex
`

 (18)

and the free variables are determined by the systems of equations

RU
k uk(Uk(x)) +RL

k `k(Lk(x)) +RF
k νk(Fk(x)) +Rex

k ν
ex
k = 0 (19)

We can differentiate (18) and (19) to solve for
∂νex

k (x)
∂xj

and ∂νk(Fk(x))
∂xj

for all k, j ∈ [K(x)].

Lemma 2.2 is concerned with species k such that xk > 0, i.e. species that survive at steady state. We also
want to understand the stability of a steady state to invasion by a new species. Let (x,ν,νex) be a steady-
state GNE for theK species, and index this new species byK+1. Let hK+1(x, ε) denote the growth rate of the
invading species when its biomass xK+1 = ε. Then species K + 1 successfully invades if limε↓0 hK+1(x, ε) >
δK+1. The next result shows limε↓0 hK+1(x, ε) can be computed by solving an optimization problem.

Lemma 2.3. Suppose a steady-state GNE (x,ν,νex) satisfies the conditions in Lemma 2.2. Then, there
exists matrices {B` : ` ∈ K[x]} such that

lim
ε↓0

hK+1(x, ε) = max
(v ,vex)

g>K+1v,

s.t. RK+1v +Rex
K+1v

ex = 0,

e>j

(
Rc
K+1 +

∑
`∈K[x]

x`R
c
`B`

)
vex ≤ 0, ∀j ∈ E(x),

`K+1 ≤ v ≤ uK+1,

(20)

where E(x) = {j : e>j
(
f c −

∑
`∈[K(x)] x`R

c
`ν

ex
` ) = 0}, ej denotes the j-th standard basis vector, and the

matrices {B` : ` ∈ [K]} are defined in the proof below.

Proof. Consider the LP (9). Convert this LP to standard form by adding slacks sk ≥ 0 to the exchange
constraints, and splitting the free variables vexk into the difference vexk = vex,+k − vex,-k , of non-negative

variables vex,±k ≥ 0. Let Fk(x) = {i : i 6∈ Uk(x) ∪ Lk(x)} denote components of the vector ν that are not
fixed to their upper or lower bounds, F ex

k (x) = {i : νexk,i(x) 6= 0} the set of non-zero exchange reactions, and
E(x) the set of active exchange reaction constraints in (9). Then, for all small enough perturbations ∆f c,
the change in the optimal solution (νk,ν

ex
k ) is given by the solution to the following linear equations:[

RF
k Rex

k [:, F exk (x)]
0 xkR

c
k[E(x), F exk (x)]

]
︸ ︷︷ ︸

Ωk

[
∆νk[Fk(x)]

∆νex
k [F ex

k (x)]

]
=

[
0

∆f c[E(x)]

]
,

whereRex
k [:, F exk (x)] denotes the submatrix obtained by keeping all the rows and only the columns in F exk (x),

Rc
k[E(x), F exk (x)] denote the submatrix obtained by taking the rows in E(x) and the columns in F exk (x),

and ∆νex
k [F

ex

k (x)] = 0, where F
ex

k (x) denotes the complement of the set F ex
k (x). Consequently,

∆νex
k [F ex

k (x)] = Γk∆f c[E(x)], ∆ν[Fk(x)] = Ψk∆f c[E(x)],

where the matrices Γk and Ψk are appropriately defined submatrices of Ω−1. This relationship is valid only
if the following constraints hold

`k[Fk(x)] ≤ νk[Fk(x)] + ∆ν[Fk(x)] ≤ u[Fs(x)],

xkR
c
k[Ē(x), :](νex

k + ∆νex
k ) +

∑
` 6=k,`∈[K(x)] x`R

c
`[Ē(x), :]νex

` ≤ f c[Ē(x)] + ∆f [Ē(x)],
(21)
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where Ē[x] denotes the complement of the set E(x). Note that these constraints hold as long as the norm
of the disturbance ∆fc is sufficiently small.

The effective change in the RHS for species k is given by

∆f c[E(x)] =
∑
` 6=k

x`R
c
`[E(x), F ex

` (x)]∆νex
` [F ex

` (x)] + εRc
K+1[E(x), :]vexK+1.

