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Abstract 

In microbial communities, many vital metabolic functions, including the degradation of 
cellulose, proteins and other complex macromolecules, are carried out by costly, extracellularly 
secreted enzymes. While significant effort has been dedicated to analyzing genome-scale 
metabolic networks for individual microbes and communities, little is known about the 
interplay between global allocation of metabolic resources in the cell and extracellular enzyme 
secretion and activity. Here we introduce a method for modeling the secretion and catalytic 
functions of extracellular enzymes using dynamic flux balance analysis. This new addition, 
implemented within COMETS (Computation Of Microbial Ecosystems in Time and Space), 
simulates the costly production and secretion of enzymes and their diffusion and activity 
throughout the environment, independent of the producing organism. After tuning our model 
based on data for a Saccharomyces cerevisiae strain engineered to produce exogenous 
cellulases, we explored the dynamics of the system at different cellulose concentrations and 
enzyme production rates. We found that there are distinct rates of constitutive enzyme 
secretion which maximize either growth rate or biomass yield. These optimal rates are strongly 
dependent on enzyme kinetic properties and environmental conditions, including the amount 
of cellulose substrate available. Our framework will facilitate the development of more realistic 
simulations of microbial community dynamics within environments rich in complex 
macromolecules, with applications in the study of soil and plant-associated ecosystems, and 
other natural and engineered microbiomes.  

Importance 

Many organisms - including soil, marine and human-associated bacteria and fungi - perform 
part of their metabolic functions outside of the boundary of the cell, through the secretion of 
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extracellular enzymes that can diffuse and facilitate reactions independently of the organism 
that produced them. In order to better understand and predict microbial ecosystems, it would 
be helpful to create mathematical models incorporating these extracellular reactions within 
simulations of metabolism at the whole-cell level. In this paper we demonstrate the 
implementation of such a methodology and apply it to study a cellulase-secreting yeast. This 
work will be useful for a number of microbial ecology applications, including modeling of 
microbiome dynamics, engineering of bioproducts (e.g. biofuels) from plant biomass through 
synthetic communities or modified organisms, and testing of basic ecological hypotheses about 
the balance between cost and benefits of the production of common goods in microbial 
communities.  

Introduction  

The secretion and activity of extracellular enzymes is a fundamental component of the 
metabolic processes of microbes and microbial communities [1–5]. These enzymes can perform 
a variety of functions, from the degradation of complex carbohydrate polymers, such as glycan 
and cellulose, to the hydrolysis of proteins and oxidation of aromatic molecules. Both the 
enzymes themselves and the products of the extracellular reactions they catalyze can change 
dynamically in the environment, modulated by diffusion, stability, and kinetic properties [6,7]. 
Moreover, both enzymes and molecular products constitute common goods available for all 
species in the community [8], posing unresolved physiological and ecological questions on the 
possible strategies that individual organisms may have evolved to manage these processes and 
interact with each other [3,9]. 

While the molecular, cellular and ecological properties of extracellular enzyme systems can vary 
greatly across different organisms and specific functions, some common fundamental questions 
arise in different contexts. One question is how each organism controls the expression and 
secretion of extracellular enzymes towards efficient growth [5,10]. A number of enzymes are 
produced in response to the presence of their substrate (either simple or complex [7]) or 
reaction products [11]. In some cases these enzymes are suppressed by an excessive 
abundance of the catabolite they serve to make available [12] or other preferred carbon 
sources [13][14]. Other extracellular enzymes are constitutively expressed, allowing a baseline 
rate of catalysis, with further expression possibly stimulated by the catalytic product [15]. 
Extracellular enzyme activities can also be sensitive to environmental conditions such as 
temperature, CO2 concentrations, and precipitation [16], as well as to quorum sensing [17]. A 
second question is how the molecules made available through the breakdown of biopolymers 
by extracellular enzymes affects different organisms in a community, including enzyme 
producers who carry the energetic burden of synthesizing proteins that benefit other species as 
well. This aspect has been extensively studied, for example in soil and litter-degrading fungal 
communities [18,19], where extracellular enzymes play an important role in temporal 
succession and ecosystem-level metabolic functions of decomposer microorganisms 
[6,7,18,20,21]. Similar processes are also important in the degradation of specific nutrients in 
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the gut of humans and animals [1,22,23]. A third question is whether a quantitative mechanistic 
understanding of the costs and benefits of different microbial strategies for extracellular 
enzyme secretion can help in the design of synthetic communities, e.g. towards the 
construction of engineered consortia capable of pharmaceutical or biofuel production [24–26], 
or bioremediation of industrial waste [27].  
 
The costs and benefits of intracellular enzyme production have been studied through 
experimentally testable mathematical models aimed at quantifying a hypothetical optimal 
expression level [28–30]. Similarly, according to economic principles [31], one would expect 
that an extracellular enzyme should only be produced when it can provide nutrients and energy 
whose benefit to the organism exceed the enzyme production cost, especially given that the 
secreted proteins cannot be internally recycled by the organism [5,7]. A number of papers have 
addressed these questions using mathematical models, generally based on systems of 
differential equations that describe key properties of the organism and its metabolic activity [3] 
[32,33]. However, to our knowledge, there has been no explicit attempt to evaluate the costs 
and benefits of extracellular enzyme production in the context of the detailed metabolic budget 
of a cell. 
 
