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Abstract1

Aphasia is one of the most prevalent cognitive syndromes caused by stroke. The rarity of pre-2

morbid imaging and heterogeneity of lesion size and extent obfuscates the links between the3

local effects of the lesion, global anatomical network organization, and aphasia symptoms. We4

applied a simulated attack approach to examine the effects of 39 stroke lesions on network5

topology by simulating their effects in a control sample of 36 healthy brain networks. We fo-6

cused on measures of global network organization thought to support overall brain function7

and resilience in the whole brain and within the left hemisphere. After removing lesion vol-8

ume from the network topology measures and behavioral scores (the Western Aphasia Battery9

Aphasia Quotient; WAB-AQ), four behavioral factor scores obtained from a neuropsychologi-10

cal battery, and a factor sum), we compared the behavioral variance accounted for by simulated11

post-stroke connectomes to that observed in the randomly permuted data. Overall, global mea-12

sures of network topology in the whole brain and left hemisphere accounted for 10% variance13

or more of the WAB-AQ and the lexical factor score beyond lesion volume and null permu-14

tations. Streamline networks provided more reliable point estimates than FA networks. Edge15

weights and network efficiency were weighted most highly in predicting the WAB-AQ for FA16

networks. Overall, our results suggest that global network measures can provide modest sta-17

tistical value predicting overall aphasia severity, but less value in predicting specific behaviors.18

Variability in estimates could be induced by premorbid ability, deafferentation and diaschisis,19

and neuroplasticity following stroke.20
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Introduction25

Aphasia is one of the primary cognitive symptoms following left hemispheric strokes, affecting26

180,000 new individuals a year in the United States [1]. Despite decades of research, the brain27

basis of aphasia outcomes and recovery remain only partially understood. The majority of28

stroke research has focused on the relationship between the regional anatomical influences of29

stroke on cognitive symptoms and outcomes [2, 3, 4, 5]. More recently, investigators have30

studied the relationships between individual anatomical tracts, the topology of complex brain31

networks (the connectome, [6, 7, 8, 9]), and behavior [10, 11, 12, 13, 14].32

Post-stroke, the remaining neuroanatomy maintains cognition and supports recovery. Anatom-33

ical network connectivity in the lost and residual (spared) connectome after stroke is related to34

behavior [15, 16, 17, 12, 18, 19, 20, 14]. In particular, single-connection analyses have demon-35

strated that regions with links to classical hub regions such as the temporoparietal junction are36

crucial for overall language function assessed with clinical measures [14]. Strokes that directly37

impact network hubs disproportionately lead to global cognitive deficits post-stroke on tasks38

that place significant semantic or language-production demands on patients [21]. In addition,39

cognitive outcomes are associated with the preservation of the brain’s modular configuration40

– the tendency for brain regions to group into well-connected clusters [22, 23]. Overall, these41

findings suggest that the role of single regions and their connections in network topology, as42

well as overall network topology, are related to stroke symptomatology.43

A primary difficulty in assessing stroke-induced effects on network topology is that re-44

searchers often lack premorbid data within-subjects, leading them to rely on cross-sectional45

analyses. This results in a reference problem for each stroke. Lesions occur within a single46

subject, but the consequences of the lesion interact with other factors about the individual, such47

as their development, demographics, and brain organization. As a complement to observing48

the consequences of stroke and other types of brain injury, “simulated attack” models are com-49

putational approaches that apply virtual damage to the brain and measure their putative conse-50

quences [24, 25]. These models can be used to systematically quantify the influences of damage51

to regions and connections on brain network organization. After simulating damage, hypothe-52

ses about network robustness, cognitive resilience, and recovery can be tested in the residual53

connectomes [26]. Measures characterizing the disconnectivity of circuits and networks [12],54

the overall efficiency of the network [27, 28, 29], and the balance between local and distributed55

processing (small-worldness, [30]) could relate to behavioral performance. In addition, the de-56

viation in these properties from that expected in a comparison model of healthy subjects might57

also characterize variation in resilience to cognitive decline.58

To examine these possibilities in aphasia severity, we used probabalistic diffusion tractog-59

raphy to create anatomical connectomes in 39 subjects with left-hemispheric strokes. Then, we60

computed measures that quantify five network properties of anatomical connectivity post-stroke61

thought to be related to the integrity of observed topology. Using a simulated attack model, we62

computed the effects of each stroke’s specific pattern of connection losses to quantify its ef-63

fects on the whole brain and intra-left hemisphere connections in a sample of healthy subjects.64

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.01.466833doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466833


Then, we computed models estimating the behavioral variance measured with clinical language65

measures accounted for by simulated anatomical network measures. This technique allowed us66

to obtain confidence intervals for the strength of brain-behavior relationships between lesioned67

network topology and behavior. Above and beyond lesion volume, we hypothesized that to-68

tal edge weights, network modularity, global shortest path length, higher local clustering, and69

small-worldness would be related to better language performance. We further hypothesized70

that the global network measures would be more related to global measures of the severity71

of language deficits than factor scores representing specific lexical, auditory comprehension,72

phonology, and cognitive/semantic deficits.73

Methods74

Subjects75

Data on 61 stroke patients and 37 healthy controls were collected. Twelve patients were ex-76

cluded from analysis due to missing or abnormal neuroimaging data; 7 due to lesions outside77

the left hemisphere; one due to missing or at-floor behavioral data; one due to acuteness of78

stroke; and one due to non-native English language. We excluded 1 healthy subject due to79

inflated region-wise streamline estimation (twice the connectome edge density as any other80

subject). After exclusions the final samples consisted of 39 subjects with stroke (mean age =81

59.74 , St.D. = 9.17, 16 females) and 36 healthy subjects (mean age = 59.13, St.D. = 13.84, 1582

females). All subjects were scanned on a 3T Siemens Magnetom scanner at Georgetown Uni-83

versity’s Center for Functional and Molecular Imaging (CFMI). Aside from the stroke events84

in patients, participants had no history of psychiatric or other neurological condition. Healthy85

controls had no history of neurological disease or developmental disorder. Subjects with stroke86

had a neurologist confirmed diagnosis of aphasia, a left-hemispheric stroke, and the absence of87

a right-hemispheric stroke. The data were collected as part of previous studies conducted in the88

Cognitive Recovery Lab at Georgetown University.89

All procedures were approved in a convened review by Georgetown University’s Institu-90

tional Review Board and were carried out in accordance with the guidelines of the Institutional91

Review Board/Human Subjects Committee, Georgetown University. All participants volun-92

teered and provided informed consent in writing prior to data collection.93

Behavioral Data94

The Western Aphasia Battery - Revised [31] was obtained for each individual with stroke. In95

addition, participants with stroke performed a broader battery of tasks previously described in96

detail [32]. To reduce the scores from the battery, a principal components factor analysis was97

performed in SPSS 25 using the individual test scores from the WAB-R and the other battery98

tasks on the 59 participants with stroke who were able to provide complete behavioral data.99
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Factor analysis was performed on the correlation matrix, factors were extracted based on the100

standard cutoff of eigenvalue > 1, and Varimax rotation with Kaiser normalization was applied101

to achieve orthogonal factors. Consistent with a previously reported factor analysis on a subset102

of these participants, the factor analysis revealed 4 factors cumulatively accounting for 83.7% of103

variance in the scores that we interpreted to reflect lexical production, auditory comprehension,104

phonology, and cognitive & semantic aspects of behavior (see Table 1). Factor scores for each105

participant were calculated using the regression method.106

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.01.466833doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466833


Table 1: Factor loadings for the behavioral data.

