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Abstract

Intelligent behavior depends on the brain’s ability to anticipate future events. However, the learning
rules that enable neurons to predict and fire ahead of sensory inputs remain largely unknown. We
propose a plasticity rule based on predictive processing, where the neuron learns a low-rank model of
the synaptic input dynamics in its membrane potential. Neurons thereby amplify those synapses that
maximally predict other synaptic inputs based on their temporal relations, which provide a solution to
an optimization problem that can be implemented at the single-neuron level using only local information.
Consequently, neurons learn sequences over long timescales and shift their spikes towards the first inputs
in a sequence. We show that this mechanism can explain the development of anticipatory signalling and
recall in a recurrent network. Furthermore, we demonstrate that the learning rule gives rise to several
experimentally observed STDP (spike-timing-dependent plasticity) mechanisms. These findings suggest
prediction as a guiding principle to orchestrate learning and synaptic plasticity in single neurons.

Introduction

Predicting the future is pivotal in guiding interactions with the world, for example in reward learning [1,
2] and in action planning [3]. Predicting future states entails that a system can anticipate and signal events 2

ahead of time. Indeed, there is evidence for anticipatory neural activity in various brain systems [4, 5, 6, 7,
8, 9, 10]. Furthermore, the predictability of sensory events can evoke different neuronal signals, in particular 4

enhanced firing rates for surprising inputs, which may guide the update of model predictions in other brain
areas [11, 12, 10, 13]. Yet, the associations among sensory events and their predictability should not only result 6

in specific patterns of neural activity, but should also have specific consequences for synaptic plasticity and
neuronal outputs [14]. 8

In particular, one would expect that synaptic inputs that carry much information about the future receive
high credit, whereas those synaptic inputs that are redundant and predicted by other inputs are downregulated. 10

We conceptualize this credit assignment as a form of predictive plasticity. As a consequence of credit assign-
ment to predictive synaptic inputs, neurons might learn to anticipate and signal future events that are predicted, 12

which can then lead to adaptive behavior of the organism. Importantly, predictive relationships between events
must eventually lead to plasticity formation at the level of a single neuron, which receives a limited set of in- 14

puts. However, it remains unclear how synaptic plasticity formation in individual neurons relates to predictive
processing. Experimental evidences suggest numerous and complex synaptic plasticity mechanisms for single 16

neurons, e.g. heterosynaptic plasticity [15, 16, 17], spike-timing-dependent plasticity (STDP) [18, 19, 20] and
homeostatic plasticity [21, 22]. These experimental studies have shown that synaptic adjustment is sensitive 18

to the relative firing times of pre-synaptic inputs, the temporal relation between pre- and post-synaptic firing,
and that neurons can simultaneously orchestrate plasticity at multiple synapses. These plasticity mechanisms 20

greatly enrich the computational capabilities of neurons [23] and may underlie the biological substrate for the
association between events across long temporal sequences. They may further account for the observation that 22

repeated sequential activity is associated with subsequent recall or replay of sequences at compressed time
scales. Yet, a computational understanding of how these plasticity processes may contribute to the prediction 24

of the future has to be reached.
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We hypothesized that predictive plasticity may account for the existence of learning processes inside indi-26

vidual neurons, allowing neurons to learn temporal sequences and anticipate future events. We recapitulate this
predictive mechanism as a spiking neuron model, where the cell anticipates future inputs by learning a low-28

dimensional model of its high-dimensional synaptic inputs. Based on this principle, we derive a local predictive
learning rule. We show how single neurons can learn to anticipate and recall sequences over long timescales,30

and that the described learning rule gives rise to several experimentally observed STDP mechanism.

Results
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Figure 1: Description of the predictive plasticity rule. a) Illustration of the model and the computational graph corresponding to the
learning algorithm. Top: at time step t, the neuron computes a prediction of the new input x⃗t from the previous membrane potential vt−1

and synaptic weight vector w⃗t−1 (see Equation (2)). The mismatch between the present input and its prediction is computed locally at
every synapse. The prediction error is used to drive synaptic plasticity and update the synaptic weight vector w⃗t−1 (see Equation (3)).
Bottom: the neuron updates its membrane potential by encoding the actual input x⃗t via the learned weight vector w⃗t and its previous
internal state vt−1 (see Equation (1)). If the voltage exceeds the threshold, an output spike is emitted (shown in yellow) and this spiking
event reduces the membrane potential by a constant value at the next time step. Otherwise, the value of the membrane potential vt is
kept and passed to the next time step. b) In the simulation illustrated here, we considered a pattern of two pre-synaptic spikes from
two different pre-synaptic neurons with a relative delay of 4 ms. Shown are the dynamics of the membrane potential at the first training
epoch and after 100 iterations. The neuron learns to fire ahead of the input that arrives at 6 ms (i.e. pre-syn neuron 2). c) Top: Dynamics
of the weights for different initial conditions (i.e. the weights at epoch 0). The unbroken and dashed lines correspond, respectively,
to the pre-synaptic inputs arriving at 2 ms (w1, pre-synaptic neuron 1) and 6 ms (w2, pre-synaptic neuron 2). Bottom: evolution of
the output spike times across epochs. The bottom and top plot have the same color code. d) The flow field in the parameter space
was obtained by computing the difference between the weight vector (w1,w2) in the first epoch and after 10 epochs. The blue lines
represent the partition given by the number of spikes that are fired. Note that when the synaptic weights are larger, the neuron fires
more spikes. The black arrow shows the trajectory of the weights obtained by training the model for 500 epochs with initial conditions
w⃗0 = (0.005,0.005). The shaded region shows the section of the parameter space where the neuron fires ahead of the input at 6 ms from
neuron 2.

Model of prediction at the single neuron level

We formalized the proposed predictive process in the following single-neuron model: In this model, at each32

moment in time t, the neuron integrates the present pre-synaptic inputs in the current state of the membrane
potential and extracts from its dynamics a prediction of the future input states (see the Methods section for a34

detailed account of the model and analytical derivations). We first defined the membrane potential vt as a linear
filter, such that the neuron updates its membrane potential recursively by encoding the actual input at time t and36
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the previous value of the membrane potential at time t − 1 (Equation (1)). The membrane potential at a given
time is the result of the temporal summation of previous synaptic inputs and the membrane potential thereby 38

encodes a compression of the high-dimensional input dynamics in time. This is described by the system of
equations 40vt = αvt−1 + w⃗⊤t x⃗t − vthst−1

st = H(vt − vth) .
(1)

Here, the temporal integration of the inputs x⃗t is weighted by a synaptic weight vector w⃗t, which gives different
credit to different synapses. Together with the recurrent dynamics of the membrane voltage, we set a spiking 42

threshold in Equation (1). Accordingly, if the membrane potential reaches the threshold at time step t − 1, the
cell fires a post-synaptic spike st and the voltage is decreased by vth at the next timestep. 44

The objective of the neuron is to recursively compute a local prediction of its own inputs by using the
temporal relations in the input spike trains. The prediction of the incoming pre-synaptic input at time step t is 46

given by the weight of the associated synapse and the previous state of the membrane potential, i.e.