Thus, for all k ∈ K[x], we have that

∆νex
k [F ex

k (x)] = Γk

(∑
` 6=k

x`R
c
`[E(x), F ex

` (x)]∆νex
` [F ex

` (x)] + εRc
K+1[E(x), :]vexK+1

)
,

∆νk[Fk(x)] = Ψk

(∑
` 6=k

x`R
c
`[E(x), F ex

` (x)]∆νex
` [F ex

` (x)] + εRc
K+1[E(x), :]vexK+1

)
.

Thus, the perturbation can be written as ∆νex
k [F ex

k (x)] = εBkR
c
K+1[E(x), :]vexK+1, and ∆νk[Fk(x)] =

εCkR
c
K+1[E(x), :]vexK+1,, where (Bk,Ck), k ∈ K[x], are a function of (Γk,Ψk), k ∈ K[x]. Thus, for all

small enough ε, (∆νex
k [F ex

k (x)],∆νk[Fk(x)]) will satisfy (21) for all k ∈ K[x].

More formally, let VK+1 =
{

(v,vex) : RK+1v +Rex
K+1v

ex = 0, `K+1 ≤ v ≤ uK+1

}
. By Assumption 1, we

have that the set VK+1 is bounded. Define

ε∗ = min ε,

s.t. maxvex∈VK+1

{
e>j

(
Rc
K+1 +

∑
`∈K[x] x`R

c
`B`

)
vex
}

≤ 1
εe
>
j

(
f c −

∑
`∈[K(x)] x`R

c
`ν

ex
` ), ∀j 6∈ E(x)],

maxvex∈VK+1

{
e>j CkR

c
K+1[F ex(x), :]vex

}
≤ 1

εe
>
j (uk − νk), ∀j ∈ Fk(x), ∀k ∈ K[x],

minvex∈VK+1

{
e>j CkR

c
K+1[F ex(x), :]vex

}
≥ 1

εe
>
j (`k − νk), ∀j ∈ Fk(x), ∀k ∈ K[x].

From the definition of the sets E(x) and Fk(x), and Assumption 1, it follows that ε∗ > 0. The contraints
corresponding to j 6∈ E(x) are slack for all vex ∈ VK+1 for ε < ε∗. Consequently, it follows that

hK+1(x, ε) = max
(v ,vex)

g>K+1v,

s.t. RK+1v +Rex
K+1v

ex = 0,(
Rc
K+1 +

∑
`∈K[x]

x`R
c
`B`

)
vex ≤ 1

ε

(
f c −

∑
`∈[K(x)]

x`R
c
`ν

ex
`

)
,

`K+1 ≤ v ≤ uK+1.

for all ε < ε∗. The result follows by taking the limit ε↘ 0.

Before moving on, we address the Assumption in Lemma 2.2 and Lemma 2.3 that the optimal dual vector
corresponding to the LP (9) is unique. Note that LPs with continuous parameters [23] have unique dual
solutions with very high probability; therefore, it is unlikely that we will encounter problems where the
optimal dual solution is non-unique. We can further increase the probability of an optimal dual solution
by removing redundant constraints and variables. And, if degeneracy is still encountered, the metabolite
supplies f c and reaction bounds `k, uk can be slightly perturbed to generate a new problem with a non-
degenerate optimal solution, and such a perturbation is justified since reaction rates and metabolite supply
are inherently noisy.

2.5 Computing steady states

Definition 2.1 allows us to efficiently check whether a vector x is a steady-state GNE for the dynamics
in (10). However, we do not yet know how to efficiently compute a steady-state GNE x. In this section, we
introduce a new quantity-weighted game which allows us to identify candidates for the steady-state GNE.
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The players in this new quantity-weighted game are still the species, and the actions for each player are
a triple of quantities (xk,ωk,ω

ex
k ), the utility of the player k is Uk(x,ω,ωex) = xk and the set of feasible

actions is

χ =

(x,ω,ωex) :

Rkωk +Rex
k ω

ex
k = 0, k ∈ [K]

xk`k ≤ ωk ≤ xkuk, k ∈ [K]∑
k∈[K]R

c
kω

ex
k ≤ f c.