Factor I (Lexical 

Production)

Factor II (Auditory 

Comprehension)

Factor III 

(Phonology)

Factor IV 

(Cognitive/Semantic)

Philadelphia Naming Test 0.83 0.24 0.24 0.26

WAB Object Naming 0.79 0.36 0.33 0.21

Reading Real Words 0.77 0.19 0.39 0.26

Reading word-to-picture matching 0.75 0.39 0.32 0.11

WAB Spontaneous Speech Fluency 0.73 0.41 0.34 0.18

WAB Spontaneous Speech Content 0.7 0.4 0.31 0.31

WAB Responsive Speech 0.67 0.54 0.33 0.14

WAB Repetition 0.57 0.52 0.52 0.12

WAB Yes/No Questions 0.24 0.86 0.18 0.03

WAB Sequential Commands 0.32 0.68 0.29 0.32

WAB Word Recognition 0.42 0.69 0.23 0.36

WAB Sentence Completion 0.58 0.62 0.3 0.12

Digit Span Forwards 0.29 0.43 0.76 0.21

Digit Span Backwards 0.45 0.16 0.72 0.31

Pseudoword Repetition 0.46 0.45 0.65 0.01

Reading Pseudowords 0.5 0.27 0.62 0.34

Letter Fluency (Total 4 letters) 0.58 0.12 0.61 0.16

Backward Spatial Span 0.18 -0.05 0.32 0.83

Pyramids and Palm Trees 0.41 0.13 -0.06 0.8

Forward Spatial Span -0.12 0.27 0.41 0.76

Picture Pointing 0.51 0.41 -0.05 0.65Auditory Word-to-Picture Matching
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Neuroimaging107

Diffusion images were acquired on a Siemens 3.0T Magnetom Trio for all subjects along with108

a T1-weighted 1mm resolution MPRAGE anatomical scan at each scanning session as part109

of a larger imaging protocol. We used a high-angular resolution diffusion imaging (HARDI)110

acquisition scheme with a maximum b-value of 1,100 (80 dirs, 10 b=0; 10 b=300; 60 b = 1100)111

and a 2.5mm isotropic voxel size. We used a transversal acquisition of 55 axial slices with112

the following parameters: repetition time (TR) = 7.5 s; echo time (TE) = 87 ms; field of view113

(FoV) = 240 x 240, 138 mm, matrix = 96, total acquisition time of 10:00. MPRAGE scans were114

collected with TR = 1900ms, TE = 2.52ms, 176 sagittal slices with 0.9mm slice thickness, FoV115

= 240 x 240, matrix = 256, inversion time (TI) = 900ms and flip angle = 9◦, total acquisition116

time of 5:34.117
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Anatomical Image Imputation We conducted full-brain tractography with techniques that118

reduce tractography artifacts. To achieve this, tractography must be constrained anatomically119

to seed or terminate streamlines at the grey matter/white matter border [33, 34, 35]. However,120

identifying tissue types in stroke cases is problematic because of the abnormal signal intensity121

at the gray-white matter border. We resolved the issue by imputing estimates of healthy tissue.122

We imputed anatomical images in two steps. In step 1, lesioned voxels were identified123

using lesion tracings provided by a experienced cognitive neurologist (coauthor PET). We then124

flipped the lesioned brain along the left-right plane and registered the flipped brain into onto125

the non-flipped brain. Next, we filled the lesioned area with the healthy tissue of the homotopic126

contralesional hemisphere. This procedure can leave visible marks of the filled area due to127

the sudden change in signal, which may cause artifacts when identifying tissue types. Thus,128

we imputed a new brain with highly similar morphological features as the original subject’s129

brain. The imputation procedure used the morphological structure of the reference image (the130

filled brain from step 1) and the voxel values of a set of healthy control images to produce a131

new image. Each voxel value in the new image was determined by combining the values from132

all the healthy images using ANTs’ joint image fusion procedure, where images more similar133

around the voxel of interest received more weight (similar to multi-altas label fusion, [36]). We134

conducted a search of the optimal number of healthy brains and the optimal radius of similarity135

around each voxel to obtain the best result. We obtained an optimal outcome with 22 healthy136

brains and a radius of 1 (i.e., a single layer of voxels around each voxel is used to check the137

similarity between images and assign weights to healthy images). We inspected the resulting138

imputed image to make sure there were no artifacts; none were found. Importantly, the non-139

lesioned gyri and sulci in the original image followed the gyri and sulci of the imputed image140

without any visible deviation.141

We performed all the imputation procedures in ANTs (v. 2.2.0). Before any processing, all142

images were skull-stripped (antsBrainExtraction.sh), corrected for magnetic field inhomogne-143

ity (N4BiasFieldCorrection), and denoised with an edge preserving algorithm (PeronaMalik,144

denoising amount: 0.7, iterations: 10). We added back the lesion mask to the brain mask after145

skull-stripping to ensure that the lesion area was included in the imputation. Each imputation146

required one registration of the flipped image and 22 registrations of the healthy brains onto147

the filled image. We conducted all registrations using the SyN non-linear algorithm [37] with148

cost function masking to remove the lesion mask from consideration during the registration149

computations [38].150

Diffusion Tractography We used MRtrix3 to process the diffusion data [39]. First, we de-151

noised (dwidenoise -extent 9,9,9), corrected for motion and eddy currents (dwipreproc), and152

corrected for field inhomogneity (dwibiascorrect). Then we computed response functions for153

multiple tissues using the tissue information available in the DWI data itself (dwi2response154

dhollander). We finally computed the fiber orientation distribution (FOD) with a multi-shell155

multi-tissue algorithm (dwi2fod msmt csd).156

To find the GM/WM tissue, we applied tissue classification on the imputed structural image157
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(5ttgen fsl), and then brought the tissue information into DWI space after registering the original158