The methodology of stoichiometric modeling is a natural avenue for addressing this challenge. 
The flow of biochemical reactions in metabolic pathways, including those involving extracellular 
enzymes, may be viewed as a complex resource allocation problem [28,34,35], which can be 
solved mathematically at the genome scale using constraint-based stoichiometric approaches 
[36,37]. These methods include Flux Balance Analysis (FBA) [36–38], initially developed for 
estimating the metabolic activity of individual species, and recently extended to the study of 
microbial communities [39–42] [5,10,43]. Dynamic Flux Balance Analysis (dFBA) [44], which 
iteratively updates pools of extracellular metabolites based on the fluxes observed in sequential 
executions of FBA, has proven particularly useful towards this goal [9,45], including through a 
framework called COMETS (Computation of Microbial Ecosystems in Time and Space) [9,46], 
which further extends dFBA to simulate the spatio-temporal organization of microbial 
communities [9,47–51]. Despite encoding complete mechanistic models of an organism’s 
metabolic network, FBA and dFBA approaches typically lack an explicit representation of 
extracellular enzyme reactions. The implicit implementation of extracellular enzyme function 
currently adopted in standard FBA/dFBA has fundamental limitations (See Methods), that make 
it impossible to effectively account for these processes in ecosystem-level models. 
 
Here we embed extracellular enzyme production and activity within a model of the complete 
metabolic network of a microbial cell, and use the ensuing framework to simulate growth on an 
externally degradable resource. We address the limitations of previous approaches by 
introducing a modified version of dFBA that can explicitly account for the secretion and activity 
of extracellular enzymes. Our implementation, developed for the dFBA algorithm that is part of 
COMETS, treats extracellular enzymes as costly secreted metabolites [52], whose associated 
reactions take place in the extracellular environment according to explicit kinetic rate laws. We 
illustrate these new capabilities by studying an engineered yeast strain which constitutively 
expresses an exogenous cellulase [2]. In addition to displaying and testing our new COMETS 
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module, we study the balance of costs and benefits in this engineered yeast system. We test 
the hypothesis that an optimal enzyme production strategy exists, which maximizes the net 
benefit to the organism, and study the dependency of this optimum on cellular and 
environmental parameters. 

Results 

A dynamic flux balance framework for extracellular enzyme secretion and 
function 

We implemented, within the COMETS framework [46], a computational infrastructure to model 
extracellular enzyme activity in spatially structured microbial populations and communities. In 
making this modification to the basic structure of dFBA within COMETS, we connect the 
extracellular enzyme production and secretion  to internal resource allocation in the cell. While 
the details of the implementation are described in detail in the Methods section, we provide 
here an overview of the approach, which is in itself novel and broadly generalizable. 

Our formulation adds enzyme production and secretion as a set of reactions in the existing 
metabolic network (Fig. 1). These reactions, similar to the biomass producing reaction, 
transform a set of amino acids into an enzyme protein. The enzyme is then transferred into the 
extracellular environment, in analogy to other metabolic byproducts. Once an enzyme molecule 
has been secreted, it will be subject to physical and chemical processes equivalent to those that 
may act on other extracellular metabolites when applicable, namely diffusion and, potentially, 
degradation. A key parameter, which we name α, defines the amount of extracellular enzyme 
produced relative to biomass growth in units of millimoles per gram of dry weight (Fig. 1, Eq. 4). 
For example, if α = 0.001 mmol/gDW, for every gram of biomass produced, 0.001 mmol of 
enzyme will be secreted into the extracellular medium (for a protein with a molar mass of 142.1 
kDa as used here, the secreted protein would represent 12.4% of the net biomass produced). 
This is the main parameter that defines the secretion strategy of the cell. While, as discussed 
later (see Discussion) one could implement α values that dynamically depend on environmental 
conditions, we are assuming here that α is a fixed parameter.  

The next step we have taken to incorporate extracellular enzymes in COMETS is the explicit 
modeling of enzymatic activity in the extracellular environment. In this instance we have 
simplified the process by assuming the direct conversion of cellulose into glucose monomers, 
though intermediate reactions and metabolites can also be supported. Outside of the cell, a 
secreted enzyme is able to diffuse and perform its function independently of the organism by 
which it was produced. In other words, the enzyme becomes a common good that could 
catalyze reactions anywhere in the environment, and benefit any organism that could use its 
products. The central component of the simulation that makes this possible is the 
implementation of Michaelis-Menten kinetics for the enzyme in the extracellular environment: 
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at every time step, in addition to performing FBA and diffusion, COMETS checks the presence of 
extracellular enzymes and corresponding substrate, and estimates the amount of substrate 
consumed and product(s) produced, based on enzyme-specific KM and Vmax parameters.  

In our new module, extracellular enzymes are also subject to decay, e.g. due to thermal 
instability or proteolysis [53,54][54–56]. The simulation of enzyme degradation implies that the 
effort an organism puts into secreting an enzyme has a reward that decreases over time, 
making it impossible, for example, for an organism to benefit for an indefinite amount of time 
from the catalytic activity of an individual enzyme protein. Extracellular enzyme degradation is 
also important ecologically, as it can contribute to the generation of dissolved organic matter, 
whose decay products may be reused by other organisms or be part of broader biogeochemical 
cycles, particularly the cycling of nitrogen [57]. While the explicit generation of decay products 
is not implemented in the current version of COMETS, it would constitute a feasible addition.  

Implementation and testing of COMETS simulations for a cellulase-producing 
yeast  

For the purpose of testing the new capabilities and exploring their potential to provide 
biological insight, we chose to focus on a modified Saccharomyces cerevisiae yeast strain, 
previously engineered to produce extracellular cellulases [58]. This strain is also part of an 
effort to implement consolidated bioprocessing, e.g. for bioethanol production from plant 
biomass [59,60] (See Methods for more details about strain choice and corresponding 
stoichiometric reconstruction). Using the engineered yeast strain (based on a modified version 
of the Yeast8 reconstruction, see Methods) and the newly updated COMETS framework, we 
simulated growth of this yeast in a homogenous anaerobic environment with a limited amount 
of cellulose as the main carbon source and an excess of all other essential metabolites (see 
Methods, and Supplementary Table S.4). 