 (22)

Thus, (x,ω,ωex) is a GNE for the quantity weighted game if, and only if,

(xk,ωk,ω
ex
k ) ∈ argmax

(ξk,vk,vex
k )

ξk,

s.t. Rkvk +Rex
k v

ex
k = 0,

Rc
kv

ex
k +

∑
` 6=k,`∈[K]

Rc
`ω

ex
` ≤ f c,

ξkδk ≤ gTk vk,
ξk`k ≤ vk ≤ ξkuk.

(23)

We next want to consider how well the set of Nash equilibria to (23) matches up with the set of steady state
Nash equilibria. We show that a GNE for (23) is a steady state GNE for (9).

Lemma 2.4. Suppose (x,ω,ωex) is GNE for the quantity-weighted game. Define (νk,ν
ex
k ) = 1

xk
(ωk,ω

ex
k )

for k ∈ [K(x)]. Then (x,ν,νex) is a steady-state GNE.

Proof. (ν,νex) is clearly feasible for (9) with weights x. Suppose however that it is not a steady-state GNE
i.e. for some k there exists (εk, ε

ex
k ) feasible for (9) such that g>k εk > gTk νk = x−1k g>k ωk ≥ δk.

Define (vk,v
ex
k ) = xk(εk, ε

ex
k ), and ξk = xkg

>
k εk/δk > xk. Since `k ≤ 0 and uk ≥ 0, it follows that

(ξk,vk,v
ex
k ) is feasible for (23). We have then that (xk,ωk,ωex,k) is not optimal for (23). A contradiction.

We would like the converse result to hold because this would allow us to use (23) to compute steady state
GNEs. However, this is not the case. There exist steady-state GNE (x,ν,νex) such that (xk, xkνk, xkν

ex
k )k∈[K(x]

is not a GNE for (23). However, a resource-constrained steady state GNE is a GNE for (23).

Definition 2.2 (Resource-constrained steady-state GNE). A steady-state GNE (x,ν,νex) is resource-
constrained if for all species k, the optimal value of the best response problem (9), when the biomasses
x` and fluxes νex

` for all species ` 6= k are fixed, and the biomass of species k is set to zk > xk, is less
than δk.

The following result gives more context to the resource-constrained steady state GNE defined above.

Lemma 2.5. Let (x,ν,νex) be a resource-constrained steady-state GNE. Suppose dual optimal solutions for
each species’ best response problem (9) at (x,ν,νex) is unique. Let Uk(x), Lk(x), and E(x) denote the
active sets defined in (11)-(14). Then for each species k ∈ [K(x)], there exists an active constraint j ∈ E(x)
such that

fc,j −
∑
` 6=k

x`R
c
` [j]ν

ex
` > 0.

Proof. By contradiction suppose there exists a species k such that for all j ∈ E(x), we have that

fc,j −
∑
` 6=k

x`R
c
`ν

ex
` ≤ 0.

Recall the compartment exchange constraints imply that

xke
>
j R

c
kν

ex
k ≤ e>j

(
f −

∑
` 6=k

x`R
c
`ν

ex
`

)
≤ 0.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.466952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466952
http://creativecommons.org/licenses/by/4.0/


Since xk > 0, it follows that Rc
k[j]νex

k ≤ 0 for all j ∈ E(x). Thus, for all zk ≥ xk

zke
>
j R

c
kν

ex
k ≤ xke>j R

c
kν

ex
k ≤ e>j

(
f c −

∑
` 6=k

x`R
c
`ν

ex
`

)
≤ 0, ∀j ∈ E(x).

Since the constraint j 6∈ E(x) are slack, it follows that there exists zk > xk such that

zke
>
j R

c
kν

ex
k ≤ xke>j R

c
kν

ex
k ≤ e>j

(
f c −

∑
` 6=k

x`R
c
`ν

ex
`

)
≤ 0, ∀j 6∈ E(x).

Thus, it follows that (νk,ν
ex
k ) is feasible for (9) when the biomass of the k-th species is set zk > xk. Therefore,

the optimal value when the biomasses x` and fluxes νex
` for all species ` 6= k are fixed, and the biomass of

species k is set to zk > xk, is at least δk. Hence, (x,ν,νex) is not resource-constrained.