Lt ≡

T∑
t=0

1
2

∣∣∣∣∣∣x⃗t − vt−1w⃗t−1
∣∣∣∣∣∣2

2 . (2)

We then derived a predictive learning rule analytically by minimizing the mismatch between the actual input 48

and the prediction. This mismatch can be interpreted as a prediction error, which can be computed with local
synaptic states and in real-time based on the dynamics of the inputs (see Methods). By letting the synaptic 50

weights w⃗t evolve in real-time with the dynamics of the input, we obtained our predictive plasticity rule

w⃗t = w⃗t−1 + η
[⃗
ϵt vt−1 +

(⃗
ϵ⊤t w⃗t−1

)
p⃗t−1
]
. (3)

Here, η defines the timescale of plasticity, p⃗t−1 is an input-specific eligibility trace (see Methods), and ϵ⃗t is the 52

prediction error
ϵ⃗t ≡ x⃗t − vt−1w⃗ , (4)

which defines the sign and amplitude of plasticity. Consequently, synaptic weights undergo potentiation or 54

depotentiation depending on the predictability of the inputs. Thus, a synapse gets respectively potentiated or
suppressed if the associated input anticipates or is anticipated by other pre-synaptic inputs. 56

The computational steps of the predictive neuron model are as follows: (1) At each time step t, the objective
function Lt is evaluated as the neuron learns to predict the current input (Figure 1a, top); (2) the prediction 58

error ϵt is used to drive plasticity and update the synaptic weights via Equation (3), and the current input x⃗t is
encoded by updating the state variables of the neuron (Figure 1a, bottom). The rule is composed of three terms: 60

(1) A first-order correlation term x⃗tvt−1; (2) a normalization term −v2
t−1w⃗t−1, which stabilizes learning [24, 25,

26] as has been observed experimentally [27, 28, 29]; (3) an heterosynaptic plasticity term
(⃗
ϵ⊤t w⃗t−1

)
p⃗t−1 [16, 62

17]. Accordingly, the prediction of future inputs can be computed at the synaptic level in the point-neuron
approximation based only on locally available information. On a long timescale, the neuron learns a specific 64

set of synaptic strengths by adjusting the synaptic weight continuously as it collects evidence in its membrane
potential. 66

To illustrate the development of anticipatory firing for a simple example, we exposed the neuron to a
sequence of two input spikes coming from two different pre-synaptic neurons that fire with a relative delay of 68

4 ms (Figure 1b). In this simple scenario, the first pre-synaptic input is predictive of the following pre-synaptic
input and should thus be potentiated, driving the neuron to fire ahead of the EPSP (excitatory post-synaptic 70

potential) caused by the second input spike. We trained the model by repeating the input pattern for 300
epochs of duration T = 500 ms. During the training period, the neuron learns to adjust its output spike time and 72

to eventually fire ahead of the pre-synaptic input 2, which arrives at 6 ms (Figure 1b). The neuron converges
onto an anticipatory “solution” by a selective adjustment of the synaptic weights (Figure 1c, top). In particular, 74

the neuron assigns credit to the pre-synaptic input 1, which arrives at 2 ms, and depotentiates the strength of the
input arriving at 6 ms. Accordingly, this leads to the anticipation of the predictable input (Figure 1c, bottom). 76

We further observed that the parameter space given by (w1,w2) is partitioned in different regions depending
on the amount of spikes fired by the post-synaptic neuron (Figure 1d). The symmetry of the weight dynamics 78

is broken when the membrane potential reaches the threshold and an output spike is fired (Figure 1d). The
learning dynamics are qualitatively the same when the initial conditions lie in regions of multiple output spikes 80

(Supplementary Figure S1).
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Figure 2: Anticipation of spiking sequences. a) Top: Example spike sequence during different training epochs. A spiking sequence
is defined by the correlated activity of a subset (N = 100) of pre-synaptic neurons. These N pre-synaptic neurons fire sequentially with
relative delays of 2 ms, resulting in a total sequence length of 200 ms (pink spike pattern). In each epoch, there are three different sources
of noise: (1) jitter of the spike times (random jitter between -2 and 2 ms); (2) random background firing following an homogeneous
Poisson process with rate λ distributed between 0 and 10 Hz (see Methods); (3) another subset of 100 pre-synaptic neurons that fired
randomly according to an homogeneous Poisson process with randomly distributed rates between 0 and 10 Hz. For each training epoch,
the onset of the spike sequences is drawn from an uniform distribution with values between 0 and 200 ms. The bottom plots shows
the population firing rate over 10 ms time bins (neuron membrane time constant). b) Dynamics of the post-synaptic spiking activity
during learning. The spike times are defined relative to the actual onset of the sequence in each respective epoch. The bottom plot
shows the neuron’s output firing rate within each training epoch. This firing rate was computed across 100 independent simulations
(shown are mean and standard deviation). c) Top: Dynamics of the normalized synaptic weights w⃗/w⃗0 as a function of the training
epochs. Here w⃗0 is the weight vector in epoch 0. Above the dashed white line are the 100 background pre-synaptic neurons that do
not participate in the sequence. The synaptic weights are ordered along the y-axis from 1 to 100 following the temporal order of the
sequence. Bottom: normalized weights of the first 20 inputs at epoch 1000, showing only the first input has been assigned credit. d)
Left: Normalized objective function Lnorm (left plot) as a function of the training epochs. Different colors correspond to a different
number of neurons participating in the sequence. Right: normalized cumulative membrane potential ⟨v⟩. The cumulative membrane
potential was computed as the sum of the vt at each time step in the simulations. The panels shows the mean and standard deviation
computed over 100 different simulations.

Prediction of temporal structures in the input spike trains

The simple case of two pre-synaptic inputs in a fixed sequence shown in Figure 1b-d suggests that in the82

predictive plasticity model, the neuron can predict future inputs and generate anticipatory signals. However, in
the brain, neurons receive many hundreds of synaptic inputs, yielding high-dimensional sequences that may be84

embedded in background, stochastic firing [30]. To investigate a relatively complex scenario, we considered
a temporal sequence determined by N pre-synaptic neurons that fire sequentially with fixed delays (Figure86

2a). To produce stochastic firing patterns, we used two types of noise sources, namely jitter of spike times in
the sequence and random firing of the pre-synaptic neurons. The sequences were also embedded into a higher-88

dimensional input pattern where N additional pre-synaptic neurons fired randomly according to a homogeneous
Poisson process. For each epoch, the population firing rate of the pre-synaptic inputs was constant across time,90

indicating that the sequence could not be detected based on the population firing rate alone (Figure 2a). In
addition, the onset of the input sequence was random during each training epoch (Figure 2a). Because of92

these sources of noise and jitter, the post-synaptic neuron received different realizations of the input pattern for
each training epoch. We numerically solved the learning dynamics and studied the output spike pattern during94

learning.
We observed that during the first presentation of the stimulus, the neuron fired in a random fashion for96

the entire duration of the epoch. Subsequently, the predictive learning mechanism led to structured output
spike trains, and the neuron started to group its activity earlier in time, such that it eventually learned to fire98

for the first inputs in the sequence (Figure 2b). During learning, the neuron kept a low output firing rate that
reflects its selectivity (Figure 2b, bottom plot). The anticipation of the pre-synaptic pattern is driven by the100

update of the synaptic weights (Figure 2c). Initially, the neuron assign uniform credit to all of the pre-synaptic
inputs, while firing randomly across the entire sequence. Subsequently, the neuron potentiates the inputs that102

anticipate the ones that are driving post-synaptic spikes, eventually assigning most credit to the first inputs
in the sequence. Because the learning dynamics follow the direction of reducing the overall prediction error,104

the objective function Lnorm decreases across epochs (Figure 2d, left). Furthermore, during learning, the total
amount of depolarization across one stimulus presentation is reduced (Figure 2d, right).106
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Further analyses demonstrate that the neuron model was able to predict and anticipate input sequences for
a substantial range of model parameters (Figure S2a-b). First, we find that the main results do not depend 108

on the initial weight vector (Figure S3a). Second, we show that anticipatory firing emerges even for longer
sequences (Figure S3b) and increased noise amplitude and number of distractors (Figure S3c). Third, the noise 110

source do not qualitatively affect the behavior of the model across training epochs (Figure S4a-d). Finally, we
considered the case where the input pattern is composed by different sub-sequences which were spaced in time 112

and belonged to independent subsets of pre-synaptic neurons. We show that the neuron exhibits anticipatory
firing also in case of multiple sub-sequences (Figure S5). 114