We found that our new implementation of extracellular enzyme activity in COMETS was able to 
recapitulate the in-vitro growth curve of cellulase-expressing S. cerevisiae (Figure 2). Simulated 
growth best matched experimental data at intermediate values of α (α = 0.0032 mmol/g), using 
kinetic parameters of the extracellular enzymes reported in the literature (Vmax = 32 s-1 and KM = 
0.2 mg/mL [61,62]). This value of α would represent the expected extracellular enzyme 
secretion rate for the simulated S. cerevisiae strain. Interestingly, this value of α also falls within 
the range of cellulase production measured in this engineered yeast for endoglucanase(α = 
0.0026) and β-Glucosidase (α = 0.0072) (see [63] and Methods). 

We found that a similar value of α is found even if we simultaneously search for α and 
enzymatic parameters that best fit the experimental curve. The values of the parameters 
obtained by fitting to a linear regression which allowed the simulation to most closely match 
the in vivo data were Vmax = 87.5 s-1, KM = 0.0094 mg/mL, with α again at a value of 0.0032 
mmol/gDW, with an RMSE of 0.1659. It was reassuring to see that the kinetic parameters are 
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within an order of magnitude of the expected values from the literature [61,62] and that the 
ideal α remains unchanged under both optimization procedures, suggesting that its estimate is 
robust relative to uncertainty in other parameters. This value of α is also consistent with 
previously reported rates of cellulase production [64–66]. The literature-derived enzymatic 
parameters are used as the defaults for all subsequent simulations in this report, unless 
otherwise noted.  

Balance between cost and benefit points to resource-dependent optima  

Different values of α strongly influence the dynamics of the system (Figure 3). In particular, the 
trajectories of glucose and cellulose concentrations and the change in biomass over time vary 
not only quantitatively (e.g. initial rates) but also qualitatively as a function of the rate of 
enzyme secretion. If the value of α is too small, there is virtually no cellulose to glucose 
conversion (Fig. 3A), and hence very little growth. Conversely, if α is too large, cellulose is 
converted to glucose very quickly (Fig. 3B); however, the expense for extracellular enzyme 
production leaves few resources available for biomass production, making growth 
asymptotically slow (Fig. 3D and E). This output supports our hypothesis that there should be a 
balanced enzyme production strategy which maximizes the utility of extracellular enzymes [28–
31]. The existence of an optimum was confirmed by systematically repeating simulations for 
many values of α, and plotting the corresponding growth rate and yield (Fig. 4).  

The α at which this optimum is achieved, and the corresponding maximal values of yield and 
rate (which are correlated to each other, Fig. 4C), depend strongly on the initial cellulose 
available. Curves for growth and yield as a function of α have a characteristic asymmetric shape 
(Figs 4A,B), with a sharp decline at the low end of the α axis. This sharp decline happens very 
close to the optimal α, implying that the ideal cellulase production rate is critically close to a 
value at which the organism does not produce enough enzyme to guarantee growth. 
Production of excessive amounts of enzyme will result in a lower yield and growth rate but does 
not pose the same risk. This predicted shape of the curve has a couple of possible 
consequences: first, it implies that it might be safer for an organism to overshoot with a larger 
value of α, and gradually reduce it (through physiological or evolutionary adaptation), rather 
than approaching the optimal value from below. Second, it suggests that the pressure of 
natural selection on constitutive enzyme production favors underestimating the abundance of 
resources in the environment. 

Discussion  
Despite the broad importance of extracellular enzyme processes across environmental 
conditions, mainstream efforts to model genome-scale and ecosystem-level metabolism have 
so far circumvented the problem of how to appropriately embed these effects in constraint-
based models. We developed a framework to explicitly simulate extracellular enzyme functions 
in dynamic FBA in a way that is simple enough to enable a systematic analysis of the role played 
by different key parameters, but realistic enough to allow a qualitative comparison with 
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experimental systems. By applying this new framework to a specific case study, we were able to 
computationally test the hypothesis that a quantifiable optimal allocation of resources to 
extracellular enzymes exists as a function of substrate availability. 

The integration of extracellular enzyme secretion and function in COMETS is an important step 
towards understanding the ecology and evolution of microbial community dynamics in 
environments rich in complex macromolecules. Our simulations suggest the existence of 
optimal enzyme production rates relative to biomass production in a way that depends on the 
environmental availability of substrate. Importantly, this finding is the complex outcome of 
several factors that would not be available in simple partial differential equations models of 
microbial growth, or in standard FBA or dFBA simulations. The existence and specific location of 
these optima depends on the properties of the intracellular metabolic circuits of the organism 
(e.g. the value of α), the extracellular enzyme parameters, and the complex time-dependent 
interplay between the different quantities (cellulose left, glucose generated, biomass present, 
etc.). While the organism, in a dFBA simulation, has an instantaneous objective function (as in 
regular FBA), the potential optimal behavior under a given environment is not captured by that 
objective, but requires taking into account these full complex dynamics. Growth optima can 
strongly depend on the ecological setting. In a competitive environment where space or 
resources are scarce, the enzyme produced by one organism can become a precious common 
good (together with the cellulolytic byproducts themselves), enabling cheater organisms to 
benefit. However, in an environment where the common good is shared with an organism that 
is producing other useful resources, mutualistic relationships may enable diverse communities 
to thrive [67–69]. Our analysis provides an expected baseline of how specific rates of 
extracellular cellulase secretions would affect fitness of an organism in isolation. However, the 
flexibility of COMETS and the availability of detailed genome-scale models for many organisms 
for different biomes will enable detailed in silico experiments with multi-species communities, 
where the rise of cheaters and the complexity of multi-species competition and exchange may 
modulate the optimal choice of enzyme secretion.  