Lemma 2.5 implies that a resource-constrained GNE is one where each species’ growth is limited by the
consumption of at least one external metabolite. However, this is not a sufficient condition for a GNE to be
resource-constrained. We must have that increasing the biomass to zk > xk forces a decrease in the uptake
of a metabolite that ultimately results in a decrease in the rate of biomass producing reactions. A similar
concept was formalized for the computation of steady states in SteadyCom (see the proofs of Theorems 1
and 2 in the Appendix in [4]). We have the following correspondence between resource-constrained steady
states and GNE for (23).

Lemma 2.6. (x,ν,νex) is a resource-constrained steady-state GNE if and only if (xk, xkνk, xkν
ex
k )k∈[K] is

a GNE for (23).

Proof. Suppose (x,ν,νex) is a resource-constrained steady-state GNE, but (xk, xkνk, xkν
ex
k )k∈[K] is not an

equilibrium for (23). Then there exists a species k that can unilaterally improve its solution to (23) i.e.
there exists biomass zk > xk and fluxes (ωk,ω

ex
k ) 6= xk(νk,ν

ex) that are feasible for (23). Thus, it follows
that z−1k (ωk,ω

ex) is feasible (9) with an objective value at least δk. This contradicts that (x,ν,νex) is
resource-constrained.

Now suppose (x,ν,νex) is not a resource-constrained steady state Nash equilibrium. If (x,ν,νex) is not
a steady state GNE, it follows from Lemma 2.4 that (xk, xkνk, xkν

ex
k )k∈[K(x)] is not a Nash equilibrium

for (23). Suppose instead (x,ν,νex) is a steady state GNE but it is not resource-constrained. Then there
exists a species k such that the optimal value of the best response problem (9) with its biomass zk > xk
is at least δk, i.e. there exist feasible fluxes (vk,v

ex
k ) for (9) such that g>k vk ≥ δk. Thus, it follows that

(zk, zkvk, zkv
ex
k ) is feasible for (23) with an objective zk > zk. A contradiction.

Lemma 2.7. Suppose (x,ν,νex) is as steady state GNE. If (x,ν,νex) is not resource-constrained, it is
unstable to perturbation in the biomass x.

Proof. Suppose (x,ν,νex) is not resource-constrained. Then there exists a species k and zk > xk such that
the problem (9) with the biomasses x` fluxes νex

` fixed and the biomass of species k set to zk has an optimal
solution (hk,h

ex
k ) with a value at least δk.

Thus, we have that (xk, xkνk, xkν
ex
k ) and (zk, zkhk, zkh

ex
k ) are both feasible for (23). Since the feasible set

for (23) is convex, it follows that ε(zk, zkhk, zkh
ex
k ) + (1− ε)(xk, xkνk, xkνex

k ) is also feasible for (23) for all
ε ∈ [0, 1]. Thus, it follows that the fluxes

vk(ε) =
εzk

εzk + (1− ε)xk
h+

(1− ε)xk
εzk + (1− ε)xk

νk

are feasible for (9) with species k biomass set to εzk + (1 − ε)xk > xk with an objective value at least δk.
Therefore, the optimal value is at least δk

Consider perturbing the biomasses to x̂ with x̂k = xk + ε(zk − xk) and xj = xj for j 6= k. Then the result
above shows the perturbation persists. Thus, it follows that the steady state GNE (x,ν,νex) is unstable.
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Since observing a microbial community at an unstable equilibrium is unlikely, Lemma (2.7) allows us to focus
our attention on resource-constrained steady state equilibria, and therefore, justifies using (23) to compute
steady states of the dynamics.

The results in this section imply the following GameCom algorithm for computing a steady state GNE.

(a) Sample an initial biomass level xk for k ∈ K.

(b) Solve (9) to compute reaction rate vectors {(νk,νex
k ) : k ∈ K} that form a GNE with respect to x.

If (9) is infeasible for any k, or if the optimal growth rate g>k νk 6= δk for any k, go to the next step.
Else stop. We have a candidate steady state GNE.