Together, these results show that an Integrate-and-Fire-like neuron with a predictive learning rule can learn
to anticipate high-dimensional input sequences over short and long timescales. The neuron effectively uses the 116

timing of each input spike and its temporal context across the spike pattern in a self-supervised manner. A
synapse gets potentiated if, on average, the corresponding pre-synaptic input anticipates successive inputs that 118

initially trigger post synaptic spikes.
The predictive plasticity mechanism relies solely on the temporal relation between inputs, it does not depend 120

on initial conditions and it is robust to several pattern disruptions. The learned solution of anticipating the input
sequence thus decreases the number of fired spikes and the energy consumed by the neuron, which can be 122

understood as a form of efficient coding [31, 32].
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Figure 3: Sequence anticipation and recall in a network with recurrent connectivity. a) In this example, we simulated a network
of 10 neurons with nearest-neighbour recurrent connectivity, that is each neuron n in the network received inputs from the n − 1-th and
n + 1-th adiacent neurons. The first and the last neuron only received inputs from the second and second last neuron in the network,
respectively. Shown are the connections to the second neuron. Each neurons in the network received inputs from 8 pre-synaptic neurons
that fire sequentially with relative delays of 2 ms, resulting in a total sequence length of 16 ms (pink spike pattern). The sequence onset
of pre-synaptic inputs for the n + 1-th neuron started 4 ms after the sequence onset for the n-th neuron in the network, etc. Each epoch
contained two different sources of noise: (1) random jitter of the spikes in the sequence (between -2 and 2 ms); random background
firing of the pre-synaptic neurons according to an homogeneous Poisson process with rate λ = 10 Hz. Both the connections from the
pre-synaptic neurons to the neurons in the network, as well as the connections between the neurons in the network were plastic and
modified according to the predictive learning rule described in the main text. b) Raster plot of the network’s activity during different
epochs of training: (1) The “before” case, where only the pre-synaptic neurons corresponding to the first neuron in the network exhibited
sequential firing. In this case the background stochastic firing was still present in all of the 8 × 10 = 80 pre-synaptic neurons. (2) The
“learning” or conditioning case, where we presented the entire sequence (which was repeated 2000 times). (3) The “after” or “recall”
condition, which was the same as the before condition (now after learning). (4) Same as (3), but an example where spontaneous recall
occurs due to the background stochastic firing. The neurons are ordered as in panel a. c) The synaptic weights matrix obtained at the
end of training (epoch 1000). Top: The i-th column corresponds to the synaptic weights learned by the i-th neuron in the network, where
the 8 entries correspond to the synaptic weights for the pre-synaptic inputs. Bottom: the nearest-neighbour connections in the network
towards the i-th neurons. Note that the first and last neuron do not receive inputs from the n − 1-th and n + 1-th neuron, respectively.
e) Evolution of the duration of network activity across epochs. We computed the temporal difference between the last spike of the last
neuron and the first spike of the first neuron to estimate the total duration of the network’s activity. We computed the average duration
and the standard deviation from 100 simulations with different stochastic background firing and random jitter of the spike times.

Sequence anticipation and recall in a network with recurrent connectivity
In the previous section, we studied the emergence of anticipatory firing in a single neuron receiving many 124

pre-synaptic inputs. However, in cortical networks, each neuron may receive a large set of pre-synaptic inputs
from other areas, as well as recurrent inputs from neurons in the same local network. We therefore investigated 126

a more complex scenario of a network of recurrently coupled neurons that were each endowed with a predictive
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learning rule. Our simulations were inspired by experimental observations of recall and spontaneous replay128

after learning. For example, a previous study in rat V1, has shown that the repeated presentation of a sequence
of flashes (at different retinotopic locations) gradually leads to a reorganization of spiking activity in the order130

of the presented sequence [7]. The same study also showed that the presentation of only the first stimulus in
the sequence leads to a compressed recall of the entire sequence [7]. Likewise, the sequential activation of132

neurons in prefrontal cortex and hippocampus is known to lead to subsequent replay at a compressed time-
scale [33, 34, 35, 36, 37]. These findings have been interpreted in terms of a local reorganization of synaptic134

weight distributions as a result of repeated activation with an input sequence [7, 33, 34, 37, 36]. We wondered
if a network of recurrently connected neurons with the predictive learning rule described above can develop136

sequence anticipation as well as (stimulus-evoked) sequence recall and spontaneous replay. We explored the
dynamics of a network model where 10 neurons received an input sequence distributed across 80 external units.138

Each neuron in the network received a unique set inputs from 8 pre-synaptic neurons, which fired sequentially
and exhibited stochastic background firing (purple and black in Figure 3a, respectively). The neurons in the140

network were activated sequentially, such that the inputs into the first neuron arrived earliest, the inputs into
the second neuron arrived slightly later, etc. (Figure 3a). The network had a recurrent, nearest-neighbour142

connectivity scheme, such that each n-th neuron was connected to the neighbouring n−1-th and n+1-th neuron
(Figure 3a). Thus, each neuron received a set of “afferent” pre-synaptic inputs together with the inputs from144

the neighbouring neurons (Figure 3a). Both the synaptic connections from the afferent inputs and the recurrent
inputs were adjusted by plasticity according to the predictive learning rule described above.146

We show the activity of the network for three cases in Figure 3b: (1) The “before” case, where only the
pre-synaptic neurons corresponding to the first neuron in the network exhibited sequential firing. In this case148

the background stochastic firing was still present in all of the 80 pre-synaptic neurons. (2) The “learning” or
conditioning case, where we presented the entire sequence (which is repeated 2000 times). (3) The “after” or150

“recall” condition, which was the same as the before condition, but after learning. We observed that in the
before condition, the network activity was relatively unstructured, with firing occurring in the period after the152

sequence due to the background stochastic firing. During learning, the neurons were active during a relatively
long part of the sequence and showed a sequential activation pattern. After learning, the network showed154

sequential firing upon the presentation of the inputs to the first neuron in the network in the order of the
sequence. This sequential firing took place at a compressed time scale. We found that the recall effect was156

due to the potentiation of the inputs from the n − 1-th neuron to the n-th neuron, as well as potentiation of
the first pre-synaptic inputs to the first neurons (Figure 3c). Finally, we observed that sequential firing could158

also be triggered spontaneously due to the background stochastic activity of the pre-synaptic neurons (Figure
3c; after-spontaneous). Thus, the network exhibited a form of activity that resembles spontaneous replay of160

sequences.
We further characterized the evolution of the network’s output during learning, and the reconfiguration of162

synaptic weights. We found that after several hundreds of epochs, the network converged onto a stable, se-
quential output that was time-compressed (Figure 3d). We furthermore quantified the number of neurons that164

needed to be activated in order for the network to recall the full sequence. We found that this required num-
ber of neurons decreased gradually across epochs, indicating a gradual reorganization of the synaptic weight166

distribution during learning (Figure S6).
To generalize these findings, we also studied a network with all-to-all connectivity, i.e. each neuron was168

recurrently connected to all of the other neurons in the network. In this case, the network also learned to recall
the full sequence on a relatively fast timescale (Figure S7). The output of the network with all-to-all connectivity170

however differed from the example with recurrent connectivity between neighbours: After prolonged learning,
the other neurons in the all-to-all network all fired shortly after the first neuron was activated (Figure S7).172

Together, these results show that a recurrently connected network of neurons each endowed with a predictive
learning rule can spontaneously organize to fire preferentially at the beginning of a sequence, and recall (or174

replay) sequences at a compressed time scale.

Emergence of spike-timing-dependent-plasticity rules

The results shown above clearly demonstrate that the potentiation of synaptic weights depends on the timing176

relationships between inputs. This suggests that there may be a connection between the predictive learning rule
described here and the experimentally observed spike-time-dependent-plasticity (STDP) rule [19].178
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Figure 4: Predictive learning rule gives rise to spike-timing-dependent-plasticity mechanisms. a) Left: Illustration of the protocol,
where a neuron receives inputs from two pre-synaptic neurons (associated with weights w1 and w2) with a delay of ∆t = 4 ms. These
inputs were repeated across epochs. Middle and right: Asymmetry index computed as the difference between the initial weight vector
(w1,0,w2,0) and the final vector after j epochs: (w1, j − w1,0) − (w2, j − w2,0). Positive values of the asymmetry index thus indicate that w1