(lesioned) T1w image of the subject onto the mean b=0 image (antsRegistration in order: trans-159

lation, rigid, SyN) and applying the transformations to each tissue type image. We then com-160

puted the GM/WM border for use in the next tractography step (5tt2gmwmi). We performed161

tractography by seeding 15 million streamlines from the GM/WM border (tckgen algorithm:162

iFOD2, step: 1mm, minlength: 10mm, maxlength: 300mm, angle: 45 degrees, backtrack:163

crop at gmwmi). We then filtered the tractogram with the SIFT2 algorithm [40, 41] to de-164

crease tractography artifacts. Inter-subject connection density normalization was then achieved165

through scalar multiplication of each connectome by the subject’s “proportionality coefficient”166

derived by SIFT2, denoted by µ, which represents the estimated fiber volume per unit length167

contributed by each streamline [41].168

Network construction Anatomical scans (imputed in the case of patients) were segmented169

using FreeSurfer [42] and parcellated using the connectome mapping toolkit [43]. A parcel-170

lation scheme including N = 234 regions was registered to a single b=0 volume from each171

subject’s native-space DSI data. The b=0 to MNI voxel mapping produced via Q-Space Dif-172

feomorphic Reconstruction (QSDR) was used to map region labels from native space to MNI173

coordinates so that individual subject data could be combined and analyzed in a shared standard174

space. To extend region labels through the grey-white matter interface, the atlas was dilated by175

4mm [44]. Dilation was accomplished by filling non-labeled voxels with the statistical mode176

of their neighbors’ labels. In the event of a tie, one of the modes was randomly selected. Each177

streamline was labeled according to its terminal region pair. From these data, we constructed178

an anatomical connectivity adjacency matrix, A whose element Aij represented the average179

fractional anisotropy (FA) of the streamlines connecting that pair of regions [45].180

To visualizes the effects of lesions on parcels in the Lausanne anatomical atlas, we registered181

the lesion masks to each individual’s T1 image (the same space as the Lausanne parcel regis-182

tration). We computed whether the lesion intersected > 0 voxels in that parcel, and counted the183

number of subjects at which that parcel was intersected by the lesion. See Fig. 1 for a visualiza-184

tion of the distribution of lesions across subjects and Fig. 2 for a summary of the tractography185

pipeline including the imputation.186
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0 32
N

Figure 1: Distribution of lesioned parcels across subjects with stroke. Lesions mapped
prominently to parcels in left perisylvian regions with decreasing frequency in the superior,
inferior, anterior, and posterior directions. The degree of red is proportional to the number of
subjects with lesions at that location. N = the number of subjects with a lesion at that parcel
label.
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Tractography 
(Native space)

Parcellation
(Native Space)

Healthy

FA

FA
A

B

Figure 2: Schematic of Stroke Imputation and Diffusion Tractography (A) Processing
scheme for healthy subjects. Diffusion tractography was computed in subjects’ native space,
and the Lausanne multiscale parcellation was fit to subjects’ anatomical T1 images.
Connectomes were defined as the fractional anisotropy or streamline counts of the edges
connecting each region pair and advanced to analyses. (B) The processing scheme for stroke
subjects was the same as the healthy subjects with an additional preprocessing step.
Specifically, the anatomical T1 image was imputed using the stroke subject’s right hemisphere
and healthy subjects’ data to estimate the pre-lesion T1 anatomical image. The parcellation
was computed on this imputed anatomical image to guide connectome extraction through the
same regions as the controls.

Connectome Edge Inclusion Mask Given well-described false positives issues in diffusion187

tractography, it is difficult to ensure that every individual streamline is valid in the absence of188

ground-truth data [46]. We only permitted edges to participate in our analysis if they were189

present in 100% of the healthy control sample. This procedure ensured that any changes in190

topology observed in the stroke sample were likely to be driven by lesion-related effects rather191

than spurious patterns attributable to unreliable tractography findings between each pair of192

parcels. All triangle matrices produced via MRTrix3 were symmetrized across the diagonal193

prior to network analyses.194
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Simulated attack195

Our goal was to simulate connectome attacks using estimates of the consequences of real strokes196

on the connectome relative to the connectivity observed in control subjects. To identify a set197

of potentially lesioned edges for each subject, we compared the edge values from each stroke198

subject’s observed connectome to those observed in healthy subjects. Because the definition of199

lesioned tissue depended on a binary threshold, we computed the simulated attacks at thresholds200

of 2, 3, and 4 standard deviations below the mean FA or the log of the streamlines (to account201

for lognormal edge distributions, see [40, 47, 48, 49]) relative to the the control sample. For202

each threshold, a mask was created for all lesioned edges for each stroke subject. Next, we203

applied the edge lesion mask to each connectome in the control sample in addition to the same204

stroke subject. By applying the mask to the stroke subject, we ensured that the number and205

configuration of edges included in the analysis was equal between each stroke subject and the206

controls. Finally, each connectome measures was averaged across the thresholds to obtain a207

representative value for each subject. Then, an empirical distribution of the expected effects208

of lesions on network measures was obtained by computing the network measures (described209

below) for each possible control subject-to-lesion pairing.210
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Figure 3: Schematic of Network Lesion Masking (A), Top Each element Aij from each
subject with aphasia (Strokei) was compared to (A),Bottom the observed values in all control
subjects (Control1 to Controln). (B) The elements with FA 2, 3, or 4 SDs less than controls
were labeled as lesioned edges. Then, the lesion mask was applied to the stroke subject and all
control subjects, and the resulting networks were advanced to connectomic analyses.
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Connectome measures211

We focused on five global network measures that are thought to characterize overall network212

communication. We examined (1) the network edge weights: the average of observed edge213

values, which could be related to overall network intactness and can drive other global net-214

work measures. The average edge weight served as a network proxy that estimates the overall215

integrity of edges in the residual connectome. We also examined the modularity of the net-216

works. Modularity is thought to support local computations within tightly-connected subgroups217

of nodes within a network [50, 22, 51, 52] and can predict intervention-related cognitive plastic-218

ity [53]. It is computed to estimate the relative within-module connectivity of a network relative219

to between-module connectivity with the modularity value Q [54, 55].220

In addition, we examined another commonly examined characteristics of the overall net-221

work topology that have been linked to variability in global cognitive performance. To examine222

overall network processing efficiency, we examined (2) network global efficiency [56, 57, 58,223

59, 60]. Here, global efficiency is a weighted measure that quantifies average inverse short-224

est path length across the connectome for all pairs of nodes [61]. It is inversely related to the225

network measure path length. A pair of nodes with a short path length are connected by se-226

quences of stronger edges. Intuitively, stronger connections between nodes can theoretically227

represent the strength of information flow between regions. Thus, the average path length of a228

network represents the extent to which all pairs of nodes are associated via short hops through229

the network. Accordingly, networks with high global efficiency are thought to have increased230

long-distance information processing capacity across all nodes mediated by short paths.231

In brain networks, local clustering among u-fibers constitute most of the brain’s white matter232

[62]. Accordingly, short-distance, local clustering is another important aspect of information233

processing in brain networks. Therefore, we also examined network (3) transitivity [63, 64, 65].234