(c) Solve (23) to identify a stable steady state GNE.

3 Numerical Results

Recall that GameCom is motivated by SteadyCom [4], which is another method for computing steady-
state community compositions using FBA. However, our computational model is different: SteadyCom
assumes that all the species collectively maximize their common growth rate, whereas we assume each species
maximizes its own growth rate. In order to compare and contrast the predictions of the two approaches, we
also consider the same community of auxotrophic modified E. Coli. species considered in the SteadyCom
paper. This community has both elements of competitio,sn and competition.

3.1 Auxotrophic E. Coli. community

The community was created by taking four copies of a metabolic reconstruction of E. Coli. metabolism and
inhibiting the export and production of specific metabolites in each copy so that each of the four modified
models can only grow in the presence of the other three. More specifically:

(1) EC1 is able to synthesize arginine and phenylalanine and export arginine.

(2) EC2 is able to synthesize lysine and methionine and export lysine.

(3) EC3 is able to synthesize lysine and methionine and export methionine.

(4) EC4 is able to synthesize arginine and phenylalanine and export phenylalanine.

Note that, in spite of the interdependence, there is also a degree of competition, e.g. EC1 and EC4 compete
for lysine and methionine, and all four species compete for common resources, e.g. glucose. Metabolites
necessary for the community to grow are externally supplied; we use the “western diet” provided in [4].
SteadyCom computes a steady-state for this model with a common growth rate of g∗sc = 0.736h−1. In this
steady-state, the proportion of EC1 is 25.3%, EC2 is 32.5%, EC3 is 18.5%, and EC4 is 23.7%.

3.2 Analysis of SteadyCom steady state

The first numerical experiment was to check whether the steady state predicted by SteadyCom is a steady
state in our computational framework, and if so, whether it is stable.

SteadyCom assumes that the death rate for each species is identical, and predicts the proportion of each
species; therefore, the death rate is not required for the calculations. We predict the absolute biomasses and
account for the slow down in growth as the biomasses increase but the nutrient supply remains constant.
Consequently, we need to explicitly specify the death rate. In order to compare our predictions, we also
assume that the death rate of each of the species is identically equal to δ. In order to ensure that there is a
non-zero steady state δ ≤ g∗sc = 0.736h−1, the maximum SteadyCom growth rate. We found that our results
were robust to the specific value of δ. For our numerical experiments we set δ = 0.5h−1, and then rescaled
the SteadyCom biomass proportions and reaction fluxes to obtain a set of biomasses and fluxes that are
feasible for (9). We find that this re-scaled version of the output from SteadyCom is a steady-state GNE,
but that it is unstable to perturbations in the biomasses.
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3.3 Steady states robust to perturbation in biomass x

Next, we compute other steady state GNEs for the problem and analyze their stability. To do this, we first
sample 211 = 2048 biomasses for the four species uniformly from [0, 1]4 using a Sobol sequence generator,
and solve (9) for each species to compute fluxes (νk,ν

ex
k )k∈[K] that act as a starting point for computing

fluxes that, paired with the sampled biomasses, form a steady state GNE. We throw away the sample if (9)
is infeasible for any of the four species. After this screening step, we had 408 samples remaining. For the
remaining samples, we computed the GNE for (9) with the biomasses x set equal to the sampled values. If
the growth rate for each species k is equal to the death rate δ in the GNE, then the chosen biomasses x
define a steady state GNE, and we stop further analysis for this sample. If the growth rate of any species is
different from the death rate δ, we solve for the GNE of the quantity-weighted game with the best response
dynamics given by (23) using the sampled biomasses and fluxes as a starting point. Checking for feasibility
and computing the steady took approximately 3.5s, on average, for each of the 408 steady states. Analyzing
all the 2048 biomass samples (i.e. computing steady state fluxes if the biomass sample is feasible, and
throwing out the sample if it’s not) took approximately 1.9s per sample. Finally, calculating the stability to
perturbations for each of the 408 steady states took approximately 8.5s per steady state.