A number of decisions were made in the design of this study to keep the modeled system as 
simple as possible, while remaining biologically informative. One simplifying assumption, which 
limits the current reliability of specific quantitative predictions, is the implementation of 
cellulolysis as a single-step process. Cellulolysis in natural systems typically involves at least 
three classes of enzymes (endocellulases, exocellulases, and beta-glucosides) responsible for 
different steps of the conversion of cellulose into simple sugars. Each of these reactions has 
distinct kinetic parameters that may be fine-tuned. These pathways display significant 
synergistic effects both within and across classes of cellulases [70]. Here we approximate these 
processes as a single enzymatic reaction, converting cellulose directly into glucose. While it is 
reassuring that, despite this simplification, we could recapitulate some features of a specific 
experimental system, based on parameters from the literature, it will be important, in future 
developments, to explicitly introduce the individual enzymes, and corresponding steps. This is 
already feasible with our new COMETS module for extracellular enzyme secretion, but it will 
require introducing individual α values for each enzyme. Moreover, while current simulations 
were using a pure and relatively simple cellulose substrate (Avicel), simulations of plant 
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biomass degradation by microorganisms in natural environments will have to deal with much 
more complex mixtures of substrates, including lignins and hemicelluloses. In addition to 
explicitly modeling the corresponding degradation pathways, simulations including these 
factors could be implemented by introducing simplified phenomenological rules that represent 
the conversion of inaccessible cellulose into an accessible form, potentially taking advantage of 
the spatial features of COMETS.  

Future efforts could build upon our current approach in a number of directions. First, while the 
system modeled here is a genetically engineered yeast which constitutively secretes its 
extracellular enzymes, it will be interesting to expand our current framework to introduce 
regulatory control and different modes of enzyme production and secretion in response to 
environmental stimuli. We expect that even simple feedback systems, e.g. based on sensing of 
sugars will be able to significantly reduce the metabolic burden of the enzyme expression 
system. The implementation of similar sensing and regulatory mechanisms would constitute a 
broadly interesting research avenue in extensions of dFBA simulations. For example, one could 
include product inhibition or treat the enzyme secretion rate as a nonlinear function of the 
growth rate (in contrast to the direct proportionality used here). Metabolic models can even be 
created that switch between multiple strategies based on environmental conditions. Second, 
our work paves the road for addressing a number of questions related to the spatial distribution 
of biomass, enzymes, and carbon sources, which can be simulated using the spatial features of 
COMETS. The spatial component would be particularly important for addressing questions 
about the evolution of cooperation and competition induced by the diffusion of extracellular 
enzymes and their byproducts in multi-species communities. Finally, while we have presented 
here a limited sample of the capabilities enabled by our extension to COMETS, this approach is 
easily extensible to other natural processes. We have focused on a simplified cellulolysis 
system, but other degradation enzymes, such as proteases or alginases, can be implemented 
directly with the enzyme reaction method described here. Metabolite-sequestering molecules 
like siderophores can be modeled through the addition of binding and unbinding reactions. 
Thus, the extension of dFBA and COMETS proposed here can find useful applications in multiple 
areas of metabolic engineering and microbial ecology, including studies of soil and plant-
associated communities, the human microbiome, marine microbial communities, and the 
production of pharmaceutical and commercial products in bioreactors. Furthermore, we should 
note that the COMETS module that implements extracellular reactions is very general, and 
allows users to define any arbitrary number of chemical reactions happening extracellularly 
with or without the presence of an enzyme. This feature could have a number of additional 
applications, including for the study of early biochemical evolution [71].  

5 Methods  

Dynamic Flux Balance Analysis and COMETS 

Flux balance analysis (FBA) is a well established approach for using stoichiometry, a steady state 
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approximation and optimality principles to predict genome-scale metabolic fluxes. It has been 
described extensively elsewhere [36–38]. Its extension to the temporal domain, dynamic FBA 
(dFBA), still assumes that intracellular metabolites quickly equilibrate to a steady state, but 
explicitly simulates changes in the biomass abundance of different species, and in the molecular 
composition of the environment [9,44,72]. This aspect of dFBA makes it appropriate as a 
platform for modeling extracellular metabolic processes using standard chemical kinetics to 
allow molecules in the media to interact without any direct dependence on microbial biomass 
or metabolic models. Within the COMETS (Computation of Microbial Ecosystems in Time and 
Space) framework [9,46,73], dFBA has been embedded in a spatial environment, where 
metabolic processes are accompanied by the physical processes of molecular diffusion and 
biomass expansion upon growth. COMETS can therefore be used to study the spatio-temporal 
organization of microbial communities, with applications in multiple areas of microbial ecology 
[9,47–51].  

Current FBA and dFBA formulations can incorporate a description of extracellular metabolic 
activity, but with major limitations, which constitute part of the motivation for the present 
work. In traditional FBA, for example, the conversion of Cellulose (C) to Glucose (G) by an 
extracellular (membrane bound) cellulase would be represented as follows: 

C[e] → n G[e] 

where [e] symbolizes the extracellular compartment, and n is a hypothesized number of 
glucose monomers obtained by cleavage of one cellulose polymer. This reaction would be part 
of the metabolic model of the organism that produces the cellulase. 

Under this standard model’s assumption, the enzymes associated with extracellular reactions 
cannot be decoupled from the model, and would therefore disappear if the organism was 
removed [74]. Furthermore, by handling these catalytic functions in an organism-dependent 
way, the existing approach constrains them to the immediate vicinity of the cell. This approach 
also creates unrealistic estimates of enzyme abundances and rates, e.g. by preventing the 
depletion of enzymes over time or their accumulation at a rate different from that of growth. 
Finally, the classic approach does not take into account the cost of producing enzymes that are 
effectively lost biomolecules from the perspective of the overall cellular metabolic budget.  