Transitivity is the ratios of triangles - which are groups of three nodes connected by three non-235

zero edges - to all possible triplets (triangles witch edge weights equal to 1). Networks typically236

have many more triangles than are triplets. Therefore, greater transitivity means that there are237

more local clusters in a network. Networks with high transitivity are thought to have increased238

local communication efficiency [66].239

Finally, healthy brain networks are characterized by an optimal use of available anatomi-240

cal connections to support short path lengths and high clustering, which is often referred to as241

small-worldness [67, 68]. Small-world brain networks are thought to confer many of the pro-242

cessing advantages that support diverse and dynamic cognitive functions [30]. To investigate243

this property, we used a robust measure of small-worldness, (4) small-world propensity (SWP)244

[69]. SWP is a weighted metric for small-worldness that accounts for networks of different den-245

sities, standardizing the measure against individualized network null models. This technique246

makes SWP appropriate for measuring small-worldness in weighted networks by mitigating the247

network density-dependence of other measures.248
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(2) Modularity
(3) Global Efficiency

(4) Transitivity (5) Small-world Propensity

(1) Sum of Edge Weights

Figure 4: Schematic of network measures. Moving left to right from the top: we began with
the (1) average of edge weights in each network as an overall metric capturing the density of
the networks, including any edges lost due to stroke. Then, we examined the additional value
of four other measures of topology compared to the sum of edge weights alone. (2)
Modularity: measures the extent to which nodes in the network are grouped into modules
(sometimes, “communities”) as a function of highly-connected nodes. (3) Global efficiency:
one long path is represented by the set of consecutive edges highlighted in green. (4)
Transitivity: one possible triplet’s edges are represented in green. (5) Small-world propensity:
involves a high degree of local clustering (represented by the set of nodes connected by purple
edges) and short path lengths (e.g., higher weights along the green path represents a shorter
network path between the prefrontal and occipital nodes).

Statistical analyses249

The effects of lesions on connectome measures and behavior First, we examined whether250

observed and simulated strokes had significant effects on each network measure in the whole251

bran and within the left hemisphere. We computed Welch’s t-tests assuming unequal variances252

using Satterthwaite’s approximation for degrees of freedom for each measure against those253

observed in the control subjects corrected for multiple comparisons at an alpha level of 0.05.254

Then, we used bootstrapping to estimate the proportion of network measure sample means255

from the simulated attacks that fell within the range of the observed lesion for each measure.256

We used this technique because we intended the simulation to sample from all lesion-control257

subject pairs to yield a distribution of possible lesion profiles in a much larger simulated sample.258

Specifically, we performed 10,000 resamplings with replacement of 40 subjects and quantified259

the proportion of simulated attack sample means for each network measure (FA and streamline)260

and each size network (whole brain or left hemisphere). Finally, to estimate the behavioral261

variance accounted for by lesion volumes, we fit separate linear regression models using lesion262

volume as an independent variable and either WAB-AQ, the factor sum score, or each behavioral263

factor score corrected for multiple comparisons at an alpha level of 0.05.264
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Preparing network measures to identify behavioral variance beyond lesion volume Our265

objective was to obtain and present an empirical estimate for the full range of possible lesion-266

behavior relationships observed in the real, simulated, and null analyses.267

For all connectome analyses, we were interested in the total variance accounted for using268

all five network measures for the observed and simulated data. Prior to analyses, we tested the269

network measures for violations of normality with the Kolmogorov-Smirnov test. To correct270

for skewed distributions in the observed statistics, we used a log-transformation for global ef-271

ficiency and SWP. In the simulated attack statistics, we observed negative values and skew for272

each statistic; thus, we added a constant value of 1 to each measure prior to a log-transformation.273

Finally, network measures were standardized using z-scores prior to all analyses.274

To test the hypothesis that real and simulated measures of network topology were related275

behavioral scores beyond lesion volume, we first computed separate linear regressions with276

using stroke subject’s lesion volume as the independent variable and each behavioral scale as277

the dependent variable. Then, we used the residualized behavioral scores as the dependent278

variable for all connectome-behavior analyses. We performed the same procedure for each279

network measure to mitigate any remaining influences of lesion volume effects.280

Network-behavior relationships in observed, simulated, and null regression models Next,281

all analyses associating network measures with behavioral scores were performed using linear282

regression in R statistical software [70]. Our simulated attacks broke the relationship between283

stroke subjects and behavior by randomly sampling residual anatomical connectomes after sim-284

ulating strokes in control subjects, but preserved the relationship between each behavioral score285

and simulated lesion. The null model completely randomized the relationships between simu-286

lated lesions and behaviors.287

Specifically, we computed linear regression models for (1) the observed stroke network288

topology, (2) the simulated stroke network topology (10,000 permutations per lesion edge289

threshold), and (3) a randomized shuffling of all simulated network measures against the be-290

havior (10,000 permutations per lesion edge threshold). We examined the effects of observed291

and simulated lesions on each of the topological measures in the whole brain and within intra-292

left hemisphere connectomes (i.e., only the whole-brain connectomes included interhemispheric293

and right-hemispheric fibers). Then, we computed the relationships between network measures294

and the behavioral scores for the whole brain and intra-left hemisphere connectomes.295

In analyses of the observed data (i.e., data from subjects with real strokes), we used each296

of the five network measures as independent variables (z-scored across subjects) and each be-297

havioral score as a dependent variable (raw WAB scores, the factor sum scores, or one of the298

four behavioral factor scores) in separate linear regression models. Because the network mea-299

sures and behavioral scores were the residuals obtained after regressing out the influence of300

lesion volume, we obtained specific parameter estimates for each network measure and the total301

variance accounted for in the models (R2 value) beyond lesion volume.302

To obtain estimates for network-behavior relationships in the simulated attack, we computed303

the linear regression models with the same dependent behavioral variables, but with independent304
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network variables sampled from the control-lesion pairings for the simulated attack (z-scored305

across subjects). Specifically, in 10,000 permutations, we randomly assigned each stroke lesion306

to a healthy brain from the control sample while preserving the link between that lesion and307

the behavioral outcome. We then computed each network measure on that sample of simulated308

attacks, and fit a regression model. Across the 10,000 models, this approach provided a full309

representation of the absolute minimum, maximum, and of the predictive value (R2) of the310

anatomical connectomes beyond lesion volume. In addition, we obtained the range of beta311

weights for each network measure in the simulations to reveal their relative contributions to the312

prediction.313

In high-dimensional data analyses such as these, it is often helpful to have an empirical314

null distribution to contextualize the models of interest. By fully randomizing the relationships315

between the simulated and network measures and behavior (i.e., breaking the lesion-behavior316

pairing in the simulated strokes), we were able to create a distribution of the expected variance317

accounted for (R2) if the data were to be completely randomized. In this kind of null permuta-318

tion analysis, we would expect that models could trivially account for more variance than 0 by319

chance. Further, the null could include permutations equaling or similar to real lesion-behavior320