increases relative to w2. Shown are the asymmetry index after 100 and 300 epochs, as a function of the initial weights. The white lines
divide three regions: (1) No spike; (2) A single spike; (3) A single spike before the second input (i.e. anticipation). The right panel
shows, that for all initial weight conditions, the weight of the first input showed a relative increase as compared to the second input.
b) In order to model classic STDP protocols with current injection, one of the two inputs (pre-synaptic neuron 2) had a strong initial
weight, and the other input (pre-synaptic neuron 1) was sub-threshold (i.e. did not evoke a spike). In this simulation, the weights for
both inputs could be adjusted via the predictive learning rule (see Figure S10 when the second input has a fixed weight). The y-axis
shows the weight change (in percentage relative to the initial weight) of the sub-threshold input (i.e. input 1) as a function of the delay
∆t between the two input spikes (see Methods). Negative and positive values of ∆t indicate that input 1 preceded or lagged input 2,
respectively. Shown are the weight changes for different membrane time constants after 60 epochs. c) In this simulation, the second
input contained a burst of 3 spikes, which arrived after the first input, and each triggered a spike in the post-synaptic neuron. The input
from pre-synaptic neuron 1 only had a sub-threshold effect. Shown is the weights change (as in b) versus the firing frequency, i.e. 1/∆t,
within the burst (total of 3 spikes per burst). The blue and purple lines refer to the case that input 1 preceded input 2 or lagged input
2, respectively. Experimental data were redrawn from Nevian and Sakmann [38], RMS error: 0.868 for pre-post pairing and 0.206 for
post-pre pairing. d) Weights change (as in b) as a function of the number of spikes in the second input. The inputs from pre-synaptic
neuron 2 each triggered a spike in the post-synaptic neuron. The input from pre-synaptic neuron 1 only had a sub-threshold effect.
Experimental data were redrawn from Froemke et al [39], RMS error: 0.089. e) Weights change (as in b) induced by increasing the
frequency pairing. Here, the inputs from pre-synaptic neuron 2 always triggered a spike in the post-synaptic neuron, whereas the input
from pre-synaptic neuron 1 only had a sub-threshold effect. The inputs from neuron 2 arrived 6 ms before the inputs from neuron 1.
Data redrawn from Froemke et al [39], RMS error: 0.057.

To systematically investigate the dependence of potentiation and depotentiation on the timing relationships
between pre-synaptic inputs, we considered the simplified case of two inputs (as in Figure 1). In Figure 1, we 180

had shown that the predictive learning scheme leads to asymmetric synaptic weights when two pre-synaptic
inputs have different arrival times. To quantify how the asymmetry between the synaptic weights of the first 182

and second input evolved with learning, we defined an asymmetry index (Figure 4a). The asymmetry index
was defined as d j − d0, where d j was the difference in weights at the j-th epoch d j = w1, j − w2, j, and d0 the 184

initial difference in weights. Thus, positive values of the asymmetry index indicated that the synaptic weight
for the first input became relatively large compared to the synaptic weight for the second input. To illustrate 186

the behavior of the asymmetry index, we trained the model by repeating a sequence of two input spikes coming
from two different pre-synaptic neurons having a relative delay of 4 ms for several epochs of duration T = 500 188

ms (as in Figure 1). The parameter space in this case was defined by the initial weights (w1,0,w2,0). After
100 epochs, a small region of the parameter space still showed asymmetry indices around zero, while for most 190
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of the parameter space there were positive asymmetry indices, indicating a convergence towards anticipatory
activity. After 300 epochs every initial condition led to the asymmetric solution and thus to a positive value192

of the asymmetry index. Thus, the observation that the first input was potentiated was generally observed for
different initial states of the synaptic weights (Figure 4a).194

To directly investigate the relation between STDP and the predictive learning rule described here, we in-
vestigated the the dependence of plasticity on the relative timing between inputs. To this end, we performed196

a simulation that resembled the standard STDP protocol (see Methods). We trained the predictive plasticity
model with a sequence of two input spikes from two different pre-synaptic inputs x1 and x2 arriving at a relative198

delay ∆t. To approximate the STDP protocol with a current injection that triggers a post-synaptic spike, the
initial conditions were chosen such that x2 triggered a post-synaptic spike, and x1 was a sub-threshold input.200

A negative and positive delay ∆t indicated that x1 arrived before or after x2, respectively. We found that the
potentiation of the first input was determined by the relative delay ∆t (Figure 4b). Specifically, we observed202

an anti-symmetric learning window with a similar time dependence as has been experimentally observed for
STDP [18, 19] (Figure 4b).204

This window expanded as a function of the membrane time constant τm (Figure 4b). The model exhibited
such anti-symmetric learning window even though we did not explicitly implement any spike-timing-dependent206

LTP and LTD rule with a specific learning kernel.
In addition to the classical dependence on the relative delay between inputs, many other pre- and post-208

synaptic factors can influence the sign and amplitude of synaptic plasticity [40, 41, 42]. The nonlinear and
history-dependent interactions associated with STDP are especially relevant when neurons receive complex210

input spiking patterns. We considered some of those complex STDP protocols to test if we can reproduce the
nonlinear effects by means of the predictive learning rule:212

(1) Experimental evidence indicates that the frequency of post-synaptic bursts after a pre-synaptic input can
boost LTP while LTD remains unchanged [38]. To emulate this, we simulated a case where the inputs from pre-214

synaptic neuron 2 arrived in a burst, with each spike in the burst triggering a post-synaptic spike. We quantified
the total weight change after training the model on this protocol. The effect of the intra-burst frequency on216

the synaptic weight change, as experimentally observed [38], was reproduced by our model (Figure 4c). (2)
Finally, Froemke et al showed that adding more post-synaptic spikes after a post-pre pairing can convert LTD218

into LTP (see Figure 6 in [39]). We tested the model on such multi-spike protocol and observed that our model
can reproduce the transition measured in the experimental data (Figure 4d). (3) The frequency of pre- and220

post-synaptic spike pairings can influence plasticity and convert LTD to LTP for high-frequency bursts [43, 39,
40]. The predictive plasticity model reproduced the dependence on the frequency pairing as observed in [39]222

(Figure 4e).
Interestingly, Figure 4a shows that in early training (i.e. repetition) epochs, certain regions of the parameter224

space can lead to an asymmetric index close to zero. This suggests that the STDP window might have different
forms depending on the parameter space and the training epoch, even though the neuron eventually converges226

onto anticipatory firing. Consistent with this observation, experimental studies have also observed symmetric
STDP windows that are either LTP-dominated [44] or LTD-dominated [45]. In Figure S8 we indeed show that228

the predictive learning rule can, for certain parameter settings, yield a symmetric STDP window that is either
LTP- or LTD-dominated. Symmetric STDP windows can emerge even though the neuron eventually does con-230

verge onto an anticipatory solution. A key factor that determines the specific shape of the STDP window may
be the initial strength of the synapse. In agreement, experimental work has shown that the amount of plasticity232

in a standard STDP protocol depends on the initial strength of the pre-synaptic weight [43]. To investigate this,
we examined the potentiation of the first input depending on its initial synaptic weight. We found that there234

was a switch from potentiation to depotention as the initial synaptic strength increased (Figure S9), consistent
with the experimental observations [43]. To further relate our findings to experimental observations in which236

a current injection protocol was used, we performed simulations in which we fixed the synaptic weight of the
supra-threshold input (i.e., in this case it was not adjusted by plasticity). Also in this case, the model displayed238

an anti-symmetric STDP kernel (Figure S10).
Altogether, we showed that the predictive learning model can reproduce several linear and nonlinear STDP240

features.
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Discussion

The anticipation of future events is a core feature of intelligence and critical for the survival of the organism. 242

Here, we studied how individual neurons can learn to predict and fire ahead of sensory inputs. We propose a
plasticity rule based on predictive processing, where an individual neuron learns a low-rank model of the synap- 244

tic input dynamics in its membrane potential. Accordingly, the sign and magnitude of synaptic plasticity are
determined by the timing of the pre-synaptic inputs. That is, synapses are potentiated to the degree that they are 246

predictive of future input states, which provides a solution to an optimization problem that can be implemented
at the single-neuron level using only local information. We show that neurons endowed with such plasticity 248

rule can learn sequences over long timescales and shift their spikes towards the first inputs in a sequence (i.e.
anticipation). Furthermore, neurons represent their inputs in a more efficient manner (i.e. with reduced overall 250

membrane potential). This anticipatory mechanism was able to explain the development of anticipatory sig-
nalling and recall in response to sequence stimuli. Finally, we demonstrated that the learning rule described 252

here gives rise to several experimentally observed STDP mechanisms, including: asymmetric STDP kernels
[19, 18], as well as symmetric ones [45, 44] given the initial conditions; the frequency-dependence of STDP 254