Addition of extracellular reactions in COMETS  

We have included in COMETS the capacity to handle two types of reactions which can take 
place in the extracellular environment. The setup for these two types of reactions is instructed 
in the COMETS simulation layout definition file (see [46,73]). The first type are simple mass-
balance equations. A set of reactants (with a given stoichiometry) react at a given rate k to 
produce a set of products (also with a given stoichiometry):  
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𝑚𝐴	 + 	𝑛𝐵	+	. . . → 	𝑝𝑋	 + 	𝑞𝑌	+	. ..	               (eq. 1) 

This would translate into the following differential equation for the production of one of the 
reaction products (for example X), which COMETS uses to estimate the change of X during the 
next time step: 

𝑑𝑋/𝑑𝑡	 = 	𝑝	 · 	𝑘	 · 	 [𝐴]! 	 · 	 [𝐵]" 	 ·	. ..      (eq. 2) 

This formula can also be applied to model other processes of arbitrary order, such as 
metabolite decay or addition of media in a chemostat. In particular, in this work, we use this 
process to simulate enzyme (E) degradation in the extracellular environment. In this case, the 
reaction can be written as a special case of eq. 1 above, i.e. E → Null. We should point out that 
this is effectively an exponential decay (E(t) = Eoe-kt) with decay rate k, provided as an input by 
the user.  

The second class of reactions that have been implemented are monomolecular enzyme-
catalyzed reactions. Enzymatic reactions follow the Michaelis-Menten equation for rate 𝑣	 =
	𝑉!#$ · 𝐸	 · 	 (𝑆	/	[𝐾% + 𝑆]), with enzyme and substrate concentrations E and S, the turnover 
rate Vmax, and the half saturation constant KM. As with defining mass-balance reactions, 
reactants and products are defined with a fixed stoichiometry by the user. A single extracellular 
metabolite is defined as the enzyme which carries out the reaction, and is given values for the 
catalytic rate (Vmax) (units: s-1) and Michaelis constant (KM) (units: mM). The concentration of 
the enzyme in the media is not altered by its participation in an enzymatic reaction. 

The dFBA simulation process in COMETS involves cycles comprising several steps. The first step 
in each cycle (updating metabolite concentrations based on cellular reaction fluxes) is 
unchanged relative to standard dFBA [9]. We have now added an extra step, right after this first 
step, in which COMETS handles extracellular reactions. COMETS converts the input set of 
extracellular reactions as defined by the user into a system of differential equations and 
approximates a solution with the Runge-Kutta algorithm (RK4) implemented via the Apache 
Commons Math API version 3.4 for Java [75]. In instances where reactions occur fast enough 
that the algorithm predicts a negative concentration of any metabolites at the end of a single 
timestep, the current timestep is recursively subdivided into two consecutive reaction steps. 
Each coordinate cell in the simulated space is run through the ODE solver using its initial 
metabolite concentrations as the starting conditions, and the result becomes its new set of 
concentrations.  

The kinetics of the extracellular reactions was validated in COMETS by implementing simple 
simulations which do not involve the FBA component, only the reaction, enzymes, and 
substrates. These simulations adhere to predicted rates for both exponential decay and 
Michaelis-Menten reactions (Fig. S1). 
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Enzyme Production and Secretion in a Stoichiometric Model  

The reaction for the production of an extracellular enzyme from precursor amino acids is added 
to the metabolic model in the form: 

𝑐1𝐴𝐴1	+. . . +	𝑐20𝐴𝐴20 	+ 	𝛽𝑐&𝐴𝑇𝑃	 + 	𝛾𝑐&𝐺𝑇𝑃	 → 		𝐸[𝑐] 	+ 	𝛽𝑐&𝐴𝐷𝑃	 + 	𝛾𝑐&𝐺𝐷𝑃	 +	(𝛽 +
𝛾)	𝑐&𝑃𝑖   (eq. 3) 

where ci is the number of amino acid i that occurs in the protein's sequence (Table S4), ct is the 
total length of the polypeptide sequence, and β and γ are constants which define the energy 
cost of polymerization (Table A.1). This reaction effectively produces the enzyme as if it was an 
intracellular metabolite. As shown next, however, the only fate of this enzyme is extracellular 
secretion. 

We assume here that the rate of secretion of the enzyme is proportional to the growth rate. 
This coupling between growth rate and enzyme secretion could be achieved in multiple ways 
(including in principle creating a new biomass production reaction that also secretes the 
enzyme). In our current implementation, we achieved growth-coupled enzyme secretion by 
adding a fictitious “Coupling Metabolite” (CoupleMet) as an additional product of the biomass 
reaction. This Coupling Metabolite is then coupled to the transport of the enzyme from the 
cytoplasmic ([c]) to the extracellular ([e]) environment. Thus the overall biomass-coupled 
enzyme secretion is encoded in the two following reactions: 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠	𝑃𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟𝑠	 → 	𝐵𝑖𝑜𝑚𝑎𝑠𝑠	 + 𝐶𝑜𝑢𝑝𝑙𝑒𝑀𝑒𝑡[𝑐]	     (eq. 4) 

𝐶𝑜𝑢𝑝𝑙𝑒𝑀𝑒𝑡[𝑐] 	+ 	𝛼	𝐸[𝑐] 	→ 	𝛼	𝐸[𝑒]	        (eq. 5) 

The parameter α represents the amount of enzyme produced per unit of biomass produced, 
and is one of the key parameters explored throughout the paper, as it captures the cellular 
choice of how much resource investment the cell should put into producing the enzyme vs. 
growing. Note also that once out of the cell, the extracellular enzyme E[e] behaves like a 
metabolite, except for its capacity to catalyze the associated extracellular reaction. 