network pairings, potentially meeting or exceeding the variances obtained from the observed or321

simulated attack. If the observed or simulated models exhibited effects that were higher that the322

null’s central tendency, it would increase our confidence that the network topology across the323

range of simulated attack outcomes is non-trivially related to behavior above and beyond lesion324

volumes.325

Our primary goal was to test whether the simulated attacks based on observed lesions dif-326

fered from the null distribution. After computing theR2 value for each null and simulated model327

in each permutation, we used a 2 (simulated versus null) x 6 (behavioral variables) ANOVA to328

test the effects of (1) the simulated attack relative to the null permutations and (2) behavioral329

domain on the estimated R2 values.330

Results331

The effects of lesions on network measures. The observed strokes influenced network topol-332

ogy for each measure. In FA networks in the whole brain, we observed a reduction in mean edge333

weight, network efficiency, and increased SWP. In the left hemisphere, we observed all of these334

effects in addition to reduced modularity (see Fig. 5). In the streamline networks in the whole335

brain, we observed reduced mean edge weight, network efficiency, and transitivity as well as336

increased modularity. In the left hemisphere, we observed reduced edge weights, modular-337

ity and increased transitivity (see Fig. 5, Table 2). The network measures from the simulated338

strokes were similar to those observed after real strokes (see Table 3), suggesting that they were339

reasonable approximations of stroke effects on the connectomes.340
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Figure 5: The effects of stroke on network measures in observed and simulated attack
connectomes. The leftmost column of each plot facet shows the network statistic observed in
controls, followed by that observed in strokes, then the simulated attacks. Network measures
are presented in their raw (untransformed) values prior to inclusion in network-behavior
analyses. Asterisks indicate a significant Welch’s two-sample t-test between the control and
stroke network measures at p < 0.001 (a stringent threshold after Bonferroni correction for 40
total tests in FA and Streamline data). The top and bottom edges of the boxes represent the
25th and 75th percentiles, respectively. SWP = small world propensity.
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Table 2: Two-samples t-tests assuming unequal variances comparing network mea-341

sures between the control and stroke samples for the whole brain FA networks (df = Sat-342

terthwaite’s approximation for samples with unequal variances).

FA Streamlines

Measure t df p Measure t df p

Edge Weights 5.74 63 <0.001 Edge Weights 10.55 38 <0.001

Modularity 0.39 42 0.699 Modularity -3.71 38 <0.001

Efficiency 4.04 62 <0.001 Efficiency 7.06 38 <0.001

Transitivity 2.77 70 0.007 Transitivity 4.95 39 <0.001

SWP -3.69 39 <0.001 SWP -2.78 38 0.009

Measure t df p Measure t df p

Edge Weights 23.96 68 <0.001 Edge Weights 46.7 38 <0.001

Modularity 11.64 38 <0.001 Modularity 11.47 38 <0.001

Efficiency 4.17 55 <0.001 Efficiency 3.08 38 0.004

Transitivity 0.95 66 0.293 Transitivity -9.11 38 <0.001

SWP -6.01 38 <0.001 SWP -0.76 38 0.445
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Table 3: The proportion of bootstrap sample means of simulated attacks compared the344

range of observed lesion values345

Condition Edge Weight Modularity Efficiency Transitivity SWP
FA - Whole Brain 1.00 1.00 1.00 1.00 1.00
FA - Left Hemisphere 1.00 1.00 1.00 1.00 0.77
Streamline - Whole Brain 1.00 1.00 1.00 1.00 1.00
Streamline - Left Hemisphere 1.00 1.00 1.00 1.00 0.77

346

347
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Relationships between observed and simulated connectome topology and aphasia-related348

behaviors. Lesion volume accounted for approximately 44% of WAB-AQ, 53% of the factor349

sum, and 10-16% of the variance in factor scores (Table 4). In addition, lesion volume was350

negatively correlated with FA network edge weights, modularity, and efficiency, and positively351

associated with small world propensity. Lesion volume was negatively correlated with stream-352

line network edge weights, efficiency, and positively associated with transitivity and small world353

propensity (Table 5).354

355

Table 4: The relationships between lesion volume and behavioral scores356

R2 F p
WAB-AQ 0.44 29.74 <0.001
Factor Sum 0.53 42.11 <0.001
Lexical 0.16 6.97 0.012
Auditory 0.12 4.87 0.034
Phonology 0.12 5.04 0.031
Cognitive 0.11 4.40 0.043

357

358

Table 5: The relationships between lesion volume and network measures359

R-values represent Pearson’s correlation coefficients between lesion volume and the network

Measure R p

FA Edge Weights -0.52 0.001

Modularity -0.44 0.005

Efficiency -0.46 0.003

Transitivity -0.13 0.414

SWP 0.34 0.033

Streamline Edge Weights -0.87 0.000

Modularity -0.21 0.201

Efficiency -0.89 0.000

Transitivity 0.55 0.000

SWP 0.31 0.051

360

measure.361

362

We regressed lesion volume from the behavioral and network data to obtain the additional363

unique variance between the network measures and behavior. The full model results are pre-364

sented in Fig. 6. For each of the FA and streamline whole brain and intra-left hemisphere net-365

works, the variance accounted for (R2) by the simulated attack networks was greater than the366

nulls in the omnibus ANOVA (see Table 6 for condition-wise marginal means, which quantify367
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the difference in the observed versus the null (R2) across behaviors).368

In addition, there were main effects of behavior on the model R2 values (see Supplementary369

Tables 1-4). The central tendency of the null models revealed that network measures would be370

expected to account for nearly 10% of the behavioral variance on global or specific language371

performance at random (i.e., when the link between the lesion being simulated and behavioral372

score was broken). Outperforming the null, the simulated attack models generally suggested373

that about 20% of global aphasia outcomes measured with the WAB-AQ could be accounted374

for residual anatomical network topology. Among the language behavioral factor scores, lex-375

ical processing exhibited the strongest relationships with network topology,at 20% or more376

variance accounted for by the whole brain or left hemisphere network measures. In most cases,377

the observed R2 estimate was within the range estimated in the simulated attacks. Exceptions378

were observed in several cases, and more frequently in FA networks, where observed stroke379

estimates were outside the simulated estimates for the whole-brain lexical, phonology, and cog-380

nitive/semantic factors and the left-hemisphere cognitive/semantic factors.381
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Figure 6: Network measures and behavioral variance in FA networks. Each plot facet
illustrates histograms of the simulated null, histograms of the simulated attack distributions,
and the observed R2 with solid vertical lines. Asterisks indicate significant post hoc Welch’s
one-tailed t-tests assuming unequal variances comparing the R2 values in the simulated attacks
to the null distribution at p < 0.001. Daggers indicate cases where the observed R2 value was
outside the range obtained in the simulated attack models.
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Table 6: Marginal means for the simulated attack relative to the null for FA and382

streamline networks in the whole brain and left hemisphere383

Type Location Lower CI Mean Diff. Upper CI p
FA Whole 0.017 0.017 0.016 <0.001
FA Left 0.01 0.009 0.008 <0.001
Streamline Whole 0.048 0.047 0.047 <0.001
Streamline Left 0.03 0.03 0.029 <0.001