[39]; the number of post-synaptic spikes in a burst or post-pre pairing [40]; the dependence of (de)potentiation
on the initial synaptic strength [43]. Together, our results indicate that prediction may be a guiding principle 256

that orchestrates learning and synaptic plasticity in single neurons, providing a novel interpretation of STDP
phenomena. 258

We first discuss how our results relate to previous theories of coding in cortical networks that emphasize the
importance of predictions. An influential theory of cortical function is hierarchical predictive coding (HPC). 260

The basic understanding of HPC is that the brain maintains a model or representation of current and future
states in the outside world, and updates this model as new information comes in. HPC posits that the infer- 262

ence process is implemented by the feedforward routing of surprising or unpredicted signals (i.e. prediction
errors), and the routing of sensory predictions down the hierarchy via feedback (FB) projections [11, 46, 10]. 264

The predictive plasticity mechanism that we described here differs from HPC models in several aspects, for
example: (1) In HPC, prediction is the result of network interactions, in particular the cancellation of feedfor- 266

ward drive by inhibitory feedback. In our model, prediction results from plasticity at a single neuron level. (2)
Different from HPC, in our model the neuron does not explicitly transmit (encode) prediction and error signals. 268

(3) Both in HPC and our model, neurons may exhibit reduced firing for predicted as compared to unpredicted
sensory inputs. Yet, in our model this is due to depotentiation of predictable inputs, whereas in HPC it is due 270

to inhibitory feedback mediated by top-down projections. We note that our plasticity model is fully compatible
with another flavor of predictive processing, namely “coding for prediction”. According to this theory, neurons 272

primarily transmit information about sensory inputs that carry predictive information about the future, as ob-
served in the retinal neural circuits [47]. The findings here may also be relevant to understand the development 274

of anticipatory firing in sensory systems [4, 7, 8], temporal difference learning [48, 49], as well as the compres-
sion of sequences during resting state based on prior experience [33, 50]. Finally, a recent work showed that 276

neural activity in the auditory cortex can be predicted roughly 10-20 ms in advance and that these predictions
can be exploited at the single neuron level to achieve high performance in classification tasks [51]. However, 278

prediction in the model of [51] does not happen in a unsupervised manner in time as their method relies on
the combination of the single neuron prediction with a supervised teaching signal, a novel implementation of 280

Contrastive Hebbian Learning [52].
Next, we discuss how our findings relate to STDP experiments and models, and the biological substrate 282

of the learning rule described here. STDP is an established experimental phenomenon which has been widely
observed in-vitro [18, 19]. There is evidence for a variety of STDP kernels [41], which dependent on several 284

post-synaptic variables like backpropagating action potentials (bAP) [53], post-synaptic bursts [38] and the
dendritic location of inputs [29]. These experimental findings are all obtained in in-vitro preparations. Thus it 286

is unclear what the nature of STDP in-vivo is. The standard protocol for testing STDP has two major limitations
that deviate from the normal physiological setting: (1) The protocol involves current injection in the post- 288

synaptic neuron. The current injection itself is not subject to (physiological) plasticity and might therefore not
be a good “proxy” for post-synaptic depolarization induced by natural pre-synaptic inputs in-vivo. (2) Several 290

studies have pointed out that different post-synaptic signals (e.g. spike times, depolarization level, dendritic
spikes) are relevant for STDP [53, 43, 54]. It is still a manner of debate what is the crucial post-synaptic 292

variable for plasticity [55]. In principle, STDP models might apply both to cases with artificial currents as
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well as physiological pre-synaptic inputs. An artificial depolarization caused by current injections can lead to294

plasticity in both our model and in STDP models. Yet it is an open experimental question what is the nature
of learning rules when it comes to physiological synaptic inputs and their timing relationships. For example,296

it is known that to induce LTP (Long Term Poteniation), it is not necessary to evoke a post-synaptic spike
[54, 56]. The learning rule proposed here predicts that, in-vivo, pre-synaptic inputs causing a post-synaptic298

spike will eventually become depotentiated if they are anticipated (i.e. predicted) by other pre-synaptic inputs
in a sequence. Our model entails that the prediction of future inputs is driven by the interaction between300

different synapses, i.e. heterosynaptic plasticity, which has been observed experimentally [16, 17, 57] and
proposed as a computationally powerful mechanism for learning in single neurons [58, 23]. NMDA receptors302

could naturally operate as voltage-gated units for prediction errors. This is for two reasons: (1) NMDARs are
voltage-dependent; and (2) NMDARs allow for a comparisons between the internal state of the neuron with304

external inputs [59]. Finally, experimental evidence [60, 61, 62, 63] and theoretical studies [64] support the
hypothesis that active ion-channels along dendritic compartments strongly enrich the dynamical repertoire of306

neurons and underpin higher computational capabilities.
Comparing the present results to previous work, we emphasize that we did not construct a learning rule308

to reproduce experimentally observed STDP phenomena. Indeed, several phenomenological (i.e. descriptive)
STDP models have previously been proposed to fit experimental data [65, 66, 67, 68] providing mathematical310

tools to describe, model and predict the behavior of neurons. However, these phenomenological models might
not fully explain the computational significance of STDP mechanisms, nor the algorithms from which these312

biological implementations can emerge. Our approach differs from these models in that we took an optimization
problem based on prediction of future inputs as a starting point. From this optimization problem we derived314

a learning rule which gave rise to experimentally observed STDP mechanisms. Our results, together with
previous studies [69, 70, 71], suggest that STDP is a consequence of a general learning rule given the particular316

state of the system, the stimulation protocol and the specific properties of the input. As a consequence, several
STDP learning windows which are described by other phenomenological rules are predicted by our model, as318

well as the dependence on synaptic strength and depolarization level.
An example of an established phenomenological model of STDP is the one developed by Clopath et al [72].320

The authors, guided by experimental evidence [73, 43, 29], modeled the role of the membrane voltage as the
relevant post-synaptic variable for synaptic plasticity. The plasticity model described in [72] can accurately322

reproduce a wide range of experimental findings which, to our knowledge, is not possible with STDP learning
rules that are only based on spike timing [68]. The Clopath rule is based on the two-threshold dynamics324

observed by Artola et al [73] and the authors assume an Adaptive-Exponential I&F (AeI&F) model for the
voltage dynamics [74], together with additional variables for the spike after-potential and an adaptive threshold.326

In agreement with the results of [72], we were able to account for a wide range of phenomena with a simpler
model of voltage dynamics, supporting the idea that the history-dependent effect of the membrane potential328

is pivotal to plasticity. Our model also predicts the experimental observation that the amount of LTP has an
inverse dependence on the initial strength of the synaptic input [43]. To our knowledge, this finding is not330

described or predicted by the model of [72], because it does not include a dependence on the initial strength of
the synapse. Another unique feature of the learning rule described here is that it can produce different several332