Our first result is that, although there are many steady state GNEs, very few of them are actually stable
– only 4 of the 408 steady state GNE are stable to biomass perturbations. Thus, we find that stability is
a very strong selection criterion, and the analysis of the results of the model reduces to only a handful of
steady states. In the left panel of Figure (2) (a), we compare the total community biomasses for stable
and unstable steady states. We find the range for the total biomass is much larger for the unstable steady
states than that for stable steady states. The SteadyCom steady state corresponds to a steady state with
the largest community biomass (indicated by the vertical dotted line in the left-hand plot).

In the right panel in Figure (2) (a) we plot the (unstable) SteadyCom steady state, and the 4 stable steady
states computed by GameCom. We see that the 4 steady states are very different from each other, and
also from SteadyCom. Thus, we find that assuming perfect competition, as is done in SteadyCom, does not
predict the range of behavior that is possible in the microbial community.

Next, we carefully examine the variation in the biomass distributions for the SteadyCom solution, SS1 and
SS3. The goal here is to understand how two very distinct steady states can both be stable. In Table 1 we
list the externally supplied metabolites that are limiting, i.e. the corresponding compartment constraint is
tight, and also the number of reactions that are equal to their upper or lower bounds, i.e. the bounds are
active. We find that in the SteadyCom steady state, as well as SS1 and SS3, all four metabolites that are
part of the auxotrophic interdependence between the species are fully utilized; and, among the externally
supplied metabolites, only glucose is fully utilized. We also find that many more of the reaction bounds are
active in SS1 and SS3, when compared to the SteadyCom steady state. Furthermore, we find that the very
different steady states can be supported because even the small amount of key metabolites (e.g. arginine
EC1, or lysine EC2, etc.) can sustain a relatively large quantity of the other species dependent on the key
exported metabolite. Therefore, while the existence of each species is essential for the existence of the other
species, the key metabolites encoding this auxotrophic behavior are not severely growth limiting, and this
allows for qualitatively different steady state GNEs.

3.4 Steady states robust to invasion

Next, we consider stability to invasion by a new species for each of the 408 steady states. In particular, we
look at whether or not an E. Coli. that can produce arginine, methionine, lysine, and phenylalanine, but
not export any of these four metabolites, can invade. Computing the stability for each of the 408 steady
states took approximately 25s per steady state. In contrast to stability to perturbations in the biomasses
of already existing species, stability to invasion by this fifth E. Coli. species is much more common - 333 of
the 408 steady state GNE cannot be invaded by new mutant. We summarize our Figure 2 (b). On the left
panel, we plot the biomass distribution for steady states that are stable/unstable to invasion. On the right
panel we plot the steady states resistant to invasion clustered into 15 groups. As was the case with stability
to biomass perturbations, steady states resistant to invasion have a larger community biomass. In contrast
to stability to biomass perturbations, the stability to invasion is determined by the availability of externally
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(a) (b)

Figure 2: (a) Results for the community of four E. Coli. mutants. The box plots on the left consider the
sum of the biomasses for the four mutants, with equilibria split based on whether or not they’re stable to
perturbations in the biomasses. The bar charts on the right compares the different types of stable steady
state GNEs sampled to the biomasses computed by SteadyCom. The height of the bar for each species is
the biomass for that species in that steady state. (b) Similar to (a) but for stability to invasion. The bar
charts on the right compare the different types of uninvaded steady state GNEs. The 333 uninvaded steady
states are grouped into 15 clusters, with the height of the bar for each species being the mean biomass for
that species in that cluster.

supplied metabolites: stable steady states have at least one fully exhausted externally supplied metabolite
whereas unstable steady states do not. The exhausted nutrient prevents the growth of the invading species.

Figure (3) plots the results for the death rate δ = 0.4h−1. We note that the results are qualitatively similar
to those in Figure (2) that corresponds to a death rate δ = 0.50h−1, in the sense that there are multiple
stable steady states with a large variation in the biomass distribution. There are more steady states when
the death rate is lower: 753 steady states, 7 of which are stable to perturbations in the biomass x. This
increase is in line with the flux variability analysis summarized in Figure 2 of [4]. Increasing the death rate
to 0.60h−1 resulted in only 120 steady states; and none of them were stable. Hence, establishing that it is
more difficult to sustain all four species as the death rate increases.