Initial conditions for bootstrapping growth 

It is important to note that the carbon used by the metabolic model for the majority of growth 
and fermentation in this case study is only available in the form of glucose, generated as the 
product of enzymatic cellulolysis. Therefore at the beginning of the simulation, unless a usable 
carbon source is provided (in addition to cellulose), cells would not be able to bootstrap 
themselves into growth. In the current simulations, we thus provide a small amount of 
mannose to initialize growth and enzyme production. This mannose is quickly consumed, 
leaving the yeast to grow solely on glucose produced by cellulose degradation. We provide 
mannose, as opposed to glucose, in order to be able to easily track the glucose produced as a 
product of cellulose degradation. Alternative strategies for bootstrapping initial growth would 
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be feasible. These include the assumption of an initial amount of intracellular carbon storage or 
an initial amount of extracellular enzyme in the environment. Simple tests we implemented 
with these alternative approaches provided growth curves substantially equivalent to the ones 
shown, and were not pursued further. Notably, it is important to design the bootstrapping 
phase as a short transient relative to the experiment itself. Here we chose an initial mannose 
amount of 0.01598 mmol. Changes in this initial amount would be roughly equivalent to 
changes in the initial amount of biomass and enzyme (see sensitivity analysis in supplementary 
data). 

A cellulase-producing yeast as a model system 

The modified cellulase-producing S. cerevisiae system has several advantages that make it 
appropriate for our study: (i) It can take advantage of a well established high-quality 
stoichiometric reconstruction, i.e. the S. cerevisiae stoichiometric model, which has a long 
history of manual curation and validation [76,77]; (ii) Yeasts serve as a common chassis for 
genetic engineering [78–80]; (iii) This particular system is associated with a clear well-studied 
laboratory equivalent, for which experimental data are available; Growth data and cellulose 
degradation dynamics were taken from an experiment performed by Den Haan et al. [2] 
utilizing a S. cerevisiae strain genetically modified to constitutively express the exogenous 
cellulase genes Saccharomycopsis fibuligera BGL1 and Trichoderma reesei EGI; (iv) Fungal 
degradation of plant biomass is highly relevant both for metabolic engineering and ecological 
applications, making it a system which can be expanded further, with broad implications. It uses 
enzymes from widespread plant decomposing fungi, and can serve as a valuable proxy for 
obtaining insight relevant for important open ecological questions.  

In order to recapitulate the above experimental system, we imported in COMETS the most 
recent stoichiometric reconstruction for S. cerevisiae (Yeast8 [76]). To construct a model of the 
specific engineered strain used in [2], we modified the anaerobic Yeast8 yeast metabolic model 
so as to make it able to produce and secrete a cellulase enzyme, as described above. Note that 
while the original modified organism was engineered to secrete both endoglucanase and beta-
glucosidase, we implemented a simplified version in which a single representative cellulase 
enzyme is secreted. This cellulase is then assumed to degrade cellulose into glucose in a single-
step reaction, in analogy with previous implementations in stoichiometric models [81,82]. The 
extracellular cellulolysis reaction was added to the simulation with the following parameters: 
218.2 units of glucose were produced for each unit of cellulose consumed, in accordance with 
the average degree of polymerization of Avicel [83]. Initial estimates for turnover rate Vmax and 
half-saturation constant KM were 32 s-1 and 0.2 mg/mL respectively, based on values reported in 
BRENDA for BGL1 [84]. 

Note also that genome-scale metabolic models typically include a growth-associated (GAM) and 
a non-growth-associated maintenance (NGAM) flux, which are set to fixed experimentally 
determined values, to take into account cellular metabolic demands not directly associated 
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with metabolism itself. For the current simulations, in order to simulate some degree of 
internal metabolic activity also in absence of growth, we used a NGAM of 0.7 mmol/gDW·h 
(same as anaerobic growth, as in the reported aerobic case [85,86]). In parallel we adjusted the 
GAM from 30.49 mmol/gDW·h to 23.49 mmol/gDW·h in order to match experimental growth 
rates. In any case, supplemental figure S4 demonstrates that the system is robust to a wide 
range of values for these parameters.  

COMETS Simulations  

Simulations for all experiments were performed with COMETS version 2.9.0 [46] utilizing Gurobi 
version 9.0 [87]. Input file generation and output processing were performed using the COMETS 
Toolbox for Matlab [46]. Unless otherwise indicated, experiment parameters were set to 
recreate the batch culture conditions in [2]. Culture volume was 100mL. Initial cellulose amount 
was set to a 0.0125 millimolar concentration (equivalent to 2g Avicel in 450mL stock), and all 
other essential metabolites were set to 100 millimolar concentrations so that they would not 
be limiting factors. Enzyme decay was set as a first-order reaction [56] eliminating the enzyme 
at a rate of 1% per hour. Simulation time step length was set to 1 hour. Cell death was disabled 
in this simulation. KM for glucose uptake by the organism was set to 3.94 mmol/cm3, and the 
maximum glucose uptake rate was set to 5.6e-4 mmol/gDW*h. The initialization of growth in 
these simulations requires inclusion of a carbon source that can be utilized by the metabolic 
model. This can be achieved directly by including sugars in the initial media, or including a small 
amount of enzyme in order to begin the conversion of cellulose to glucose. Mannose was 
selected to be included in the media in order to keep the initial carbon source distinct from the 
glucose produced by cellulolysis. Conceptually, this initial source serves the same purpose as a 
yeast cell's internal carbon stores, the depletion of which are not supported by a steady-state 
model. For the simulations shown here, in order to bootstrap initial growth before cellulolysis 
has begun, 0.015 mmol of mannose was added to the media and mannose uptake was enabled 
in the model with kinetics equal to those of glucose uptake (Vmax = 3.9 mmol/gDW·h, KM = 0.56 
mM).  