STDP kernels (e.g. asymmetrical, symmetrical) depending on the initial conditions.
The learning rule decribed here and phenomenological STDP models might also lead to similar behavior334

in terms of spiking output in response to sequences. In agreement with the present work, previous studies have
shown that phase precession can lead to the learning of temporal sequences through an asymmetric learning336

window as in spike-timing-dependent plasticity (STDP) [5, 75, 76]. Modelling studies have shown that a post-
synaptic neuron endowed with an LTD-dominated STDP model can exhibit potentiation of the first synaptic338

inputs in a temporal sequence, leading to a decrease in the latency of the post-synaptic response [77, 78]. A
key difference with our work, however, is that the predictive plasticity rule described here does not produce340

asymmetric STDP under all conditions. In fact, the degree of potentiation and depotentiation in our model
depends on the initial state. That is, there is no fixed STDP kernel in our model. Another difference is that our342

model can anticipate sequences independent from the initial conditions of synaptic weights (in contrast to [78]),
for a wide range of sequence lengths, and pre-synaptic population size. In the model described here, we show344

that the anticipation of sequences is a convergence point during learning and thereby it is a general solution for
a wide set of model parameters.346
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Thus, we propose that a single neuron perspective on prediction and anticipatory mechanisms is important
as the implementation of any plasticity rule is ultimately achieved at the neuronal level, thereby guiding behav- 348

ior a the system level. Yet, it is obvious that single neurons are embedded into networks and different means
of communication can lead to more complex learning rules in which the single-neuron learning rule described 350

here might be one component. Indeed, it is possible that certain empirical phenomena like sequence recall ad-
ditionally depend on network dynamics instead of single-neuron learning rules. For example, the faster recall 352

of sequences in the visual system observed in [7] was reproduced in a recent work [79]. The authors developed
a biologically realistic network model which differs from our implementation in several ways: (a) a network of 354

both excitatory and inhibitory neurons, (b) a random gaussian connection probability, (c) a leaky I&F model
with conductanced-based AMPA, GABA and NMDA synaptic currents, (d) several network hyperparameters 356

such as synaptic delays, (e) a short-term depression model and a specific multiplicative, NN-STDP model.
While the model in [79] gives a biological explanation based on the conductive properties of the ion-channels, 358

the network implementation of our plasticity rule provides a principle approach to understand fast sequence
recall as it is observed also in other brain areas, e.g different primary sensory areas [4, 6] or the hippocampus 360

[50]. We qualitatively reproduced the faster recall of sequences with a much simpler model, supporting the
pivotal role of spike times and excitability for the phenomenon. 362

Our work is further related to novel approximation algorithms for learning in neural networks such as e-
prop [80] or surrogate-gradients techniques [81] as our model provides an online approximation for traning 364

spiking neural networks (SNN). In [80] the authors showed that learning in spiking recurrent neural networks
can be decomposed into two terms, a global loss, and an eligibility trace which depends on the local state of 366

neurons and results in synaptic weight changes according to local Hebbian plasticity rules. In our model the
optimization problem is defined directly at the level of single neurons. Thus, all learning is local in space, i.e. 368

there is no global loss at the network level. By definition, our model hence avoids the problem of propagating
the gradient on recurrent connections [80]. An interesting question for future research is to combine these 370

two approaches by obtaining a completely local learning rule for optimization at the single and network level
simultaneously. Indeed, experimental evidence [82, 42] shows that local learning rules implemented by neurons 372

provide a substrate on which global feedback signals act [83], which may provide a biological mechanism for
error backpropagation [84]. As our loss function depends only on the membrane potential of the cell, our model 374

avoids the problem of propagating the gradient through discrete spikes. It follows that we did not implement a
surrogate-gradient approximation [81]. 376

Looking forward, further investigation on single neurons anticipating local inputs and on their interplay
through network interactions is key to understand how complex prediction strategies can emerge. Moreover, 378

synapses can be located far from the soma along the dendritic arbor and might not be able to access the somatic
membrane potential directly, with strong consequences on plasticity [29]. Other post-synaptic events such 380

as NMDA spikes or plateau potentials can have an effect on plasticity rules based on membrane voltage, see
e.g. [85]. Thereby, spatially segregated dendrites and spatio-temporal integration of events along the neuronal 382

compartments could drastically increase the complexity of prediction obtainable at the single neuron level.

Methods

Neuron model

We used a leaky Integrate-and-Fire-like (LIF) model of the form 384

τm
dv(t)

dt
= −v(t) + w⃗⊤ x⃗(t) − v(th)

∑
j

δ(t − t j) . (5)

Here, v ∈ R is the membrane potential, τm is the membrane time constant, x⃗(t) ∈ RN is the pre-synaptic input,
w⃗ ∈ RN is the weight vector and v(th) is the spiking threshold (the subscript (th): “threshold”). The sum in 386

the last term runs over all the post-synaptic spike times t j and δ(·) is the Dirac delta function. Without loss
of generality, we set the resting state of the membrane potential to zero. We used a discrete time-step h to 388

discretize equation (5), yielding a recurrence model of the formvt = α vt−1 − v(th)st−1 + w⃗⊤ x⃗t

st = H(vt − v(th)) .
(6)
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Here, α ≡ 1−h/τm and H(·) is the Heaviside function. The variable st ∈ {0, 1} takes binary values and indicates390

the presence or absence of an output spike at timestep t. If the voltage exceeds the threshold, an output spike
is emitted and this event reduces the membrane potential by a constant value v(th) at the next time step. This392

implementation of the membrane potential reset relates our model to the spike response model [86]. We set
h = 0.05 ms in all numerical simulations.394

Derivation of the learning rule

The predictive plasticity model entails that neurons predict future inputs by extracting information from the
current state of the membrane potential. We formalized this as an optimization problem in time and we defined396

the objective function L as the cumulative error in a given time window T

L ≡

T∑
t=0

Lt ≡

T∑
t=0

1
2

∣∣∣∣∣∣x⃗t − vt−1w⃗
∣∣∣∣∣∣2

2 , (7)

where || · ||2 is the l2-norm. The objective is to obtain the minimal difference between the input x⃗t and its398

prediction via vt−1 and w⃗. We assume that the mismatch is evaluated at each timestep t. The gradient of L w.r.t.
to w⃗ can be computed in a recursive manner by unrolling the computation via backpropagation-through-time400

(BPTT) [87]. At each timestep t, the exact gradient of L can be written as the contribution of two terms

∇⃗w⃗L =

T∑
t=0

1
2

(
∇⃗w⃗Lt +

∂Lt

∂vt−1
∇⃗w⃗ vt−1

)
. (8)

The first term accounts for the direct effect of a weight change on Lt, while the second accounts for its indirect402

effect via the membrane potential vt−1.
The first term of the gradient is given by404

∇⃗w⃗Lt = −2
(
x⃗t − vt−1w⃗t

)
vt−1 , (9)

which propagates the prediction error selectively to each input and scales it by the feedback signal determined
by vt−1. This term can be interpreted as a time-shifted version of the Oja’s rule [25], where vt−1 plays the role406

of the linear output variable. In fact, Oja’s rule can be derived as an approximated gradient descent method for
dimensionality reduction problems [88]. The second term of equation (8) has a contribution given by the direct408

effect of vt−1 on the prediction
∂Lt

∂vt−1
= −2

(
x⃗t − vt−1w⃗

)⊤w⃗ , (10)

i.e., the sum of the prediction errors weighted by their relative synaptic strengths. To obtain real-time learning,410

we want to comprise the remaining term of equation (8) via dynamical updates. We obtain this by differentiating
the dynamical rule of the membrane potential in (1)412

∇⃗w⃗vt =
(
α − v(th)

∂st−1

∂vt−1

)
∇⃗w⃗vt−1 + x⃗t . (11)

The first term contains the Jacobian Jt of equation (1)

Jt =
∂vt

∂vt−1
= α − v(th)

∂st−1

∂vt−1
, (12)

which holds the contribution of the linear recurrent term and of the threshold nonlinearity for the spiking output414

st−1. Similarly to the adjoint method [89], we define an influence vector p⃗t ≡ ∇⃗w⃗vt such that it obeys the
recursive equation416

p⃗t = Jt p⃗t−1 + x⃗t , (13)

which follows straightforward from equation (11) and gives a forward-pass dynamical update of the gradient
[90]. Finally, we define the prediction error ϵ⃗t at timestep t as418

ϵ⃗t ≡ x⃗t − vt−1w⃗ , (14)
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which defines the sign and amplitude of plasticity. All together, the exact gradient of equation (8) can be written
as 420

∇⃗w⃗L = −

T∑
t=0

[⃗
ϵt vt−1 +

(⃗
ϵ⊤t w⃗
)

p⃗t−1
]
. (15)

After the end of the period [0,T ] the exact gradient can be used to update the weight vector via gradient descent

w⃗k = w⃗k−1 − η∇⃗w⃗L

= w⃗k−1 + η

T∑
t=0

[⃗
ϵt vt−1 +

(⃗
ϵ⊤t w⃗k−1

)
p⃗t−1
]
.