384

Beta weights for specific network measures We additionally obtained the beta values for the385

simulated attack models to observe which measures contributed the most weight to model R2.386

Beta weights for the whole brain and intra-left hemisphere models are illustrated in Figures 7.387

In the whole brain models, edge weights and efficiency were most consistently associated with388

higher betas across behaviors, with some variation across the individual factor scores. Within389

the left hemisphere, edge weights and efficiency remained relatively stronger contributors to390

the global WAB and factor score sum behavioral measures. Among the four factor subscores,391

network measure beta weights exhibited more variation across specific factors.392

See Supplementary Table 1 for observed and simulated model betas.393
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Figure 7: Simulated attack estimated beta weights for each network measure in FA
networks. Each plot represents the range of betas obtained from the simulated attack models
for the network measure. The top and bottom edges of the boxes represent the 25th and 75th
percentiles, respectively. W. = edge weights, Mod. = modularity, Eff. = Efficiency, Trans. =
Transitivity, SWP = small world propensity.
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Discussion394

In subjects with left-hemispheric strokes, we used an anatomical network simulated attack anal-395

ysis to examine the relationships between topological network measures, a widely used clinical396

aphasia outcome measure (the WAB-AQ), and dimensional factor scores of language perfor-397

mance. We found that (1) simulating lesions can provide a good approximation of observed398

lesion effects on networks that do not suggest widespread network plasticity across people, (2)399

that the network properties of the simulated lesions can explain variance in behavior above and400

beyond lesion size, (3) that in most cases observed lesions do not explain more variance in be-401

havior than simulated lesions, and (4) that relationships of simulated and observed lesions to402

behavior differ depending on the behavior being examined.403

In general, lesions in the left hemisphere disrupted several measures of global topologi-404

cal organization in persons with aphasia post-stroke. In whole brain and left hemispheric FA405

networks, stroke reduced the overall edge weight and efficiency relative to controls. In con-406

trast, small-world propensity tended to increase post-stroke, which recapitulates the reduced407

network efficiency compared to relatively consistent measure of global clustering (transitivity)408

[69]. Interestingly, modularity was decreased in the intra-hemispheric connectomes. The rela-409

tive increases in modularity in the whole brain were likely driven by the absorption of residual410

left-hemispheric networks into right hemispheric homotopic communities via interhemispheric411

fibers mediated through the corpus callosum. These patterns were similar in the simulated at-412

tacks, suggesting that the simulations were reasonable approximations of real stroke effects. A413

minority of sampled simulated cases in the left hemisphere had SWP values averaging outside414

the range of stroke subjects, potentially reflecting neuroplastic or premorbid differences in the415

hemispheric balance between long distance and local communication.416

As a topic of focus in several previous studies, modularity changes in persons with stroke417

could vary based on the location of lesions. For instance, left hemisphere anatomical modular-418

ity has been found to increase in subjects with upper limb motor deficits [71], and increased left419

hemisphere anatomical modularity have been associated with more severe chronic aphasia [22].420

In contrast, reduced modularity in functional connectomes observed in multiple stroke pheno-421

types [72] has been shown to partially recover in the transition from the acute to chronic phase422

[73, 23, 52]. Anatomical connections and network topology predict region-to-region functional423

connectivity [74], and it will be important to clarify how specific lesion distributions interact424

with anatomy, and joint anatomy-function relationships. For instance, sensorimotor cortices425

are highly interconnected within each hemisphere, and precentral regions are often revealed to426

participate in the brain’s anatomical hub system [75, 76]. Thus, disrupting sensorimotor regions427

and their connections is likely to enhance the modularity of the remaining intra-hemispheric net-428

work. Reduced modularity was not as strongly or consistently related to the language behaviors429

examined here, suggesting that these topological changes might not be as uniquely informative430

as other measures of topology (e.g., especially the overall connections in the network). Over-431

all, the topology of the left hemisphere was sparser and more tightly clustered, which is often432

thought to limit the general ability for a network to transmit information and reduce the inter-433
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ference between competing demands on the network due to the loss of specialized processing434

modules [68].435

In the simulated attack regression models associating brain network measures with behavior,436

we quantified the variance accounted for by anatomical network measures above and beyond437

the effects of lesion volume. Unsurprisingly, lesion volume accounted for a moderate amount438

of variance in the global aphasia measures (WAB-AQ and factor sum), and less variance in the439

specific factor scores. The network measures and behavior residualized for lesion volume re-440

vealed that additional variance was accounted for by anatomical network topology. Among the441

network-behavior analyses, in most cases, the observed model value was within the simulated442

attack distribution, placing the observed R2 value within a few percent of the central tendency443

of the simulated distribution. We did not obtain evidence that the observed brain-behavior rela-444

tionships always significantly over- or under-perform estimates from simulated attacks for the445

measures we examined. These findings suggest that the majority of brain-behavior relationships446

in the simulated permutations are driven by the direct effects of the lesion on the connectome -447

i.e., that the simulated attacks were an informative basis to obtain confidence intervals for the448

effects of prototypical lesions on the connectome and behavior. Cases where specific deviations449

between the observed and simulated models were observed (e.g., in the FA lexical, phonolog-450

ical, and semantic factors) could reveal the influences of sampling effects, premorbid network451

organization and behavior, deafferentiation, diaschisis, adaptive neuroplasticity, or related neu-452

rological effects [77].453

Across the simulations, there was an intuitive relationship between measures of global net-454

work topology and overall aphasia severity, accounting for 20 % of the variance on the WAB-455

AQ. Interestingly, this network-behavior relationship was stronger than that observed with the456

total factor sum score. Within the left hemisphere, this pattern remained, and lexical process-457

ing and auditory comprehension tended to have strong relationships with network topology,458

potentially reflecting the anatomically distributed demands of these tasks in left hemispheric459

perisylvian circuits [78], association regions [79], and sensory-perceptual pathways [80, 81].460

Perhaps due to the relatively circumscribed circuits thought to mediate phonological processing461