Fitting to experimental data was performed by a hill-climbing algorithm was used to tune these 
three parameters, determining the goodness of fit based on minimizing the root mean square 
error (RMSE) between the log10 of the the time-shifted simulated biomass and the biomass 
recorded in vivo at the reported times (see Supplemental Information for implementation 
details). Because the RMSE landscape is convex (Fig S3) a naïve hill-climbing method is expected 
to reach the global optimum for finite values of Vmax, KM, and α. 

This is a simplification of the actual cellulolysis process, which is typically a multistep reaction 
involving three separate enzymes. Future work should examine the impact of this, but for now 
this approach is used in the interest of keeping the number of simulation parameters at a 
manageable size and to avoid overcomplicating the discussion of results by introducing 
intermediate metabolites.  
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Inference of a range for α from experimental data 

Data available from van Rensburg et al. [63] allowed us to roughly estimate a realistic range of 
values for the α parameter we define and use in our model. The estimation reported below is 
based on Fig. 1 and Table 4 from [63]. In particular, the table reports an estimate of 
endoglucanase produced of 0.013 (±0.001) mg protein ml-1. Given that the final amount of 
biomass in the bioreactor (as shown in Fig. 1) is approximately 5g/l, the proportion of 
extracellular protein produced per unit biomass is roughly αEndo = (0.013 g/l) / (5 g/l) = 0.0026. A 
similar calculation for β-Glucosidase (produced in an amount of 0.036 (±0.015) mg protein ml-1) 
leads to αβG = (0.036 g/l)/ (5g/l) = 0.0072. We thus infer the range 0.0026 - 0.0072 as a crude 
estimate of realistic values of α, to compare with our computational model optimization 
estimates (α=0.0032). 
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Figure 1: Simplified map of the reactions involved in cellulase secretion and cellulolysis, 
highlighting the key features of the system. The metabolic cost of cellulase production is taken 
into account by modeling its biosynthesis as a reaction that draws amino acids from the same 
pool used for biomass generation. Secretion of the enzyme into the environment is made 
proportional to growth by coupling the enzyme transport flux to biomass production. The 
enzyme present in the medium catalyzes the degradation of cellulose into glucose through a 
classical Michaelis-Menten mechanism. Notably, as opposed to previous implementation of 
cellulolysis in FBA, cellulose degradation can happen extracellularly independently of the 
organism that secreted the enzyme.  
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Figure 2: Comparison of the in-vitro growth (dotted line, data from [2]) of cellulase-expressing 
S. cerevisiae to simulations using a range of values for the cellulase expression rate α. Each 
simulation data series has been time-shifted to the values which provide for the closest fit to 
the experimental data from [2]. The best fit was achieved with α = 0.0032 mmol/gDW, with an 
RMSE of 0.2375.  
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Figure 3: Logarithmic plots of cellulose (A), glucose (B), and enzyme (C) concentrations, biomass 
(D) , and growth rate (E) over time for simulations using different enzyme production rates. A) 
Cellulose degrades over time in proportion to the amount of enzyme in the system. B) Glucose 
accumulates when cellulolysis outpaces the capacity of the yeast to consume it, and this 
accumulation is faster in systems with higher enzyme secretion rates. C) The amount of 
extracellular enzyme increases in proportion to biomass growth. D) Total biomass and E) 
growth rate increase over time with the greatest increases seen in the models with 
intermediate α values.  
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Figure 4: Yield (A) and maximum growth rate (B) in homogenous simulations with varying 
amounts of cellulose reveal that optimal α decreases for environments with increased cellulose. 
(C) Comparison of α values associated with maximum yield (x axis) and rate (y axis) for different 
initial amounts of cellulose. The graph displays a strong positive correlation, indicating that 
enzyme production rates that maximize rate are predicted to also maximize yield.  
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Figure S1: Extracellular enzymatic reactions in COMETS  

 

Enzyme-catalyzed extracellular reactions with a range of values for KM adhere to the pattern 
expected of Michaelis-Menten reactions, namely achieving a rate equal to ½ Vmax when 
substrate concentration is equal to KM, and asymptotically approaching Vmax with increasing 
substrate concentration. 

To confirm the behavior of enzymatic reactions, COMETS simulations were performed with an 
initial concentration of 3 mmol enzyme and 1 mmol substrate. An extracellular reaction was 
input for enzymatic degradation of the substrate following the Michaelis-Menten equation v = 
Vmax ∗ [E] ∗ [S]/(KM + [S]), for a Vmax of 0.01 s-1 and a range of values for KM. The rate of the 
reaction adhered to the pattern expected of Michaelis-Menten reactions, namely achieving a 
rate equal to 1/2 Vmax when substrate concentration is equal to KM, and asymptotically 
approaching Vmax with increasing substrate concentration (Fig S1). Exponential decay can be 
represented with an initial concentration of reactants in the media and no biomass. A first-
order reaction was input for the decay of the metabolite with concentration N such that v = -λN 
for a range of λ = 0, 10, or 100 s-1. The decrease in a quantity N follows the law N(t) = N0e-t, 
which yields the reaction rate dN/dt = −N. A first-order reaction was input for the decay of the 
metabolite with concentration N such that v = −λN for values of 0, 10, or 100 s-1. Concentrations 
at measured timepoints exactly matched the expected values as calculated with the formula 
N(t) = N0e-λt (series marked with X's). Implementing this is simply a matter of defining an 
extracellular reaction which has a single reactant, X, a rate equal to -[N], and which yields no 
products (Fig S2).  
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Figure S2: Fitting In Silico Growth to In Vivo Results  

 

Extracellular reaction behavior in COMETS was validated by running simulations with an initial 
concentration of reactants in the media and no biomass. Solid series depict time points 
measured in COMETS, while series marked with X's show the predicted concen- tration 
according to the rate equation.  