(16)

Here, η is the learning rate parameter and the index k represents the k-th iteration during the training period. 422

We are interested in an online learning rule where the weight update forms part of the dynamics of the
model, and takes place in real-time with the prediction of the pre-synaptic inputs. This is a typical method 424

in stochastic optimization theory for recursive objective functions [91] and online signal processing [88]. We
approximate the learning equation (16) with the current estimate of the gradient 426

w⃗t = w⃗t−1 − η∇⃗w⃗L ≃ w⃗t−1 − η∇⃗w⃗Lt

∣∣∣∣
w⃗=w⃗t−1

= w⃗t−1 − η
[⃗
ϵt vt−1 +

(⃗
ϵ⊤t w⃗t−1

)
p⃗t−1
]
. (17)

Different from other works [80], our loss function (7) is defined locally at the single neuron level and we thus
directly avoid the problem of backpropagation of the gradient through the recurrent interactions between neu- 428

rons. Therefore, our approximated learning rule is completely online as it only requires information available at
time step t. Theoretical studies suggests that such stochastic approximation works when η is sufficiently small 430

[88, 90]. In our case, the passive memory capacity of the membrane potential is given by its time constant τm.
In the limit of ητm ≪ 1, the changes in the weights are slow compared to voltage changes and the following 432

relation holds:
w⃗t′ ≃ w⃗t ∀ t′ : |t − t′| < τm . (18)

Thus the weight change is negligible and the learning rule is approximately exact in the time window defined by 434

the membrane time constant τm. The time-scale separation discussed above should apply to biological neurons
as the membrane time constant is in the order of 1 ÷ 10 ms while synaptic plasticity happens at a time scale in 436

the order of 102 ÷ 103 ms, requiring several repetitions of the same stimulation protocol.

Jacobian and surrogate-gradient method

The first term in equation (12) allows the gradient to flow at every time step t via the dynamics of the 438

membrane potential vt. The second term has a discontinuous effect in time (at the moment of the output spikes)
and depends on the specific nonlinear function. This latter term can be approximated following the surrogate- 440

gradient method [81]

−v(th)
∂st−1

∂vt−1
≃ γ f (vt−1, v(th)) , (19)

where f is a continuous function of vt and γ is a scaling factor. In general, the backpropagation of the gradient 442

through the reset mechanisms is neglected [92, 81, 80]. Here we defined the membrane potential vt as the output
variable of the system and the loss function and st as an hidden variable for the objective function. Therefore, 444

our implementation directly avoids the problem of backpropagating through discrete output variables. Given
these two arguments, we considered γ = 0 throughout the paper. 446

Optimization and initialization scheme

Equation (3) defines a completely online optimization scheme which can be implemented locally by single
neurons. In Figure 3, Figure S5, Figure S6, Figure S7 and Fig S9 we updated the synaptic weights following 448

the online approximation of the gradient in Equation (17). For the results of Figure 1, Figure S1, Figure 2b-c,
Figure 4, Figure S3, Figure S4, Figure S8 and Figure S10 we added a scaling term to the predictive plasticity 450

rule as
w⃗t = w⃗t−1 − η w⃗t−1

[⃗
ϵt vt−1 +

(⃗
ϵ⊤t w⃗t−1

)
p⃗t−1
]
. (20)
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That is, we multiplied the learning rate with w⃗t−1 to ensure non-negative values of the weights. Consequently,452

the weight update at time step t was proportional to the synaptic weight value at time step t−1. In Figure 2d and
Figure S2 we did not use the online approximation of the gradient and we optimized the full model (Equation454

(16)) using the Adam optimizer [93].
For the example in Figure 1, for Figure 2b-c, Figure 3 and for the spike-timing dependent plasticity proto-456

cols in Figure 4, the initial weights were assigned to fixed values for the different cases considered. In Figure
2d, the initial weights were randomly drawn from a truncated normal distribution. We bonded the truncated458

normal distribution to obtain positive values of the initial weights. The variance of the normal distribution was
scaled by the squared root of the total input size N.460

Simulations
The spiking sequence were defined by a set of ordered spike times at which the pre-synaptic neurons

were active. For all simulations, the inputs were convolved with an exponential kernel with τx = 2 ms to462

replicate the fast dynamics of post-synaptic currents. We added two sources of noise to the simulations in
Figure 2-3 and corresponding supplementary figures: 1) In each epoch, the spikes that were part of the sequence464

were randomly shifted by an amount ∆t uniformly distributed between [-2, 2] (in ms). 2) Each pre-synaptic
also exhibited stochastic background firing following an homogeneous Poisson process with constant rate λ466

uniformly distributed between 0 and 10 Hz. In addition, in Figure 2, the onset of the sequence relative to the
time window was randomly chosen between 0 and 200 ms, and there were an additional 100 neurons that fired468

randomly. We trained the model by numerically solving the dynamics during each epoch. The model was
fully determined by 5 hyperparameters: the timestep h, the membrane time constant τm, the spiking threshold470

vth, the learning rate η and the input time constant τx. To quantify the performance (in terms of sequence
anticipation) in Figure S3, we fixed the number of training epochs, we performed 100 numerical simulation for472

each condition and we labeled successful simulations based on two criteria: 1) The synaptic weight associated
to the first spike in the sequence is bigger than all the other synaptic weights (input selectivity). 2) The output474

latency is smaller than 20 ms after the onset of the input sequence (fast anticipation). We computed the error as
1 minus the percentage of successful trials in the set of 100 simulations.476

For the STDP simulations, we used a 2-dimensional input x⃗ and we simulated classical pre-before-post
and post-before-pre pairing as typically performed in STDP experiments [18, 19]. To approximate the STDP478

protocol with a current injection that triggers a post-synaptic spike, the initial conditions were chosen such
that x2 triggered a post-synaptic spike, and x1 was a sub-treshold input. For the results in Figure 4b-e, we480

changed the number and the timing of the pre-synaptic neuron spikes according to each experimental protocol.
We numerically solved the dynamics of the model by repeating the input pattern a number of times as in482

the experimental protocols. We computed the weight change of the sub-threshold input as as the ratio of the
synaptic weight before and after each simulation protocol.484

We reproduced the same burst-dependent pairing protocol as in [38] by decreasing the delay ∆t between
post-synaptic spikes (Figure 4c). The bursts were triggered by three input spikes. We simulated the 1-n protocol486

as in [39] by pairing post-pre-post inputs with a 100 Hz burst frequency. The number of input spikes from the
supra-threshold input was increased systematically as in the experimental protocol (Figure 4d). We reproduced488

the frequency pairing protocol as in [39] by pairing 5 post-pre inputs with different intra-pairing frequencies as
in the experimental protocol (Figure 4e).490
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a b
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Figure S1: Dynamics in the parameter space. Relates to Figure 1 of the main text. a) We show here that the learning dynamics of
the model shown in Figure 1c-d are qualitatively the same when the initial conditions lie in regions of multiple output spikes. Shown
is the flow field as in Figure 1d. The black arrow shows the trajectory of the weights obtained by training the model with four different
initial conditions, in particular w⃗0 = (0.06,0.06), w⃗0 = (0.1,0.1), w⃗0 = (0.15,0.02), w⃗0 = (0.15,0.15). It can be seen, that all the regions
of the parameter space with two or more post-synaptic spikes converge to a fixed point, at which there is maximal credit for the first
input (i.e. w1 > w2). b) Right: same as in Figure 1c), for the four initial conditions shown in a.

a b

prediction
regimeprediction

regime

Figure S2: Effect of model parameters. Relates to Figure 2 of the main text. a) Simulations were performed as in Figure 2, but
now with different values of model parameters τm and vth. The color map corresponds to the total number of output spikes at the end
of learning. We show regions for the parameter space where the total number of spikes was smaller than 200. The black line outlines
the region of parameter space where the neuron (in epoch 1000) fires between 2 and 10 ms after the onset of the input sequence, which
can be interpreted as the predictive or anticipatory solution. For the vast portion of the parameter space, the model converges to the
anticipatory solution. b) Same as in a) for different values of model parameters τm and τx.