[82, 83] and relatively preserved prefrontal circuitry that might mediate the functions in our462

cognitive factor [84, 85], we observed weaker relationships between these behaviors and the463

topology in the simulated attacks.464

Overall, streamline networks appeared to offer substantially more reliable point estimates465

for global and dimensional behavioral outcomes despite similar central tendencies to FA net-466

works. This could be because our use of a reliable healthy connectome ensured consistent sets of467

streamline edges in healthy controls, whereas FA values are derived from estimated streamlines468

and offer an additional source of variance in the simulations. In addition, streamline distribu-469

tions tend to be heavy-tailed with few highly connected pairs of regions [40, 47, 48, 49] with470

node degree (number of connections) and strength (the total weight of the connections) distribu-471

tions that follow exponentially-truncated power laws [86, 87]. Lesions induce a significant loss472

in the number of estimated fibers, and the measured topology of these losses across subjects473

within the reliable healthy connectome will be strongly influenced by the heavy-tailed distri-474
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bution of edges and presence of a subset of high-connection-strength nodes. In contrast, FA is475

computed over the estimated streamlines connecting regions pairs regardless of their number,476

exhibiting significantly less skew and consequently relatively fewer high-connection-strength477

nodes. Qualitatively, FA can represent the integrity of axonal pathways [88, 89], offering a478

distinct interpretive value relative to streamlines. However, our results suggest that increased479

caution when evaluating the effect sizes of brain-behavior relationships could be advised for FA480

relative to streamline connectomes.481

Across the FA networks, it was not clear that any one of the investigated network measures482

uniquely corresponds to a single dimension of language function post-stroke. When examined483

using the whole brain FA networks, edge weights and network global efficiency tended to con-484

tribute to most of the behavioral measures. This finding could represent the possibility that485

individual variation in the myriad nearby, short-distance connections such as u-fibers and direct486

connections are relevant to mediating recovery [20, 90]. U-fibers dominate the brain’s white487

matter but their links to cognition are conspicuously understudied [91]. Intuitively, a higher488

degree of intact local bypasses could facilitate adaptations to lost functions in general [92]. It489

is likely that as the behavioral measures increase in specificity, the unique edges contributing to490

losses in each function vary, driving differences in topology-behavior relationships [14]. In lex-491

ical processing (where the models accounted for the most variance among the individual factor492

scores) edge weights were most prominently related to behavior for both streamlines and FA,493

suggesting that overall loss of connections independent of their relationship with lesion volume494

is a key mediator of deficits relative to other topological measures.495

Several limitations to our work can motivate future studies. We focused on a narrow set of496

commonly used network topology measures that characterize some of the aspects of global net-497

work organization as an initial benchmark for the connectome bases of language performance.498

Numerous other measures are available, but the link between specific network measures and499

cognitive functions remains an active area of inquiry and debate [6, 93, 94, 95]. More spe-500

cific hypotheses that allow researchers to rule out spurious or non-specific network-behavior501

effects, ideally informed by theoretical models, should be a focus of applied network studies. In502

addition, other measures that represent connectome edges (streamline density, diffusivity, etc.,503

[96, 34, 41]) could be investigated. We recommend that these efforts will be best supported504

by collaborative efforts to pool patient samples and test the robustness of brain-behavior rela-505

tionships. In addition, we used a well-established anatomical atlas to guide our parcellation506

with an imputation procedure to compare healthy and stroke subjects, but numerous atlases507

are now available. Given that there is no consensus that a particular atlas is ideal for any spe-508

cific purpose [97], we further encourage researchers to collaboratively pool data to examine the509

reliability and validity of different processing decisions in anatomical and functional studies510

[98, 99, 100, 101, 102, 103].511
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Conclusion512

Our simulations revealed that several anatomical connectome measures thought to be related to513

global network processing can be expected to account for 10-20% of the variance in language514

performance on clinical measures above and beyond lesion volume. Importantly, measures515

of whole brain and left hemisphere anatomical connectomes have stronger relationships with516

global language function, reflecting an intuitive relationship between network-wide integrity517

and overall functioning. More specific measures of anatomical circuits could be necessary to518

gain more sensitivity to distinct language processes. Simulated attacks are useful in leveraging519

matched comparison samples to obtain confidence estimates for observed effects. Differences520

between observed and simulated values could identify the influences of premorbid status, deaf-521

ferentation, diaschisis, and neuroplasticity following stroke.522
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Supplementary Table 1: FA marginal means for behavior in the whole brain787

Behavior 1 Behavior 2 Lower CI Mean Diff. Upper CI p
WAB Factor Sum 0.055 0.056 0.058 <0.001
WAB Lexical 0.006 0.007 0.009 <0.001
WAB Auditory Comp. 0.036 0.038 0.039 <0.001
WAB Phonology 0.06 0.062 0.063 <0.001
WAB Cognitive/Semantic 0.103 0.104 0.106 <0.001
Factor Sum Lexical -0.05 -0.049 -0.047 <0.001
Factor Sum Auditory Comp. -0.02 -0.019 -0.017 <0.001
Factor Sum Phonology 0.004 0.005 0.007 <0.001
Factor Sum Cognitive/Semantic 0.047 0.048 0.05 <0.001
Lexical Auditory Comp. 0.029 0.03 0.032 <0.001
Lexical Phonology 0.053 0.054 0.056 <0.001
Lexical Cognitive/Semantic 0.096 0.097 0.099 <0.001
Auditory Comp. Phonology 0.023 0.024 0.026 <0.001
Auditory Comp. Cognitive/Semantic 0.065 0.067 0.068 <0.001
Phonology Cognitive/Semantic 0.041 0.043 0.044 <0.001

788

789

Supplementary Table 2: FA marginal means for behavior in the left hemisphere790

Behavior 1 Behavior 2 Lower CI Mean Diff. Upper CI p
WAB Factor Sum 0.075 0.078 0.08 <0.001
WAB Lexical 0.001 0.003 0.005 0.004
WAB Auditory Comp. 0.01 0.012 0.014 <0.001
WAB Phonology 0.037 0.039 0.042 <0.001
WAB Cognitive/Semantic 0.074 0.077 0.079 <0.001
Factor Sum Lexical -0.077 -0.075 -0.072 <0.001
Factor Sum Auditory Comp. -0.068 -0.066 -0.064 <0.001
Factor Sum Phonology -0.041 -0.039 -0.036 <0.001
Factor Sum Cognitive/Semantic -0.004 -0.001 0.001 0.632
Lexical Auditory Comp. 0.007 0.009 0.011 <0.001
Lexical Phonology 0.034 0.036 0.039 <0.001
Lexical Cognitive/Semantic 0.071 0.074 0.076 <0.001
Auditory Comp. Phonology 0.025 0.027 0.03 <0.001
Auditory Comp. Cognitive/Semantic 0.062 0.065 0.067 <0.001
Phonology Cognitive/Semantic 0.035 0.037 0.04 <0.001

791

792
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Supplementary Table 3: Streamline marginal means for behavior in the whole brain793