In order to fine-tune the kinetic properties of the cellulase enzyme and determine the enzyme 
secretion rate α which most closely adhered to a living system, in silico predictions for growth 
were prepared on a non-spatial simulation matching the conditions for an experiment carried 
out by Den Haan et al. (11). Initial cellulose was set to 0.54g to reflect the 27% enzymatic 
conversion of the 2g of Avicel used in vivo, and an excess of other essential metabolites was 
provided (oxygen, water, phosphate, sulfate, ammonium, potassium, and iron). The initial 
microbe population was set to 0.135 mg, and 0.015 mmol of mannose was added in order to 
initialize growth and enzyme production.  

A simple hill-climbing algorithm was employed to find the best fit between the data while 
varying α, turnover rate, and the Michaelis constant in turn. 
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Figure S3: The Space for Fitting Enzyme Kinetics is Smooth  

 

 

 

 

The RMSE for the indicated parameter space over turnover rate and half-saturation constant as 
used to determine enzyme kinetics has a single valley. Red dot indicates the point where RMSE 
equals the minimum. Here α = 0.0032.  

A simple approach for finding the kcat and KM constants was evaluated by graphing the root-
mean-square error calculated via the difference between the observed and simulated growth 
curves over a range of each parameter. The error function is monotonic in regards to both 
variables, suggesting that a simple hill-climbing (or in this case, hill-descending) algorithm is 
sufficient to find parameters which match the behavior of the in-vivo system. 
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Figure S4: Sensitivity to Simulation Parameters  

 

 

Sensitivity of homogenous simulations to parameter values. Blue series indicate fold-change in 
biomass yield. Red series indi- cate fold-change in maximum growth rate.  

Homogenous simulations were run as above, with each of the following parameters varied on a 
scale from 2-5 to 25 times the original value: α, initial population, growth and non-growth 
associated maintenance reaction rate, ATP and/or GTP cost per peptide bond in the synthesis 
of the enzyme protein, enzymatic turnover rate, and Michaelis constant KM, maximum glucose 
uptake rate, half-saturation concentration for glucose uptake, enzyme decay rate, and the 
stoichiometric cost of production for a fixed amount of enzyme. Default values are listed in 
Tables S1, S2, and S3.  
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Table S1: Parameters used in the metabolic model  

 

Parameter Value Units Citation 

α  5.62e-4   

ATP per peptide (enzyme synthesis) 8  [88] 

Cellulase kcat 32 s-1 [61] 

Cellulase KM 0.7 mmol/cm3 [62] 

Cell death rate 0 h-1  

Glucose per unit cellulose 218.2  [83] 

Glucose uptake KM 5.6e-4 mmol/cm3  

Glucose uptake Vmax 3.9 mmol/(gDW*h)  

Growth Associated Maintenance 
(GAM) flux lower bound 

23.49   

GTP per peptide (enzyme synthesis) 4  [88] 

Initial biomass 1.35e-4 gDW  

Intracellular reaction flux lower 
bound 

-1000   

Intracellular reaction flux upper 
bound  

1000   

Mannose uptake KM 5.6e-4 mmol/cm3  

Mannose uptake Vmax 3.9 mmol/(gDW*h)  

Non-Growth Associated 
Maintenance (NGAM) flux lower 
bound 

0.7   

Uptake reaction KM 0.01 mmol/cm3  

Uptake reaction Vmax 10 mmol/(gDW*h)  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.01.466736doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466736
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

Table S2: Parameters for COMETS simulations 

 

Parameter Value Units 

Allow Cell Overlap TRUE  

Allow Flux Without Growth TRUE  

Exchange Style Monod  

Extracellular Reaction Substeps 10  

Objective Style Max_Objective_Min_Total  

Space Width 4.6416 cm 

Time Step 1 hour 

Enzyme Decay Rate 1 % per hour 
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Table S3: Initial Media Composition 

 

Metabolite Millimoles 

Ca2+ 10 

Cellulose 0.01248 

Cl 10 

CO2 10000 

Cu2+ 10 

Ergosterol 0.00252 

H2O 10000 

H+ 1000 

K 1000 

D-Mannose 0.01598 

Mg2+ 10 

Mn2+ 10 

Na+ 10 

NH4 10000 

O2 0 

Oleate 0.10557 

Palmitoleate 0.10557 

PO4
3- 10000 

SO4
2- 10000 

Zn2+ 10 
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Table S4: Enzyme Composition   

The stoichiometry of the amino acid components in the enzyme production reaction was set 
according to sequences obtained for the Trichoderma reesei endoglucanase Cel7b and the 
Saccharomycopsis fibuligera beta-glucosidase BGL1. This table displays the total amino acid 
proportions shown below. 

 

Amino Acid # Per Unit 
Enzyme 

% of Unit Enzyme 

Alanine (A) 100 7.49 

Arginine (R) 37 2.77 

Asparagine (N) 94 7.04 

Aspartic acid (D) 73 5.47 

Cysteine (C) 30 2.25 

Glutamine (Q) 55 4.12 

Glutamic acid (E) 65 4.87 

Glycine (G) 124 9.29 

Histidine (H) 18 1.35 

Isoleucine (I) 52 3.90 

Leucine (L) 98 7.34 

Lysine (K) 21 3.82 

Methionine (M) 22 1.65 

Phenylalanine (F) 42 3.15 

Proline (P) 75 5.62 

Serine (S) 119 8.91 

Threonine (T) 107 8.01 

Tryptophan (W) 21 1.57 
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Tyrosine (Y) 67 5.02 

Valine (V) 85 6.37 

Total 1335  
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