(a) (b)

Figure 3: Similar to figure 2, but for death rate δ = 0.40 h−1.

4 Discussion

In this work, we propose a new dynamic model for predicting the composition of the microbiome. In
our model the species in the community optimize their individual growth rate by competing for available
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Limited auxotrophy
metabolites

Number of limited
external resources

Number of
active lower bounds

Number of
active upper bounds

Stable steady
state 2 Arg, Met, Lys, Phe Glucose Ec1: 12, Ec2: 12

Ec3: 11, Ec4: 15
Ec1: 10, Ec2: 12
Ec3: 11, Ec4: 15

Stable steady
state 3 Arg, Met, Lys, Phe Glucose Ec1: 12, Ec2: 13

Ec3: 12, Ec4: 15
Ec1: 8, Ec2: 13
Ec3: 14, Ec4: 17

SteadyCom
steady state Arg, Met, Lys, Phe Glucose Ec1: 0, Ec2: 2

Ec3: 2, Ec4: 0
Ec1: 0, Ec2: 3
Ec3: 3, Ec4: 1

Table 1: Comparison of metabolite utilization and internal reaction fluxes for the second stable steady state
in the right-hand part of figure (2), the third stable steady state from figure (2), and the SteadyCom steady
state. The first column lists which of the four metabolites that the species are auxotrophic for are fully
utilized i.e. x1R

c
1[j]νex

1 + x2R
c
2[j]νex

2 + x3R
c
3[j]νex

3 + x4R
c
4[j]νex

4 = 0, j being corresponding to the fully
utilized metabolite. The second column lists the externally supplied metabolites that are fully utilized i.e.
metabolites j where f j > 0. The third and fourth columns list, for each species, the number internal
reactions that are at their lower bound and upper bounds, respectively.

metabolites. Therefore, we avoid imposing a community-level objective function that all species attempt
to optimize in a cooperative manner. We argue that our approach has potential to more flexibly predict
the composition of microbial communities, since the appropriate community-level objective function is not
clear, and imposing such a community wide objective may not even be appropriate. We show that the Nash
equilibria corresponding to the non-cooperative game can be computed efficiently by solving a sequence of
quadratic programs. Moreover, we provide a convergence guarantee for our solution algorithm. Depending
on the chosen community-level objective function, computing Nash equilibria can be more efficient than
solving the bi-level optimization problems encountered while computing the solution for a community level
objective. For example, SteadyCom simplifies to solving a small number of linear programs when the death
rate for all species in the community is identical; however, when the death rates are species dependent,
computing the steady state becomes more complicated. In the case where the community-level objective
function is more complicated than just maximizing the growth rate of the community, one has to solve a
non-convex bi-level optimization problem with no convergence guarantees.

The numerical results reported in Section 3 confirm that removing the requirement that the members of the
community must cooperate to optimize a shared objective allows a richer variety of steady state communities
This aligns well with studies showing that microbial communities can have a wide range of steady state
behaviors even when the environmental conditions are the same [13, 28].

Stability of a steady state to perturbations in the biomass composition and invasion from other microbial
species is an important consideration for predicting community composition. This is because unstable steady
states are unlikely to survive in biological environments that are inherently noisy. We propose a methodology
for checking the stability of such steady states to both perturbation in biomasses and the introduction of
new species. In our numerical experiments, we see that stability is a very strong selection criterion – most
steady states are unstable.

We are able to identify the set of stable steady states; however, we are not able to efficiently identify the
particular steady state that is likely to be the convergence point for a given initial state. One would like a
method more efficient than simply solving the ODE (10). Similarly, our model is able to predict whether a
particular steady state is stable to invasion; however, it is not able to efficiently predict the new steady state,
or whether or not the invading species survives. Understanding how to control the composition of a microbial
community, whether through introducing new species or metabolites, changing the supply of metabolites, or
changing the death rates, is a larger question that’s both theoretically interesting and practically important.
Analyzing the impact of the death rates in particular could be an interesting way of understanding the
interaction between the microbiome and the immune system (e.g. intestinal toll-like receptors). We believe
GameCom is a first step towards answering these questions.
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