Behavior 1 Behavior 2 Lower CI Mean Diff. Upper CI p
WAB Factor Sum 0.049 0.05 0.052 <0.001
WAB Lexical 0.003 0.005 0.006 <0.001
WAB Auditory Comp. 0.063 0.064 0.066 <0.001
WAB Phonology 0.04 0.041 0.043 <0.001
WAB Cognitive/Semantic 0.095 0.096 0.098 <0.001
Factor Sum Lexical -0.047 -0.045 -0.044 <0.001
Factor Sum Auditory Comp. 0.013 0.014 0.016 <0.001
Factor Sum Phonology -0.01 -0.009 -0.007 <0.001
Factor Sum Cognitive/Semantic 0.045 0.046 0.048 <0.001
Lexical Auditory Comp. 0.058 0.059 0.061 <0.001
Lexical Phonology 0.035 0.036 0.038 <0.001
Lexical Cognitive/Semantic 0.09 0.091 0.093 <0.001
Auditory Comp. Phonology -0.025 -0.023 -0.022 <0.001
Auditory Comp. Cognitive/Semantic 0.031 0.032 0.034 <0.001
Phonology Cognitive/Semantic 0.054 0.055 0.057 <0.001

794

795

Supplementary Table 4: Streamline marginal means for behavior in the whole brain796

Behavior 1 Behavior 2 Lower CI Mean Diff. Upper CI p
WAB Factor Sum 0.049 0.05 0.052 <0.001
WAB Lexical 0.012 0.014 0.015 <0.001
WAB Auditory Comp. 0.021 0.022 0.024 <0.001
WAB Phonology 0.029 0.03 0.032 <0.001
WAB Cognitive/Semantic 0.074 0.075 0.077 <0.001
Factor Sum Lexical -0.038 -0.036 -0.035 <0.001
Factor Sum Auditory Comp. -0.029 -0.028 -0.026 <0.001
Factor Sum Phonology -0.021 -0.02 -0.018 <0.001
Factor Sum Cognitive/Semantic 0.024 0.025 0.027 <0.001
Lexical Auditory Comp. 0.007 0.008 0.01 <0.001
Lexical Phonology 0.015 0.016 0.018 <0.001
Lexical Cognitive/Semantic 0.06 0.062 0.063 <0.001
Auditory Comp. Phonology 0.006 0.008 0.01 <0.001
Auditory Comp. Cognitive/Semantic 0.052 0.053 0.055 <0.001
Phonology Cognitive/Semantic 0.044 0.045 0.047 <0.001
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Supplementary Table 5: Beta weights for each condition of the observed and simulated799

regression models800

Observed Simulated

FA - Whole Brain FA - Whole Brain

Behavior
Edge 

Weights Modularity Efficiency Transitivity SWP Behavior
Edge 

Weights Modularity Efficiency Transitivity SWP

WAB-AQ 35.14 -0.66 -21.81 -12.76 -3.37 WAB-AQ 7.34 -2.58 -5.69 2.88 -3.67

Factor Sum 1.93 0.00 -1.34 -0.46 -0.07 Factor Sum 0.52 -0.14 -0.42 0.06 -0.14

Lexical 1.40 -0.05 -0.04 -1.34 -0.24 Lexical 0.42 -0.13 -0.17 -0.08 -0.19

Auditory 
Comp.

0.20 0.18 -0.90 0.44 0.04
Auditory 
Comp.

0.43 0.07 -0.60 -0.06 0.18

Phonology 0.72 -0.13 -0.33 -0.26 0.09 Phonology -0.81 -0.16 0.78 0.47 -0.19

Cognitive/
Semantic

-0.38 -0.01 -0.07 0.70 0.04
Cognitive/
Semantic

0.48 0.07 -0.43 -0.27 0.06

FA - Left Hemisphere FA - Left Hemisphere

Behavior
Edge 

Weights Modularity Efficiency Transitivity SWP Behavior
Edge 

Weights Modularity Efficiency Transitivity SWP

WAB-AQ 26.62 2.11 -18.51 -3.81 -3.55 WAB-AQ 15.44 5.15 -9.94 2.63 -1.47

Factor Sum 0.84 -0.05 -0.66 0.07 -0.05 Factor Sum 0.52 0.12 -0.34 0.14 -0.03

Lexical 0.96 0.02 -0.01 -0.75 0.04 Lexical 0.45 0.18 -0.11 0.03 0.14

Auditory 
Comp.

-0.45 -0.33 0.01 0.13 -0.10
Auditory 
Comp.

0.06 -0.25 -0.30 -0.06 -0.08

Phonology 0.64 0.18 -0.26 -0.30 -0.39 Phonology 0.28 0.06 -0.07 -0.04 -0.29

Cognitive/
Semantic

-0.30 0.08 -0.39 0.98 0.39
Cognitive/
Semantic

-0.27 0.13 0.14 0.22 0.20

Streamline - Whole Brain Streamline - Whole Brain

Behavior
Edge 

Weights Modularity Efficiency Transitivity SWP Behavior
Edge 

Weights Modularity Efficiency Transitivity SWP

WAB-AQ 5.64 -4.70 1.59 4.41 1.75 WAB-AQ 3.85 -4.99 4.10 6.30 1.72

Factor Sum 0.08 -0.39 0.21 0.28 0.10 Factor Sum 0.00 -0.41 0.33 0.37 0.11

Lexical 0.34 -0.27 -0.07 -0.18 -0.08 Lexical 0.31 -0.26 -0.05 -0.15 -0.09

Auditory 
Comp.

0.01 0.18 -0.19 0.18 -0.04
Auditory 
Comp.

-0.15 0.14 0.02 0.31 -0.04

Phonology -0.40 -0.20 0.79 0.56 0.16 Phonology -0.38 -0.20 0.80 0.58 0.17

Cognitive/
Semantic

0.14 -0.11 -0.31 -0.28 0.06
Cognitive/
Semantic

0.22 -0.09 -0.45 -0.37 0.06

Streamline – Left 
Hemisphere Streamline - Whole Brain

Behavior
Edge 

Weights Modularity Efficiency Transitivity SWP Behavior
Edge 

Weights Modularity Efficiency Transitivity SWP

WAB-AQ 5.41 -2.98 0.39 2.39 0.22 WAB-AQ 5.07 -2.85 0.72 2.72 0.10

Factor Sum -0.76 -0.46 0.69 0.25 -0.33 Factor Sum -0.79 -0.46 0.72 0.27 -0.33

Lexical 0.66 -0.08 -0.18 -0.32 0.10 Lexical 0.53 -0.10 -0.08 -0.28 0.03

Auditory 
Comp.

-0.20 -0.39 -0.13 -0.01 0.02
Auditory 
Comp.

-0.18 -0.39 -0.14 0.00 0.04

Phonology -0.76 -0.02 0.80 0.60 -0.17 Phonology -0.77 -0.02 0.82 0.60 -0.18

Cognitive/
Semantic

-0.45 0.03 0.19 -0.02 -0.27
Cognitive/
Semantic

-0.37 0.04 0.13 -0.05 -0.23

801

Note: Beta weights for the simulated models are the means from the simulated permutations.802

The betas for the WAB-AQ represent the relationship between standardized network measures803

and raw WAB-AQ values to aid interpretability. The betas for all other measures are between804

standardized network measures and the factor scores.805
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