a b c

Figure S3: Dependence of performance, in terms of anticipation of sequences, depending on model parameters. Relates to
Figure 2 of the main text. a) Simulations were performed as in Figure 2. To quantify the performance in terms of anticipating the
sequence, we labeled successful simulation based on the criteria of input selectivity and fast anticipation (see Methods). Performance is
then shown as the fraction of simulations in which the model did not reach an anticipatory solution. Performance is shown as a function
of the initial weight vector w⃗0, with the weight the same for each pre-synaptic input. The performance does not strongly depend on the
initial conditions. For each weight, we performed 100 simulations (shown are the standard errors of the mean). For each simulation,
we used 2000 epochs. b) As a, but now as a function of the sequence length. c) Left: Performance as a function of the maximal rate
of background firing. Center: Performance as a function of the maximal spike time jitter. Right: Performance as a function of the
proportion of pre-synaptic distractor neurons, that is pre-synaptic neurons that do not participate in the sequence.
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Figure S4: Effect of individual noise sources - Relates to Figure 2 of the main text. a) Simulations were performed as in Figure 2,
however without any noise source (no spike time jitter, no distractor neurons, no background firing, no random onset of the sequence).
Dynamics of the synaptic weights w⃗ (left) and of the post-synaptic spiking activity (right) across training, without any source of noise.
b) Same as in a, but now with one noise source, in this case the sequence onset drawn from a uniform distribution with values between
0 and 100 ms. c) Same as in a, with now one noise source, namely random background firing following an homogeneous Poisson
process with rate distributed between 0 and 10 Hz. d) Same as in a, with again one noise source, namely jitter of the input spike times
(random jitter between -2 and 2 ms).
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Figure S5: Learning multiple independent sequences and the capacity of the model. Relates to Figure 2 of the main text. a)
Example spike sequence during different training epochs. The input spike trains contain a sequence given by the correlated activity of
24 pre-synaptic neurons that firex sequentially with relative delays of 2 ms (purple spike pattern). Each epoch contains two different
sources of noise: (1) jitter of the spike times (random jitter between -2 and 2 ms, which is applied randomly in each epoch); and (2)
random firing following an homogeneous Poisson process with rate λ = 5 Hz. The total sequence is divided into 3 sub-sequences of
N = 8 separated by 20 ms. b) Dynamics of the post-synaptic spiking activity during learning for the four different sub-sequences.
The neuron learns to represent several components of the input structure by potentiating the unpredictable part, i.e. the start, of each
sub-sequence. c) Dynamics of the synaptic weights during training. The synaptic weights are ordered from 1 to 24 following the
temporal order of the sequence. The synaptic weights corresponding to the first inputs of each sub-sequence are maximally potentiated.
d) Capacity of the model α for different values of model parameters τm (membrane time constant) and vth (spiking threshold). The
capacity α is defined as the percentage of sub-sequences that the neuron anticipates at the end of training (same performance criterion
as in Figure S3). The sequence was composed by the subsequent firing of N = 100 pre-synaptic inputs, divided in Nsub sub-sequences
with Nsub = 5, Nsub = 10 and Nsub = 20 from left to right. In each condition, the neuron anticipates every sub-sequence in the input
for a broad range of model parameters. e) Capacity of the model as a function of the number of sub-sequences Nsub for a different
total number of pre-synaptic neurons N. Here we fixed vth = 1 and τm = 20 ms. Each color corresponds to a different total number
of pre-synaptic neurons. We then quantified the capacity for different lengths of the sub-sequences (i.e. Nseq). For example, there are
2 sub-sequences of length Nseq for a total number of 200 pre-synaptic neurons. The figure shows that full capacity (i.e. α = 1) can
be reached even for small sub-sequences, and for both small and large numbers of pre-synaptic neurons. Values higher than α = 1
correspond to values of α = 1 and are shown as such for visualization purposes.
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a

Figure S6: Number of neurons in the network that need to be activated for sequence recall to occur. Relates to Figure 3 of the
main text. a) The y-axis corresponds to the number of neurons in the network that need to be activated by the input sequence in order
for recall to occur. For each epoch, we tested how many neurons needed to be activated by the corresponding pre-synaptic sequence
to obtain full recall. First, we presented the pre-synaptic sequence corresponding to the first neuron in the network. We observed how
many neurons in the network were active after the sequence presentation. Note that if a neuron is not activated by the pre-synaptic
sequence, the pre-synaptic neurons still exhibit background firing. Then, we systematically increased the number of neurons in the
network which received the corresponding pre-synaptic sequence. We examined the minimum number of neurons in the network that
needed to be active such that every other neuron in the network also fired sequentially. We repeated this analysis for each training
epoch and for 100 simulations with different noise realizations. At the beginning of training, each sequence input to each neuron in the
network is needed to obtain a full recall of the sequence. At the end of training, only the inputs to the first neuron are required to trigger
a full recall of the input sequence in the network.
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Figure S7: Anticipation and recall of sequences with all-to-all connected network. Relates to Figure 3 of the main text. We
explored the dynamics of a network model where N = 8 neurons received an input sequence distributed across a total of 16 pre-
synaptic neurons. Each neuron in the network received 2 pre-synaptic inputs The pre-synaptic neurons fired in a sequential manner
with delays of 2 ms. Each epoch contains two different sources of noise: (1) jitter of the spike times (random jitter between -2 and 2
ms, which is applied randomly in each epoch); and (2) random firing following an homogeneous Poisson process with rate λ = 10 Hz.
The network has a recurrent, all-to-all connectivity scheme and is arranged along the time dimension of the sequence, such that each
neuron receives part of the input in a subsequent manner. The sequence onset of pre-synaptic inputs for the n+1-th neuron started 8 ms
after the sequence onset for the n-th neuron in the network, etc. Accordingly, the pattern that each neuron tries to predict is composed
by the external pre-synaptic input and by the internally generated activity of the network. a) Illustration of the network model, where
only 5 neurons of the network are represented for simplicity. b) Top: Network spiking activity when presenting only part of the input
sequence, namely the sequential input to the first 3 neurons in the network. Note that the other network neurons still received inputs
from their corresponding pre-synaptic neurons due to stochastic background firing. Middle: Network spiking activity during the first
training epoch, when the entire sequence was presented. Bottom: The first plot shows the network spiking activity at the end of training
(epoch 2000) when we presented only part of the sequence (as in the top plot). This figure shows that after learning, the network learns
to recall the entire sequence. The second plot shows the network spiking activity when we presented only part of the sequence, but
also the end of the sequence (i.e. activating the last two network neurons). There is no effect of activating the neurons at the end of
the sequence. Note that random background firing can also elicit spontaneous recall of the sequence, outside the stimulation period.
c) The synaptic weight matrix obtained at the end of training (epoch 1000). The i-th column (and the top 10 rows) corresponds to the
synaptic weights learned from the other neurons to the i-th neuron in the network. The bottom 2 entries correspond to the weights for
the pre-synaptic inputs. d) Difference between the latency of the first spike of each single neuron in the first epoch of training and after
training. Positive values indicate that an earlier latency due to training. The panel shows the mean and standard deviation computed
over 100 different simulations.
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Figure S8: Different STDP kernels. Relates to Figure 4 of the main text. a) Weight change (in percentage) of the sub-threshold
input as a function of the delay between the two input spikes (see Methods). We obtained the learning window by setting τ = 5 ms,
vth = 0.4 and initial conditions w1 = 0.0007 and w2 = 0.02. b) Weight change (in percentage) of the sub-threshold input as a function
of the delay between the two input spikes (see Methods). We obtained the learning window by setting τ = 10 ms, vth = 2 and initial
conditions w1 = 0.02 and w2 = 0.1.

a

Figure S9: Dependence of STDP on the initial synaptic weight. Relates to Figure 4 of the main text. a) Simulations were
performed as in Figure 4b, however we simulated different initial conditions for the synaptic weight corresponding to the sub-threshold
input. Weight change (in percentage) as a function of different initial values for the synaptic weights.

a

Figure S10: Spike-timing-dependent-plasticity with fixed synapses. Relates to Figure 4 of the main text. Simulations were
performed as in Figure 3, however we fixed the synaptic weight of the supra-threshold input, that is the one eliciting a spike. Only the
weight of the sub-threshold input was plastic. a) Weight change (in percentage) as a function of the delay between the two input spikes.
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